! Copyright (C) 2003-2015 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! !---------------------------------------------------------------------------- MODULE qexsd_module !---------------------------------------------------------------------------- ! ! This module contains some common subroutines used to read and write ! in XML format the data produced by Quantum ESPRESSO package. ! ! Written by Giovanni Borghi, A. Ferretti, ... (2015). ! ! Based on the qexml.f90 routine: ! Written by Andrea Ferretti (2006). ! Initial work by Carlo Sbraccia (xml_io_base.f90) ! Modified by Simone Ziraldo (2013). ! USE kinds, ONLY : DP USE input_parameters, ONLY : input_xml_schema_file, title USE mp_world, ONLY : nproc USE mp_images, ONLY : nimage,nproc_image USE mp_pools, ONLY : npool USE mp_bands, ONLY : ntask_groups, nproc_bgrp, nbgrp USE global_version, ONLY: version_number, svn_revision ! USE constants, ONLY : e2 USE qes_types_module USE qes_libs_module ! USE FoX_wxml ! IMPLICIT NONE ! PRIVATE SAVE ! ! definitions for the fmt ! CHARACTER(5), PARAMETER :: fmt_name = "QEXSD" CHARACTER(5), PARAMETER :: fmt_version = "0.1.0" ! ! some default for kinds ! !INTEGER, PARAMETER :: DP = selected_real_kind( 14, 200 ) ! ! internal data to be set ! CHARACTER(256) :: datadir_in, datadir_out INTEGER :: iunit, ounit TYPE(xmlf_t) :: qexsd_xf ! ! vars to manage back compatibility ! CHARACTER(10) :: qexsd_current_version = " " CHARACTER(10) :: qexsd_default_version = trim( fmt_version ) LOGICAL :: qexsd_current_version_init = .FALSE. ! LOGICAL :: qexsd_use_large_indent = .FALSE. ! ! TYPE (input_type) :: qexsd_input_obj TYPE (general_info_type) :: general_info TYPE (parallel_info_type) :: parallel_info TYPE (berryPhaseOutput_type),TARGET :: qexsd_bp_obj TYPE (k_points_IBZ_type) :: qexsd_start_k_obj TYPE (occupations_type) :: qexsd_occ_obj TYPE (smearing_type) :: qexsd_smear_obj TYPE ( step_type),ALLOCATABLE :: steps(:) INTEGER :: exit_status TYPE ( closed_type ) :: qexsd_closed_element INTEGER :: step_counter ! ! end of declarations ! PUBLIC :: qexsd_current_version, qexsd_default_version PUBLIC :: qexsd_current_version_init PUBLIC :: qexsd_xf ! PUBLIC :: qexsd_input_obj, qexsd_start_k_obj, qexsd_occ_obj, qexsd_smear_obj ! PUBLIC :: qexsd_init_schema, qexsd_openschema, qexsd_closeschema ! PUBLIC :: qexsd_init_convergence_info, qexsd_init_algorithmic_info, & qexsd_init_atomic_species, qexsd_init_atomic_structure, & qexsd_init_symmetries, qexsd_init_basis_set, qexsd_init_dft, & qexsd_init_magnetization, qexsd_init_band_structure, & qexsd_init_total_energy, qexsd_init_forces, qexsd_init_stress, & qexsd_init_dipole_info, qexsd_init_outputElectricField, & qexsd_init_outputPBC, qexsd_init_gate_info ! PUBLIC :: qexsd_step_addstep, qexsd_set_status, qexsd_reset_steps ! PUBLIC :: qexsd_init_berryPhaseOutput, qexsd_bp_obj CONTAINS ! !------------------------------------------- ! ... basic (public) subroutines !------------------------------------------- ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_schema( unit_in, unit_out ) !------------------------------------------------------------------------ ! ! just init module data ! IMPLICIT NONE INTEGER, INTENT(in) :: unit_in INTEGER, OPTIONAL, INTENT(in) :: unit_out ! iunit = unit_in ounit = unit_in IF ( present( unit_out ) ) ounit = unit_out ! ! END SUBROUTINE qexsd_init_schema ! ! !------------------------------------------------------------------------ FUNCTION check_file_exst( filename ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! LOGICAL :: check_file_exst CHARACTER(len=*) :: filename ! LOGICAL :: lexists ! INQUIRE( FILE = trim( filename ), EXIST = lexists ) ! check_file_exst = lexists RETURN ! END FUNCTION check_file_exst ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_openschema( filename ) !------------------------------------------------------------------------ ! IMPLICIT NONE ! CHARACTER(len=*), INTENT(IN) :: filename CHARACTER(len=16) :: subname = 'qexsd_openschema' INTEGER :: ierr, len_steps, i_step ! ! we need a qes-version number here CALL xml_OpenFile(FILENAME = TRIM(filename), XF = qexsd_xf, UNIT = ounit, PRETTY_PRINT = .TRUE., & REPLACE = .TRUE., NAMESPACE = .TRUE., IOSTAT = ierr ) ! CALL xml_DeclareNamespace (XF=qexsd_xf, PREFIX = "xsi", nsURI ="http://www.w3.org/2001/XMLSchema-instance") CALL xml_DeclareNamespace (XF=qexsd_xf, PREFIX = "qes", nsURI ="http://www.quantum-espresso.org/ns/qes/qes-1.0") CALL xml_NewElement (XF=qexsd_xf, NAME = "qes:espresso") CALL xml_addAttribute(XF=qexsd_xf, NAME = "xsi:schemaLocation", & VALUE = "http://www.quantum-espresso.org/ns/qes/qes-1.0 "//& "http://www.quantum-espresso.org/ns/qes/qes-1.0.xsd" ) CALL xml_addAttribute(XF=qexsd_xf, NAME="Units", VALUE="Hartree atomic units") CALL xml_addComment(XF = qexsd_xf, & COMMENT = "If not explicitely indicated, all quantities are expressed in Hartree atomic units" ) ! IF (ierr /= 0) call errore(subname, 'opening xml output file', ierr) ! the input file is mandatory to have a validating schema ! here an error should be issued, instead ! CALL qexsd_init_general_info(general_info) CALL qes_write_general_info(qexsd_xf,general_info) CALL qes_reset_general_info(general_info) ! CALL qexsd_init_parallel_info(parallel_info) CALL qes_write_parallel_info(qexsd_xf,parallel_info) CALL qes_reset_parallel_info(parallel_info) IF ( check_file_exst(input_xml_schema_file) ) THEN CALL xml_addComment( XF = qexsd_xf, & COMMENT= "") CALL qexsd_cp_line_by_line(ounit ,input_xml_schema_file, spec_tag="input") ELSE IF ( TRIM(qexsd_input_obj%tagname) == "input") THEN CALL qes_write_input(qexsd_xf, qexsd_input_obj) END IF ! IF (ALLOCATED(steps) ) THEN len_steps= step_counter IF (TRIM (steps(1)%tagname ) .EQ. 'step') THEN DO i_step = 1, len_steps CALL qes_write_step(qexsd_xf, steps(i_step) ) END DO END IF END IF ! END SUBROUTINE qexsd_openschema ! ! !--------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_general_info(obj) !