quantum-espresso/KS_Solvers/ParO/bpcg_k.f90

433 lines
19 KiB
Fortran

! Copyright (C) 2015-2016 Aihui Zhou's group
!
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-------------------------------------------------------------------------------
!
! We propose some parallel orbital updating based plane wave basis methods
! for electronic structure calculations, which aims to the solution of the corresponding eigenvalue
! problems. Compared to the traditional plane wave methods, our methods have the feature of two level
! parallelization, which make them have great advantage in large-scale parallelization.
!
! The approach following Algorithm is the parallel orbital updating algorithm:
! 1. Choose initial $E_{\mathrm{cut}}^{(0)}$ and then obtain $V_{N_G^{0}}$, use the SCF method to solve
! the Kohn-Sham equation in $V_{G_0}$ and get the initial $(\lambda_i^{0},u_i^{0}), i=1, \cdots, N$
! and let $n=0$.
! 2. For $i=1,2,\ldots,N$, find $e_i^{n+1/2}\in V_{G_n}$ satisfying
! $$a(\rho_{in}^{n}; e_i^{n+1/2}, v) = -[(a(\rho_{in}^{n}; u_i^{n}, v) - \lambda_i^{n} (u_i^{n}, v))] $$
! in parallel , where $\rho_{in}^{n}$ is the input charge density obtained by the orbits obtained in the
! $n$-th iteration or the former iterations.
! 3. Find $\{\lambda_i^{n+1},u_i^{n+1}\} \in \mathbf{R}\times \tilde{V}_N$ satisfying
! $$a(\tilde{\rho}; u_i^{n+1}, v) = ( \lambda_i^{n+1}u_i^{n+1}, v) \quad \forall v \in \tilde{V}_N$$
! where $\tilde{V}_N = \mathrm{span}\{e_1^{n+1/2},\ldots,e_N^{n+1/2},u_1^{n},\ldots,u_N^{n}\}$,
! $\tilde{\rho}(x)$ is the input charge density obtained from the previous orbits.
! 4. Convergence check: if not converged, set $n=n+1$, go to step 2; else, stop.
!
! You can see the detailed information through
! X. Dai, X. Gong, A. Zhou, J. Zhu,
! A parallel orbital-updating approach for electronic structure calculations, arXiv:1405.0260 (2014).
! X. Dai, Z. Liu, X. Zhang, A. Zhou,
! A Parallel Orbital-updating Based Optimization Method for Electronic Structure Calculations,
! arXiv:1510.07230 (2015).
! Yan Pan, Xiaoying Dai, Xingao Gong, Stefano de Gironcoli, Gian-Marco Rignanese, and Aihui Zhou,
! A Parallel Orbital-updating Based Plane Wave Basis Method. J. Comp. Phys. 348, 482-492 (2017).
!
! The file is written mainly by Stefano de Gironcoli and Yan Pan.
! * GPU porting Ivan Carnimeo
!
! The following file is for solving step 2 of the parallel orbital updating algorithm.
!
#define ZERO ( 0.D0, 0.D0 )
#define ONE ( 1.D0, 0.D0 )
!
!----------------------------------------------------------------------------
SUBROUTINE bpcg_k( hs_psi_ptr, g_1psi_ptr, psi0, spsi0, npw, npwx, nbnd, npol, nvec, psi, hpsi, spsi, ethr, e, nhpsi )
!----------------------------------------------------------------------------
!
! Block Preconditioned Conjugate Gradient solution of the linear system
!
! [ H - e S ]|\tilde\psi> = Pc [ e S - H ] |psi>
!
! the search targets the space orthogonal to the current best wfcs (psi0);
! the solution is sought until the residual norm is a fixed fraction of the RHS norm
! in this way the more accurate is the original problem the more accuratly the correction is computed
!
! in order to avoid un-necessary HSpsi evaluations this version assumes psi,hpsi and spsi are all
! provided in input and return their estimate for further use
!
USE util_param, ONLY : DP, stdout
USE mp_bands_util, ONLY : intra_bgrp_comm
USE mp, ONLY : mp_sum
!
IMPLICIT NONE
!
! Following variables are temporary
COMPLEX(DP),INTENT(IN) :: psi0(npwx*npol,nbnd) ! psi0 needed to compute the Pv projection
COMPLEX(DP),INTENT(IN) :: spsi0(npwx*npol,nbnd) ! Spsi0 needed to compute the Pv projection
INTEGER, INTENT(IN) :: npw, npwx, nbnd, npol, nvec ! input dimensions
REAL(DP), INTENT(IN) :: ethr ! threshold for convergence.
