quantum-espresso/KS_Solvers/DENSE/rotate_xpsi_gamma.f90

551 lines
16 KiB
Fortran

!
! Copyright (C) 2019 National Institute of Advanced Industrial Science and Technology (AIST)
!
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!----------------------------------------------------------------------------
SUBROUTINE rotate_xpsi_gamma( h_psi_ptr, s_psi_ptr, overlap, &
npwx, npw, nstart, nbnd, psi, evc, hevc, sevc, e )
!----------------------------------------------------------------------------
!
! ... Serial version of rotate_xpsi for Gamma-only calculations
! ... This version assumes real wavefunctions (k=0) with only
! ... half plane waves stored: psi(-G)=psi*(G), except G=0
!
USE util_param, ONLY : DP
USE mp_bands_util, ONLY : intra_bgrp_comm, inter_bgrp_comm, root_bgrp_id, nbgrp, my_bgrp_id, &
me_bgrp, root_bgrp
USE mp_bands_util, ONLY : gstart ! index of the first nonzero G
USE mp, ONLY : mp_sum
!
IMPLICIT NONE
!
include 'laxlib.fh'
!
! ... I/O variables
!
INTEGER, INTENT(IN) :: npw, npwx, nstart, nbnd
! dimension of the matrix to be diagonalized
! leading dimension of matrix psi, as declared in the calling pgm unit
! input number of states
! output number of states
! first G with nonzero norm
LOGICAL, INTENT(IN) :: overlap
! if .FALSE. : S|psi> not needed
COMPLEX(DP), INTENT(INOUT) :: psi(npwx,nstart)
COMPLEX(DP), INTENT(OUT) :: evc(npwx,nbnd)
! input and output eigenvectors (may overlap)
COMPLEX(DP), INTENT(OUT) :: hevc(npwx,nbnd), sevc(npwx,nbnd)
! H|psi> and S|psi>
REAL(DP), INTENT(OUT) :: e(nbnd)
! eigenvalues
!
! ... local variables:
!
INTEGER :: npw2, npwx2
INTEGER :: n_start, n_end, my_n
REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:)
COMPLEX(DP), ALLOCATABLE :: tpsi(:,:), hpsi(:,:), spsi(:,:)
REAL(DP), ALLOCATABLE :: en(:)
!
EXTERNAL :: h_psi_ptr, s_psi_ptr
! h_psi_ptr(npwx,npw,nbnd,psi,hpsi)
! calculates H|psi>
! s_psi_ptr(npwx,npw,nbnd,spsi)
! calculates S|psi> (if needed)
! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nbnd)
npw2 = 2 * npw
npwx2 = 2 * npwx
!
IF ( gstart == -1 ) CALL errore( 'rotxpsig', 'gstart variable not initialized', 1 )
!
CALL start_clock('rotxpsig')
!
ALLOCATE( tpsi( npwx, nstart ) )
ALLOCATE( hpsi( npwx, nstart ) )
ALLOCATE( hr( nstart, nstart ) )
ALLOCATE( sr( nstart, nstart ) )
ALLOCATE( vr( nstart, nstart ) )
ALLOCATE( en( nstart ) )
!$acc enter data create(hpsi, hr, sr, vr, tpsi, en )
IF ( overlap ) THEN
ALLOCATE( spsi( npwx, nstart ) )
!$acc enter data create(spsi)
ENDIF
!
! ... Set up the Hamiltonian and Overlap matrix on the subspace :
!
! ... H_ij = <psi_i| H |psi_j> S_ij = <psi_i| S |psi_j>
!
! ... set Im[ psi(G=0) ] - needed for numerical stability
!
IF ( gstart == 2 ) THEN
!$acc kernels
psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0, kind=DP)
!$acc end kernels
END IF
!
CALL start_clock('rotxpsig:hpsi')
!
CALL h_psi_ptr( npwx, npw, nstart, psi, hpsi )
!
CALL stop_clock('rotxpsig:hpsi')
!
IF ( overlap ) THEN
!
CALL start_clock('rotxpsig:spsi')
!
