quantum-espresso/KS_Solvers/ParO/pcg_gamma.f90

203 lines
9.5 KiB
Fortran

! Copyright (C) 2015-2016 Aihui Zhou's group
!
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-------------------------------------------------------------------------------
!
! We propose some parallel orbital updating based plane wave basis methods
! for electronic structure calculations, which aims to the solution of the corresponding eigenvalue
! problems. Compared to the traditional plane wave methods, our methods have the feature of two level
! parallelization, which make them have great advantage in large-scale parallelization.
!
! The approach following Algorithm is the parallel orbital updating algorithm:
! 1. Choose initial $E_{\mathrm{cut}}^{(0)}$ and then obtain $V_{N_G^{0}}$, use the SCF method to solve
! the Kohn-Sham equation in $V_{G_0}$ and get the initial $(\lambda_i^{0},u_i^{0}), i=1, \cdots, N$
! and let $n=0$.
! 2. For $i=1,2,\ldots,N$, find $e_i^{n+1/2}\in V_{G_n}$ satisfying
! $$a(\rho_{in}^{n}; e_i^{n+1/2}, v) = -[(a(\rho_{in}^{n}; u_i^{n}, v) - \lambda_i^{n} (u_i^{n}, v))] $$
! in parallel , where $\rho_{in}^{n}$ is the input charge density obtained by the orbits obtained in the
! $n$-th iteration or the former iterations.
! 3. Find $\{\lambda_i^{n+1},u_i^{n+1}\} \in \mathbf{R}\times \tilde{V}_N$ satisfying
! $$a(\tilde{\rho}; u_i^{n+1}, v) = ( \lambda_i^{n+1}u_i^{n+1}, v) \quad \forall v \in \tilde{V}_N$$
! where $\tilde{V}_N = \mathrm{span}\{e_1^{n+1/2},\ldots,e_N^{n+1/2},u_1^{n},\ldots,u_N^{n}\}$,
! $\tilde{\rho}(x)$ is the input charge density obtained from the previous orbits.
! 4. Convergence check: if not converged, set $n=n+1$, go to step 2; else, stop.
!
! You can see the detailed information through
! X. Dai, X. Gong, A. Zhou, J. Zhu,
! A parallel orbital-updating approach for electronic structure calculations, arXiv:1405.0260 (2014).
! X. Dai, Z. Liu, X. Zhang, A. Zhou,
! A Parallel Orbital-updating Based Optimization Method for Electronic Structure Calculations,
! arXiv:1510.07230 (2015).
! Yan Pan, Xiaoying Dai, Xingao Gong, Stefano de Gironcoli, Gian-Marco Rignanese, and Aihui Zhou,
! A Parallel Orbital-updating Based Plane Wave Basis Method. J. Comp. Phys. 348, 482-492 (2017).
!
! The file is written mainly by Stefano de Gironcoli and Yan Pan.
!
! The following file is for solving step 2 of the parallel orbital updating algorithm.
!
#define ZERO ( 0.D0, 0.D0 )
#define ONE ( 1.D0, 0.D0 )
!
!----------------------------------------------------------------------------
SUBROUTINE pcg_gamma( hs_1psi_ptr, g_1psi_ptr, psi0, spsi0, npw, npwx, nbnd, psi, ethr, iter, e, nhpsi )
!----------------------------------------------------------------------------
!
! ... solve the linear system
!
! [ H - e S + lambda Pv ]|\tilde\psi> = [e S - H ] |psi>
! Pc [ H - e S ]|\tilde\psi> = Pc [ e S - H ] |psi>
!
! the solution is sought until the residual norm is a fixed fraction of the RHS norm
! in this way the more accurate is the original problem the more accuratly the correction is computed
!
USE util_param, ONLY : DP, stdout
USE mp_bands_util, ONLY : intra_bgrp_comm, gstart
USE mp, ONLY : mp_sum
!
IMPLICIT NONE
!