REAL(DP), INTENT(INOUT) :: e(nvec) ! current estimate of the target eigenvalues
COMPLEX(DP),INTENT(INOUT) :: psi(npwx*npol,nvec),hpsi(npwx*npol,nvec),spsi(npwx*npol,nvec) !
! input: the current estimate of the wfcs
! output: the estimated correction vectors
INTEGER, INTENT(INOUT) :: nhpsi ! (updated) number of Hpsi evaluations
!
! ... LOCAL variables
!
INTEGER, PARAMETER :: maxter = 5 ! maximum number of CG iterations
!
COMPLEX(DP), ALLOCATABLE :: b(:,:), & ! RHS for testing
p(:,:), hp(:,:), sp(:,:), z(:,:) ! additional working vetors
!$acc declare device_resident(b, z)
COMPLEX(DP), ALLOCATABLE :: spsi0vec (:,:) ! the product of spsi0 and a group of vectors
!$acc declare device_resident(spsi0vec)
REAL(DP), ALLOCATABLE :: g0(:), g1(:), g2(:), alpha(:), gamma(:), ethr_cg(:), ff(:), ff0(:)
!$acc declare device_resident(g0, g1, g2, alpha, gamma, ethr_cg, ff, ff0)
INTEGER, ALLOCATABLE :: cg_iter(:)
!$acc declare device_resident(cg_iter)
INTEGER :: cg_iter_l ! cg_iter(l) (useful for some GPU optimization)
!
LOGICAL :: ff_check, ff0_check, g1_check, iter_check ! exit iteration condition checks
!
REAL(DP) :: beta, ee
INTEGER :: kdim, kdmx, i, l, block_size, done, nactive, nnew, newdone
!
REAL(DP), EXTERNAL :: MYDDOT_VECTOR_GPU
!$acc routine(MYDDOT_VECTOR_GPU) vector
!
EXTERNAL hs_psi_ptr, g_1psi_ptr
! hs_1psi_ptr( npwx, npw, psi, hpsi, spsi )
! hs_psi_ptr( npwx, npw, nvec, psi, hpsi, spsi )
!
INTEGER :: ii ! kernel indeces
!
CALL start_clock( 'pcg' ); !write (6,*) ' enter pcg' , e(1:2), 'npol = ', npol ; FLUSH(6)
!
kdim = npwx*(npol-1) + npw
kdmx = npwx* npol
block_size = min(nvec,64)
!
ALLOCATE( g0( block_size ), g1( block_size ), g2( block_size ), alpha( block_size ), gamma( block_size ) )
ALLOCATE( ethr_cg( block_size ), ff( block_size ), ff0( block_size ), cg_iter( block_size ) )
ALLOCATE( z( kdmx, block_size ), b( kdmx, block_size ) )
ALLOCATE( p(kdmx,block_size), hp(kdmx,block_size), sp(kdmx,block_size) )
ALLOCATE( spsi0vec(nbnd, block_size) )
!$acc enter data create(p, hp, sp)
!
done = 0 ! the number of correction vectors already solved
nactive = 0 ! the number of correction vectors currently being updated
!$acc kernels
cg_iter = 0 ! how many iteration each active vector has completed (<= maxter)
!$acc end kernels
MAIN_LOOP: & ! This is a continuous loop. It terminates only when nactive vanishes
DO
nnew = min(done+block_size,nvec)-(done+nactive) ! number of new corrections to be added to the seach
if ( nnew > 0 ) then ! add nnew vectors to the active list
!write(6,*) ' nnew =', nnew
!$acc parallel
!$acc loop gang private(i)
do l=nactive+1,nactive+nnew; i=l+done
!write(6,*) ' l =',l,' i =',i
!write (6,*) ' enter pcg' , e(i), 'npol = ', npol ; FLUSH(6)
!$acc loop vector
DO ii = 1, kdmx
b(ii,l) = e(i) * spsi(ii,i) - hpsi(ii,i) ! initial gradient and saved RHS for later
END DO
!$acc loop vector
DO ii = 1, kdmx
z(ii,l) = b(ii,l)
END DO
end do
!$acc end parallel
! initial preconditioned gradient
!$acc host_data use_device(z, e)
do l=nactive+1,nactive+nnew; i=l+done
call g_1psi_ptr(npwx,npw,z(:,l),e(i))
end do
!$acc end host_data
!- project on conduction bands
CALL start_clock( 'pcg:ortho' )
!$acc host_data use_device(spsi0, psi0, z, spsi0vec)
CALL MYZGEMM( 'C', 'N', nbnd, nnew, kdim, ONE, spsi0, kdmx, z(:,nactive+1), &
kdmx, ZERO, spsi0vec, nbnd )
CALL mp_sum( spsi0vec, intra_bgrp_comm )
CALL MYZGEMM( 'N', 'N', kdim, nnew, nbnd, (-1.D0,0.D0), psi0, kdmx, spsi0vec, &
nbnd, ONE, z(:,nactive+1), kdmx )
!$acc end host_data
CALL stop_clock( 'pcg:ortho' )
!-
!$acc parallel loop
do l=nactive+1,nactive+nnew
g0(l) = MYDDOT_VECTOR_GPU( 2*kdim, z(:,l), b(:,l) )
end do
!$acc host_data use_device(g0)
CALL mp_sum( g0(nactive+1:nactive+nnew), intra_bgrp_comm ) ! g0 = < initial z | initial gradient b >
!$acc end host_data
!$acc parallel
!$acc loop gang private(i)
do l=nactive+1,nactive+nnew; i=l+done
!write(6,*) ' l =',l,' i =',i
ff(l) = 0.d0 ; ff0(l) = ff(l)
!write (6,*) 0, g0(l), ff(l)
! ethr_cg = ethr ! CG convergence threshold could be set from input but it is not ...