CALL s_psi_ptr( npwx, npw, nstart, psi, spsi )
!
CALL stop_clock('rotxpsig:spsi')
!
END IF
!
CALL divide(inter_bgrp_comm, nstart, n_start, n_end)
my_n = n_end - n_start + 1
!
CALL start_clock('rotxpsig:hc')
!
!$acc kernels
hr = 0.D0
!$acc end kernels
!
!$acc host_data use_device(psi, hpsi, hr)
IF ( n_start <= n_end ) &
CALL MYDGEMM( 'T', 'N', nstart, my_n, npw2, 2.D0, &
psi, npwx2, hpsi(1,n_start), npwx2, 0.D0, hr(1,n_start), nstart )
!
IF ( gstart == 2 ) &
CALL MYDGER( nstart, my_n, -1.D0, psi, npwx2, hpsi(1,n_start), npwx2, hr(1,n_start), nstart )
!
CALL mp_sum( hr , inter_bgrp_comm )
!
CALL mp_sum( hr , intra_bgrp_comm )
!$acc end host_data
!
CALL stop_clock('rotxpsig:hc')
!
CALL start_clock('rotxpsig:sc')
!
!$acc kernels
sr = 0.D0
!$acc end kernels
!
!$acc host_data use_device(psi, spsi, hpsi, sr)
IF ( overlap ) THEN
!
IF ( n_start <= n_end ) &
CALL MYDGEMM( 'T', 'N', nstart, my_n, npw2, 2.D0, &
psi, npwx2, spsi(1,n_start), npwx2, 0.D0, sr(1,n_start), nstart )
!
IF ( gstart == 2 ) &
CALL MYDGER( nstart, my_n, -1.D0, psi, npwx2, spsi(1,n_start), npwx2, sr(1,n_start), nstart )
!
ELSE
!
IF ( n_start <= n_end ) &
CALL MYDGEMM( 'T', 'N', nstart, my_n, npw2, 2.D0, &
psi, npwx2, psi(1,n_start), npwx2, 0.D0, sr(1,n_start), nstart )
!
IF ( gstart == 2 ) &
CALL MYDGER( nstart, my_n, -1.D0, psi, npwx2, psi(1,n_start), npwx2, sr(1,n_start), nstart )
!
END IF
!
CALL mp_sum( sr , inter_bgrp_comm )
!
CALL mp_sum( sr , intra_bgrp_comm )
!$acc end host_data
!
CALL stop_clock('rotxpsig:sc')
!
! ... Diagonalize
!
CALL start_clock('rotxpsig:diag')
!
!$acc host_data use_device(hr, sr, vr, en)
CALL diaghg( nstart, nbnd, hr, sr, nstart, en, vr, me_bgrp, root_bgrp, intra_bgrp_comm )
!$acc end host_data
!
!$acc kernels
e(:) = en(1:nbnd)
!$acc end kernels
!
CALL stop_clock('rotxpsig:diag')
!
! ... update the basis set
!
CALL start_clock('rotxpsig:evc')
!
!$acc kernels
tpsi = psi
evc = (0.D0, 0.D0)
hevc = (0.D0, 0.D0)
IF ( overlap ) &
sevc = (0.D0, 0.D0)
!$acc end kernels
!
IF ( n_start <= n_end ) THEN
!
!$acc host_data use_device(hevc, sevc, hpsi, spsi, evc, tpsi, vr)
CALL MYDGEMM( 'N', 'N', npw2, nbnd, my_n, 1.D0, &
tpsi(1,n_start), npwx2, vr(n_start,1), nstart, 0.D0, evc, npwx2 )
!
CALL MYDGEMM( 'N', 'N', npw2, nbnd, my_n, 1.D0, &
hpsi(1,n_start), npwx2, vr(n_start,1), nstart, 0.D0, hevc, npwx2 )
!
IF ( overlap ) &
CALL MYDGEMM( 'N', 'N', npw2, nbnd, my_n, 1.D0, &
spsi(1,n_start), npwx2, vr(n_start,1), nstart, 0.D0, sevc, npwx2 )
!$acc end host_data
!
