quantum-espresso/GWW/simple_ip/tetra_mod1.f90

303 lines
11 KiB
Fortran

MODULE tetra_ip
!this module provides rouitnes for the tetrahedra method
USE kinds, ONLY : dp
contains
!---------------------------------------------------------------------------
subroutine tetrahedra1 (nk1, nk2, nk3, ntetra, tetra)
!-------------------------------------------------------------------------
!
! Tetrahedron method according to P. E. Bloechl et al, PRB49, 16223 (1994)
!
!-------------------------------------------------------------------------
implicit none
integer, intent(in):: nk1, nk2, nk3, ntetra
integer, intent(out) :: tetra(4,ntetra)
integer :: nkr, i,j,k, n, ip1,jp1,kp1, &
n1,n2,n3,n4,n5,n6,n7,n8
integer, parameter :: stderr = 0
! Total number of k-points
nkr = nk1*nk2*nk3
! Construct tetrahedra
do i=1,nk1
do j=1,nk2
do k=1,nk3
! n1-n8 are the indices of k-point 1-8 forming a cube
ip1 = mod(i,nk1)+1
jp1 = mod(j,nk2)+1
kp1 = mod(k,nk3)+1
n1 = ( k-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1
n2 = ( k-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1
n3 = ( k-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1
n4 = ( k-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1
n5 = (kp1-1) + ( j-1)*nk3 + ( i-1)*nk2*nk3 + 1
n6 = (kp1-1) + ( j-1)*nk3 + (ip1-1)*nk2*nk3 + 1
n7 = (kp1-1) + (jp1-1)*nk3 + ( i-1)*nk2*nk3 + 1
n8 = (kp1-1) + (jp1-1)*nk3 + (ip1-1)*nk2*nk3 + 1
! there are 6 tetrahedra per cube (and nk1*nk2*nk3 cubes)
n = 6 * ( (k-1) + (j-1)*nk3 + (i-1)*nk3*nk2 )
tetra (1,n+1) = n1
tetra (2,n+1) = n2
tetra (3,n+1) = n3
tetra (4,n+1) = n6
tetra (1,n+2) = n2
tetra (2,n+2) = n3
tetra (3,n+2) = n4
tetra (4,n+2) = n6
tetra (1,n+3) = n1
tetra (2,n+3) = n3
tetra (3,n+3) = n5
tetra (4,n+3) = n6
tetra (1,n+4) = n3
tetra (2,n+4) = n4
tetra (3,n+4) = n6
tetra (4,n+4) = n8
tetra (1,n+5) = n3
tetra (2,n+5) = n6
tetra (3,n+5) = n7
tetra (4,n+5) = n8
tetra (1,n+6) = n3
tetra (2,n+6) = n5
tetra (3,n+6) = n6
tetra (4,n+6) = n7
enddo
enddo
enddo
! check
do n=1, ntetra
do i=1,4
if ( tetra(i,n)<1 .or. tetra(i,n)> (nk1*nk2*nk3) ) then
write(stderr,*) 'Something wrong with the construction of tetrahedra'
call exit(1)
endif
enddo
enddo
end subroutine tetrahedra1
!-----------------------------------------------------------------------
subroutine hpsort1 (n, ra, ind)
!---------------------------------------------------------------------
! sort an array ra(1:n) into ascending order using heapsort algorithm.
! n is input, ra is replaced on output by its sorted rearrangement.
! create an index table (ind) by making an exchange in the index array
! whenever an exchange is made on the sorted data array (ra).
! in case of equal values in the data array (ra) the values in the
! index array (ind) are used to order the entries.
! if on input ind(1) = 0 then indices are initialized in the routine,
! if on input ind(1) != 0 then indices are assumed to have been
! initialized before entering the routine and these
! indices are carried around during the sorting process
!
! no work space needed !
! free us from machine-dependent sorting-routines !
!
! adapted from Numerical Recipes pg. 329 (new edition)
!