! Following variables are temporary
COMPLEX(DP),INTENT(IN) :: psi0(npwx,nbnd) ! psi0 needed to compute the Pv projection
COMPLEX(DP),INTENT(IN) :: spsi0(npwx,nbnd) ! Spsi0 needed to compute the Pv projection
INTEGER, INTENT(IN) :: npw, npwx, nbnd, iter ! input dimensions and iteration count
REAL(DP), INTENT(IN) :: ethr ! threshold for convergence.
REAL(DP), INTENT(IN) :: e ! current estimate of the target eigenvalue
COMPLEX(DP),INTENT(INOUT) :: psi(npwx) ! input: the current estimate of the eigenvector,
! output: the estimated correction vector
INTEGER, INTENT(INOUT) :: nhpsi ! (updated) number of Hpsi evaluations
!
! ... LOCAL variables
!
INTEGER, PARAMETER :: maxter = 5 ! maximum number of CG iterations
!
COMPLEX(DP), ALLOCATABLE :: hpsi(:), & ! the product of H and psi
spsi(:), & ! the product of S and psi
b(:), & ! RHS for testing
r(:), p(:), sp(:), w(:),z(:) ! additional working vetors
REAL(DP), ALLOCATABLE :: spsi0vec (:) ! the product of spsi0 and a trial vector
REAL(DP) :: g0, g1, g2, beta, alpha, gamma, ethr_cg, ff, ff0
INTEGER :: npw2, npwx2, cg_iter, ibnd
!
REAL(DP), EXTERNAL :: DDOT
EXTERNAL hs_1psi_ptr, g_1psi_ptr
! hs_1psi_ptr( npwx, npw, psi, hpsi, spsi )
!
CALL start_clock( 'pcg' )
!write (6,*) ' enter pcg' , e
!
npw2 = 2*npw
npwx2 = 2*npwx
!
ALLOCATE( hpsi( npwx ), spsi( npwx ), r( npwx ), z( npwx ), b( npwx ) )
ALLOCATE( spsi0vec(nbnd) )
!
! ... set Im[ psi(G=0) ] - needed for numerical stability
IF ( gstart == 2 ) psi(1) = CMPLX( DBLE( psi(1) ), 0.D0 ,kind=DP)
!
CALL start_clock( 'pcg:hs_1psi' )
CALL hs_1psi_ptr( npwx, npw, psi, hpsi, spsi ) ! apply H and S to a single wavefunction (no bgrp parallelization inside)
CALL stop_clock( 'pcg:hs_1psi' )
!
! define CG algorithm RHS and initial solution
r(:) = e * spsi(:) - hpsi(:) ! initial gradient
z(:) = r(:) ; call g_1psi_ptr(npwx,npw,z,e) ! initial preconditioned gradient
!- project on conduction bands
CALL start_clock( 'pcg:ortho' )
CALL DGEMV( 'T', npw2, nbnd, 2.0_DP, spsi0, npwx2, z, 1, 0.0_DP, spsi0vec, 1 )
IF ( gstart == 2 ) spsi0vec(:) = spsi0vec(:) - CONJG(spsi0(1,:))*z(1)
CALL mp_sum( spsi0vec, intra_bgrp_comm )
CALL DGEMV( 'N', npw2, nbnd, -1.D0, psi0, npwx2, spsi0vec, 1, 1.0_DP, z, 1 )
CALL stop_clock( 'pcg:ortho' )
!-
g0 = 2.d0 * DDOT( npw2, z ,1 ,r ,1) ; IF ( gstart == 2 ) g0 = g0 - CONJG (z(1)) * r(1)
CALL mp_sum( g0, intra_bgrp_comm ) ! g0 = < initial z | initial r >
ff = 0.d0 ; ff0 = ff
!write (6,*) 0, g0, ff
ALLOCATE( p( npwx ), sp( npwx ), w( npwx ) )
! ethr_cg = ethr ! CG convergence threshold could be set from input but it is not ...
ethr_cg = 1.0D-2 ! it makes more sense to fix the convergence of the CG solution to a
! fixed function of the RHS (see ethr_cg update later).
ethr_cg = max ( 0.01*ethr, ethr_cg * g0 ) ! here we set the convergence of the correction
! save RHS for later
b(:) = r(:)
! zero the trial solution: comment next line is you are looking for |\psi_new> = |\psi> + |\tilde \psi>
psi(:) = ZERO
! initial search direction
p(:) = z(:)
iterate: &
DO cg_iter = 1, maxter
CALL start_clock( 'pcg:hs_1psi' )
CALL hs_1psi_ptr( npwx, npw, p, w, sp ) ! apply H to a single wavefunction (no bgrp parallelization here!)
