quantum-espresso/KS_Solvers/DENSE/rotate_wfc_gamma.f90

438 lines
14 KiB
Fortran

!
! Copyright (C) 2003-2007 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!----------------------------------------------------------------------------
SUBROUTINE rotate_wfc_gamma( h_psi_ptr, s_psi_ptr, overlap, &
npwx, npw, nstart, nbnd, psi, evc, e )
!----------------------------------------------------------------------------
!
! ... Serial version of rotate_wfc for Gamma-only calculations
! ... This version assumes real wavefunctions (k=0) with only
! ... half plane waves stored: psi(-G)=psi*(G), except G=0
!
USE util_param, ONLY : DP
USE mp_bands_util, ONLY : intra_bgrp_comm, inter_bgrp_comm, root_bgrp_id, nbgrp, my_bgrp_id, &
me_bgrp, root_bgrp
USE mp_bands_util, ONLY : gstart ! index of the first nonzero G
USE mp, ONLY : mp_sum
!
IMPLICIT NONE
!
INCLUDE 'laxlib.fh'
!
! ... I/O variables
!
INTEGER :: npw, npwx, nstart, nbnd
! dimension of the matrix to be diagonalized
! leading dimension of matrix psi, as declared in the calling pgm unit
! input number of states
! output number of states
LOGICAL :: overlap
! if .FALSE. : S|psi> not needed
COMPLEX(DP) :: psi(npwx,nstart), evc(npwx,nbnd)
! input and output eigenvectors (may overlap)
REAL(DP) :: e(nbnd)
! eigenvalues
!
! ... local variables
!
INTEGER :: npw2, npwx2
COMPLEX(DP), ALLOCATABLE :: aux(:,:)
REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:)
REAL(DP), ALLOCATABLE :: en(:)
INTEGER :: n_start, n_end, my_n
!
EXTERNAL h_psi_ptr, s_psi_ptr
! h_psi_ptr(npwx,npw,nvec,psi,hpsi)
! calculates H|psi>
! s_psi_ptr(npwx,npw,nvec,spsi)
! calculates S|psi> (if needed)
! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nvec)
npw2 = 2 * npw
npwx2 = 2 * npwx
IF ( gstart == -1 ) CALL errore( 'regter', 'gstart variable not initialized', 1 )
!
ALLOCATE( aux( npwx, nstart ) )
ALLOCATE( hr( nstart, nstart ) )
ALLOCATE( sr( nstart, nstart ) )
ALLOCATE( vr( nstart, nstart ) )
ALLOCATE( en( nstart ) )
!$acc enter data create(aux, hr, sr, vr, en)
call start_clock('rotwfcg'); !write(*,*) 'start rotwfcg' ; FLUSH(6)
!
! ... Set up the Hamiltonian and Overlap matrix on the subspace :
!
! ... H_ij = <psi_i| H |psi_j> S_ij = <psi_i| S |psi_j>
!
! ... set Im[ psi(G=0) ] - needed for numerical stability
!
IF ( gstart == 2 ) THEN
!$acc kernels
psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0,kind=DP)
!$acc end kernels
END IF
!
call start_clock('rotwfcg:hpsi'); !write(*,*) 'start rotwfcg:hpsi' ; FLUSH(6)
CALL h_psi_ptr( npwx, npw, nstart, psi, aux )
call stop_clock('rotwfcg:hpsi'); !write(*,*) 'stop rotwfcg:hpsi' ; FLUSH(6)
!
call start_clock('rotwfcg:hc'); !write(*,*) 'start rotwfcg:hc' ; FLUSH(6)
!$acc kernels
hr=0.D0
!$acc end kernels
CALL divide(inter_bgrp_comm,nstart,n_start,n_end)
my_n = n_end - n_start + 1; !write (*,*) nstart,n_start,n_end
!$acc host_data use_device(psi, aux, hr)
if (n_start .le. n_end) &
CALL MYDGEMM( 'T','N', nstart, my_n, npw2, 2.D0, psi, npwx2, aux(1,n_start), npwx2, 0.D0, hr(1,n_start), nstart )
IF ( gstart == 2 ) call MYDGER( nstart, my_n, -1.D0, psi, npwx2, aux(1,n_start), npwx2, hr(1,n_start), nstart )
CALL mp_sum( hr, inter_bgrp_comm )
!
CALL mp_sum( hr, intra_bgrp_comm )
!$acc end host_data
!
!$acc kernels
sr=0.D0
!$acc end kernels
IF ( overlap ) THEN
!
CALL s_psi_ptr( npwx, npw, nstart, psi, aux )
!