ethr_cg(l) = 1.0D-2 ! it makes more sense to fix the convergence of the CG solution to a
! fixed function of the RHS (see ethr_cg update later).
ethr_cg(l) = max ( 0.01*ethr, ethr_cg(l) * g0(l) ) ! here we set the convergence of the correction
!write(6,*) 'ethr_cg :', ethr_cg(l)
!$acc loop vector
do ii = 1, kdmx
! zero the trial solution
psi(ii,i) = ZERO
hpsi(ii,i) = ZERO
spsi(ii,i) = ZERO
! initial search direction
p(ii,l) = z(ii,l)
end do
cg_iter(l) = 0 ! this is a new correction vector, reset its interation count
end do
!$acc end parallel
nactive = nactive + nnew
end if
!write(6,*) ' done =',done, ' nactive =',nactive
! iterate: ! DO cg_iter = 1, maxter ! THIS IS THE ENTRY POINT OF THE PCG LOOP
if ( nactive == 0 ) EXIT MAIN_LOOP ! this is the only MAIN_LOOP EXIT condition
!$acc kernels
cg_iter(1:nactive) = cg_iter(1:nactive) + 1 ! update interation counters
!$acc end kernels
CALL start_clock( 'pcg:hs_1psi' )
! do l = 1, nactive ! THIS COULD/SHOULD BE A GLOBAL CALL (ONLY WITHIN ONE BGRP THOUGH)
! CALL hs_1psi( npwx, npw, p(:,l), hp(:,l), sp(:,l) ) ! apply H to a single wavefunction (no bgrp parallelization here!)
! end do
CALL hs_psi_ptr( npwx, npw, nactive, p, hp, sp ) ! apply H to a single wavefunction (no bgrp parallelization here!)
CALL stop_clock( 'pcg:hs_1psi' )
!$acc parallel loop private(i)
do l = 1, nactive; i=l+done
gamma(l) = MYDDOT_VECTOR_GPU( 2*kdim, p(:,l), hp(:,l) ) &
- e(i) * MYDDOT_VECTOR_GPU( 2*kdim, p(:,l), sp(:,l) )
end do
!$acc host_data use_device(gamma)
CALL mp_sum( gamma(1:nactive), intra_bgrp_comm ) ! gamma = < p | hp - e sp >
!$acc end host_data
!$acc parallel
!$acc loop gang private(i)
do l = 1, nactive; i=l+done
!write(6,*) ' l =',l,' i =',i
alpha(l) = g0(l)/gamma(l)
!write(6,*) 'g0, gamma, alpha :', g0(l), gamma(l), alpha(l)
!$acc loop vector
DO ii = 1, kdmx
psi(ii,i) = psi(ii,i) + alpha(l) * p(ii,l) ! updated solution
hpsi(ii,i) = hpsi(ii,i) + alpha(l) * hp(ii,l) ! updated solution
spsi(ii,i) = spsi(ii,i) + alpha(l) * sp(ii,l) ! updated solution
END DO
g2(l) = MYDDOT_VECTOR_GPU(2*kdim,z(:,l),b(:,l)) &
+ e(i) * MYDDOT_VECTOR_GPU(2*kdim,z(:,l),spsi(:,i)) &
- MYDDOT_VECTOR_GPU(2*kdim,z(:,l),hpsi(:,i))
end do
!$acc end parallel
!$acc host_data use_device(g2)
CALL mp_sum( g2(1:nactive), intra_bgrp_comm ) ! g2 = < old z | new gradient b + e spsi - hpsi >