!---------------------------------------------------------------------
implicit none
!-input/output variables
integer :: n
integer :: ind (*)
real(kind=dp) :: ra (*)
!-local variables
integer :: i, ir, j, l, iind
real(kind=dp) :: rra
! initialize index array
if (ind (1) .eq.0) then
do i = 1, n
ind (i) = i
enddo
endif
! nothing to order
if (n.lt.2) return
! initialize indices for hiring and retirement-promotion phase
l = n / 2 + 1
ir = n
10 continue
! still in hiring phase
if (l.gt.1) then
l = l - 1
rra = ra (l)
iind = ind (l)
! in retirement-promotion phase.
else
! clear a space at the end of the array
rra = ra (ir)
!
iind = ind (ir)
! retire the top of the heap into it
ra (ir) = ra (1)
!
ind (ir) = ind (1)
! decrease the size of the corporation
ir = ir - 1
! done with the last promotion
if (ir.eq.1) then
! the least competent worker at all !
ra (1) = rra
!
ind (1) = iind
return
endif
endif
! wheter in hiring or promotion phase, we
i = l
! set up to place rra in its proper level
j = l + l
!
do while (j.le.ir)
if (j.lt.ir) then
! compare to better underling
if (ra (j) .lt.ra (j + 1) ) then
j = j + 1
elseif (ra (j) .eq.ra (j + 1) ) then
if (ind (j) .lt.ind (j + 1) ) j = j + 1
endif
endif
! demote rra
if (rra.lt.ra (j) ) then
ra (i) = ra (j)
ind (i) = ind (j)
i = j
j = j + j
elseif (rra.eq.ra (j) ) then
! demote rra
if (iind.lt.ind (j) ) then
ra (i) = ra (j)
ind (i) = ind (j)
i = j
j = j + j
else
! set j to terminate do-while loop
j = ir + 1
endif
! this is the right place for rra
else
! set j to terminate do-while loop
j = ir + 1
endif
enddo
ra (i) = rra
ind (i) = iind
goto 10
!
end subroutine hpsort1
!--------------------------------------------------------------------
subroutine weights_delta1 (energy, band, ntetra, tetra, nkpoints, weights)
!--------------------------------------------------------------------
!
! ... calculates weights with the tetrahedron method (P.E.Bloechl)
! assuming the integrand is convoluted with a delta function
! centered about the band
!
!--------------------------------------------------------------------
implicit none
! I/O variables
integer, intent(in) :: nkpoints, ntetra, tetra(4, ntetra)
real(kind=dp), intent(in) :: energy, band(nkpoints)
real(kind=dp), intent(out) :: weights(nkpoints)
! local variables
real(kind=dp) :: e1, e2, e3, e4, fact, etetra (4)
integer :: ik, ibnd, nt, nk, ns, i, kp1, kp2, kp3, kp4, itetra (4)
! Initialize to zero the weights
weights = 0.0d0
do nt = 1, ntetra
!
! etetra are the energies at the vertexes of the nt-th tetrahedron
!
do i = 1, 4
etetra (i) = band (tetra (i, nt))
enddo
itetra (1) = 0
call hpsort1 (4, etetra, itetra)
!
! ...sort in ascending order: e1 < e2 < e3 < e4
!
e1 = etetra (1)
e2 = etetra (2)
e3 = etetra (3)
e4 = etetra (4)
!
! kp1-kp4 are the irreducible k-points corresponding to e1-e4
!
kp1 = tetra (itetra (1), nt)
kp2 = tetra (itetra (2), nt)
kp3 = tetra (itetra (3), nt)
kp4 = tetra (itetra (4), nt)
!
! calculate weights
!