END IF
!
!$acc host_data use_device(hevc, sevc, evc)
CALL mp_sum( evc, inter_bgrp_comm )
CALL mp_sum( hevc, inter_bgrp_comm )
IF ( overlap ) &
CALL mp_sum( sevc, inter_bgrp_comm )
!$acc end host_data
!
CALL stop_clock('rotxpsig:evc')
!
IF ( overlap ) THEN
!$acc exit data delete(spsi)
DEALLOCATE( spsi )
ENDIF
!$acc exit data delete(hpsi, vr, sr, hr, tpsi, en )
DEALLOCATE( vr, sr, hr, hpsi, tpsi, en )
!
CALL stop_clock('rotxpsig')
!
!CALL print_clock('rotxpsig')
!CALL print_clock('rotxpsig:hpsi')
!CALL print_clock('rotxpsig:spsi')
!CALL print_clock('rotxpsig:hc')
!CALL print_clock('rotxpsig:sc')
!CALL print_clock('rotxpsig:diag')
!CALL print_clock('rotxpsig:evc')
!
RETURN
!
END SUBROUTINE rotate_xpsi_gamma
!
!
!----------------------------------------------------------------------------
SUBROUTINE protate_xpsi_gamma( h_psi_ptr, s_psi_ptr, overlap, &
npwx, npw, nstart, nbnd, psi, evc, hevc, sevc, e )
!----------------------------------------------------------------------------
!
! ... Parallel version of rotate_xpsi for Gamma-only calculations
! ... Subroutine with distributed matrices, written by Carlo Cavazzoni
! ... This version assumes real wavefunctions (k=0) with only
! ... half plane waves stored: psi(-G)=psi*(G), except G=0
!
USE util_param, ONLY : DP
USE mp_bands_util, ONLY : intra_bgrp_comm, inter_bgrp_comm, &
nbgrp, root_bgrp_id, my_bgrp_id
USE mp_bands_util, ONLY : gstart ! index of the first nonzero G
USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier
!
IMPLICIT NONE
!
include 'laxlib.fh'
!
! ... I/O variables
!
INTEGER, INTENT(IN) :: npw, npwx, nstart, nbnd
! dimension of the matrix to be diagonalized
! leading dimension of matrix psi, as declared in the calling pgm unit
! input number of states
! output number of states
! first G with nonzero norm
LOGICAL, INTENT(IN) :: overlap
! if .FALSE. : S|psi> not needed
COMPLEX(DP), INTENT(INOUT) :: psi(npwx,nstart)
COMPLEX(DP), INTENT(OUT) :: evc(npwx,nbnd)
! input and output eigenvectors (may overlap)
COMPLEX(DP), INTENT(OUT) :: hevc(npwx,nbnd), sevc(npwx,nbnd)
! H|psi> and S|psi>
REAL(DP), INTENT(OUT) :: e(nbnd)
! eigenvalues
!
! ... local variables
!
INTEGER :: npw2, npwx2
REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:)
COMPLEX(DP), ALLOCATABLE :: tpsi(:,:), hpsi(:,:), spsi(:,:)
REAL(DP), ALLOCATABLE :: en(:)
!
INTEGER :: idesc(LAX_DESC_SIZE)
! matrix distribution descriptors
INTEGER :: nx
! maximum local block dimension
LOGICAL :: la_proc
! flag to distinguish procs involved in linear algebra
LOGICAL :: do_distr_diag_inside_bgrp
INTEGER :: ortho_parent_comm
INTEGER, ALLOCATABLE :: idesc_ip( :, :, : )
INTEGER, ALLOCATABLE :: rank_ip( :, : )
!
EXTERNAL :: h_psi_ptr, s_psi_ptr
! h_psi_ptr(npwx,npw,nvec,psi,hpsi)
! calculates H|psi>
! s_psi_ptr(npwx,npw,nvec,spsi)
! calculates S|psi> (if needed)
! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nvec)
CALL start_clock('protxpsig')
!