!$acc end host_data
!$acc parallel loop collapse(2) private(i)
do l = 1, nactive ! update the preconditioned gradient
DO ii = 1, kdmx
i=l+done
z(ii,l) = b(ii,l) + e(i) * spsi(ii,i) - hpsi(ii,i)
END DO
end do
!$acc host_data use_device(z, e)
do l = 1, nactive; i=l+done ! update the preconditioned gradient
call g_1psi_ptr(npwx,npw,z(:,l),e(i))
end do
!$acc end host_data
!- project on conduction bands
CALL start_clock( 'pcg:ortho' )
!$acc host_data use_device(spsi0, psi0, z, spsi0vec)
CALL MYZGEMM( 'C', 'N', nbnd, nactive, kdim, ONE, spsi0, kdmx, z, kdmx, ZERO, spsi0vec, nbnd )
CALL mp_sum( spsi0vec, intra_bgrp_comm )
CALL MYZGEMM( 'N', 'N', kdim, nactive, nbnd, (-1.D0,0.D0), psi0, kdmx, spsi0vec, nbnd, ONE, z, kdmx )
!$acc end host_data
CALL stop_clock( 'pcg:ortho' )
!-
!$acc parallel loop private(i)
do l = 1, nactive; i=l+done
g1(l) = MYDDOT_VECTOR_GPU(2*kdim,z(:,l),b(:,l)) &
+ e(i) * MYDDOT_VECTOR_GPU(2*kdim,z(:,l),spsi(:,i)) &
- MYDDOT_VECTOR_GPU(2*kdim,z(:,l),hpsi(:,i))
end do
!$acc host_data use_device(g1)
CALL mp_sum( g1(1:nactive), intra_bgrp_comm ) ! g1 = < new z | new gradient b + e spsi - hpsi >
!$acc end host_data
!$acc parallel loop private(i)
do l = 1, nactive; i = l + done ! evaluate the function ff
ff(l) = -0.5_DP * ( e(i)*MYDDOT_VECTOR_GPU(2*kdim,psi(:,i),spsi(:,i))&
-MYDDOT_VECTOR_GPU(2*kdim,psi(:,i),hpsi(:,i)) ) &
- MYDDOT_VECTOR_GPU(2*kdim,psi(:,i),b(:,l))
end do
!$acc host_data use_device(ff)
CALL mp_sum( ff(1:nactive), intra_bgrp_comm ) ! function minimum -0.5 < psi | e spsi - hpsi > - < psi | b >
!$acc end host_data
newdone = 0 ! number of correction vectors that converge (or are done) at this iteration
CALL start_clock( 'pcg:move1' )
do l = 1, nactive; i = l + done
!write (6,*) cg_iter(l), g1(l), ff(l), gamma(l)
!$acc serial copyout(ff_check, ff0_check, g1_check, cg_iter_l, iter_check) copyin(maxter)
ff_check = ff(l) > ff0(l)
ff0_check = ff0(l) < 0.d0
g1_check = ABS ( g1(l) ) < ethr_cg(l)
cg_iter_l = cg_iter(l)
iter_check = cg_iter_l == maxter
!$acc end serial
!write (6,*) cg_iter(l), g1(l), ff(l), gamma(l)
IF ( ff_check .AND. ff0_check ) THEN
!$acc parallel loop
DO ii = 1, kdmx
psi(ii,i) = psi(ii,i) - alpha(l) * p(ii,l) ! fallback solution: if last iter failed to improve ff0
hpsi(ii,i) = hpsi(ii,i) - alpha(l) * hp(ii,l)! exit whitout updating and ...