!$acc host_data use_device(psi, aux, sr)
if (n_start .le. n_end) &
CALL MYDGEMM( 'T','N', nstart, my_n, npw2, 2.D0, psi, npwx2, aux(1,n_start), npwx2, 0.D0, sr(1,n_start), nstart )
IF ( gstart == 2 ) CALL MYDGER( nstart, my_n, -1.D0, psi, npwx2, aux(1,n_start), npwx2, sr(1,n_start), nstart )
!$acc end host_data
!
ELSE
!
!$acc host_data use_device(psi, sr)
if (n_start .le. n_end) &
CALL MYDGEMM( 'T','N', nstart, my_n, npw2, 2.D0, psi, npwx2, psi(1,n_start), npwx2, 0.D0, sr(1,n_start), nstart )
IF ( gstart == 2 ) CALL MYDGER( nstart, my_n, -1.D0, psi, npwx2, psi(1,n_start), npwx2, sr(1,n_start), nstart )
!$acc end host_data
!
END IF
!$acc host_data use_device(sr)
CALL mp_sum( sr, inter_bgrp_comm )
!
CALL mp_sum( sr, intra_bgrp_comm )
!$acc end host_data
call stop_clock('rotwfcg:hc'); !write(*,*) 'stop rotwfcg:hc' ; FLUSH(6)
!
! ... Diagonalize
!
call start_clock('rotwfcg:diag'); !write(*,*) 'start rotwfcg:diag' ; FLUSH(6)
!$acc host_data use_device(hr, sr, en, vr)
CALL diaghg( nstart, nbnd, hr, sr, nstart, en, vr, me_bgrp, root_bgrp, intra_bgrp_comm )
!$acc end host_data
call stop_clock('rotwfcg:diag'); !write(*,*) 'stop rotwfcg:diag' ; FLUSH(6)
call start_clock('rotwfcg:evc'); !write(*,*) 'start rotwfcg:evc' ; FLUSH(6)
!
!$acc kernels
e(:) = en(1:nbnd)
!$acc end kernels
!
! ... update the basis set
!
!$acc kernels
aux=(0.D0,0.D0)
!$acc end kernels
!$acc host_data use_device(psi, aux, vr)
if (n_start .le. n_end) &
CALL MYDGEMM( 'N','N', npw2, nbnd, my_n, 1.D0, psi(1,n_start), npwx2, vr(n_start,1), nstart, 0.D0, aux, npwx2 )
CALL mp_sum( aux, inter_bgrp_comm )
!$acc end host_data
!
!$acc kernels
evc(:,:) = aux(:,1:nbnd)
!$acc end kernels
call stop_clock('rotwfcg:evc'); !write(*,*) 'stop rotwfcg:evc' ; FLUSH(6)
!
!$acc exit data delete(aux, en, vr, sr, hr)
DEALLOCATE( en )
DEALLOCATE( vr )
DEALLOCATE( sr )
DEALLOCATE( hr )
DEALLOCATE( aux )
call stop_clock('rotwfcg'); !write(*,*) 'stop rotwfcg' ; FLUSH(6)
!call print_clock('rotwfcg')
!call print_clock('rotwfcg:hpsi')
!call print_clock('rotwfcg:hc')
!call print_clock('rotwfcg:diag')
!call print_clock('rotwfcg:evc')
!
RETURN
!
END SUBROUTINE rotate_wfc_gamma
!
!
!----------------------------------------------------------------------------
SUBROUTINE protate_wfc_gamma( h_psi_ptr, s_psi_ptr, overlap, &
npwx, npw, nstart, nbnd, psi, evc, e )
!----------------------------------------------------------------------------
!
! ... Parallel version of rotate_wfc for Gamma-only calculations
! ... Subroutine with distributed matrices, written by Carlo Cavazzoni
! ... This version assumes real wavefunctions (k=0) with only
! ... half plane waves stored: psi(-G)=psi*(G), except G=0
!
USE util_param, ONLY : DP
USE mp_bands_util, ONLY : intra_bgrp_comm, inter_bgrp_comm, root_bgrp_id, nbgrp, my_bgrp_id
USE mp_bands_util, ONLY : gstart ! index of the first nonzero G
USE mp, ONLY : mp_bcast, mp_root_sum, mp_sum, mp_barrier
!
IMPLICIT NONE
!
include 'laxlib.fh'
!
! ... I/O variables
!
INTEGER :: npw, npwx, nstart, nbnd
! dimension of the matrix to be diagonalized
! leading dimension of matrix psi, as declared in the calling pgm unit
! input number of states
! output number of states
LOGICAL :: overlap
! if .FALSE. : S|psi> not needed
COMPLEX(DP) :: psi(npwx,nstart), evc(npwx,nbnd)
! input and output eigenvectors (may overlap)
REAL(DP) :: e(nbnd)
! eigenvalues
!
