Change in post-processing superconductivity

The distance with respect to the Fermi level was not taken into
account when writing on files the superconducting gaps on the Fermi surface.

Issue raised by Miao Gao and solved by R. Margine and S. Ponce.
This commit is contained in:
Samuel Ponce 2019-04-02 23:53:48 +01:00
parent 827af3b2b1
commit df83585b3a
5 changed files with 135 additions and 131 deletions

View File

@ -2074,8 +2074,8 @@
USE io_epw, ONLY : iufilgap
USE io_files, ONLY : prefix
USE epwcom, ONLY : fsthick
USE eliashbergcom, ONLY : estemp, Agap, nkfs, nbndfs, ef0, ekfs
USE constants_epw, ONLY : kelvin2eV, zero
USE eliashbergcom, ONLY : estemp, Agap, nkfs, nbndfs, ef0, ekfs, w0g
USE constants_epw, ONLY : kelvin2eV, zero, eps5
!
IMPLICIT NONE
!
@ -2099,8 +2099,6 @@
!! Step size in nbin
REAL(DP) :: delta_max
!! Max value of superconducting gap
REAL(DP) :: sigma
!! Variable for smearing
REAL(DP) :: weight
!! Variable for weight
REAL(DP), ALLOCATABLE :: delta_k_bin(:)
@ -2110,8 +2108,8 @@
!
temp = estemp(itemp) / kelvin2eV
!
delta_max = 1.25d0 * maxval(Agap(:,:,itemp))
nbin = int(delta_max/(0.005d0/1000.d0))
delta_max = 1.1d0 * maxval(Agap(:,:,itemp))
nbin = NINT(delta_max / eps5) + 1
dbin = delta_max / dble(nbin)
IF ( .not. ALLOCATED(delta_k_bin) ) ALLOCATE( delta_k_bin(nbin) )
delta_k_bin(:) = zero
@ -2119,11 +2117,9 @@
DO ik = 1, nkfs
DO ibnd = 1, nbndfs
IF ( abs( ekfs(ibnd,ik) - ef0 ) .lt. fsthick ) THEN
DO ibin = 1, nbin
sigma = 1.d0 * dbin
weight = w0gauss( ( Agap(ibnd,ik,itemp) - dble(ibin) * dbin) / sigma, 0 ) / sigma
delta_k_bin(ibin) = delta_k_bin(ibin) + weight
ENDDO
ibin = nint( Agap(ibnd,ik,itemp) / dbin ) + 1
weight = w0g(ibnd,ik)
delta_k_bin(ibin) = delta_k_bin(ibin) + weight
ENDIF
ENDDO
ENDDO

View File

@ -1423,7 +1423,7 @@
degaussw, nkf1, nkf2, nkf3
USE eliashbergcom, ONLY : nkfs, nbndfs, g2, ixkqf, ixqfs, nqfs, w0g, ekfs, ef0, dosef, wsph, &
wkfs, dwsph, a2f_iso, ixkff
USE constants_epw, ONLY : ryd2ev
USE constants_epw, ONLY : ryd2ev, eps2, zero, eps16
USE io_global, ONLY : ionode_id
USE mp_global, ONLY : inter_pool_comm, my_pool_id, npool
USE mp_world, ONLY : mpime
@ -1599,23 +1599,25 @@
IF ( ALLOCATED(a2f) ) DEALLOCATE( a2f )
IF ( ALLOCATED(a2f_modeproj) ) DEALLOCATE( a2f_modeproj )
!
nbink = int( 1.25d0 * maxval(lambda_k(:,:)) / 0.005d0 )
dbink = 1.25d0 * maxval(lambda_k(:,:)) / dble(nbink)
nbink = NINT( 1.1d0 * MAXVAL(lambda_k(:,:)) / eps2 ) + 1
dbink = 1.1d0 * MAXVAL(lambda_k(:,:)) / DBLE(nbink)
!
IF ( .not. ALLOCATED(lambda_k_bin) ) ALLOCATE ( lambda_k_bin(nbink) )
lambda_k_bin(:) = 0.d0
lambda_k_bin(:) = zero
!
!SP : Should be initialized
nbin = 0
dbin = 0.0_DP
dbin = zero
!