! Remember that if energy.lt.e1 or energy.ge.e4
! there is no contribution in this case
if (energy.lt.e4.and.energy.ge.e3) then
fact = 1.0d0/ntetra * (e4 - energy)**2 / (e4 - e1) / (e4 - e2) &
/ (e4 - e3)
weights (kp1) = weights (kp1) + fact * (e4 - energy) / (e4 - e1)
weights (kp2) = weights (kp2) + fact * (e4 - energy) / (e4 - e2)
weights (kp3) = weights (kp3) + fact * (e4 - energy) / (e4 - e3)
weights (kp4) = weights (kp4) + fact * ( 3.0d0 - (e4 - energy) * &
(1.d0 / (e4 - e1) + 1.d0 / (e4 - e2) + 1.d0 / (e4 - e3) ) )
elseif (energy.lt.e3.and.energy.ge.e2) then
weights (kp1) = weights (kp1) + 1.0d0/ntetra * ( &
(energy - e2)**3 * (1.0d0/ (e3 - e1)**2 / (e3 - e2) / (e4 - e2) + &
1.0d0/ (e3 - e1) / (e4 - e1)**2 / (e4 - e2) + &
1.0d0/ (e3 - e1)**2 / (e4 - e1) / (e4 - e2)) &
-3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1)**2 / (e4 - e1) + &
1.0d0/ (e3 - e1) / (e4 - e1)**2) &
-3.0d0 * (energy - e2) * ((e2 - e1)**2 - (e3 - e2)*(e4 - e2)) &
/ (e3 - e1)**2 / (e4 - e1)**2 &
+(e2 - e1) * ( (e3 - e2)/(e3 - e1) + (e4 - e2)/(e4 - e1)) &
/ (e3 - e1) / (e4 - e1))
weights (kp2) = weights (kp2) + 1.0d0/ntetra * ( &
(energy - e2)**3 * (1.0d0/ (e3 - e1) / (e4 - e1) / (e4 - e2)**2 + &
1.0d0/ (e3 - e1) / (e3 - e2) / (e4 - e2)**2 + &
1.0d0/ (e3 - e1) / (e3 - e2)**2 / (e4 - e2)) &
-3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1) / (e4 - e1) / (e4 - e2) + &
1.0d0/ (e3 - e1) / (e3 - e2) / (e4 - e2)) &
+3.0d0 * (energy - e2) * (1.0d0/ (e3 - e1) / (e4 - e1)) &
+(e2 - e1) / (e3 - e1) / (e4 - e1))
weights (kp3) = weights (kp3) + 1.0d0/ntetra * ( &
-(energy - e2)**3 * (1.0d0/ (e3 - e1)**2 / (e4 - e1) / (e4 - e2) + &
1.0d0/ (e3 - e1) / (e3 - e2)**2 / (e4 - e2) + &
1.0d0/ (e3 - e1)**2 / (e3 - e2) / (e4 - e2)) &
+3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1)**2 / (e4 - e1)) &
+3.0d0 * (energy - e2) * ((e2 - e1)/ (e3 - e1)**2 / (e4 - e1)) &
+(e2 - e1)**2 / (e3 - e1)**2 / (e4 - e1))
weights (kp4) = weights (kp4) + 1.0d0/ntetra * ( &
-(energy - e2)**3 * (1.0d0/ (e3 - e1) / (e3 - e2) / (e4 - e1)**2 + &
1.0d0/ (e3 - e2) / (e4 - e1) / (e4 - e2)**2 + &
1.0d0/ (e3 - e2) / (e4 - e1)**2 / (e4 - e2)) &
+3.0d0 * (energy - e2)**2 * (1.0d0/ (e3 - e1) / (e4 - e1)**2) &
+3.0d0 * (energy - e2) * ((e2 - e1)/ (e3 - e1) / (e4 - e1)**2) &
+(e2 - e1)**2 / (e3 - e1) / (e4 - e1)**2)
elseif (energy.lt.e2.and.energy.ge.e1) then
fact = 1.0d0 / ntetra * (energy - e1) **2 / (e2 - e1) / (e3 - e1) &
/ (e4 - e1)
weights (kp1) = weights (kp1) + fact * (3.d0 - (energy - e1) * &
(1.d0 / (e2 - e1) + 1.d0 / (e3 - e1) + 1.d0 / (e4 - e1) ) )
weights (kp2) = weights (kp2) + fact * (energy - e1) / (e2 - e1)
weights (kp3) = weights (kp3) + fact * (energy - e1) / (e3 - e1)
weights (kp4) = weights (kp4) + fact * (energy - e1) / (e4 - e1)
endif
enddo
end subroutine weights_delta1
END MODULE tetra_ip