! ... local variables:
!
INTEGER :: npw2, npwx2
COMPLEX(DP), ALLOCATABLE :: aux(:,:)
REAL(DP), ALLOCATABLE :: hr(:,:), sr(:,:), vr(:,:)
REAL(DP), ALLOCATABLE :: en(:)
!
INTEGER :: idesc(LAX_DESC_SIZE)
! matrix distribution descriptors
INTEGER :: nx
! maximum local block dimension
LOGICAL :: la_proc
! flag to distinguish procs involved in linear algebra
LOGICAL :: do_distr_diag_inside_bgrp
INTEGER :: ortho_parent_comm
INTEGER, ALLOCATABLE :: idesc_ip( :, :, : )
INTEGER, ALLOCATABLE :: rank_ip( :, : )
!
EXTERNAL h_psi_ptr, s_psi_ptr
! h_psi_ptr(npwx,npw,nvec,psi,hpsi)
! calculates H|psi>
! s_psi_ptr(npwx,npw,nvec,spsi)
! calculates S|psi> (if needed)
! Vectors psi,hpsi,spsi are dimensioned (npwx,npol,nvec)
call start_clock('protwfcg'); !write(*,*) 'start protwfcg' ; FLUSH(6)
!
CALL laxlib_getval( do_distr_diag_inside_bgrp = do_distr_diag_inside_bgrp, &
ortho_parent_comm = ortho_parent_comm )
CALL desc_init( nstart, nx, la_proc, idesc, rank_ip, idesc_ip )
!
npw2 = 2 * npw
npwx2 = 2 * npwx
IF ( gstart == -1 ) CALL errore( 'regter', 'gstart variable not initialized', 1 )
!
ALLOCATE( aux( npwx, nstart ) )
ALLOCATE( hr( nx, nx ) )
ALLOCATE( sr( nx, nx ) )
ALLOCATE( vr( nx, nx ) )
ALLOCATE( en( nstart ) )
aux=(0.0_DP,0.0_DP)
!
! ... Set up the Hamiltonian and Overlap matrix on the subspace :
!
! ... H_ij = <psi_i| H |psi_j> S_ij = <psi_i| S |psi_j>
!
! ... set Im[ psi(G=0) ] - needed for numerical stability
IF ( gstart == 2 ) &
psi(1,1:nstart) = CMPLX( DBLE( psi(1,1:nstart) ), 0.D0, kind=DP)
!
call start_clock('protwfcg:hpsi'); !write(*,*) 'start protwfcg:hpsi' ; FLUSH(6)
CALL h_psi_ptr( npwx, npw, nstart, psi, aux )
call stop_clock('protwfcg:hpsi'); !write(*,*) 'stop protwfcg:hpsi' ; FLUSH(6)
!
call start_clock('protwfcg:hc'); !write(*,*) 'start protwfcg:hc' ; FLUSH(6)
CALL compute_distmat( hr, psi, aux )
!
IF ( overlap ) THEN
!
CALL s_psi_ptr( npwx, npw, nstart, psi, aux )
CALL compute_distmat( sr, psi, aux )
!
ELSE
!
CALL compute_distmat( sr, psi, psi )
!
END IF
call stop_clock('protwfcg:hc'); !write(*,*) 'stop protwfcg:hc' ; FLUSH(6)
!
! ... Diagonalize
!
call start_clock('protwfcg:diag'); !write(*,*) 'start protwfcg:diag' ; FLUSH(6)
IF ( do_distr_diag_inside_bgrp ) THEN ! NB on output of pdiaghg en and vr are the same across ortho_parent_comm
! only the first bgrp performs the diagonalization
IF( my_bgrp_id == root_bgrp_id ) CALL pdiaghg( nstart, hr, sr, nx, en, vr, idesc )
IF( nbgrp > 1 ) THEN ! results must be brodcast to the other band groups
CALL mp_bcast( vr, root_bgrp_id, inter_bgrp_comm )
CALL mp_bcast( en, root_bgrp_id, inter_bgrp_comm )
ENDIF
ELSE
CALL pdiaghg( nstart, hr, sr, nx, en, vr, idesc )
END IF
call stop_clock('protwfcg:diag'); !write(*,*) 'stop protwfcg:diag' ; FLUSH(6)
!
e(:) = en(1:nbnd)
!