IF ( iverbosity == 2 ) THEN
nbin = int( 1.25d0 * maxval(lambda_max(:)) / 0.005d0 )
dbin = 1.25d0 * maxval(lambda_max(:)) / dble(nbin)
IF ( .not. ALLOCATED(lambda_pairs) ) ALLOCATE ( lambda_pairs(nbin) )
lambda_pairs(:) = 0.d0
nbin = nint( 1.1d0 * MAXVAL(lambda_max(:)) / eps2 ) + 1
dbin = 1.1d0 * MAXVAL(lambda_max(:)) / dble(nbin)
IF ( .not. ALLOCATED(lambda_pairs) ) ALLOCATE ( lambda_pairs(nbin) )
lambda_pairs(:) = zero
ENDIF
!
WRITE(stdout,'(5x,a13,f21.7,a18,f21.7)') 'lambda_max = ', maxval(lambda_max(:)), ' lambda_k_max = ', maxval(lambda_k(:,:))
WRITE(stdout,'(5x,a13,f21.7,a18,f21.7)') 'lambda_max = ', maxval(lambda_max(:)), &
' lambda_k_max = ', maxval(lambda_k(:,:))
WRITE(stdout,'(a)') ' '
!
lambda_k(:,:) = 0.d0
@ -1631,20 +1633,16 @@
CALL lambdar_aniso_ver1( ik, iq, ibnd, jbnd, 0.d0, lambda_eph )
lambda_k(ik,ibnd) = lambda_k(ik,ibnd) + weight * lambda_eph
IF ( iverbosity == 2 ) THEN
DO ibin = 1, nbin
sigma = 1.d0 * dbin
weight = w0gauss( ( lambda_eph - dble(ibin) * dbin ) / sigma, 0 ) / sigma
lambda_pairs(ibin) = lambda_pairs(ibin) + weight
ENDDO
ibin = NINT( lambda_eph / dbin ) + 1
weight = w0g(ibnd,ik) * w0g(jbnd,ixkqf(ik,iq0))
lambda_pairs(ibin) = lambda_pairs(ibin) + weight
ENDIF
ENDIF
ENDDO ! jbnd
ENDDO ! iq
DO ibin = 1, nbink
sigma = 1.d0 * dbink
weight = w0gauss( ( lambda_k(ik,ibnd) - dble(ibin) * dbink ) / sigma, 0 ) / sigma
lambda_k_bin(ibin) = lambda_k_bin(ibin) + weight
ENDDO
ibin = NINT( lambda_k(ik,ibnd) / dbink ) + 1
weight = w0g(ibnd,ik)
lambda_k_bin(ibin) = lambda_k_bin(ibin) + weight
ENDIF
ENDDO ! ibnd
ENDDO ! ik
@ -1676,7 +1674,7 @@
OPEN(unit = iufillambda, file = TRIM(prefix)//".lambda_k_pairs", form = 'formatted')
WRITE(iufillambda,'(a12,a30)') '# lambda_nk',' \rho(lambda_nk) scaled to 1'
DO ibin = 1, nbink
WRITE(iufillambda,'(2f21.7)') dbink*dble(ibin), lambda_k_bin(ibin)/maxval(lambda_k_bin(:))
WRITE(iufillambda,'(2f21.7)') dbink*dble(ibin), lambda_k_bin(ibin)/MAXVAL(lambda_k_bin(:))
ENDDO
CLOSE(iufillambda)
!
@ -1761,9 +1759,4 @@
!
END SUBROUTINE evaluate_a2f_lambda
!
!
END MODULE superconductivity_aniso

View File

@ -52,7 +52,7 @@
END INTERFACE
INTERFACE mp_sum
MODULE PROCEDURE mp_sum_i1, mp_sum_iv, mp_sum_im, mp_sum_it, &
MODULE PROCEDURE mp_sum_i1, mp_sum_iv, mp_sum_im, mp_sum_it, mp_sum_i4, mp_sum_i5, &
mp_sum_r1, mp_sum_rv, mp_sum_rm, mp_sum_rt, mp_sum_r4d, &
mp_sum_c1, mp_sum_cv, mp_sum_cm, mp_sum_ct, mp_sum_c4d, &
mp_sum_c5d, mp_sum_c6d, mp_sum_rmm, mp_sum_cmm, mp_sum_r5d, &
@ -1391,6 +1391,33 @@
#endif
END SUBROUTINE mp_sum_it
!------------------------------------------------------------------------------!