--------------------------------------------------------------------------------------- IMPLICIT NONE ! TYPE( general_info_type ) :: obj CHARACTER(LEN=*),PARAMETER :: TAGNAME="general_info" TYPE( creator_type ) :: creator_obj TYPE( created_type ) :: created_obj TYPE( xml_format_type) :: xml_fmt_obj CHARACTER(LEN=256) :: version CHARACTER(9) :: cdate, ctime CHARACTER(60) :: timestamp ! version=TRIM(version_number) IF (svn_revision .NE. "unknown") version=TRIM(version)//& " (svn rev. " // TRIM (svn_revision) // ")" CALL qes_init_creator(creator_obj, "creator", "PWSCF", version, "XML file generated by PWSCF") ! CALL date_and_tim(cdate, ctime) timestamp = 'This run was terminated on: ' // ctime // ' ' // cdate(1:2) // & ' '//cdate(3:5) // ' '// cdate (6:9) CALL qes_init_created (created_obj, "created", cdate, ctime, timestamp ) ! CALL qes_init_xml_format(xml_fmt_obj, "xml_format", fmt_name, fmt_version, fmt_name//"_"//fmt_version) ! CALL qes_init_general_info( obj, TAGNAME, xml_fmt_obj, creator = creator_obj, created = created_obj,& job=title) ! CALL qes_reset_creator(creator_obj) CALL qes_reset_created(created_obj) CALL qes_reset_xml_format(xml_fmt_obj) END SUBROUTINE qexsd_init_general_info ! !--------------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_parallel_info(obj) !--------------------------------------------------------------------------------------------- IMPLICIT NONE ! TYPE ( parallel_info_type ) :: obj ! INTEGER :: nthreads=1 #if defined(__OMP) INTEGER,EXTERNAL :: omp_get_max ! nthreads = omp_get_max() #endif CALL qes_init_parallel_info(obj, "parallel_info", nproc, nthreads, ntask_groups, & nbgrp, npool, nproc_bgrp) END SUBROUTINE qexsd_init_parallel_info ! !------------------------------------------------------------------------ SUBROUTINE qexsd_closeschema() !------------------------------------------------------------------------ USE mytime, ONLY: nclock, clock_label IMPLICIT NONE REAL(DP),EXTERNAL :: get_clock ! CHARACTER(len=17) :: subname = 'qexsd_closeschema' INTEGER :: ierr ! IF (exit_status .ge. 0 ) THEN CALL xml_NewElement(qexsd_xf, "status") CALL xml_AddCharacters(qexsd_xf, exit_status) CALL xml_EndElement(qexsd_xf, "status") CALL qexsd_set_closed() CALL xml_NewElement (qexsd_xf, "cputime") CALL xml_addCharacters(qexsd_xf, nint(get_clock('PWSCF')) ) CALL xml_EndElement ( qexsd_xf, "cputime") CALL qes_write_closed(qexsd_xf, qexsd_closed_element) END IF CALL xml_Close(qexsd_xf) ! END SUBROUTINE qexsd_closeschema ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_cp_line_by_line(iun_out,filename,spec_tag) !------------------------------------------------------------------------ implicit none ! integer, intent(in) :: iun_out character(*), intent(in) :: filename character(*), optional, intent(in) :: spec_tag ! integer :: iun, ierr character(256) :: str logical :: icopy, exists integer, external :: find_free_unit iun = find_free_unit() ! INQUIRE(FILE=trim(filename), EXIST=exists) ! IF(.not.exists) THEN CALL errore('qexsd_cp_line_by_line', 'input xml file "' // & & TRIM(filename) // '" not found', 1) ENDIF ! open(iun,FILE=trim(filename),status="old", IOSTAT=ierr) ! icopy=.false. copy_loop: do ! read(iun,"(a256)",iostat=ierr) str if (ierr<0) exit copy_loop if (present(spec_tag)) then ! if (index(str,"<"//trim(adjustl(spec_tag))//">")/=0) then ! icopy=.true. ! endif ! else ! icopy=.true. ! endif ! ! filtering ! if ( index(str,"")/=0 .or. index(str,"")/=0 .or. & index(str,"")/=0) icopy=.false. endif ! enddo copy_loop ! close(iun) ! END SUBROUTINE qexsd_cp_line_by_line ! ! !------------------------------------------- ! ... write subroutines !------------------------------------------- ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_convergence_info(obj, n_scf_steps, scf_has_converged, scf_error, & optimization_has_converged, n_opt_steps, grad_norm ) !------------------------------------------------------------------------ IMPLICIT NONE ! TYPE(convergence_info_type) :: obj INTEGER, INTENT(IN) :: n_scf_steps LOGICAL, INTENT(IN) :: scf_has_converged REAL(DP), INTENT(IN) :: scf_error LOGICAL, OPTIONAL, INTENT(IN) :: optimization_has_converged INTEGER, OPTIONAL, INTENT(in) :: n_opt_steps REAL(DP),OPTIONAL, INTENT(IN) :: grad_norm ! CHARACTER(27) :: subname="qexsd_init_convergence_info" TYPE(scf_conv_type) :: scf_conv TYPE(opt_conv_type),POINTER :: opt_conv => NULL() ! call qes_init_scf_conv(scf_conv, "scf_conv", scf_has_converged, n_scf_steps, scf_error) ! IF ( PRESENT(optimization_has_converged )) THEN ! IF ( .NOT. PRESENT(n_opt_steps) ) CALL errore(subname,"n_opt_steps not present",10) IF ( .NOT. PRESENT(grad_norm) ) CALL errore(subname,"grad_norm not present",10) ALLOCATE ( opt_conv) ! call qes_init_opt_conv(opt_conv, "opt_conv", optimization_has_converged, n_opt_steps, grad_norm) ENDIF ! call qes_init_convergence_info(obj, "convergence_info", scf_conv, opt_conv) ! call qes_reset_scf_conv(scf_conv) IF (ASSOCIATED(opt_conv)) THEN CALL qes_reset_opt_conv(opt_conv) NULLIFY ( opt_conv) END IF ! END SUBROUTINE qexsd_init_convergence_info ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_algorithmic_info(obj, real_space_beta, real_space_q, uspp, paw ) !------------------------------------------------------------------------ IMPLICIT NONE ! TYPE(algorithmic_info_type) :: obj LOGICAL, INTENT(IN) :: real_space_beta, real_space_q, uspp, paw ! CALL qes_init_algorithmic_info(obj, "algorithmic_info", real_space_beta, real_space_q, uspp, paw) ! END SUBROUTINE qexsd_init_algorithmic_info ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_atomic_species(obj, nsp, atm, psfile, amass, starting_magnetization,& angle1,angle2) !