quantum-espresso/KS_Solvers/ParO/paro_gamma.f90

168 lines
7.2 KiB
Fortran

!
! Copyright (C) 2015-2016 Aihui Zhou's group
!
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-------------------------------------------------------------------------------
!
! We propose some parallel orbital updating based plane wave basis methods
! for electronic structure calculations, which aims to the solution of the corresponding eigenvalue
! problems. Compared to the traditional plane wave methods, our methods have the feature of two level
! parallelization, which make them have great advantage in large-scale parallelization.
!
! The approach following Algorithm is the parallel orbital updating algorithm:
! 1. Choose initial $E_{\mathrm{cut}}^{(0)}$ and then obtain $V_{N_G^{0}}$, use the SCF method to solve
! the Kohn-Sham equation in $V_{G_0}$ and get the initial $(\lambda_i^{0},u_i^{0}), i=1, \cdots, N$
! and let $n=0$.
! 2. For $i=1,2,\ldots,N$, find $e_i^{n+1/2}\in V_{G_n}$ satisfying
! $$a(\rho_{in}^{n}; e_i^{n+1/2}, v) = -[(a(\rho_{in}^{n}; u_i^{n}, v) - \lambda_i^{n} (u_i^{n}, v))] $$
! in parallel , where $\rho_{in}^{n}$ is the input charge density obtained by the orbits obtained in the
! $n$-th iteration or the former iterations.
! 3. Find $\{\lambda_i^{n+1},u_i^{n+1}\} \in \mathbf{R}\times \tilde{V}_N$ satisfying
! $$a(\tilde{\rho}; u_i^{n+1}, v) = ( \lambda_i^{n+1}u_i^{n+1}, v) \quad \forall v \in \tilde{V}_N$$
! where $\tilde{V}_N = \mathrm{span}\{e_1^{n+1/2},\ldots,e_N^{n+1/2},u_1^{n},\ldots,u_N^{n}\}$,
! $\tilde{\rho}(x)$ is the input charge density obtained from the previous orbits.
! 4. Convergence check: if not converged, set $n=n+1$, go to step 2; else, stop.
!
! You can see the detailed information through
! X. Dai, X. Gong, A. Zhou, J. Zhu,
! A parallel orbital-updating approach for electronic structure calculations, arXiv:1405.0260 (2014).
! X. Dai, Z. Liu, X. Zhang, A. Zhou,
! A Parallel Orbital-updating Based Optimization Method for Electronic Structure Calculations,
! arXiv:1510.07230 (2015).
! Yan Pan, Xiaoying Dai, Xingao Gong, Stefano de Gironcoli, Gian-Marco Rignanese, and Aihui Zhou,
! A Parallel Orbital-updating Based Plane Wave Basis Method. J. Comp. Phys. 348, 482-492 (2017).
!
! The file is written mainly by Stefano de Gironcoli and Yan Pan.
!
!-------------------------------------------------------------------------------
SUBROUTINE paro_gamma( h_psi_ptr, s_psi_ptr, hs_1psi_ptr, g_1psi_ptr, overlap, &
npwx, npw, nbnd, evc, eig, btype, ethr, notconv, nhpsi )
!-------------------------------------------------------------------------------
!paro_flag = 1: modified parallel orbital-updating method
! global variables
USE util_param, ONLY : DP, stdout
USE mp_bands_util, ONLY : my_bgrp_id, inter_bgrp_comm
USE mp, ONLY : mp_sum
IMPLICIT NONE
!
INCLUDE 'laxlib.fh'
! I/O variables
LOGICAL, INTENT(IN) :: overlap
INTEGER, INTENT(IN) :: npw, npwx, nbnd
COMPLEX(DP), INTENT(INOUT) :: evc(npwx,nbnd)
REAL(DP), INTENT(IN) :: ethr
REAL(DP), INTENT(INOUT) :: eig(nbnd)
INTEGER, INTENT(IN) :: btype(nbnd)
INTEGER, INTENT(OUT) :: notconv, nhpsi
! INTEGER, INTENT(IN) :: paro_flag
! local variables (used in the call to cegterg )
!------------------------------------------------------------------------
EXTERNAL h_psi_ptr, s_psi_ptr, hs_1psi_ptr, g_1psi_ptr
! subroutine h_psi_ptr (npwx,npw,nvec,evc,hpsi) computes H*evc using band parallelization
! subroutine s_psi_ptr (npwx,npw,nvec,evc,spsi) computes S*evc using band parallelization
! subroutine hs_1psi_ptr(npwx,npw,evc,hpsi,spsi) computes H*evc and S*evc for a single band
! subroutine g_1psi_ptr (npwx,npw,psi,eig) computes g*psi for a single band
!
! ... local variables
!
