! ! Copyright (C) 2011 Quantum ESPRESSO group ! This file is distributed under the terms of the ! GNU General Public License. See the file `License' ! in the root directory of the present distribution, ! or http://www.gnu.org/copyleft/gpl.txt . ! ! !=----------------------------------------------------------------------= MODULE recvec_subs !=----------------------------------------------------------------------= !! Subroutines generating G-vectors and variables nl* needed to map !! G-vector components onto the FFT grid(s) in reciprocal space. ! USE kinds, ONLY : dp USE fft_types, ONLY: fft_stick_index, fft_type_descriptor USE fft_ggen, ONLY : fft_set_nl ! PRIVATE SAVE PUBLIC :: ggen, ggens !=----------------------------------------------------------------------= CONTAINS !=----------------------------------------------------------------------= ! !----------------------------------------------------------------------- SUBROUTINE ggen ( dfftp, gamma_only, at, bg, gcutm, ngm_g, ngm, & g, gg, mill, ig_l2g, gstart, no_global_sort ) !---------------------------------------------------------------------- !! This routine generates all the reciprocal lattice vectors !! contained in the sphere of radius gcutm. Furthermore it !! computes the indices nl which give the correspondence !! between the fft mesh points and the array of g vectors. ! USE mp, ONLY: mp_rank, mp_size, mp_sum USE constants, ONLY : eps8 ! IMPLICIT NONE ! TYPE(fft_type_descriptor),INTENT(INOUT) :: dfftp LOGICAL, INTENT(IN) :: gamma_only REAL(DP), INTENT(IN) :: at(3,3), bg(3,3), gcutm INTEGER, INTENT(IN) :: ngm_g INTEGER, INTENT(INOUT) :: ngm REAL(DP), INTENT(OUT) :: g(:,:), gg(:) INTEGER, INTENT(OUT) :: mill(:,:), ig_l2g(:), gstart ! if no_global_sort is present (and it is true) G vectors are sorted only ! locally and not globally. In this case no global array needs to be ! allocated and sorted: saves memory and a lot of time for large systems. ! LOGICAL, OPTIONAL, INTENT(IN) :: no_global_sort ! ! here a few local variables ! REAL(DP) :: tx(3), ty(3), t(3) REAL(DP), ALLOCATABLE :: tt(:) INTEGER :: ngm_save, n1, n2, n3, ngm_offset, ngm_max, ngm_local ! REAL(DP), ALLOCATABLE :: g2sort_g(:) ! array containing only g vectors for the current processor INTEGER, ALLOCATABLE :: mill_unsorted(:,:) ! array containing all g vectors generators, on all processors ! (replicated data). When no_global_sort is present and .true., ! only g-vectors for the current processor are stored INTEGER, ALLOCATABLE :: igsrt(:), g2l(:) ! INTEGER :: ni, nj, nk, i, j, k, ipol, ng, igl, indsw INTEGER :: istart, jstart, kstart INTEGER :: mype, npe LOGICAL :: global_sort, is_local INTEGER, ALLOCATABLE :: ngmpe(:) ! global_sort = .TRUE. IF( PRESENT( no_global_sort ) ) THEN global_sort = .NOT. no_global_sort END IF ! IF( .NOT. global_sort ) THEN ngm_max = ngm ELSE ngm_max = ngm_g END IF ! ! save current value of ngm ! ngm_save = ngm ! ngm = 0 ngm_local = 0 ! ! set the total number of fft mesh points and and initial value of gg ! The choice of gcutm is due to the fact that we have to order the ! vectors after computing them. ! gg(:) = gcutm + 1.d0 ! ! and computes all the g vectors inside a sphere ! ALLOCATE( mill_unsorted( 3, ngm_save ) ) ALLOCATE( igsrt( ngm_max ) ) ALLOCATE( g2l( ngm_max ) ) ALLOCATE( g2sort_g( ngm_max ) ) ! g2sort_g(:) = 1.0d20 ! ! allocate temporal array ! ALLOCATE( tt( dfftp%nr3 ) ) ! ! max miller indices (same convention as in module stick_set) ! ni = (dfftp%nr1-1)/2 nj = (dfftp%nr2-1)/2 nk = (dfftp%nr3-1)/2 ! ! gamma-only: exclude space with x < 0 ! IF ( gamma_only ) THEN istart = 0 ELSE istart = -ni ENDIF ! iloop: DO i = istart, ni ! ! gamma-only: exclude plane with x = 0, y < 0 ! IF ( gamma_only .and. i == 0 ) THEN jstart = 0 ELSE jstart = -nj ENDIF ! tx(1:3) = i * bg(1:3,1) ! jloop: DO j = jstart, nj ! IF ( .NOT. global_sort ) THEN IF ( fft_stick_index( dfftp, i, j ) == 0 ) CYCLE jloop is_local = .TRUE. ELSE IF ( dfftp%lpara .AND. fft_stick_index( dfftp, i, j ) == 0) THEN is_local = .FALSE. ELSE is_local = .TRUE. END IF END IF ! ! gamma-only: exclude line with x = 0, y = 0, z < 0 ! IF ( gamma_only .and. i == 0 .and. j == 0 ) THEN kstart = 0 ELSE kstart = -nk ENDIF ! ty(1:3) = tx(1:3) + j * bg(1:3,2) ! ! compute all the norm square ! DO k = kstart, nk ! t(1) = ty(1) + k * bg(1,3) t(2) = ty(2) + k * bg(2,3) t(3) = ty(3) + k * bg(3,3) tt(k-kstart+1) = t(1)**2 + t(2)**2 + t(3)**2 ENDDO ! ! save all the norm square within cutoff ! DO k = kstart, nk IF (tt(k-kstart+1) <= gcutm) THEN ngm = ngm + 1 IF (ngm > ngm_max) CALL errore ('ggen 1', 'too many g-vectors', ngm) IF ( tt(k-kstart+1) > eps8 ) THEN g2sort_g(ngm) = tt(k-kstart+1) ELSE g2sort_g(ngm) = 0.d0 ENDIF IF (is_local) THEN ngm_local = ngm_local + 1 mill_unsorted( :, ngm_local ) = (/ i,j,k /) g2l(ngm) = ngm_local ELSE g2l(ngm) = 0 ENDIF ENDIF ENDDO ENDDO jloop ENDDO iloop IF (ngm /= ngm_max) & CALL errore ('ggen', 'g-vectors missing !', abs(ngm - ngm_max)) ! igsrt(1) = 0 IF( .NOT. global_sort ) THEN CALL hpsort_eps( ngm, g2sort_g, igsrt, eps8 ) ELSE CALL hpsort_eps( ngm_g, g2sort_g, igsrt, eps8 ) END IF DEALLOCATE( g2sort_g, tt ) IF( .NOT. global_sort ) THEN ! ! compute adeguate offsets in order to avoid overlap between ! g vectors once they are gathered on a single (global) array ! mype = mp_rank( dfftp%comm ) npe = mp_size( dfftp%comm ) ALLOCATE( ngmpe( npe ) ) ngmpe = 0 ngmpe( mype + 1 ) = ngm CALL mp_sum( ngmpe, dfftp%comm ) ngm_offset = 0 DO ng = 1, mype ngm_offset = ngm_offset + ngmpe( ng ) END DO DEALLOCATE( ngmpe ) ! END IF ngm = 0 ! ngloop: DO ng = 1, ngm_max ! IF (g2l(igsrt(ng))>0) THEN ! fetch the indices i = mill_unsorted(1, g2l(igsrt(ng))) j = mill_unsorted(2, g2l(igsrt(ng))) k = mill_unsorted(3, g2l(igsrt(ng))) ! ngm = ngm + 1 ! ! Here map local and global g index !!! N.B: : ! the global G vectors arrangement depends on the number of processors ! IF( .NOT. global_sort ) THEN ig_l2g( ngm ) = ng + ngm_offset ELSE ig_l2g( ngm ) = ng END IF g(1:3, ngm) = i * bg (:, 1) + j * bg (:, 2) + k * bg (:, 3) gg(ngm) = sum(g(1:3, ngm)**2) ENDIF ENDDO ngloop DEALLOCATE( igsrt, g2l ) IF (ngm /= ngm_save) & CALL errore ('ggen', 'g-vectors (ngm) missing !', abs(ngm - ngm_save)) ! ! determine first nonzero g vector ! IF (gg(1).le.eps8) THEN gstart=2 ELSE gstart=1 ENDIF ! ! Now set nl and nls with the correct fft correspondence ! CALL fft_set_nl( dfftp, at, g, mill ) ! END SUBROUTINE ggen ! !----------------------------------------------------------------------- SUBROUTINE ggens( dffts, gamma_only, at, g, gg, mill, gcutms, ngms, & gs, ggs ) !----------------------------------------------------------------------- !! Initialize number and indices of g-vectors for a subgrid, !! for exactly the same ordering as for the original FFT grid ! IMPLICIT NONE ! LOGICAL, INTENT(IN) :: gamma_only TYPE (fft_type_descriptor), INTENT(INOUT) :: dffts !! primitive lattice vectors REAL(dp), INTENT(IN) :: at(3,3) !! G-vectors in FFT grid REAL(dp), INTENT(IN) :: g(:,:), gg(:) !! Miller indices for G-vectors of FFT grid INTEGER, INTENT(IN) :: mill(:,:) !! cutoff for subgrid REAL(DP), INTENT(IN):: gcutms !! Local number of G-vectors in subgrid INTEGER, INTENT(OUT):: ngms !! Optionally: G-vectors and modules REAL(DP), INTENT(INOUT), POINTER, OPTIONAL:: gs(:,:), ggs(:) ! INTEGER :: i, ng, ngm ! ngm = SIZE(gg) ngms = dffts%ngm IF ( ngms > ngm ) CALL errore ('ggens','wrong number of G-vectors',1) ! IF ( PRESENT(gs) ) ALLOCATE ( gs(3,ngms) ) IF ( PRESENT(ggs)) ALLOCATE ( ggs(ngms) ) ng = 0 DO i = 1, ngm IF ( gg(i) > gcutms ) exit IF ( PRESENT(gs) ) gs (:,i) = g(:,i) IF ( PRESENT(ggs)) ggs(i) = gg(i) ng = i END DO IF ( ng /= ngms ) CALL errore ('ggens','mismatch in number of G-vectors',2) ! CALL fft_set_nl ( dffts, at, g ) ! END SUBROUTINE ggens ! !=----------------------------------------------------------------------= END MODULE recvec_subs !=----------------------------------------------------------------------=