------------------------------------------------------------------------ IMPLICIT NONE ! TYPE(atomic_species_type) :: obj INTEGER, INTENT(IN) :: nsp CHARACTER(len=*), INTENT(IN) :: atm(:) CHARACTER(len=*), INTENT(IN) :: psfile(:) REAL(DP), OPTIONAL, INTENT(IN) :: amass(:) REAL(DP), OPTIONAL, INTENT(IN) :: starting_magnetization(:) REAL(DP), OPTIONAL, INTENT(IN) :: angle1(:),angle2(:) ! TYPE(species_type), ALLOCATABLE :: species(:) REAL(DP) :: amass_ = 0.0d0 REAL(DP) :: start_mag_ = 0.0d0 REAL(DP) :: spin_teta = 0.0d0 REAL(DP) :: spin_phi = 0.0d0 INTEGER :: i ALLOCATE(species(nsp)) ! DO i = 1, nsp ! IF ( PRESENT(amass) ) amass_=amass(i) IF ( PRESENT(starting_magnetization) ) start_mag_=starting_magnetization(i) IF ( PRESENT( angle1 ) ) spin_teta =angle1(i) IF ( PRESENT( angle2 ) ) spin_phi = angle2(i) ! CALL qes_init_species( species(i), "species", TRIM(atm(i)),PRESENT(amass),amass_, & TRIM(psfile(i)), PRESENT(starting_magnetization), start_mag_,& PRESENT(angle1),spin_teta,PRESENT(angle2),spin_phi) ENDDO ! CALL qes_init_atomic_species(obj, "atomic_species", nsp, SIZE(species), species) ! DO i = 1, nsp CALL qes_reset_species(species(i)) ENDDO DEALLOCATE(species) ! END SUBROUTINE qexsd_init_atomic_species ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_atomic_structure(obj, nsp, atm, ityp, nat, tau, & alat, a1, a2, a3, ibrav) !------------------------------------------------------------------------ IMPLICIT NONE ! TYPE(atomic_structure_type) :: obj INTEGER, INTENT(IN) :: nsp, nat INTEGER, INTENT(in) :: ityp(:) CHARACTER(LEN=*), INTENT(in) :: atm(:) REAL(DP), INTENT(IN) :: tau(3,*)! cartesian atomic positions, a.u. REAL(DP), INTENT(IN) :: alat REAL(DP), INTENT(IN) :: a1(:), a2(:), a3(:) INTEGER, INTENT(IN) :: ibrav ! INTEGER :: ia TYPE(atom_type), ALLOCATABLE :: atom(:) TYPE(cell_type) :: cell TYPE(atomic_positions_type) :: atomic_pos TYPE(wyckoff_positions_type) :: wyckoff_pos REAL(DP) :: new_alat LOGICAL :: ibrav_ispresent ! ! atomic positions ! IF ( ibrav .gt. 0 ) THEN ibrav_ispresent = .TRUE. ELSE ibrav_ispresent = .FALSE. END IF ! ALLOCATE(atom(nat)) DO ia = 1, nat CALL qes_init_atom( atom(ia), "atom", name=trim(atm(ityp(ia))), & position="", position_ispresent=.FALSE., & atom=tau(1:3,ia), index_ispresent = .TRUE.,& index = ia ) ENDDO ! CALL qes_init_atomic_positions(atomic_pos, "atomic_positions", SIZE(atom), atom) ! DO ia = 1, nat CALL qes_reset_atom( atom(ia) ) ENDDO DEALLOCATE(atom) ! ! cell ! CALL qes_init_cell(cell, "cell", a1, a2, a3) ! ! global init ! CALL qes_init_atomic_structure(obj, "atomic_structure", nat=nat, & alat=alat, alat_ispresent=.TRUE., atomic_positions_ispresent=.TRUE., & atomic_positions=atomic_pos, wyckoff_positions_ispresent=.FALSE., & wyckoff_positions=wyckoff_pos, cell=cell ,& bravais_index_ispresent = ibrav_ispresent, bravais_index=ibrav) ! ! cleanup ! CALL qes_reset_atomic_positions(atomic_pos) CALL qes_reset_cell(cell) ! END SUBROUTINE qexsd_init_atomic_structure ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_symmetries(obj, nsym, nrot, space_group, s, ft, sname, t_rev, nat, irt, & class_names, verbosity, noncolin) !------------------------------------------------------------------------ IMPLICIT NONE ! TYPE(symmetries_type) :: obj INTEGER, INTENT(IN) :: nsym, nrot, nat INTEGER, INTENT(IN) :: space_group INTEGER, INTENT(IN) :: s(:,:,:), irt(:,:) REAL(DP), INTENT(IN) :: ft(:,:) INTEGER, INTENT(IN) :: t_rev(:) CHARACTER(LEN=*), INTENT(IN) :: sname(:), verbosity CHARACTER(LEN=15),INTENT(IN) :: class_names(:) LOGICAL,INTENT(IN) :: noncolin ! TYPE(symmetry_type), ALLOCATABLE :: symm(:) TYPE(equivalent_atoms_type) :: equiv_atm TYPE(info_type) :: info TYPE(matrix_type) :: matrix CHARACTER(LEN=15) :: classname CHARACTER(LEN=256) :: la_info LOGICAL :: class_ispresent = .FALSE., time_reversal_ispresent = .FALSE. INTEGER :: i REAL(DP) :: mat_(3,3) ALLOCATE(symm(nrot)) ! IF ( TRIM(verbosity) .EQ. 'high' .OR. TRIM(verbosity) .EQ. 'medium') class_ispresent= .TRUE. IF ( noncolin ) time_reversal_ispresent = .TRUE. DO i = 1, nrot ! classname = class_names(i) IF ( i .LE. nsym ) THEN la_info = "crystal_symmetry" ELSE la_info = "lattice_symmetry" END IF CALL qes_init_info(info, "info", name=sname(i), name_ispresent=.TRUE., & class=classname, class_ispresent = class_ispresent, & time_reversal=(t_rev(i)==1), time_reversal_ispresent = time_reversal_ispresent, & INFO= TRIM(la_info) ) ! mat_ = real(s(:,:,i),DP) CALL qes_init_matrix(matrix, "rotation", DIMS=[3,3], mat=mat_ ) ! IF ( i .LE. nsym ) THEN CALL qes_init_equivalent_atoms(equiv_atm, "equivalent_atoms", nat=nat, index_list=irt(i,1:nat) ) ! CALL qes_init_symmetry(symm(i),"symmetry", info=info, rotation=matrix, & fractional_translation_ispresent=.TRUE., fractional_translation=ft(:,i), & equivalent_atoms_ispresent=.TRUE., equivalent_atoms=equiv_atm) ELSE CALL qes_init_symmetry ( symm(i), "symmetry", INFO = info, ROTATION = matrix, & FRACTIONAL_TRANSLATION_ISPRESENT = .FALSE., FRACTIONAL_TRANSLATION=ft(:,i), & EQUIVALENT_ATOMS_ISPRESENT = .FALSE., EQUIVALENT_ATOMS=equiv_atm) END IF ! CALL qes_reset_info(info) CALL qes_reset_matrix(matrix) IF ( i .LT. nsym ) THEN CALL qes_reset_equivalent_atoms( equiv_atm ) ELSE IF ( i .EQ. nrot ) THEN CALL qes_reset_equivalent_atoms( equiv_atm ) END IF ! ENDDO ! CALL qes_init_symmetries(obj,"symmetries",NSYM = nsym, NROT=nrot, SPACE_GROUP = space_group, & NDIM_SYMMETRY=SIZE(symm), SYMMETRY=symm ) ! DO i = 1, nsym CALL qes_reset_symmetry(symm(i)) ENDDO DEALLOCATE(symm) ! END SUBROUTINE qexsd_init_symmetries ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_basis_set(obj, gamma_only, ecutwfc, ecutrho, & nr1, nr2, nr3, nr1s, nr2s, nr3s, & fft_box_ispresent, nr1b, nr2b, nr3b, & ngm, ngms, npwx, b1, b2, b3 ) !------------------------------------------------------------------------ IMPLICIT NONE ! TYPE(basis_set_type) :: obj LOGICAL, INTENT(IN) :: gamma_only INTEGER, INTENT(IN) :: nr1, nr2, nr3 INTEGER, INTENT(IN) :: nr1s, nr2s, nr3s LOGICAL, INTENT(IN) :: fft_box_ispresent INTEGER, INTENT(IN) :: nr1b, nr2b, nr3b INTEGER, INTENT(IN) :: ngm, ngms, npwx REAL(DP), INTENT(IN) :: ecutwfc, ecutrho REAL(DP), INTENT(IN) :: b1(3), b2(3), b3(3) ! TYPE(basisSetItem_type) :: fft_grid TYPE(basisSetItem_type) :: fft_smooth TYPE(basisSetItem_type) :: fft_box TYPE(reciprocal_lattice_type) :: recipr_latt CALL qes_init_basisSetItem(fft_grid, "fft_grid", nr1, nr2, nr3, "") CALL qes_init_basisSetItem(fft_smooth, "fft_smooth", nr1s, nr2s, nr3s, "") CALL qes_init_basisSetItem(fft_box, "fft_box", nr1b, nr2b, nr3b, "" ) CALL qes_init_reciprocal_lattice(recipr_latt, "reciprocal_lattice", b1, b2, b3) CALL qes_init_basis_set(obj, "basis_set", GAMMA_ONLY_ISPRESENT=.TRUE., GAMMA_ONLY=gamma_only, & ECUTWFC=ecutwfc, ECUTRHO_ISPRESENT=.TRUE., ECUTRHO=ecutrho, FFT_GRID=fft_grid, & FFT_SMOOTH_ISPRESENT=.TRUE., FFT_SMOOTH=fft_smooth, & FFT_BOX_ISPRESENT=fft_box_ispresent, FFT_BOX=fft_box, NGM=ngm, & NGMS_ISPRESENT=.TRUE., NGMS=ngms, NPWX=npwx, RECIPROCAL_LATTICE=recipr_latt ) ! CALL qes_reset_basisSetItem(fft_grid) CALL qes_reset_basisSetItem(fft_smooth) CALL qes_reset_basisSetItem(fft_box) CALL qes_reset_reciprocal_lattice(recipr_latt) ! END SUBROUTINE qexsd_init_basis_set ! ! !