Example for Raman updated (uses second-order response instead of 2n+1)

git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@2059 c92efa57-630b-4861-b058-cf58834340f0
This commit is contained in:
giannozz 2005-07-29 16:26:04 +00:00
parent c648ecbea0
commit 79ac8c44c7
7 changed files with 557 additions and 819 deletions

View File

@ -0,0 +1,97 @@
phonons of AlAs at Gamma
2 2 2 10.5750000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
1 'Al ' 63540.5249464844
2 'As ' 24588.6885119930
1 1 0.0000000 0.0000000 0.0000000
2 2 0.2500000 0.2500000 0.2500000
Dynamical Matrix in cartesian axes
q = ( 0.000000000 0.000000000 0.000000000 )
1 1
0.18713436 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.18713436 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.18713436 0.00000000
1 2
-0.18704434 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 -0.18704434 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 -0.18704434 0.00000000
2 1
-0.18704434 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 -0.18704434 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 -0.18704434 0.00000000
2 2
0.18700179 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.18700179 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000 0.00000000 0.18700179 0.00000000
Dielectric Tensor:
8.812485115441 0.000000000000 0.000000000000
0.000000000000 8.812485115441 0.000000000000
0.000000000000 0.000000000000 8.812485115441
Effective Charges E-U: Z_{alpha}{s,beta}
atom # 1
2.142737747692 0.000000000000 0.000000000000
0.000000000000 2.142737747692 0.000000000000
0.000000000000 0.000000000000 2.142737747692
atom # 2
-2.144170237325 0.000000000000 0.000000000000
0.000000000000 -2.144170237325 0.000000000000
0.000000000000 0.000000000000 -2.144170237325
Raman tensor (A^2)
atom # 1 pol. 1
-0.109336223475E-14 -0.369533577599E-15 -0.361914328576E-15
-0.110098148377E-14 -0.109336223475E-14 -0.516979611376E+01
0.552395554142E-15 -0.516979611376E+01 -0.179052352032E-15
atom # 1 pol. 2
0.109336223475E-14 0.183242938995E-14 -0.516979611376E+01
0.369533577599E-15 0.361914328576E-15 -0.109336223475E-14
-0.516979611376E+01 0.369533577599E-15 -0.369533577599E-15
atom # 1 pol. 3
-0.237339607056E-14 -0.516979611376E+01 -0.179052352032E-15
-0.516979611376E+01 0.128384346032E-14 -0.552395554142E-15
-0.179052352032E-15 -0.552395554142E-15 0.552395554142E-15
atom # 2 pol. 1
0.145527656333E-14 0.739067155197E-15 0.145527656333E-14
0.128765308483E-14 0.127241458678E-14 0.519984294354E+01
0.127241458678E-14 0.519984294354E+01 0.127241458678E-14
atom # 2 pol. 2
0.190481225566E-15 -0.190481225566E-15 0.519984294354E+01
-0.190481225566E-15 0.190481225566E-15 -0.190481225566E-15
0.519984294354E+01 -0.190481225566E-15 0.190481225566E-15
atom # 2 pol. 3
-0.190481225566E-15 0.519984294354E+01 -0.190481225566E-15
0.519984294354E+01 -0.190481225566E-15 0.190481225566E-15
-0.190481225566E-15 -0.540966680608E-15 -0.921929131741E-15
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.000000000 0.000000000 )
**************************************************************************
omega( 1) = 0.076337 [THz] = 2.546361 [cm-1]
( 0.129892 0.000000 -0.293688 0.000000 0.629862 0.000000 )
( 0.129931 0.000000 -0.293775 0.000000 0.630050 0.000000 )
omega( 2) = 0.076337 [THz] = 2.546361 [cm-1]
( -0.310522 0.000000 0.548722 0.000000 0.319891 0.000000 )
( -0.310615 0.000000 0.548886 0.000000 0.319987 0.000000 )
omega( 3) = 0.076337 [THz] = 2.546361 [cm-1]
( 0.621735 0.000000 0.335413 0.000000 0.028178 0.000000 )
( 0.621921 0.000000 0.335513 0.000000 0.028186 0.000000 )
omega( 4) = 10.685499 [THz] = 356.432249 [cm-1]
( 0.218495 0.000000 -0.270563 0.000000 -0.096796 0.000000 )
( -0.564453 0.000000 0.698963 0.000000 0.250059 0.000000 )
omega( 5) = 10.685499 [THz] = 356.432249 [cm-1]
( 0.060814 0.000000 -0.075307 0.000000 0.347771 0.000000 )
( -0.157106 0.000000 0.194544 0.000000 -0.898419 0.000000 )
omega( 6) = 10.685499 [THz] = 356.432249 [cm-1]
( -0.280848 0.000000 -0.226800 0.000000 0.000000 0.000000 )
( 0.725532 0.000000 0.585909 0.000000 0.000000 0.000000 )
**************************************************************************