spsi(ii,i) = spsi(ii,i) - alpha(l) * sp(ii,l)! hope next time it'll be better
END DO
END IF
!write(6,*) 'g0, g1, g2 :', g0(l), g1(l), g2(l)
!write(6,*) 'ff0, ff : ', ff0(l), ff(l)
IF ( g1_check .OR. ff_check .OR. iter_check ) THEN ! EXIT iterate
!write (6,*) ' exit pcg loop'
!write(6,*) ' l =',l,' i =',i
!if ( cg_iter(l) == maxter.and. ABS(g1(l)) > ethr_cg(l)) write (6,*) 'CG not converged maxter exceeded', cg_iter(l), g1(l), g0(l), ethr_cg(l)
!IF ( ABS ( g1(l) ) < ethr_cg(l)) write (6,*) 'CG correction converged ', cg_iter(l), g1(l), ethr_cg(l)
!IF ( ABS ( g1(l) ) > g0(l) ) write (6,*) 'CG not converged ', cg_iter(l), g1(l), g0(l), ethr_cg(l)
nhpsi = nhpsi + cg_iter_l ! update nhpsi count
IF (.NOT. ( g1_check .OR. ff_check ) .AND. iter_check ) nhpsi = nhpsi + 1 ! because this would be the count
newdone = newdone + 1 ! one more solution found (or no more active anyway)
!write(6,*) ' newdone = ', newdone
!write(6,*) ' swapping converged psi/hpsi/spsi i = ',i, " with i' = ",done+newdone
! swap the terminated vector with the first in the list of the active ones
!$acc kernels copyin(done, newdone)
!$acc loop independent
DO ii = 1, kdmx
p (ii,l) = psi (ii,done+newdone) ; psi (ii,done+newdone) = psi (ii,i) ; psi (ii,i) = p (ii,l)
hp(ii,l) = hpsi(ii,done+newdone) ; hpsi(ii,done+newdone) = hpsi(ii,i) ; hpsi(ii,i) = hp(ii,l)
sp(ii,l) = spsi(ii,done+newdone) ; spsi(ii,done+newdone) = spsi(ii,i) ; spsi(ii,i) = sp(ii,l)
END DO
ee = e(done+newdone)
e(done+newdone) = e(i)
e(i) = ee
!write(6,*) ' overwrite converged p/hp/etc l = ',l, ' with newdone = ',newdone
! move information of the swapped active vector in the right place to keep going
!$acc loop independent
DO ii = 1, kdmx
p(ii,l) = p(ii,newdone) ; hp(ii,l) = p(ii,newdone) ; sp(ii,l) = sp(ii,newdone)
b(ii,l) = b(ii,newdone) ; z(ii,l) = z(ii,newdone)
END DO
ff0(l) = ff0(newdone) ; ff(l) = ff(newdone)
alpha(l) = alpha(newdone) ; g0(l) = g0(newdone) ; g1(l) = g1(newdone) ; g2(l) = g2(newdone)
cg_iter(l) = cg_iter(newdone) ; ethr_cg(l) = ethr_cg(newdone)
!$acc end kernels
ELSE
!write(6,*) ' l =',l,' i =',i
!$acc kernels
beta = (g1(l)-g2(l))/g0(l) ! Polak - Ribiere style update
g0(l) = g1(l) ! < new z | new gradient > -> < old z | old gradient >
!$acc loop independent
DO ii = 1, kdmx
p(ii,l) = z(ii,l) + beta * p(ii,l) ! updated search direction
END DO
!write(6,*) 'beta :', beta
ff0(l) = ff(l) ! updated minimum value reached by the function
!$acc end kernels
END IF
end do
CALL stop_clock( 'pcg:move1' )
IF ( newdone > 0 ) THEN
done = done + newdone
nactive = nactive - newdone
!write(6,*) ' there have been ', newdone, ' new converged solution'
!write(6,*) ' done = ', done, ' nactive =', nactive
CALL start_clock( 'pcg:move2' )
do l=1, nactive
!write(6,*) ' l+newdone =',l+newdone,' -> l =',l
!$acc parallel loop
DO ii = 1, kdmx
p(ii,l) = p(ii,l+newdone) ; hp(ii,l) = hp(ii,l+newdone) ; sp(ii,l) = sp(ii,l+newdone)
b(ii,l) = b(ii,l+newdone) ; z(ii,l) = z(ii,l+newdone)
END DO
!$acc kernels
ff0(l) = ff0(l+newdone) ; ff(l) = ff(l+newdone)
g0(l) = g0(l+newdone) ; g1(l) = g1(l+newdone) ; g2(l) = g2(l+newdone)
cg_iter(l) = cg_iter(l+newdone) ; ethr_cg(l) = ethr_cg(l+newdone)
!$acc end kernels
end do
CALL stop_clock( 'pcg:move2' )
END IF
! END DO iterate Here is where the pcg loop would terminate
END DO MAIN_LOOP
!write (6,*) ' exit pcg loop'
!$acc exit data delete(p, hp, sp)
DEALLOCATE( spsi0vec )
DEALLOCATE( b, p, hp, sp, z )
DEALLOCATE( ethr_cg, ff, ff0, cg_iter )
DEALLOCATE( g0, g1, g2, alpha, gamma )
!
CALL stop_clock( 'pcg' )
!
RETURN
!
END SUBROUTINE bpcg_k