SUBROUTINE mp_sum_i4(msg,gid)
IMPLICIT NONE
INTEGER, INTENT (INOUT) :: msg(:,:,:,:)
INTEGER, INTENT (IN) :: gid
#if defined(__MPI)
INTEGER :: msglen
msglen = size(msg)
CALL reduce_base_integer( msglen, msg, gid, -1 )
#endif
END SUBROUTINE mp_sum_i4
!------------------------------------------------------------------------------!
SUBROUTINE mp_sum_i5(msg,gid)
IMPLICIT NONE
INTEGER, INTENT (INOUT) :: msg(:,:,:,:,:)
INTEGER, INTENT (IN) :: gid
#if defined(__MPI)
INTEGER :: msglen
msglen = size(msg)
CALL reduce_base_integer( msglen, msg, gid, -1 )
#endif
END SUBROUTINE mp_sum_i5
!------------------------------------------------------------------------------!
SUBROUTINE mp_sum_r1(msg,gid)

View File

@ -27,7 +27,7 @@
Comput. Phys. Commun. 209, 116 (2016)
Program EPW v.5.0.0 starts on 17Oct2018 at 11:12:23
Program EPW v.5.1.0 starts on 2Apr2019 at 14:20: 5
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
@ -65,9 +65,6 @@
number of atomic types = 2
kinetic-energy cut-off = 40.0000 Ry
charge density cut-off = 160.0000 Ry
convergence threshold = 0.0E+00
beta = 0.0000
number of iterations used = 0
Exchange-correlation = PZ ( 1 1 0 0 0 0)
@ -90,9 +87,9 @@
Cartesian axes
site n. atom mass positions (a_0 units)
1 Mg 24.3071 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 B 10.8119 tau( 2) = ( -0.00000 0.57735 0.57103 )
3 B 10.8119 tau( 3) = ( 0.50000 0.28868 0.57103 )
1 Mg 24.3050 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 B 10.8110 tau( 2) = ( -0.00000 0.57735 0.57103 )
3 B 10.8110 tau( 3) = ( 0.50000 0.28868 0.57103 )
25 Sym.Ops. (with q -> -q+G )
@ -129,8 +126,8 @@
k( 27) = ( 0.6666667 1.1547005 0.5837357), wk = 0.0740741
PseudoPot. # 1 for Mg read from file:
./Mg.pz-n-vbc.UPF
MD5 check sum: 51ac066f8f4bf7da60c51ce0af5caf3d
../../pseudo/Mg.pz-n-vbc.UPF
MD5 check sum: adf9ca49345680d0fd32b5bc0752f25b
Pseudo is Norm-conserving + core correction, Zval = 2.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
@ -138,13 +135,13 @@
l(2) = 1
PseudoPot. # 2 for B read from file:
./B.pz-vbc.UPF
MD5 check sum: b59596b5d63edeea6a2b3a0beace49c5
../../pseudo/B.pz-vbc.UPF
MD5 check sum: 57e6d61f6735028425feb5bdf19679fb
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 157 points, 1 beta functions with:
l(1) = 0
EPW : 0.06s CPU 0.06s WALL
EPW : 0.07s CPU 0.07s WALL
EPW : 0.11s CPU 0.11s WALL
@ -250,17 +247,17 @@
( 0.25000 0.43301 0.66488) : 1.07401
-------------------------------------------------------------------
WANNIER : 4.72s CPU 4.73s WALL ( 1 calls)
WANNIER : 4.69s CPU 4.70s WALL ( 1 calls)
-------------------------------------------------------------------
Dipole matrix elements calculated
Calculating kmap and kgmap
Progress kmap: ###########################
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.66s CPU 0.66s WALL ( 1 calls)
Symmetries of bravais lattice: 24
kmaps : 0.74s CPU 0.76s WALL ( 1 calls)
Symmetries of Bravais lattice: 24
Symmetries of crystal: 24
@ -431,10 +428,6 @@
Number of ep-matrix elements per pool : 6300 ~= 49.22 Kb (@ 8 bytes/ DP)
A selecq.fmt file was found but re-created because selecqread == .false.