INTEGER :: iter, itry, paro_ntr, nconv, nextra, nactive, nbase, ndiag, nproc_ortho
REAL(DP), ALLOCATABLE :: ew(:)
COMPLEX(DP), ALLOCATABLE :: psi2(:,:)
LOGICAL, ALLOCATABLE :: conv(:)
INTEGER :: ibnd, ibnd_start, ibnd_end, lbnd
!
! ... init local variables
!
CALL laxlib_getval( nproc_ortho = nproc_ortho )
iter = 0
nhpsi = 0
paro_ntr = 20
!
! write (6,*) ' paro_flag = ', paro_flag
! if (paro_flag /= 1) WRITE(stdout,*) 'wrong setting of paro_flag!! '
ALLOCATE ( psi2(npwx,2*nbnd), ew(2*nbnd), conv(nbnd) )
conv(:) = .FALSE. ; nconv = COUNT ( conv(:) )
psi2(:,1:nbnd) = evc(:,1:nbnd) ! copy input evc into work vector
ew(1:nbnd) = eig(1:nbnd) ! copy input eigenvalues into work vector
ParO_loop : &
DO itry = 1,paro_ntr
!write (6,*) ' paro_itry =', itry, ethr
nactive = nbnd - (nconv+1)/2 ! number of correction vectors to be computed (<nbnd)
notconv = nbnd - nconv ! number of needed roots
nextra = nactive - notconv ! number of extra vectors
nbase = nconv + nactive ! number of orbitals the correction should be orthogonal to (<2*nbnd)
ndiag = nbase + nactive ! dimension of the matrix to be diagonalized at this iteration (<2*nbnd)
!write (*,*) itry, notconv, conv
!write (6,*) ' nbnd, nconv, notconv, nextra, nactive, nbase, ndiag =', nbnd, nconv, notconv, nextra, nactive, nbase, ndiag
call s_psi_ptr (npwx,npw,nbnd,psi2,evc) ! computes S*psi needed to ortogonalize to nbase
lbnd = nbase
DO ibnd = 1, nbnd ! pack unconverged roots
IF (.NOT.conv(ibnd) ) THEN
lbnd = lbnd+1
psi2(:,lbnd) = psi2(:,ibnd)
eig(lbnd-nbase) = ew(ibnd)
END IF
END DO
DO ibnd = nbnd+1, nbase
lbnd = lbnd + 1
psi2(:,lbnd) = psi2(:,ibnd)
eig(lbnd-nbase) = eig(lbnd-nbase-1)
END DO
!write (6,*) ' check nactive = ', lbnd-nbase, nactive
if (lbnd .ne. nbase+nactive ) stop ' nactive check FAILED '
CALL divide(inter_bgrp_comm,nactive,ibnd_start,ibnd_end)
IF ( ibnd_start > 1 ) psi2(:, nbase+1:nbase+ibnd_start-1 ) = (0.0_dp,0.0_dp)
DO ibnd=ibnd_start,ibnd_end
!write (*,*) ' calling pcg for ibnd = ', ibnd, eig(ibnd)
CALL pcg_gamma(hs_1psi_ptr, g_1psi_ptr, psi2, evc, npw, npwx, nbnd, psi2(:,nbase+ibnd), ethr, iter, eig(ibnd), nhpsi)
END DO
IF ( ibnd_end < nactive ) psi2(:, nbase+ibnd_end+1:nbase+nactive) = (0.0_dp,0.0_dp)
CALL mp_sum(psi2(:,nbase+1:nbase+nactive),inter_bgrp_comm)
eig(1:nbnd) = ew(1:nbnd) ! reset first nbnd eigenvalues in their order
#if defined(__MPI)
IF ( nproc_ortho == 1 ) THEN
#endif
CALL rotate_wfc_gamma ( h_psi_ptr, s_psi_ptr, overlap, npwx, npw, ndiag, ndiag, psi2, psi2, ew )
#if defined(__MPI)
ELSE
CALL protate_wfc_gamma( h_psi_ptr, s_psi_ptr, overlap, npwx, npw, ndiag, ndiag, psi2, psi2, ew )
ENDIF
#endif
IF (my_bgrp_id==0) nhpsi = nhpsi + ndiag
! only the first nbnd eigenvalues are relevant for convergence
conv(1:nbnd) = ABS(ew(1:nbnd)-eig(1:nbnd)).LT.ethr ; nconv = COUNT(conv(:)) ; notconv = nbnd - nconv
IF ( nconv == nbnd ) EXIT ParO_loop
END DO ParO_loop
evc(:,1:nbnd) = psi2(:,1:nbnd)
eig(1:nbnd) = ew(1:nbnd)
CALL mp_sum(nhpsi,inter_bgrp_comm)
DEALLOCATE ( ew, conv, psi2 )
END SUBROUTINE paro_gamma