mirror of https://gitlab.com/QEF/q-e.git
168 lines
7.2 KiB
Fortran
168 lines
7.2 KiB
Fortran
!
|
|
! Copyright (C) 2015-2016 Aihui Zhou's group
|
|
!
|
|
! This file is distributed under the terms of the
|
|
! GNU General Public License. See the file `License'
|
|
! in the root directory of the present distribution,
|
|
! or http://www.gnu.org/copyleft/gpl.txt .
|
|
!
|
|
!-------------------------------------------------------------------------------
|
|
!
|
|
! We propose some parallel orbital updating based plane wave basis methods
|
|
! for electronic structure calculations, which aims to the solution of the corresponding eigenvalue
|
|
! problems. Compared to the traditional plane wave methods, our methods have the feature of two level
|
|
! parallelization, which make them have great advantage in large-scale parallelization.
|
|
!
|
|
! The approach following Algorithm is the parallel orbital updating algorithm:
|
|
! 1. Choose initial $E_{\mathrm{cut}}^{(0)}$ and then obtain $V_{N_G^{0}}$, use the SCF method to solve
|
|
! the Kohn-Sham equation in $V_{G_0}$ and get the initial $(\lambda_i^{0},u_i^{0}), i=1, \cdots, N$
|
|
! and let $n=0$.
|
|
! 2. For $i=1,2,\ldots,N$, find $e_i^{n+1/2}\in V_{G_n}$ satisfying
|
|
! $$a(\rho_{in}^{n}; e_i^{n+1/2}, v) = -[(a(\rho_{in}^{n}; u_i^{n}, v) - \lambda_i^{n} (u_i^{n}, v))] $$
|
|
! in parallel , where $\rho_{in}^{n}$ is the input charge density obtained by the orbits obtained in the
|
|
! $n$-th iteration or the former iterations.
|
|
! 3. Find $\{\lambda_i^{n+1},u_i^{n+1}\} \in \mathbf{R}\times \tilde{V}_N$ satisfying
|
|
! $$a(\tilde{\rho}; u_i^{n+1}, v) = ( \lambda_i^{n+1}u_i^{n+1}, v) \quad \forall v \in \tilde{V}_N$$
|
|
! where $\tilde{V}_N = \mathrm{span}\{e_1^{n+1/2},\ldots,e_N^{n+1/2},u_1^{n},\ldots,u_N^{n}\}$,
|
|
! $\tilde{\rho}(x)$ is the input charge density obtained from the previous orbits.
|
|
! 4. Convergence check: if not converged, set $n=n+1$, go to step 2; else, stop.
|
|
!
|
|
! You can see the detailed information through
|
|
! X. Dai, X. Gong, A. Zhou, J. Zhu,
|
|
! A parallel orbital-updating approach for electronic structure calculations, arXiv:1405.0260 (2014).
|
|
! X. Dai, Z. Liu, X. Zhang, A. Zhou,
|
|
! A Parallel Orbital-updating Based Optimization Method for Electronic Structure Calculations,
|
|
! arXiv:1510.07230 (2015).
|
|
! Yan Pan, Xiaoying Dai, Xingao Gong, Stefano de Gironcoli, Gian-Marco Rignanese, and Aihui Zhou,
|
|
! A Parallel Orbital-updating Based Plane Wave Basis Method. J. Comp. Phys. 348, 482-492 (2017).
|
|
!
|
|
! The file is written mainly by Stefano de Gironcoli and Yan Pan.
|
|
!
|
|
!-------------------------------------------------------------------------------
|
|
SUBROUTINE paro_k( h_psi_ptr, s_psi_ptr, hs_1psi_ptr, g_1psi_ptr, overlap, &
|
|
npwx, npw, nbnd, npol, evc, eig, btype, ethr, notconv, nhpsi )
|
|
!-------------------------------------------------------------------------------
|
|
!paro_flag = 1: modified parallel orbital-updating method
|
|
|
|
! global variables
|
|
USE util_param, ONLY : DP, stdout
|
|
USE mp_bands_util, ONLY : my_bgrp_id, inter_bgrp_comm
|
|
USE mp, ONLY : mp_sum
|
|
|
|
IMPLICIT NONE
|
|
!
|
|
INCLUDE 'laxlib.fh'
|
|
|
|
! I/O variables
|
|
LOGICAL, INTENT(IN) :: overlap
|
|
INTEGER, INTENT(IN) :: npw, npwx, nbnd, npol
|
|
COMPLEX(DP), INTENT(INOUT) :: evc(npwx*npol,nbnd)
|
|
REAL(DP), INTENT(IN) :: ethr
|
|
REAL(DP), INTENT(INOUT) :: eig(nbnd)
|
|
INTEGER, INTENT(IN) :: btype(nbnd)
|
|
INTEGER, INTENT(OUT) :: notconv, nhpsi
|
|
! INTEGER, INTENT(IN) :: paro_flag
|
|
|
|
! local variables (used in the call to cegterg )
|
|
!------------------------------------------------------------------------
|
|
EXTERNAL h_psi_ptr, s_psi_ptr, hs_1psi_ptr, g_1psi_ptr
|
|
! subroutine h_psi_ptr (npwx,npw,nvec,evc,hpsi) computes H*evc using band parallelization
|
|
! subroutine s_psi_ptr (npwx,npw,nvec,evc,spsi) computes S*evc using band parallelization
|
|
! subroutine hs_1psi_ptr(npwx,npw,evc,hpsi,spsi) computes H*evc and S*evc for a single band
|
|
! subroutine g_1psi_ptr (npwx,npw,psi,eig) computes g*psi for a single band
|
|
|
|
!
|
|
! ... local variables
|
|
!