We only need to compute 216 q-points
Nr. of irreducible k-points on the uniform grid: 28
@ -447,8 +440,8 @@
Nr irreducible k-points within the Fermi shell = 28 out of 28
Progression iq (fine) = 100/ 216
Progression iq (fine) = 200/ 216
Fermi level (eV) = 0.766449682995321D+01
DOS(states/spin/eV/Unit Cell) = 0.913425062108237D+00
Fermi level (eV) = 0.766449682987715D+01
DOS(states/spin/eV/Unit Cell) = 0.913425062442885D+00
Electron smearing (eV) = 0.100000000000000D+00
Fermi window (eV) = 0.200000000000000D+02
@ -466,8 +459,8 @@
Finish reading .freq file
Fermi level (eV) = 7.6644968300E+00
DOS(states/spin/eV/Unit Cell) = 9.1342506211E-01
Fermi level (eV) = 7.6644968299E+00
DOS(states/spin/eV/Unit Cell) = 9.1342506244E-01
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 2.0000000000E+01
Nr irreducible k-points within the Fermi shell = 28 out of 28
@ -488,7 +481,7 @@
Finish reading .ephmat files
lambda_max = 126.3632786 lambda_k_max = 3.2077041
lambda_max = 126.3632787 lambda_k_max = 3.2077041
Electron-phonon coupling strength = 0.8715788
@ -505,51 +498,51 @@
Size of allocated memory per pool : ~= 0.1503 Gb
iter = 1 relerr = 2.3226492869E+00 abserr = 3.7868513587E-03 Znormi(1) = 1.8425204689E+00 Deltai(1) = 5.1023202661E-03
iter = 2 relerr = 1.0382603316E-01 abserr = 1.7988573573E-04 Znormi(1) = 1.8384556113E+00 Deltai(1) = 5.7837080986E-03
iter = 3 relerr = 1.1297818870E-01 abserr = 2.1742639752E-04 Znormi(1) = 1.8328771910E+00 Deltai(1) = 6.5988531244E-03
iter = 4 relerr = 5.8057795346E-02 abserr = 1.1861891474E-04 Znormi(1) = 1.8301075444E+00 Deltai(1) = 6.9874927954E-03
iter = 5 relerr = 1.2326147244E-01 abserr = 2.8723921772E-04 Znormi(1) = 1.8231761313E+00 Deltai(1) = 7.8813439967E-03
iter = 6 relerr = 3.4567302238E-02 abserr = 8.3423187451E-05 Znormi(1) = 1.8212407163E+00 Deltai(1) = 8.1187946175E-03
iter = 7 relerr = 6.0357211069E-03 abserr = 1.4649424202E-05 Znormi(1) = 1.8210144597E+00 Deltai(1) = 8.1526876799E-03
iter = 1 relerr = 2.3226492868E+00 abserr = 3.7868513576E-03 Znormi(1) = 1.8425204688E+00 Deltai(1) = 5.1023202661E-03
iter = 2 relerr = 1.0382603327E-01 abserr = 1.7988573589E-04 Znormi(1) = 1.8384556112E+00 Deltai(1) = 5.7837080994E-03
iter = 3 relerr = 1.1297818883E-01 abserr = 2.1742639777E-04 Znormi(1) = 1.8328771909E+00 Deltai(1) = 6.5988531261E-03
iter = 4 relerr = 5.8057795415E-02 abserr = 1.1861891489E-04 Znormi(1) = 1.8301075444E+00 Deltai(1) = 6.9874927977E-03
iter = 5 relerr = 1.2326147270E-01 abserr = 2.8723921843E-04 Znormi(1) = 1.8231761313E+00 Deltai(1) = 7.8813440013E-03
iter = 6 relerr = 3.4567302130E-02 abserr = 8.3423187212E-05 Znormi(1) = 1.8212407162E+00 Deltai(1) = 8.1187946214E-03
iter = 7 relerr = 6.0357210983E-03 abserr = 1.4649424186E-05 Znormi(1) = 1.8210144596E+00 Deltai(1) = 8.1526876837E-03
Convergence was reached in nsiter = 7
iaxis_imag : 40.20s CPU 40.24s WALL ( 1 calls)
iaxis_imag : 40.14s CPU 40.17s WALL ( 1 calls)
Pade approximant of anisotropic Eliashberg equations from imaginary-axis to real-axis