CALL laxlib_getval( do_distr_diag_inside_bgrp = do_distr_diag_inside_bgrp, &
ortho_parent_comm = ortho_parent_comm )
CALL desc_init( nstart, nx, la_proc, idesc, rank_ip, idesc_ip )
!
npw2 = 2 * npw
npwx2 = 2 * npwx
!
IF ( gstart == -1 ) CALL errore( 'protxpsig', 'gstart variable not initialized', 1 )
!
ALLOCATE( tpsi( npwx, nstart ) )
ALLOCATE( hpsi( npwx, nstart ) )
IF ( overlap ) &
ALLOCATE( spsi( npwx, nstart ) )
ALLOCATE( hr( nx, nx ) )
ALLOCATE( sr( nx, nx ) )
ALLOCATE( vr( nx, nx ) )
ALLOCATE( en( nstart ) )
!
! ... Set up the Hamiltonian and Overlap matrix on the subspace :
!
! ... H_ij = <psi_i| H |psi_j> S_ij = <psi_i| S |psi_j>
!
! ... set Im[ psi(G=0) ] - needed for numerical stability
!
IF ( gstart == 2 ) &
psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0, kind=DP)
!
CALL start_clock('protxpsig:hpsi')
!
CALL h_psi_ptr( npwx, npw, nstart, psi, hpsi )
!
CALL stop_clock('protxpsig:hpsi')
!
IF ( overlap ) THEN
!
CALL start_clock('protxpsig:spsi')
!
CALL s_psi_ptr( npwx, npw, nstart, psi, spsi )
!
CALL stop_clock('protxpsig:spsi')
!
END IF
!
CALL start_clock('protxpsig:hc')
!
CALL compute_distmat( hr, psi, hpsi )
!
CALL stop_clock('protxpsig:hc')
!
CALL start_clock('protxpsig:sc')
!
IF ( overlap ) THEN
!
CALL compute_distmat( sr, psi, spsi )
!
ELSE
!
CALL compute_distmat( sr, psi, psi )
!
END IF
!
CALL stop_clock('protxpsig:sc')
!
! ... Diagonalize
!
CALL start_clock('protxpsig:diag')
!
IF ( do_distr_diag_inside_bgrp ) THEN ! NB on output of pdiaghg en and vr are the same across ortho_parent_comm
! only the first bgrp performs the diagonalization
IF( my_bgrp_id == root_bgrp_id ) CALL pdiaghg( nstart, hr, sr, nx, en, vr, idesc )
IF( nbgrp > 1 ) THEN ! results must be brodcast to the other band groups
CALL mp_bcast( vr, root_bgrp_id, inter_bgrp_comm )
CALL mp_bcast( en, root_bgrp_id, inter_bgrp_comm )
ENDIF
ELSE
CALL pdiaghg( nstart, hr, sr, nx, en, vr, idesc )
END IF
!
e(:) = en(1:nbnd)
!
CALL stop_clock('protxpsig:diag')
!
! ... update the basis set
!
CALL start_clock('protxpsig:evc')
!
tpsi = psi
!
CALL refresh_evc()
!
CALL stop_clock('protxpsig:evc')
!
DEALLOCATE( idesc_ip )
DEALLOCATE( rank_ip )
DEALLOCATE( en )
DEALLOCATE( vr )
DEALLOCATE( sr )
DEALLOCATE( hr )
IF ( overlap ) &
DEALLOCATE( spsi )
DEALLOCATE( hpsi )
DEALLOCATE( tpsi )
!
CALL stop_clock('protxpsig')
!
!CALL print_clock('protxpsig')
!CALL print_clock('protxpsig:hpsi')
!CALL print_clock('protxpsig:spsi')
!CALL print_clock('protxpsig:hc')
!CALL print_clock('protxpsig:sc')
!CALL print_clock('protxpsig:diag')
!CALL print_clock('protxpsig:evc')
!
RETURN
!
CONTAINS
!
SUBROUTINE compute_distmat( dm, v, w )
!
! This subroutine compute <vi|wj> and store the
! result in distributed matrix dm
!