CALL stop_clock( 'pcg:hs_1psi' )
w = w - e* sp
gamma = 2.d0 * ddot( npw2, p ,1 ,w ,1) ; IF ( gstart == 2 ) gamma = gamma - CONJG(p(1)) * w(1)
CALL mp_sum( gamma, intra_bgrp_comm )
alpha = g0/gamma
psi(:) = psi(:) + alpha * p(:) ! updated solution
r(:) = r(:) - alpha * w(:) ! updated gradient
g2 = 2.d0 * DDOT( npw2, z ,1 ,r ,1) ; IF ( gstart == 2 ) g2 = g2 - CONJG (z(1)) * r(1)
CALL mp_sum( g2, intra_bgrp_comm ) ! g2 = < old z | new r >
z(:) = r(:) ; call g_1psi_ptr(npwx,npw,z,e) ! updated preconditioned gradient
!- project on conduction bands
CALL start_clock( 'pcg:ortho' )
CALL DGEMV( 'T', npw2, nbnd, 2.0_DP, spsi0, npwx2, z, 1, 0.0_DP, spsi0vec, 1 )
IF ( gstart == 2 ) spsi0vec(:) = spsi0vec(:) - CONJG(spsi0(1,:))*z(1)
CALL mp_sum( spsi0vec, intra_bgrp_comm )
CALL DGEMV( 'N', npw2, nbnd, -1.D0, psi0, npwx2, spsi0vec, 1, 1.0_DP, z, 1 )
CALL stop_clock( 'pcg:ortho' )
!-
g1 = 2.d0 * ddot( npw2, z, 1, r ,1) ; IF ( gstart == 2 ) g1 = g1 - CONJG(z(1)) * r(1)
CALL mp_sum( g1, intra_bgrp_comm ) ! g1 = < new z | new r >
! evaluate the function
ff = - ddot( npw2, psi, 1, r ,1) - ddot( npw2, psi, 1, b ,1) ; IF ( gstart == 2 ) ff = ff + 0.5d0* CONJG(psi(1)) * (r(1)+b(1))
CALL mp_sum( ff, intra_bgrp_comm )
!write (6,*) cg_iter, g1, ff, gamma
if ( ff > ff0 .AND. ff0 < 0.d0 ) psi(:) = psi(:) - alpha * p(:) ! fallback solution if last iteration failed to improve the function... exit and hope next time it'll be better
IF ( ABS ( g1 ) < ethr_cg .OR. ( ff > ff0 ) ) EXIT iterate
beta = (g1-g2)/g0 ! Polak - Ribiere style update
g0 = g1 ! < new z | new r > -> < old z | old r >
p(:) = z(:) + beta * p(:) ! updated search direction
ff0 = ff ! updated minimum value reached by the function
END DO iterate
!write (6,*) ' exit pcg loop'
! orthogonalize to psi0 ...
! actually we are not doing that.. it would require both psi0 AND spsi0 to be computed and would
! remove an occupied orb contribution which is taken care of by the following rotate_wfc routine anyway
!if ( cg_iter == maxter.and. ABS(g1) > ethr_cg) &
! write (*,*) 'CG not converged maxter exceeded', cg_iter, g1, g0, ethr_cg
!IF ( ABS ( g1 ) < ethr_cg) write (*,*) 'CG correction converged ', cg_iter, g1, ethr_cg
!IF ( ABS ( g1 ) > g0 ) write (*,*) 'CG not converged ', cg_iter, g1, g0, ethr_cg
nhpsi = nhpsi + cg_iter + 1
!
DEALLOCATE( spsi0vec )
DEALLOCATE( r, p, sp, w, z )
DEALLOCATE( hpsi, spsi )
!
CALL stop_clock( 'pcg' )
!
RETURN
!
END SUBROUTINE pcg_gamma