Cutoff frequency wscut = 0.5000
pade = 56 error = 1.2540704181E+00 Re[Znorm(1)] = 1.6760048406E+00 Re[Delta(1)] = 7.5379702197E-03
raxis_pade : 0.17s CPU 0.18s WALL ( 1 calls)
pade = 56 error = 1.3492023744E+00 Re[Znorm(1)] = 1.6759787082E+00 Re[Delta(1)] = 7.5379615438E-03
raxis_pade : 0.16s CPU 0.16s WALL ( 1 calls)
itemp = 1 total cpu time : 40.42 secs
itemp = 1 total cpu time : 40.33 secs
Unfolding on the coarse grid
elphon_wrap : 45.89s CPU 46.46s WALL ( 1 calls)
elphon_wrap : 46.97s CPU 47.68s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 0.38s CPU 0.38s WALL ( 28 calls)
init_vloc : 0.04s CPU 0.04s WALL ( 29 calls)
init_us_1 : 0.13s CPU 0.13s WALL ( 29 calls)
set_drhoc : 0.38s CPU 0.39s WALL ( 28 calls)
init_vloc : 0.00s CPU 0.00s WALL ( 1 calls)
init_us_1 : 0.00s CPU 0.00s WALL ( 1 calls)
Electron-Phonon interpolation
ephwann : 0.71s CPU 0.74s WALL ( 1 calls)
ep-interp : 0.54s CPU 0.57s WALL ( 216 calls)
ephwann : 0.70s CPU 0.74s WALL ( 1 calls)
ep-interp : 0.55s CPU 0.57s WALL ( 216 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.00s CPU 0.00s WALL ( 1 calls)
ep: step 1 : 0.00s CPU 0.00s WALL ( 243 calls)
ep: step 2 : 0.04s CPU 0.04s WALL ( 243 calls)
DynW2B : 0.01s CPU 0.01s WALL ( 216 calls)
HamW2B : 0.09s CPU 0.09s WALL ( 12584 calls)
ephW2Bp : 0.08s CPU 0.09s WALL ( 216 calls)
HamW2B : 0.09s CPU 0.09s WALL ( 12152 calls)
ephW2Bp : 0.08s CPU 0.08s WALL ( 216 calls)
ELIASHBERG : 104.63s CPU 104.67s WALL ( 1 calls)
ELIASHBERG : 105.19s CPU 105.24s WALL ( 1 calls)
Total program execution
EPW : 2m36.05s CPU 2m36.72s WALL
EPW : 2m37.66s CPU 2m38.47s WALL
Please consider citing:

View File

@ -27,7 +27,7 @@
Comput. Phys. Commun. 209, 116 (2016)
Program EPW v.5.0.0 starts on 17Oct2018 at 11:10:25
Program EPW v.5.1.0 starts on 2Apr2019 at 14:18: 6
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
@ -65,9 +65,6 @@
number of atomic types = 2
kinetic-energy cut-off = 40.0000 Ry
charge density cut-off = 160.0000 Ry
convergence threshold = 0.0E+00
beta = 0.0000
number of iterations used = 0
Exchange-correlation = PZ ( 1 1 0 0 0 0)
@ -90,9 +87,9 @@
Cartesian axes
site n. atom mass positions (a_0 units)
1 Mg 24.3071 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 B 10.8119 tau( 2) = ( -0.00000 0.57735 0.57103 )
3 B 10.8119 tau( 3) = ( 0.50000 0.28868 0.57103 )
1 Mg 24.3050 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 B 10.8110 tau( 2) = ( -0.00000 0.57735 0.57103 )
3 B 10.8110 tau( 3) = ( 0.50000 0.28868 0.57103 )
25 Sym.Ops. (with q -> -q+G )
@ -129,8 +126,8 @@
k( 27) = ( 0.6666667 1.1547005 0.5837357), wk = 0.0740741
PseudoPot. # 1 for Mg read from file:
./Mg.pz-n-vbc.UPF
MD5 check sum: 51ac066f8f4bf7da60c51ce0af5caf3d
../../pseudo/Mg.pz-n-vbc.UPF
MD5 check sum: adf9ca49345680d0fd32b5bc0752f25b
Pseudo is Norm-conserving + core correction, Zval = 2.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 171 points, 2 beta functions with:
@ -138,15 +135,15 @@
l(2) = 1
PseudoPot. # 2 for B read from file:
./B.pz-vbc.UPF