|
|
INTEGER :: iter, itry, paro_ntr, nconv, nextra, nactive, nbase, ndiag, nproc_ortho
|
|
REAL(DP), ALLOCATABLE :: ew(:)
|
|
COMPLEX(DP), ALLOCATABLE :: psi2(:,:)
|
|
LOGICAL, ALLOCATABLE :: conv(:)
|
|
|
|
INTEGER :: ibnd, ibnd_start, ibnd_end, lbnd
|
|
!
|
|
! ... init local variables
|
|
!
|
|
CALL laxlib_getval( nproc_ortho = nproc_ortho )
|
|
iter = 0
|
|
nhpsi = 0
|
|
paro_ntr = 20
|
|
!
|
|
!write (6,*) ' enter PARO '
|
|
|
|
ALLOCATE ( psi2(npwx*npol,2*nbnd), ew(2*nbnd), conv(nbnd) )
|
|
|
|
conv(:) = .FALSE. ; nconv = COUNT ( conv(:) )
|
|
psi2(:,1:nbnd) = evc(:,1:nbnd) ! copy input evc into work vector
|
|
ew(1:nbnd) = eig(1:nbnd) ! copy input eigenvalues into work vector
|
|
|
|
ParO_loop : &
|
|
DO itry = 1,paro_ntr
|
|
|
|
!write (6,*) ' paro_itry =', itry, ethr, nconv
|
|
|
|
nactive = nbnd - (nconv+1)/2 ! number of correction vectors to be computed (<nbnd)
|
|
notconv = nbnd - nconv ! number of needed roots
|
|
nextra = nactive - notconv ! number of extra vectors
|
|
nbase = nconv + nactive ! number of orbitals the correction should be orthogonal to (<2*nbnd)
|
|
ndiag = nbase + nactive ! dimension of the matrix to be diagonalized at this iteration (<2*nbnd)
|
|
|
|
!write (*,*) itry, notconv, conv
|
|
!write (6,*) ' nbnd, nconv, notconv, nextra, nactive, nbase, ndiag =', nbnd, nconv, notconv, nextra, nactive, nbase, ndiag
|
|
|
|
call s_psi_ptr (npwx,npw,nbnd,psi2,evc) ! computes S*psi needed to ortogonalize to nbase
|
|
lbnd = nbase
|
|
DO ibnd = 1, nbnd ! pack unconverged roots
|
|
IF (.NOT.conv(ibnd) ) THEN
|
|
lbnd = lbnd+1
|
|
psi2(:,lbnd) = psi2(:,ibnd)
|
|
eig(lbnd-nbase) = ew(ibnd)
|
|
END IF
|
|
END DO
|
|
DO ibnd = nbnd+1, nbase
|
|
lbnd = lbnd + 1
|
|
psi2(:,lbnd) = psi2(:,ibnd)
|
|
eig(lbnd-nbase) = eig(lbnd-nbase-1)
|
|
END DO
|
|
|
|
!write (6,*) ' check nactive = ', lbnd-nbase, nactive
|
|
if (lbnd .ne. nbase+nactive ) stop ' nactive check FAILED '
|
|
|
|
CALL divide(inter_bgrp_comm,nactive,ibnd_start,ibnd_end)
|
|
IF ( ibnd_start > 1 ) psi2(:, nbase+1:nbase+ibnd_start-1 ) = (0.0_dp,0.0_dp)
|
|
DO ibnd=ibnd_start,ibnd_end
|
|
! write (*,*) ' calling pcg for ibnd = ', ibnd, eig(ibnd)
|
|
CALL pcg_k(hs_1psi_ptr, g_1psi_ptr, psi2, evc, npw, npwx, nbnd, npol, psi2(:,nbase+ibnd), ethr, iter, eig(ibnd), nhpsi)
|
|
END DO
|
|
IF ( ibnd_end < nactive ) psi2(:, nbase+ibnd_end+1:nbase+nactive) = (0.0_dp,0.0_dp)
|
|
CALL mp_sum(psi2(:,nbase+1:nbase+nactive),inter_bgrp_comm)
|
|
|
|
eig(1:nbnd) = ew(1:nbnd) ! reset first nbnd eigenvalues in their order
|
|
#if defined(__MPI)
|
|
IF ( nproc_ortho == 1 ) THEN
|
|
#endif
|
|
CALL rotate_wfc_k ( h_psi_ptr, s_psi_ptr, overlap, npwx, npw, ndiag, ndiag, npol, psi2, psi2, ew )
|
|
#if defined(__MPI)
|
|
ELSE
|
|
CALL protate_wfc_k( h_psi_ptr, s_psi_ptr, overlap, npwx, npw, ndiag, ndiag, npol, psi2, psi2, ew )
|
|
END IF
|
|
#endif
|
|
IF (my_bgrp_id==0) nhpsi = nhpsi + ndiag
|
|
|
|
! only the first nbnd eigenvalues are relevant for convergence
|
|
conv(1:nbnd) = ABS(ew(1:nbnd)-eig(1:nbnd)).LT.ethr ; nconv = COUNT(conv(:)) ; notconv = nbnd - nconv
|
|
IF ( nconv == nbnd ) EXIT ParO_loop
|
|
|
|
END DO ParO_loop
|
|
|
|
evc(:,1:nbnd) = psi2(:,1:nbnd)
|
|
eig(1:nbnd) = ew(1:nbnd)
|
|
|
|
CALL mp_sum(nhpsi,inter_bgrp_comm)
|
|
|
|
DEALLOCATE ( ew, conv, psi2 )
|
|
|
|
!write (6,*) ' exit PARO ', nconv
|
|
|
|
END SUBROUTINE paro_k
|