! ... update the basis set
!
call start_clock('protwfcg:evc'); !write(*,*) 'start protwfcg:evc' ; FLUSH(6)
CALL refresh_evc( )
!
evc(:,:) = aux(:,1:nbnd)
call stop_clock('protwfcg:evc'); !write(*,*) 'stop protwfcg:evc' ; FLUSH(6)
!
DEALLOCATE( en )
DEALLOCATE( vr )
DEALLOCATE( sr )
DEALLOCATE( hr )
DEALLOCATE( aux )
!
DEALLOCATE( idesc_ip )
DEALLOCATE( rank_ip )
call stop_clock('protwfcg'); !write(*,*) 'stop protwfcg' ; FLUSH(6)
!call print_clock('protwfcg')
!call print_clock('protwfcg:hpsi')
!call print_clock('protwfcg:hc')
!call print_clock('protwfcg:diag')
!call print_clock('protwfcg:evc')
!
RETURN
!
CONTAINS
!
!
SUBROUTINE compute_distmat( dm, v, w )
!
! This subroutine compute <vi|wj> and store the
! result in distributed matrix dm
!
INTEGER :: ipc, ipr
INTEGER :: nr, nc, ir, ic, root
REAL(DP), INTENT(OUT) :: dm( :, : )
COMPLEX(DP) :: v(:,:), w(:,:)
REAL(DP), ALLOCATABLE :: work( :, : )
!
ALLOCATE( work( nx, nx ) )
!
work = 0.0d0
!
DO ipc = 1, idesc(LAX_DESC_NPC) ! loop on column procs
!
nc = idesc_ip(LAX_DESC_NC, 1, ipc )
ic = idesc_ip(LAX_DESC_IC, 1, ipc )
!
DO ipr = 1, ipc ! use symmetry for the loop on row procs
!
nr = idesc_ip(LAX_DESC_NR, ipr, ipc )
ir = idesc_ip(LAX_DESC_IR, ipr, ipc )
!
! rank of the processor for which this block (ipr,ipc) is destinated
!
root = rank_ip( ipr, ipc )
! use blas subs. on the matrix block
CALL DGEMM( 'T', 'N', nr, nc, npw2, 2.D0, v(1,ir), npwx2, w(1,ic), npwx2, 0.D0, work, nx )
IF ( gstart == 2 ) &
CALL DGER( nr, nc, -1.D0, v(1,ir), npwx2, w(1,ic), npwx2, work, nx )
! accumulate result on dm of root proc.
CALL mp_root_sum( work, dm, root, ortho_parent_comm )
END DO
!
END DO
if (ortho_parent_comm.ne.intra_bgrp_comm .and. nbgrp > 1) dm = dm/nbgrp
!
CALL laxlib_dsqmsym( nstart, dm, nx, idesc )
!
DEALLOCATE( work )
!
RETURN
END SUBROUTINE compute_distmat
!
!
SUBROUTINE refresh_evc( )
!
INTEGER :: ipc, ipr
INTEGER :: nr, nc, ir, ic, root
REAL(DP), ALLOCATABLE :: vtmp( :, : )
REAL(DP) :: beta
ALLOCATE( vtmp( nx, nx ) )
!
DO ipc = 1, idesc(LAX_DESC_NPC) ! loop on column procs
!
nc = idesc_ip(LAX_DESC_NC, 1, ipc )
ic = idesc_ip(LAX_DESC_IC, 1, ipc )
!
IF( ic <= nbnd ) THEN
!
nc = min( nc, nbnd - ic + 1 )
!
beta = 0.0d0
DO ipr = 1, idesc(LAX_DESC_NPR)
!
nr = idesc_ip(LAX_DESC_NR, ipr, ipc )
ir = idesc_ip(LAX_DESC_IR, ipr, ipc )
!
root = rank_ip( ipr, ipc )
IF( ipr-1 == idesc(LAX_DESC_MYR) .AND. ipc-1 == idesc(LAX_DESC_MYC) .AND. la_proc ) THEN
!
! this proc sends his block
!
CALL mp_bcast( vr(:,1:nc), root, ortho_parent_comm )
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, psi(1,ir), npwx2, vr, nx, beta, aux(1,ic), npwx2 )
ELSE
!
! all other procs receive
!
CALL mp_bcast( vtmp(:,1:nc), root, ortho_parent_comm )
CALL DGEMM( 'N', 'N', npw2, nc, nr, 1.D0, psi(1,ir), npwx2, vtmp, nx, beta, aux(1,ic), npwx2 )
END IF
!
beta = 1.0d0
END DO
!
END IF
!
END DO
!
DEALLOCATE( vtmp )
RETURN
END SUBROUTINE refresh_evc
!
END SUBROUTINE protate_wfc_gamma