MD5 check sum: b59596b5d63edeea6a2b3a0beace49c5
../../pseudo/B.pz-vbc.UPF
MD5 check sum: 57e6d61f6735028425feb5bdf19679fb
Pseudo is Norm-conserving, Zval = 3.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 157 points, 1 beta functions with:
l(1) = 0
EPW : 0.05s CPU 0.05s WALL
EPW : 0.07s CPU 0.07s WALL
EPW : 0.10s CPU 0.11s WALL
EPW : 0.11s CPU 0.11s WALL
No wavefunction gauge setting applied
-------------------------------------------------------------------
@ -250,17 +247,17 @@
( 0.25000 0.43301 0.66488) : 1.07401
-------------------------------------------------------------------
WANNIER : 4.69s CPU 4.69s WALL ( 1 calls)
WANNIER : 4.62s CPU 4.65s WALL ( 1 calls)
-------------------------------------------------------------------
Dipole matrix elements calculated
Calculating kmap and kgmap
Progress kmap: ###########################
Calculating kgmap
Progress kgmap: ########################################
kmaps : 0.65s CPU 0.65s WALL ( 1 calls)
Symmetries of bravais lattice: 24
kmaps : 0.70s CPU 0.72s WALL ( 1 calls)
Symmetries of Bravais lattice: 24
Symmetries of crystal: 24
@ -431,8 +428,6 @@
Number of ep-matrix elements per pool : 6300 ~= 49.22 Kb (@ 8 bytes/ DP)
We only need to compute 216 q-points
Nr. of irreducible k-points on the uniform grid: 28
@ -445,8 +440,8 @@
Nr irreducible k-points within the Fermi shell = 28 out of 28
Progression iq (fine) = 100/ 216
Progression iq (fine) = 200/ 216
Fermi level (eV) = 0.766449682995321D+01
DOS(states/spin/eV/Unit Cell) = 0.913425062108237D+00
Fermi level (eV) = 0.766449682987715D+01
DOS(states/spin/eV/Unit Cell) = 0.913425062442885D+00
Electron smearing (eV) = 0.100000000000000D+00
Fermi window (eV) = 0.200000000000000D+02
@ -464,8 +459,8 @@
Finish reading .freq file
Fermi level (eV) = 7.6644968300E+00
DOS(states/spin/eV/Unit Cell) = 9.1342506211E-01
Fermi level (eV) = 7.6644968299E+00
DOS(states/spin/eV/Unit Cell) = 9.1342506244E-01
Electron smearing (eV) = 1.0000000000E-01
Fermi window (eV) = 2.0000000000E+01
Nr irreducible k-points within the Fermi shell = 28 out of 28
@ -486,7 +481,7 @@
Finish reading .ephmat files
lambda_max = 126.3632786 lambda_k_max = 3.2077041
lambda_max = 126.3632787 lambda_k_max = 3.2077041
Electron-phonon coupling strength = 0.8715788
@ -500,20 +495,20 @@
Total number of frequency points nsiw ( 1 ) = 62
iter = 1 error = 2.5322786302E+00 Znormi(1) = 1.8425565148E+00 Deltai(1) = 4.4511260668E-03
iter = 2 error = 7.6350592879E-02 Znormi(1) = 1.8420086250E+00 Deltai(1) = 4.6843298938E-03
iter = 3 error = 4.5214453230E-02 Znormi(1) = 1.8407880676E+00 Deltai(1) = 4.9302785074E-03
iter = 4 error = 3.4114375039E-02 Znormi(1) = 1.8396470531E+00 Deltai(1) = 5.1142664866E-03
iter = 5 error = 5.1084767495E-02 Znormi(1) = 1.8380345292E+00 Deltai(1) = 5.3737355714E-03
iter = 6 error = 3.1593313222E-02 Znormi(1) = 1.8369970920E+00 Deltai(1) = 5.5352742661E-03
iter = 7 error = 3.2735364515E-03 Znormi(1) = 1.8371188436E+00 Deltai(1) = 5.5172615936E-03