INTEGER :: ipc, ipr
INTEGER :: nr, nc, ir, ic, root
REAL(DP), INTENT(OUT) :: dm( :, : )
COMPLEX(DP) :: v(:,:), w(:,:)
REAL(DP), ALLOCATABLE :: work( :, : )
!
ALLOCATE( work( nx, nx ) )
!
work = 0.0d0
!
DO ipc = 1, idesc(LAX_DESC_NPC) ! loop on column procs
!
nc = idesc_ip( LAX_DESC_NC, 1, ipc )
ic = idesc_ip( LAX_DESC_IC, 1, ipc )
!
DO ipr = 1, ipc ! use symmetry for the loop on row procs
!
nr = idesc_ip( LAX_DESC_NR, ipr, ipc )
ir = idesc_ip( LAX_DESC_IR, ipr, ipc )
!
! rank of the processor for which this block (ipr,ipc) is destinated
!
root = rank_ip( ipr, ipc )
! use blas subs. on the matrix block
CALL DGEMM( 'T', 'N', nr, nc, npw2, 2.D0, v(1,ir), npwx2, w(1,ic), npwx2, 0.D0, work, nx )
IF ( gstart == 2 ) &
CALL DGER( nr, nc, -1.D0, v(1,ir), npwx2, w(1,ic), npwx2, work, nx )
! accumulate result on dm of root proc.
CALL mp_root_sum( work, dm, root, ortho_parent_comm )
END DO
!
END DO
if (ortho_parent_comm.ne.intra_bgrp_comm .and. nbgrp > 1) dm = dm/nbgrp
!
CALL laxlib_dsqmsym( nstart, dm, nx, idesc )
!
DEALLOCATE( work )
!
RETURN
END SUBROUTINE compute_distmat
!
!
SUBROUTINE refresh_evc( )
!
INTEGER :: ipc, ipr
INTEGER :: nr, nc, ir, ic, root
REAL(DP), ALLOCATABLE :: vtmp( :, : )
REAL(DP) :: beta
ALLOCATE( vtmp( nx, nx ) )
!
DO ipc = 1, idesc(LAX_DESC_NPC) ! loop on column procs
!
nc = idesc_ip( LAX_DESC_NC, 1, ipc )
ic = idesc_ip( LAX_DESC_IC, 1, ipc )
!
IF( ic <= nbnd ) THEN
!
nc = min( nc, nbnd - ic + 1 )
!
beta = 0.0d0
DO ipr = 1, idesc(LAX_DESC_NPR)
!
nr = idesc_ip( LAX_DESC_NR, ipr, ipc )
ir = idesc_ip( LAX_DESC_IR, ipr, ipc )
!
root = rank_ip( ipr, ipc )
IF( ipr-1 == idesc(LAX_DESC_MYR) .AND. ipc-1 == idesc(LAX_DESC_MYC) .AND. la_proc ) THEN
!
! this proc sends his block
!
CALL mp_bcast( vr(:,1:nc), root, ortho_parent_comm )
!
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, &
tpsi(1,ir), npwx2, vr, nx, beta, evc(1,ic), npwx2 )
!
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, &
hpsi(1,ir), npwx2, vr, nx, beta, hevc(1,ic), npwx2 )
!
IF ( overlap ) &
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, &
spsi(1,ir), npwx2, vr, nx, beta, sevc(1,ic), npwx2 )
!
ELSE
!
! all other procs receive
!
CALL mp_bcast( vtmp(:,1:nc), root, ortho_parent_comm )
!
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, &
tpsi(1,ir), npwx2, vtmp, nx, beta, evc(1,ic), npwx2 )
!
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, &
hpsi(1,ir), npwx2, vtmp, nx, beta, hevc(1,ic), npwx2 )
!
IF ( overlap ) &
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, &
spsi(1,ir), npwx2, vtmp, nx, beta, sevc(1,ic), npwx2 )
!
END IF
!
beta = 1.0d0
END DO
!
END IF
!
END DO
!
DEALLOCATE( vtmp )
RETURN
END SUBROUTINE refresh_evc
!
END SUBROUTINE protate_xpsi_gamma