------------------------------------------------------------------------ SUBROUTINE qexsd_init_dft (obj, functional, root_is_output, dft_is_hybrid,& nqx1, nqx2, nqx3, ecutfock, exx_fraction, screening_parameter, & exxdiv_treatment, x_gamma_extrapolation, ecutvcut, & dft_is_vdW, vdw_corr, nonlocal_term, london_s6, london_c6, & london_rcut, xdm_a1, xdm_a2 ,ts_vdw_econv_thr, ts_vdw_isolated, & dft_is_lda_plus_U, lda_plus_U_kind, llmax, noncolin, nspin, nsp, & nat, species, ityp, Hubbard_U, Hubbard_J0, Hubbard_alpha, & Hubbard_beta, Hubbard_J, starting_ns, U_projection_type, is_hubbard, & psd, Hubbard_ns, Hubbard_ns_nc ) !------------------------------------------------------------------------ USE constants, ONLY: eps16 USE parameters, ONLY: lqmax USE input_parameters, ONLY: nspinx IMPLICIT NONE ! TYPE(dft_type) :: obj CHARACTER(len=*), INTENT(IN) :: functional, nonlocal_term LOGICAL, INTENT(IN) :: dft_is_hybrid LOGICAL, INTENT(IN) :: root_is_output INTEGER, INTENT(IN) :: nqx1, nqx2, nqx3 REAL(DP), INTENT(IN) :: ecutfock REAL(DP), INTENT(IN) :: exx_fraction REAL(DP), INTENT(IN) :: screening_parameter CHARACTER(len=*), INTENT(IN) :: exxdiv_treatment LOGICAL, INTENT(IN) :: x_gamma_extrapolation REAL(DP), INTENT(IN) :: ecutvcut ! LOGICAL, INTENT(IN) :: dft_is_lda_plus_U, noncolin INTEGER, INTENT(IN) :: lda_plus_U_kind INTEGER, INTENT(IN) :: llmax, nspin, nsp, nat CHARACTER(len=*), INTENT(IN) :: species(nsp) INTEGER, INTENT(IN) :: ityp(nat) REAL(DP), INTENT(IN) :: Hubbard_U(nsp) REAL(DP), INTENT(IN) :: Hubbard_J0(nsp) REAL(DP), INTENT(IN) :: Hubbard_alpha(nsp) REAL(DP), INTENT(IN) :: Hubbard_beta(nsp) REAL(DP), INTENT(IN) :: Hubbard_J(3,nsp) REAL(DP), INTENT(IN) :: starting_ns(lqmax,nspinx,nsp) REAL(DP), OPTIONAL, ALLOCATABLE, INTENT(IN) :: Hubbard_ns(:,:,:,:) COMPLEX(DP),OPTIONAL, ALLOCATABLE, INTENT(IN) :: Hubbard_ns_nc(:,:,:,:) CHARACTER(len=*), INTENT(IN) :: U_projection_type LOGICAL,INTENT(IN) :: is_hubbard(nsp) CHARACTER(LEN=2),INTENT(IN) :: psd(nsp) ! LOGICAL, INTENT(IN) :: dft_is_vdW, ts_vdw_isolated CHARACTER(len=*), INTENT(IN) :: vdw_corr REAL(DP), INTENT(IN) :: london_s6 REAL(DP), INTENT(IN) :: london_rcut REAL(DP), INTENT(IN) :: xdm_a1 REAL(DP), INTENT(IN) :: xdm_a2 REAL(DP), INTENT(IN) :: london_c6(nsp), ts_vdw_econv_thr ! INTEGER :: i, is, isp, ind,hubb_l,hubb_n, ldim TYPE(hybrid_type) :: hybrid TYPE(qpoint_grid_type) :: qpoint_grid TYPE(dftU_type) :: dftU TYPE(vdW_type) :: vdW TYPE(HubbardCommon_type), ALLOCATABLE :: Hubbard_U_(:) TYPE(HubbardCommon_type), ALLOCATABLE :: Hubbard_J0_(:) TYPE(HubbardCommon_type), ALLOCATABLE :: Hubbard_alpha_(:) TYPE(HubbardCommon_type), ALLOCATABLE :: Hubbard_beta_(:) TYPE(HubbardJ_type), ALLOCATABLE :: Hubbard_J_(:) TYPE(starting_ns_type), ALLOCATABLE :: starting_ns_(:) TYPE(Hubbard_ns_type), ALLOCATABLE :: Hubbard_ns_(:) TYPE(HubbardCommon_type), ALLOCATABLE :: london_c6_obj(:) REAL(DP), ALLOCATABLE :: Hubb_occ_aux(:,:) INTEGER :: m1, m2 LOGICAL :: Hubbard_U_ispresent LOGICAL :: Hubbard_J0_ispresent LOGICAL :: Hubbard_alpha_ispresent LOGICAL :: Hubbard_beta_ispresent LOGICAL :: Hubbard_J_ispresent LOGICAL :: starting_ns_ispresent LOGICAL :: Hubbard_ns_ispresent LOGICAL :: london_c6_ispresent, london_s6_ispresent, london_rvdw_ispresent, ts_vdw_econv_thr_ispresent, & london_rcut_ispresent, ts_vdw_isolated_ispresent, xdm_a1_ispresent, xdm_a2_ispresent, & empirical_vdw = .FALSE. INTEGER :: ndim_london_c6, ndim_starting_ns CHARACTER(10), ALLOCATABLE :: label(:) CHARACTER :: hubbard_shell INTEGER,EXTERNAL :: set_hubbard_l,set_hubbard_n ! ! IF ( dft_is_hybrid ) THEN ! CALL qes_init_qpoint_grid(qpoint_grid, "qpoint_grid", nqx1, nqx2, nqx3, "") ! CALL qes_init_hybrid(hybrid, "hybrid", qpoint_grid, ecutfock, exx_fraction, & screening_parameter, exxdiv_treatment, x_gamma_extrapolation, ecutvcut) ! CALL qes_reset_qpoint_grid(qpoint_grid) ! ENDIF ! IF ( dft_is_lda_plus_U ) THEN ! ALLOCATE(label(nsp)) DO i = 1, nsp IF (is_hubbard(i)) THEN hubb_l=set_hubbard_l(psd(i)) hubb_n=set_hubbard_n(psd(i)) SELECT CASE ( hubb_l ) CASE ( 0) hubbard_shell='s' CASE ( 1 ) hubbard_shell='p' CASE( 2 ) hubbard_shell='d' CASE( 3 ) hubbard_shell='f' END SELECT WRITE (label(i),'(I0,A)') hubb_n,hubbard_shell ELSE label(i)="no Hubbard" END IF END DO ! Hubbard_U_ispresent = (SIZE(Hubbard_U)>0) Hubbard_J0_ispresent = (SIZE(Hubbard_J0)>0) Hubbard_alpha_ispresent = (SIZE(Hubbard_alpha)>0) Hubbard_beta_ispresent = (SIZE(Hubbard_beta)>0) Hubbard_J_ispresent = (SIZE(Hubbard_J)>0) starting_ns_ispresent = (SIZE(starting_ns)>0) ! ALLOCATE( Hubbard_U_(nsp) ) ALLOCATE( Hubbard_J0_(nsp) ) ALLOCATE( Hubbard_alpha_(nsp) ) ALLOCATE( Hubbard_beta_(nsp) ) ALLOCATE( Hubbard_J_(nsp) ) ! IF (noncolin ) THEN ALLOCATE (starting_ns_(nsp)) ALLOCATE (Hubbard_ns_(nat)) ELSE ALLOCATE( starting_ns_(min(nspin,nspinx)*nsp) ) ALLOCATE( Hubbard_ns_(nspin*nat) ) END IF ! DO i = 1, nsp CALL qes_init_HubbardCommon(Hubbard_U_(i),"Hubbard_U",TRIM(species(i)),TRIM(label(i)),Hubbard_U(i)) CALL qes_init_HubbardCommon(Hubbard_J0_(i),"Hubbard_J0",TRIM(species(i)),TRIM(label(i)),Hubbard_J0(i)) CALL qes_init_HubbardCommon(Hubbard_alpha_(i),"Hubbard_alpha",TRIM(species(i)),TRIM(label(i)),& Hubbard_alpha(i)) CALL qes_init_HubbardCommon(Hubbard_beta_(i),"Hubbard_beta",TRIM(species(i)),TRIM(label(i)),& Hubbard_beta(i)) CALL qes_init_HubbardJ(Hubbard_J_(i),"Hubbard_J",TRIM(species(i)),TRIM(label(i)),Hubbard_J(1:3,i)) ENDDO ! ind = 0 IF (starting_ns_ispresent) THEN IF (noncolin) THEN DO i = 1, nsp IF (.NOT. ANY(starting_ns(1:2*llmax,1,i) > 0)) CYCLE ind = ind + 1 CALL qes_init_starting_ns(starting_ns_(ind), "starting_ns", TRIM (species(i)),TRIM (label(i)),& 1, starting_ns(1:2*llmax, 1, i)) END DO ELSE DO is = 1, MIN(nspin,nspinx) DO i = 1, nsp IF (.NOT. ANY (starting_ns(1:llmax,is,i) > 0)) CYCLE ind = ind+1 CALL qes_init_starting_ns(starting_ns_(ind),"starting_ns",TRIM(species(i)),TRIM(label(i)), & is, max(starting_ns(1:llmax,is,i),0._DP) ) ENDDO ENDDO END IF ndim_starting_ns = ind END IF IF ( ndim_starting_ns == 0) starting_ns_ispresent = .FALSE. ! ind = 0 IF (noncolin .AND. PRESENT(Hubbard_ns_nc) ) THEN ! IF (.NOT. ALLOCATED(Hubbard_ns_nc)) & CALL errore('qexsd_init_dft', 'Hubbard_ns_nc not alloc', 10) ! Hubbard_ns_ispresent = .TRUE. ldim = SIZE(Hubbard_ns_nc,1) ALLOCATE (Hubb_occ_aux(2*ldim,2*ldim)) DO i = 1, nat Hubb_occ_aux = 0.d0 DO m1 =1, ldim DO m2 = 1, ldim Hubb_occ_aux( m1, m2) = SQRT(DCONJG(Hubbard_ns_nc(m1,m2,1,i))*Hubbard_ns_nc(m1,m2,1,i)) Hubb_occ_aux( m1,ldim+m2) = SQRT(DCONJG(Hubbard_ns_nc(m1,m2,2,i))*Hubbard_ns_nc(m1,m2,2,i)) Hubb_occ_aux(ldim+m1, m2) = SQRT(DCONJG(Hubbard_ns_nc(m1,m2,3,i))*Hubbard_ns_nc(m1,m2,3,i)) Hubb_occ_aux(ldim+m1,ldim+m2) = SQRT(DCONJG(Hubbard_ns_nc(m1,m2,4,i))*Hubbard_ns_nc(m1,m2,4,i)) END DO END DO CALL qes_init_Hubbard_ns(Hubbard_ns_(i),"Hubbard_ns_mod", TRIM(species(ityp(i))),TRIM(label(ityp(i))), & 1, i, Hubb_occ_aux(:,:)) END DO DEALLOCATE ( Hubb_occ_aux) ELSE IF ( PRESENT(Hubbard_ns) ) THEN ! IF (.NOT. ALLOCATED(Hubbard_ns)) & CALL errore('qexsd_init_dft', 'Hubbard_ns not alloc', 10) ! Hubbard_ns_ispresent = .TRUE. ldim = SIZE(Hubbard_ns,1) DO i = 1, nat DO is = 1, nspin ind = ind+1 CALL qes_init_Hubbard_ns(Hubbard_ns_(ind),"Hubbard_ns", TRIM(species(ityp(i))),TRIM(label(ityp(i))), & is, i, Hubbard_ns(:,:,is,i) ) ENDDO ENDDO ELSE Hubbard_ns_ispresent = .FALSE. END IF ! ! main init CALL qes_init_dftU(dftU, "dftU", .TRUE., lda_plus_u_kind, & Hubbard_U_ispresent, SIZE(Hubbard_U_), Hubbard_U_, & Hubbard_J0_ispresent, SIZE(Hubbard_J0_), Hubbard_J0_, & Hubbard_alpha_ispresent, SIZE(Hubbard_alpha_), Hubbard_alpha_, & Hubbard_beta_ispresent, SIZE(Hubbard_beta_), Hubbard_beta_, & Hubbard_J_ispresent, SIZE(Hubbard_J_), Hubbard_J_, & starting_ns_ispresent, ndim_starting_ns, starting_ns_, & Hubbard_ns_ispresent, SIZE(Hubbard_ns_), Hubbard_ns_, & .TRUE., U_projection_type) ! DO i = 1, nsp CALL qes_reset_HubbardCommon(Hubbard_U_(i)) CALL qes_reset_HubbardCommon(Hubbard_J0_(i)) CALL qes_reset_HubbardCommon(Hubbard_alpha_(i)) CALL qes_reset_HubbardCommon(Hubbard_beta_(i)) CALL qes_reset_HubbardJ(Hubbard_J_(i)) ENDDO ! DEALLOCATE(Hubbard_U_) DEALLOCATE(Hubbard_J0_) DEALLOCATE(Hubbard_alpha_) DEALLOCATE(Hubbard_beta_) DEALLOCATE(Hubbard_J_) ! DO i = 1, SIZE(starting_ns_) CALL qes_reset_starting_ns(starting_ns_(i)) ENDDO DEALLOCATE(starting_ns_) ! DO i = 1, SIZE(Hubbard_ns_) CALL qes_reset_Hubbard_ns(Hubbard_ns_(i)) ENDDO DEALLOCATE(Hubbard_ns_) ! DEALLOCATE(label) ! ENDIF ! SELECT CASE ( TRIM (vdw_corr )) CASE ( 'grimme-d2', 'Grimme-D2', 'DFT-D', 'dft-d') empirical_vdw = .TRUE. london_s6_ispresent = .TRUE. london_rcut_ispresent = .TRUE. xdm_a1_ispresent = .TRUE. xdm_a2_ispresent = .TRUE. IF ( ANY(london_c6 .GT. -eps16 )) THEN ! -eps16 to allow london_c6(i) = 0.0 london_c6_ispresent = .TRUE. ndim_london_c6 = 0 DO isp = 1, nsp IF ( london_c6(isp) .GT. -eps16 ) THEN ndim_london_c6 = ndim_london_c6 + 1 END IF END DO ALLOCATE (london_c6_obj(ndim_london_c6)) ndim_london_c6 = 0 DO isp = 1, nsp IF ( london_c6(isp) .GT. -eps16 ) THEN ndim_london_c6 = ndim_london_c6 + 1 CALL qes_init_hubbardcommon(london_c6_obj(ndim_london_c6), "london_c6", TRIM(species(isp)),"",& london_c6(isp)) END IF END DO ELSE london_c6_ispresent = .FALSE. ALLOCATE ( london_c6_obj(1)) END IF ts_vdw_econv_thr_ispresent = .FALSE. ts_vdw_isolated_ispresent = .FALSE. CASE ( 'TS', 'ts', 'ts-vdw', 'ts-vdW', 'tkatchenko-scheffler') empirical_vdw = .TRUE. london_s6_ispresent = .FALSE. london_c6_ispresent = .FALSE. ALLOCATE ( london_c6_obj(1)) london_rcut_ispresent = .FALSE. xdm_a1_ispresent = .FALSE. xdm_a2_ispresent = .FALSE. ts_vdw_econv_thr_ispresent = .TRUE. ts_vdw_isolated_ispresent = .TRUE. CASE default empirical_vdw = .FALSE. ts_vdw_econv_thr_ispresent = .FALSE. ts_vdw_isolated_ispresent = .FALSE. london_s6_ispresent = .FALSE. london_c6_ispresent = .FALSE. ALLOCATE (london_c6_obj(1)) london_rcut_ispresent = .FALSE. xdm_a1_ispresent = .FALSE. xdm_a2_ispresent = .FALSE. london_c6_ispresent = .FALSE. END SELECT IF ( dft_is_vdW .OR. empirical_vdw ) THEN ! CALL qes_init_vdW(vdW, "vdW", TRIM(vdw_corr), root_is_output, TRIM(nonlocal_term), london_s6_ispresent, london_s6, & ts_vdw_econv_thr_ispresent, ts_vdw_econv_thr, ts_vdw_isolated_ispresent, ts_vdw_isolated,& london_rcut_ispresent, london_rcut, xdm_a1_ispresent, xdm_a1, xdm_a2_ispresent, xdm_a2, & london_c6_ispresent, ndim_london_c6, london_c6_obj ) ! IF (london_c6_ispresent ) THEN DO isp=1, ndim_london_c6 CALL qes_reset_hubbardcommon(london_c6_obj(isp)) END DO END IF DEALLOCATE ( london_c6_obj) ENDIF CALL qes_init_dft(obj, "dft", functional, dft_is_hybrid, hybrid, & dft_is_lda_plus_U, dftU, (dft_is_vdW .OR. empirical_vdw) , vdW) ! IF (dft_is_hybrid) CALL qes_reset_hybrid(hybrid) IF (dft_is_lda_plus_U) CALL qes_reset_dftU(dftU) IF (dft_is_vdW .OR. empirical_vdw ) CALL qes_reset_vdW(vdW) ! END SUBROUTINE qexsd_init_dft ! !-------------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_outputPBC(obj,assume_isolated) !-------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! TYPE (outputPBC_type) :: obj CHARACTER(LEN=*),INTENT(IN) :: assume_isolated CHARACTER(LEN=*),PARAMETER :: TAGNAME="boundary_conditions" ! CALL qes_init_outputPBC(obj,TAGNAME,ASSUME_ISOLATED =assume_isolated) END SUBROUTINE qexsd_init_outputPBC ! ! !--------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_magnetization(obj, lsda, noncolin, spinorbit, total_mag, total_mag_nc, & absolute_mag, do_magnetization) !------------------------------------------------------------------------------------ IMPLICIT NONE ! TYPE(magnetization_type) :: obj LOGICAL, INTENT(IN) :: lsda, noncolin, spinorbit REAL(DP), INTENT(IN) :: total_mag, absolute_mag REAL(DP), INTENT(IN) :: total_mag_nc(3) LOGICAL, INTENT(IN) :: do_magnetization ! CALL qes_init_magnetization(obj, "magnetization", lsda, noncolin, spinorbit, total_mag, absolute_mag, & do_magnetization) ! END SUBROUTINE qexsd_init_magnetization ! ! !--------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_band_structure(obj, lsda, noncolin, lspinorb, nbnd_up, nbnd_dw, nelec, n_wfc_at, occupations_are_fixed, & fermi_energy, two_fermi_energies, ef_updw, et, wg, nks, xk, ngk, wk, & starting_kpoints, occupation_kind, smearing, wf_collected) !---------------------------------------------------------------------------------------- IMPLICIT NONE ! TYPE(band_structure_type) :: obj CHARACTER(LEN=*), PARAMETER :: TAGNAME="band_structure" LOGICAL,INTENT(IN) :: lsda, noncolin, lspinorb, occupations_are_fixed INTEGER,INTENT(IN) :: nbnd_up, nbnd_dw, nks, n_wfc_at REAL(DP),INTENT(IN) :: nelec, fermi_energy REAL(DP),DIMENSION(:,:),INTENT(IN) :: et, wg, xk REAL(DP),DIMENSION(:),INTENT(IN) :: wk INTEGER,DIMENSION(:),INTENT(IN) :: ngk REAL(DP),DIMENSION(2),INTENT(IN) :: ef_updw LOGICAL,INTENT(IN) :: two_fermi_energies TYPE(k_points_IBZ_type),INTENT(IN) :: starting_kpoints TYPE(occupations_type), INTENT(IN) :: occupation_kind TYPE(smearing_type),OPTIONAL,INTENT(IN) :: smearing LOGICAL,INTENT(IN) :: wf_collected ! LOGICAL :: nbnd_up_ispresent, nbnd_dw_ispresent, & fermi_energy_ispresent, HOL_ispresent, & n_wfc_at_ispresent = .TRUE. INTEGER :: ndim_ks_energies, nbnd, ik TYPE(k_point_type) :: kp_obj TYPE(ks_energies_type),ALLOCATABLE :: ks_objs(:) TYPE (k_points_IBZ_type) :: starting_k_points_ TYPE ( occupations_type) :: occupations_kind_ REAL(DP),DIMENSION(:),ALLOCATABLE :: eigenvalues, occupations TYPE (smearing_type) :: smearing_ ! ! ndim_ks_energies=nks ! IF ( lsda ) THEN ndim_ks_energies=ndim_ks_energies/2 nbnd=nbnd_up+nbnd_dw nbnd_up_ispresent=.true. nbnd_dw_ispresent=.true. ELSE nbnd=nbnd_up nbnd_up_ispresent=.false. nbnd_dw_ispresent=.false. END IF IF (fermi_energy.GT.-1.D6 .AND. ( .NOT. two_fermi_energies ) ) THEN IF ( occupations_are_fixed ) THEN fermi_energy_ispresent = .FALSE. HOL_ispresent = .TRUE. ELSE fermi_energy_ispresent = .TRUE. HOL_ispresent = .FALSE. END IF ELSE fermi_energy_ispresent=.FALSE. HOL_ispresent = .FALSE. END IF ! ! ALLOCATE(eigenvalues(nbnd),occupations(nbnd)) ALLOCATE(ks_objs(ndim_ks_energies)) ! ks_objs%tagname="ks_energies" DO ik=1,ndim_ks_energies CALL qes_init_k_point(kp_obj,"k_point",wk(ik),.true.,"",.FALSE., xk(:,ik)) IF ( lsda ) THEN eigenvalues(1:nbnd_up)=et(1:nbnd_up,ik)/e2 eigenvalues(nbnd_up+1:nbnd)=et(1:nbnd_dw,ndim_ks_energies+ik)/e2 ELSE eigenvalues(1:nbnd)= et(1:nbnd,ik)/e2 END IF ! ! IF (lsda) THEN IF ( ABS(wk(ik)).GT.1.d-10) THEN occupations(1:nbnd_up)=wg(1:nbnd_up,ik)/wk(ik) occupations(nbnd_up+1:nbnd)=wg(1:nbnd_dw,ndim_ks_energies+ik)/wk(ndim_ks_energies+ik) ELSE occupations(1:nbnd_up)=wg(1:nbnd_up,ik) occupations(nbnd_up+1:nbnd)=wg(1:nbnd_dw,ik) END IF ELSE IF (ABS(wk(ik)).GT.1.d-10) THEN occupations(1:nbnd)=wg(1:nbnd,ik)/wk(ik) ELSE occupations(1:nbnd)=wg(1:nbnd,ik) END IF END IF ! ! ks_objs(ik)%k_point = kp_obj ks_objs(ik)%npw = ngk(ik) CALL qes_init_vector(ks_objs(ik)%eigenvalues, "eigenvalues",eigenvalues) CALL qes_init_vector(ks_objs(ik)%occupations, "occupations",occupations) ! eigenvalues=0.d0 occupations=0.d0 CALL qes_reset_k_point(kp_obj) END DO ks_objs%lwrite = .TRUE. ks_objs%lread = .TRUE. ! IF ( PRESENT(smearing) ) smearing_ = smearing ! starting_k_points_ = starting_kpoints starting_k_points_%tagname = "starting_k_points" ! occupations_kind_ = occupation_kind occupations_kind_%tagname = "occupations_kind" ! CALL qes_init_band_structure( obj,TAGNAME,lsda,noncolin,lspinorb, nbnd, nbnd_up_ispresent,& nbnd_up,nbnd_dw_ispresent,nbnd_dw,nelec, n_wfc_at_ispresent, n_wfc_at, wf_collected, & fermi_energy_ispresent, fermi_energy/e2, HOL_ispresent, fermi_energy/e2, & two_fermi_energies, ef_updw/e2, starting_k_points_, ndim_ks_energies, & occupations_kind_, PRESENT(smearing), smearing_, ndim_ks_energies, ks_objs ) DO ik=1,ndim_ks_energies CALL qes_reset_ks_energies(ks_objs(ik)) END DO CALL qes_reset_k_points_IBZ ( starting_k_points_ ) DEALLOCATE (ks_objs,eigenvalues,occupations) END SUBROUTINE qexsd_init_band_structure ! ! !--------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_total_energy(obj, etot, eband, ehart, vtxc, etxc, & ewald, degauss, demet, electric_field_corr, potentiostat_contr, gate_contribution) !---------------------------------------------------------------------------------------- ! ! IMPLICIT NONE ! TYPE (total_energy_type) :: obj REAL(DP),INTENT(IN) :: etot, ehart,vtxc,etxc REAL(DP),OPTIONAL,INTENT(IN) :: ewald,demet, eband, degauss REAL(DP),OPTIONAL :: electric_field_corr REAL(DP),OPTIONAL :: potentiostat_contr REAL(DP),OPTIONAL :: gate_contribution ! LOGICAL :: demet_ispresent CHARACTER(LEN=*),PARAMETER :: TAGNAME="total_energy" ! CALL qes_init_total_energy(obj,TAGNAME,etot, EBAND = eband , EHART = ehart, VTXC = vtxc,& ETXC = etxc , EWALD = ewald, DEMET = demet, & EFIELDCORR=electric_field_corr, POTENTIOSTAT_CONTR = potentiostat_contr, & GATE_CONTRIBUTION = gate_contribution ) END SUBROUTINE qexsd_init_total_energy ! ! !-------------------------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_forces(obj,nat,forces,tprnfor) !-------------------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! TYPE(matrix_type) :: obj INTEGER,INTENT(IN) :: nat REAL(DP),DIMENSION(:,:),INTENT(IN) :: forces LOGICAL,INTENT(IN) :: tprnfor ! CHARACTER(LEN=*),PARAMETER :: TAGNAME="forces" REAL(DP),DIMENSION(:,:),ALLOCATABLE :: forces_aux ! IF (.NOT. tprnfor) THEN obj%lwrite=.FALSE. obj%lread =.FALSE. RETURN END IF ! ALLOCATE (forces_aux(3,nat)) forces_aux(1:3,1:nat)=forces(1:3,1:nat)/e2 ! CALL qes_init_matrix(obj,TAGNAME,[3,nat],forces_aux ) ! DEALLOCATE (forces_aux) ! END SUBROUTINE qexsd_init_forces ! ! !--------------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_stress(obj,stress,tstress) !--------------------------------------------------------------------------------------------- ! IMPLICIT NONE TYPE( matrix_type) :: obj REAL(DP),DIMENSION(3,3),INTENT(IN) :: stress LOGICAL,INTENT(IN) :: tstress ! CHARACTER(LEN=*),PARAMETER :: TAGNAME="stress" REAL(DP),DIMENSION(3,3) :: stress_aux IF ( .NOT. tstress ) THEN obj%lwrite = .FALSE. obj%lread = .FALSE. stress_aux = 0.d0 RETURN END IF ! stress_aux=stress/e2 CALL qes_init_matrix(obj,TAGNAME,[3,3],stress_aux ) ! END SUBROUTINE qexsd_init_stress ! ! !