iter = 1 error = 2.5322786302E+00 Znormi(1) = 1.8425565148E+00 Deltai(1) = 4.4511260663E-03
iter = 2 error = 7.6350592879E-02 Znormi(1) = 1.8420086250E+00 Deltai(1) = 4.6843298933E-03
iter = 3 error = 4.5214453227E-02 Znormi(1) = 1.8407880676E+00 Deltai(1) = 4.9302785068E-03
iter = 4 error = 3.4114375040E-02 Znormi(1) = 1.8396470531E+00 Deltai(1) = 5.1142664860E-03
iter = 5 error = 5.1084767499E-02 Znormi(1) = 1.8380345292E+00 Deltai(1) = 5.3737355707E-03
iter = 6 error = 3.1593313230E-02 Znormi(1) = 1.8369970920E+00 Deltai(1) = 5.5352742655E-03
iter = 7 error = 3.2735364530E-03 Znormi(1) = 1.8371188436E+00 Deltai(1) = 5.5172615930E-03
Convergence was reached in nsiter = 7
iaxis_imag : 0.00s CPU 0.00s WALL ( 1 calls)
Pade approximant of isotropic Eliashberg equations from imaginary-axis to real-axis
pade = 50 error = 1.3383837700E+00 Re[Znorm(1)] = 1.8387340136E+00 Re[Delta(1)] = 5.5339316344E-03
pade = 50 error = 1.3406540098E+00 Re[Znorm(1)] = 1.8386808671E+00 Re[Delta(1)] = 5.5339372998E-03
raxis_pade : 0.01s CPU 0.01s WALL ( 1 calls)
@ -522,41 +517,41 @@
Total number of frequency points nsw = 2000
iter = 1 error = 1.0679396230E-01 Re[Znorm(1)] = 1.8388939124E+00 Re[Delta(1)] = 5.5362867563E-03
iter = 2 error = 1.6731551840E-02 Re[Znorm(1)] = 1.8388939164E+00 Re[Delta(1)] = 5.5362867467E-03
iter = 3 error = 9.9244125501E-03 Re[Znorm(1)] = 1.8388939179E+00 Re[Delta(1)] = 5.5362867432E-03
iter = 1 error = 1.0626740068E-01 Re[Znorm(1)] = 1.8388939127E+00 Re[Delta(1)] = 5.5362867549E-03
iter = 2 error = 1.6520911174E-02 Re[Znorm(1)] = 1.8388939165E+00 Re[Delta(1)] = 5.5362867458E-03
iter = 3 error = 9.7445084331E-03 Re[Znorm(1)] = 1.8388939179E+00 Re[Delta(1)] = 5.5362867426E-03
Convergence was reached in nsiter = 3
raxis_acon : 1.27s CPU 1.27s WALL ( 1 calls)
raxis_acon : 1.34s CPU 1.34s WALL ( 1 calls)
itemp = 1 total cpu time : 1.3 secs
itemp = 1 total cpu time : 1.4 secs
Unfolding on the coarse grid
elphon_wrap : 46.19s CPU 46.87s WALL ( 1 calls)
elphon_wrap : 46.20s CPU 46.89s WALL ( 1 calls)
INITIALIZATION:
set_drhoc : 0.38s CPU 0.38s WALL ( 28 calls)
init_vloc : 0.04s CPU 0.04s WALL ( 29 calls)
init_us_1 : 0.13s CPU 0.13s WALL ( 29 calls)
init_vloc : 0.00s CPU 0.00s WALL ( 1 calls)
init_us_1 : 0.00s CPU 0.00s WALL ( 1 calls)
Electron-Phonon interpolation
ephwann : 0.70s CPU 0.74s WALL ( 1 calls)
ep-interp : 0.55s CPU 0.57s WALL ( 216 calls)
ephwann : 0.71s CPU 0.73s WALL ( 1 calls)
ep-interp : 0.56s CPU 0.57s WALL ( 216 calls)
Ham: step 1 : 0.00s CPU 0.00s WALL ( 1 calls)
Ham: step 2 : 0.00s CPU 0.00s WALL ( 1 calls)
ep: step 1 : 0.00s CPU 0.00s WALL ( 243 calls)
ep: step 2 : 0.04s CPU 0.04s WALL ( 243 calls)
DynW2B : 0.01s CPU 0.01s WALL ( 216 calls)
HamW2B : 0.09s CPU 0.09s WALL ( 12584 calls)
HamW2B : 0.09s CPU 0.09s WALL ( 12152 calls)
ephW2Bp : 0.08s CPU 0.09s WALL ( 216 calls)
ELIASHBERG : 65.56s CPU 65.58s WALL ( 1 calls)
ELIASHBERG : 66.16s CPU 66.17s WALL ( 1 calls)
Total program execution
EPW : 1m57.24s CPU 1m57.99s WALL
EPW : 1m57.80s CPU 1m58.56s WALL
Please consider citing: