Commit Graph

7 Commits

Author SHA1 Message Date
degironc aba852b428 order of input arguments in KS_Solver routines changed
bringing overlap logical flag close to the s_psi function it affects



git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@13800 c92efa57-630b-4861-b058-cf58834340f0
2017-08-29 08:09:06 +00:00
degironc 0d2d3d5721 minor estetic change
git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@13730 c92efa57-630b-4861-b058-cf58834340f0
2017-08-19 13:30:16 +00:00
degironc a8340b4d40 Duplicate routines cdiaghg and rdiaghg moved from KS_Solvers/XX to LAXlib.
Duplicate module mp_bands.f90 moved from KS_Solvers/XX to UtilXlib/mp_bands_util.f90
Makefiles and makedepend.sh updated
 
that should take care of the duplicate symbols




git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@13712 c92efa57-630b-4861-b058-cf58834340f0
2017-08-08 21:44:44 +00:00
degironc 3e6b4f8e76 MAJOR restructuring of the FFTXlib library
In real space processors are organized in a 2D pattern.

Each processor owns data from a sub-set of Z-planes and a sub-set of Y-planes.
In reciprocal space each processor owns Z-columns that belong to a sub set of
X-values. This allows to split the processors in two sets for communication
in the YZ and XY planes.
In alternative, if the situation allows for it, a task group paralelization is used
(with ntg=nyfft) where complete XY planes of ntg wavefunctions are collected and Fourier
trasnformed in G space by different task-groups. This is preferable to the Z-proc + Y-proc
paralleization if task group can be used because a smaller number of larger ammounts of 
data are transferred. Hence three types of fft are implemented: 
 
  !
  !! ... isgn = +-1 : parallel 3d fft for rho and for the potential
  !
  !! ... isgn = +-2 : parallel 3d fft for wavefunctions
  !
  !! ... isgn = +-3 : parallel 3d fft for wavefunctions with task group
  !
  !! ... isgn = +   : G-space to R-space, output = \sum_G f(G)exp(+iG*R)
  !! ...              fft along z using pencils        (cft_1z)
  !! ...              transpose across nodes           (fft_scatter_yz)
  !! ...              fft along y using pencils        (cft_1y)
  !! ...              transpose across nodes           (fft_scatter_xy)
  !! ...              fft along x using pencils        (cft_1x)
  !
  !! ... isgn = -   : R-space to G-space, output = \int_R f(R)exp(-iG*R)/Omega
  !! ...              fft along x using pencils        (cft_1x)
  !! ...              transpose across nodes           (fft_scatter_xy)
  !! ...              fft along y using pencils        (cft_1y)
  !! ...              transpose across nodes           (fft_scatter_yz)
  !! ...              fft along z using pencils        (cft_1z)
  !
  ! If task_group_fft_is_active the FFT acts on a number of wfcs equal to 
  ! dfft%nproc2, the number of Y-sections in which a plane is divided. 
  ! Data are reshuffled by the fft_scatter_tg routine so that each of the 
  ! dfft%nproc2 subgroups (made by dfft%nproc3 procs) deals with whole planes 
  ! of a single wavefunciton.
  !

fft_type module heavily modified, a number of variables renamed with more intuitive names 
(at least to me), a number of more variables introduced for the Y-proc parallelization.

Task_group module made void. task_group management is now reduced to the logical component
 fft_desc%have_task_groups of fft_type_descriptor type variable fft_desc.

In term of interfaces, the 'easy' calling sequences are

SUBROUTINE invfft/fwfft( grid_type, f, dfft, howmany )

  !! where:
  !! 
  !! **grid_type = 'Dense'** : 
  !!   inverse/direct fourier transform of potentials and charge density f
  !!   on the dense grid (dfftp). On output, f is overwritten
  !! 
  !! **grid_type = 'Smooth'** :
  !!   inverse/direct fourier transform of  potentials and charge density f
  !!   on the smooth grid (dffts). On output, f is overwritten
  !! 
  !! **grid_type = 'Wave'** :
  !!   inverse/direct fourier transform of  wave functions f
  !!   on the smooth grid (dffts). On output, f is overwritten
  !!
  !! **grid_type = 'tgWave'** :
  !!   inverse/direct fourier transform of  wave functions f with task group
  !!   on the smooth grid (dffts). On output, f is overwritten
  !!
  !! **grid_type = 'Custom'** : 
  !!   inverse/direct fourier transform of potentials and charge density f
  !!   on a custom grid (dfft_exx). On output, f is overwritten
  !! 
  !! **grid_type = 'CustomWave'** :
  !!   inverse/direct fourier transform of  wave functions f
  !!   on a custom grid (dfft_exx). On output, f is overwritten
  !! 
  !! **dfft = FFT descriptor**, IMPORTANT NOTICE: grid is specified only by dfft.
  !!   No check is performed on the correspondence between dfft and grid_type.
  !!   grid_type is now used only to distinguish cases 'Wave' / 'CustomWave' 
  !!   from all other cases
                                                                                                 

Many more files modified.




git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@13676 c92efa57-630b-4861-b058-cf58834340f0
2017-08-01 20:31:02 +00:00
giannozz 15215e2262 Compiled modules shouldn't be under revision control!
git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@13663 c92efa57-630b-4861-b058-cf58834340f0
2017-07-31 16:43:50 +00:00
degironc 1b33777cbd remove some timing printing.
intra_pool_comm (the parent_comm of intra_bgrp_comm) should be the first argument
of set_mpi_comm_4_XX routines.



git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@13645 c92efa57-630b-4861-b058-cf58834340f0
2017-07-29 19:48:15 +00:00
degironc 4636bca635 KS_Solvers directory has been created with three subdirectories:
KS_Solvers/CG, KS_Solvers/Davidson, KS_Solvers/Davidson_RCI.
Two are currently used by QE, the third one implements the Davidson
diagonalization within the Reverse Communication Interface paradigm,
courtesy of Micael Oliveira.

KS_Solvers routines depend only on lower level libraries, notably UtilXlib, 
LAXlib, (SCA)LAPACK, and BLAS.

reorganization can be improved. For instance some duplicated routines like
cdiaghg and rdiaghg could/should be moved in LAXlib. This could reduce the need
to include  KS_Solvers directories in the link step of many codes.    

Minimal changes to calling sequence have been made, essentially just adding
h_psi,s_psi,g_psi and h_1psi,s_1psi routines names as arguments (with a
specific calling sequence ihardcode inside the routines that agree with PWSCF one). 
This could be avoided adopting the RCI paradigm.

Compiled in serial and parallel, 177/182 pw tests passed (3 that were failing 
even before on my laptop pw-berry, pw-langevin, pw-pawatom + 2 unknown==not tested), 
12 /17 cp tests passed (some o2-us-para-pbe-X fail but the same was for the 
original version)

I assume the modified calling procedure is working and the problem lies somewhere else.
 
Randomly tested some examples in pw, ph, pwcond and it seams to work.

Please report any problem.





git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@13644 c92efa57-630b-4861-b058-cf58834340f0
2017-07-29 12:19:19 +00:00