------------------------------------------------------------------------------------------------ SUBROUTINE qexsd_init_dipole_info (dipole_info, el_dipole, ion_dipole, edir, eamp, emaxpos, eopreg) !------------------------------------------------------------------------------------------------ ! USE kinds, ONLY : DP USE constants, ONLY : e2, fpi USE qes_types_module,ONLY : dipoleOutput_type, scalarQuantity_type USE qes_libs_module, ONLY : qes_init_scalarQuantity, qes_reset_scalarQuantity USE cell_base, ONLY : alat, at, omega ! IMPLICIT NONE ! TYPE ( dipoleOutput_type ), INTENT(OUT) :: dipole_info REAL(DP),INTENT(IN) :: el_dipole, ion_dipole, eamp, emaxpos, eopreg INTEGER , INTENT(IN) :: edir ! REAL(DP) :: tot_dipole, length, vamp, fac TYPE ( scalarQuantity_type) :: temp_qobj ! tot_dipole = -el_dipole+ion_dipole ! dipole_info%idir = edir fac=omega/fpi dipole_info%tagname = "dipoleInfo" dipole_info%lwrite = .TRUE. dipole_info%lread = .TRUE. CALL qes_init_scalarQuantity(dipole_info%ion_dipole,"ion_dipole" , units="Atomic Units", & scalarQuantity= ion_dipole*fac) CALL qes_init_scalarQuantity(dipole_info%elec_dipole,"elec_dipole" , units="Atomic Units",& scalarQuantity= el_dipole*fac) CALL qes_init_scalarQuantity(dipole_info%dipole,"dipole" , units="Atomic Units", & scalarQuantity= tot_dipole*fac) CALL qes_init_scalarQuantity(dipole_info%dipoleField,"dipoleField" , units="Atomic Units", & scalarQuantity= tot_dipole) ! length=(1._DP-eopreg)*(alat*SQRT(at(1,edir)**2+at(2,edir)**2+at(3,edir)**2)) vamp=e2*(eamp-tot_dipole)*length ! CALL qes_init_scalarQuantity(dipole_info%potentialAmp,"potentialAmp" , units="Atomic Units",& scalarQuantity= vamp) CALL qes_init_scalarQuantity(dipole_info%totalLength, "totalLength", units = "Bohr",& scalarQuantity = length ) END SUBROUTINE qexsd_init_dipole_info !--------------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_outputElectricField(obj, lelfield, tefield, ldipole, lberry, bp_obj, el_pol, & ion_pol, dipole_obj , gateInfo) !--------------------------------------------------------------------------------------------- ! IMPLICIT NONE ! TYPE(outputElectricField_type) :: obj ! LOGICAL,INTENT(IN) :: lberry, lelfield, tefield, ldipole REAL(DP),OPTIONAL,INTENT(IN) :: el_pol(:), ion_pol(:) TYPE(berryPhaseOutput_type),OPTIONAL,INTENT(IN) :: bp_obj TYPE ( dipoleOutput_type ),OPTIONAL, INTENT(IN) :: dipole_obj TYPE ( gateInfo_type),OPTIONAL,INTENT(IN) :: gateInfo ! CHARACTER(LEN=*),PARAMETER :: TAGNAME="electric_field" TYPE ( berryPhaseOutput_type ) :: bp_loc_obj TYPE ( dipoleOutput_type ) :: dip_loc_obj TYPE ( finiteFieldOut_type ) :: finiteField_obj LOGICAL :: bp_is = .FALSE. , finfield_is = .FALSE. , & dipo_is = .FALSE. ! IF (lberry .AND. PRESENT ( bp_obj)) THEN bp_is = .TRUE. bp_loc_obj = bp_obj END IF IF ( lelfield .AND. PRESENT(el_pol) .AND. PRESENT (ion_pol ) ) THEN finfield_is=.TRUE. CALL qes_init_finiteFieldOut (finiteField_obj, "finiteElectricFieldInfo", el_pol, ion_pol) END IF IF ( ldipole .AND. PRESENT( dipole_obj ) ) THEN dipo_is = .TRUE. dip_loc_obj=dipole_obj END IF CALL qes_init_outputElectricField(obj, TAGNAME, BerryPhase = bp_obj, & finiteElectricFieldInfo = finiteField_obj, & dipoleInfo = dipole_obj, & GATEINFO = gateInfo ) IF ( finfield_is) CALL qes_reset_finiteFieldOut( finiteField_obj) ! END SUBROUTINE qexsd_init_outputElectricField ! !---------------------------------------------------------------------------------------- SUBROUTINE qexsd_step_addstep(i_step, max_steps, ntyp, atm, ityp, nat, tau, alat, a1, a2, a3, & etot, eband, ehart, vtxc, etxc, ewald, degauss, demet, forces, & stress, scf_has_converged, n_scf_steps, scf_error, efieldcorr, potstat_contr, & fcp_force, fcp_tot_charge, gatefield_en) !----------------------------------------------------------------------------------------- !! This routing initializes le steps array containing up to max_steps elements of the step_type !! data structure. Each element contains structural and energetic info for m.d. trajectories and !! structural minimization paths. All quantities must be provided directly in Hartree atomic units. !! @Note updated on April 10th 2018 by Pietro Delugas IMPLICIT NONE ! INTEGER ,INTENT(IN) :: i_step, max_steps, ntyp, nat, n_scf_steps, ityp(:) REAL(DP),INTENT(IN) :: tau(3,nat), alat, a1(3), a2(3), a3(3), etot, eband, ehart, vtxc, & etxc, ewald, scf_error, forces(3,nat), stress(3,3) LOGICAL,INTENT(IN) :: scf_has_converged REAL(DP),OPTIONAL,INTENT(IN) :: degauss, demet, gatefield_en, efieldcorr REAL(DP),OPTIONAL,INTENT (IN) :: potstat_contr, fcp_force, fcp_tot_charge CHARACTER(LEN=*),INTENT(IN) :: atm(:) TYPE (step_type) :: step_obj TYPE ( scf_conv_type ) :: scf_conv_obj TYPE ( atomic_structure_type ) :: atomic_struct_obj TYPE ( total_energy_type ) :: tot_en_obj TYPE ( matrix_type ) :: mat_forces, mat_stress ! IF ( i_step .EQ. 1 ) THEN ALLOCATE (steps(max_steps)) step_counter = 0 END IF step_counter = step_counter+1 ! step_obj%tagname="step" step_obj%n_step = step_counter ! CALL qes_init_scf_conv( scf_conv_obj,"scf_conv", scf_has_converged, n_scf_steps, scf_error ) ! step_obj%scf_conv = scf_conv_obj CALL qes_reset_scf_conv(scf_conv_obj) ! CALL qexsd_init_atomic_structure(atomic_struct_obj, ntyp, atm, ityp, nat, tau, & alat, a1, a2, a3, 0) step_obj%atomic_structure=atomic_struct_obj CALL qes_reset_atomic_structure( atomic_struct_obj ) ! CALL qexsd_init_total_energy (tot_en_obj, etot, eband, ehart, & vtxc, etxc, ewald, degauss, demet, efieldcorr, potstat_contr, gatefield_en) step_obj%total_energy=tot_en_obj CALL qes_reset_total_energy( tot_en_obj ) ! CALL qes_init_matrix( mat_forces, "forces", [3, nat], forces ) step_obj%forces=mat_forces CALL qes_reset_matrix ( mat_forces ) ! CALL qes_init_matrix( mat_stress, "stress", [3, 3], stress ) step_obj%stress = mat_stress CALL qes_reset_matrix ( mat_stress ) IF ( PRESENT ( fcp_force ) ) THEN step_obj%FCP_force = fcp_force step_obj%FCP_force_ispresent = .TRUE. END IF IF (PRESENT( fcp_tot_charge)) THEN step_obj%FCP_tot_charge = fcp_tot_charge step_obj%FCP_tot_charge_ispresent = .TRUE. END IF ! ! steps(step_counter) = step_obj steps(step_counter)%lwrite = .TRUE. steps(step_counter)%lread = .TRUE. call qes_reset_step(step_obj) END SUBROUTINE qexsd_step_addstep ! !------------------------------------------------------------------------------------ SUBROUTINE qexsd_reset_steps() IMPLICIT NONE INTEGER :: i_step IF (ALLOCATED(steps)) THEN DO i_step =1, SIZE(steps) CALL qes_reset_step(steps(i_step)) END DO DEALLOCATE (steps) END IF END SUBROUTINE !------------------------------------------------------------------------------------------------- SUBROUTINE qexsd_init_berryPhaseOutput( obj, gpar, gvec, nppstr, nkort, xk, pdl_ion, & mod_ion, pdl_ion_tot, mod_ion_tot, nstring, pdl_elec, & mod_elec, wstring, pdl_elec_up, mod_elec_up, pdl_elec_dw,& mod_elec_dw, pdl_elec_tot,mod_elec_tot, pdl_tot, mod_tot,& upol, rmod) !--------------------------------------------------------------------------------------------------- ! USE ions_base, ONLY: nat, tau, atm, zv, ityp USE cell_base, ONLY: omega USE noncollin_module, ONLY : noncolin, nspin_lsda IMPLICIT NONE ! TYPE (berryPhaseOutput_type) :: obj REAL(DP),INTENT(IN) :: gpar(3), gvec, pdl_ion(nat), pdl_ion_tot, xk(3,*) REAL(DP),INTENT(IN) :: pdl_elec(:), pdl_elec_up, pdl_elec_dw, pdl_elec_tot, & pdl_tot, upol(3), rmod ! INTEGER,INTENT(IN) :: mod_ion(nat), mod_ion_tot, mod_elec(:), mod_elec_up, & mod_elec_dw, mod_elec_tot, mod_tot, nppstr, nkort, nstring ! REAL(DP),INTENT(IN) :: wstring(nstring) ! CHARACTER(LEN=*),PARAMETER :: TAGNAME = "BerryPhase" TYPE ( polarization_type) :: tot_pol_obj ! TYPE ( electronicPolarization_type),ALLOCATABLE :: str_pol_obj(:) TYPE ( ionicPolarization_type ), ALLOCATABLE :: ion_pol_obj(:) TYPE ( k_point_type ) :: kp_obj TYPE ( phase_type) :: el_phase, ion_phase, tot_phase TYPE ( atom_type ) :: atom_obj TYPE ( scalarQuantity_type ) :: pol_val INTEGER :: iat, istring, indstring, ispin CHARACTER(10) :: mod_string LOGICAL :: spin_is = .FALSE. ! ALLOCATE (ion_pol_obj(nat), str_pol_obj(nat)) DO iat =1, nat WRITE(mod_string,'("(mod" ,I1,")")') mod_ion(iat) CALL qes_init_phase(ion_phase,"phase", 0.d0,.FALSE.,0.d0,.FALSE.,TRIM(mod_string),.TRUE., pdl_ion(iat) ) CALL qes_init_atom(atom_obj,"ion",name=TRIM(atm(ityp(iat))),position_ispresent=.FALSE.,atom = tau(:,iat), & index_ispresent = .FALSE.) CALL qes_init_ionicPolarization(ion_pol_obj(iat), "ionicPolarization", atom_obj, zv(ityp(iat)), ion_phase ) CALL qes_reset_phase(ion_phase) CALL qes_reset_atom(atom_obj) END DO ! IF ( nspin_lsda .EQ. 2 ) spin_is = .TRUE. DO istring= 1, nstring indstring = 1+(istring-1)*nppstr WRITE(mod_string,'("(mod ",I1,")")') mod_elec(istring) CALL qes_init_phase(el_phase, "phase", 0.d0, .FALSE., 0.d0, .FALSE., TRIM (mod_string), .TRUE., & pdl_elec(istring) ) IF (istring .LE. nstring/nspin_lsda) THEN ispin = 1 ELSE ispin = 2 END IF CALL qes_init_k_point(kp_obj, "firstKeyPoint", wstring(istring), .TRUE., "",.FALSE., xk(:,indstring)) CALL qes_init_electronicPolarization(str_pol_obj(istring),"electronicPolarization", kp_obj, spin_is, ispin, & el_phase ) CALL qes_reset_phase ( el_phase ) CALL qes_reset_k_point(kp_obj) END DO ! WRITE(mod_string,'("(mod ",I1,")")') mod_tot CALL qes_init_phase(tot_phase, "totalPhase", pdl_ion_tot, .TRUE. , pdl_elec_tot, .TRUE., TRIM(mod_string), & .TRUE., pdl_tot) ! CALL qes_init_scalarQuantity ( pol_val, "polarization", Units="e/bohr^2", scalarQuantity=(rmod/omega)*pdl_tot ) ! CALL qes_init_polarization(tot_pol_obj, "totalPolarization", pol_val, modulus = (rmod/omega)*dble(mod_tot), & direction = upol ) ! CALL qes_init_berryPhaseOutput( obj, TAGNAME, tot_pol_obj, tot_phase, nat, ion_pol_obj, nstring, str_pol_obj ) ! DO istring=1,nstring CALL qes_reset_electronicPolarization(str_pol_obj(istring)) END DO DEALLOCATE (str_pol_obj) DO iat=1, nat CALL qes_reset_ionicPolarization(ion_pol_obj(iat)) END DO DEALLOCATE (ion_pol_obj) CALL qes_reset_polarization(tot_pol_obj) CALL qes_reset_scalarQuantity(pol_val) CALL qes_reset_phase(tot_phase) ! END SUBROUTINE qexsd_init_berryPhaseOutput ! !------------------------------------------------------------------------------------------------- SUBROUTINE qexsd_set_status(status_int) !------------------------------------------------------------------------------------------------- IMPLICIT NONE ! INTEGER :: status_int END SUBROUTINE qexsd_set_status ! !-------------------------------------------------------------------------------------------------- SUBROUTINE qexsd_set_closed() ! IMPLICIT NONE CHARACTER(LEN=9) :: cdate, time_string CHARACTER(LEN=12) :: date_string ! CALL date_and_tim( cdate, time_string ) date_string = cdate(1:2) // ' ' // cdate(3:5) // ' ' // cdate (6:9) CALL qes_init_closed (qexsd_closed_element, "closed", date_string, time_string,& "") END SUBROUTINE qexsd_set_closed !----------------------------------------------------------------------------------- SUBROUTINE qexsd_init_gate_info(obj, tagname, gatefield_en, zgate_, nelec_, alat_, at_, bg_, zv_, ityp_) !-------------------------------------------------------------------------------- USE kinds, ONLY : DP USE constants, ONLY : tpi ! IMPLICIT NONE TYPE (gateInfo_type),INTENT(INOUT) :: obj; CHARACTER(LEN=*) :: tagname REAL(DP), INTENT(IN) :: gatefield_en, zgate_, alat_, at_(3,3), bg_(3,3), zv_(:), nelec_ INTEGER,INTENT(IN) :: ityp_(:) ! REAL(DP) :: bmod, area, ionic_charge, gateamp, gate_gate_term ! bmod=SQRT(bg_(1,3)**2+bg_(2,3)**2+bg_(3,3)**2) ionic_charge = SUM( zv_(ityp_(:)) ) area = ABS((at_(1,1)*at_(2,2)-at_(2,1)*at_(1,2))*alat_**2) gateamp = (-(nelec_-ionic_charge)/area*tpi) gate_gate_term = (- (nelec_-ionic_charge) * gateamp * (alat_/bmod) / 6.0) obj = gateInfo_type( TAGNAME = TRIM(tagname), lwrite = .TRUE., lread = .FALSE., POT_PREFACTOR = gateamp, & GATE_ZPOS = zgate_, GATE_GATE_TERM = gate_gate_term, GATEFIELDENERGY = gatefield_en) ! END SUBROUTINE qexsd_init_gate_info END MODULE qexsd_module ! !---------------- ! ... dummy defs !---------------- ! ! !