View File

@ -1,474 +0,0 @@
Program PWSCF v.2.1cvs starts ...
Today is 28Jul2005 at 17:35:10
Ultrasoft (Vanderbilt) Pseudopotentials
Current dimensions of program pwscf are:
ntypx = 10 npk = 40000 lmax = 3
nchix = 6 ndmx = 2000 nbrx = 14 nqfx = 8
bravais-lattice index = 2
lattice parameter (a_0) = 10.5750 a.u.
unit-cell volume = 295.6522 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 2
kinetic-energy cutoff = 10.0000 Ry
charge density cutoff = 40.0000 Ry
convergence threshold = 1.0E-08
beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation = SLA PZ NOGX NOGC (1100)
celldm(1)= 10.575000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( -0.500000 0.000000 0.500000 )
a(2) = ( 0.000000 0.500000 0.500000 )
a(3) = ( -0.500000 0.500000 0.000000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( -1.000000 -1.000000 1.000000 )
b(2) = ( 1.000000 1.000000 1.000000 )
b(3) = ( -1.000000 1.000000 -1.000000 )
PSEUDO 1 is Al zval = 3.0 lmax= 1 lloc= 0
(in numerical form: 171 grid points, xmin = 0.00, dx = 0.0000)
PSEUDO 2 is As zval = 5.0 lmax= 1 lloc= 0
(in numerical form: 525 grid points, xmin = 0.00, dx = 0.0000)
atomic species valence mass pseudopotential
Al 3.00 26.98000 Al( 1.00)
As 5.00 74.92000 As( 1.00)
24 Sym.Ops. (no inversion)
Cartesian axes
site n. atom positions (a_0 units)
1 Al tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 As tau( 2) = ( 0.2500000 0.2500000 0.2500000 )
number of k points= 70
cart. coord. in units 2pi/a_0
k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0625000
k( 2) = ( -0.1240000 0.1250000 0.1250000), wk = 0.0000000
k( 3) = ( -0.1250000 0.1260000 0.1250000), wk = 0.0000000
k( 4) = ( -0.1250000 0.1250000 0.1260000), wk = 0.0000000
k( 5) = ( -0.1260000 0.1250000 0.1250000), wk = 0.0000000
k( 6) = ( -0.1250000 0.1240000 0.1250000), wk = 0.0000000
k( 7) = ( -0.1250000 0.1250000 0.1240000), wk = 0.0000000
k( 8) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.1875000
k( 9) = ( -0.3740000 0.3750000 -0.1250000), wk = 0.0000000
k( 10) = ( -0.3750000 0.3760000 -0.1250000), wk = 0.0000000
k( 11) = ( -0.3750000 0.3750000 -0.1240000), wk = 0.0000000
k( 12) = ( -0.3760000 0.3750000 -0.1250000), wk = 0.0000000
k( 13) = ( -0.3750000 0.3740000 -0.1250000), wk = 0.0000000
k( 14) = ( -0.3750000 0.3750000 -0.1260000), wk = 0.0000000
k( 15) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.1875000
k( 16) = ( 0.3760000 -0.3750000 0.6250000), wk = 0.0000000
k( 17) = ( 0.3750000 -0.3740000 0.6250000), wk = 0.0000000
k( 18) = ( 0.3750000 -0.3750000 0.6260000), wk = 0.0000000
k( 19) = ( 0.3740000 -0.3750000 0.6250000), wk = 0.0000000
k( 20) = ( 0.3750000 -0.3760000 0.6250000), wk = 0.0000000
k( 21) = ( 0.3750000 -0.3750000 0.6240000), wk = 0.0000000
k( 22) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.1875000
k( 23) = ( 0.1260000 -0.1250000 0.3750000), wk = 0.0000000
k( 24) = ( 0.1250000 -0.1240000 0.3750000), wk = 0.0000000
k( 25) = ( 0.1250000 -0.1250000 0.3760000), wk = 0.0000000
k( 26) = ( 0.1240000 -0.1250000 0.3750000), wk = 0.0000000
k( 27) = ( 0.1250000 -0.1260000 0.3750000), wk = 0.0000000
k( 28) = ( 0.1250000 -0.1250000 0.3740000), wk = 0.0000000
k( 29) = ( -0.1250000 0.6250000 0.1250000), wk = 0.1875000
k( 30) = ( -0.1240000 0.6250000 0.1250000), wk = 0.0000000
k( 31) = ( -0.1250000 0.6260000 0.1250000), wk = 0.0000000
k( 32) = ( -0.1250000 0.6250000 0.1260000), wk = 0.0000000
k( 33) = ( -0.1260000 0.6250000 0.1250000), wk = 0.0000000
k( 34) = ( -0.1250000 0.6240000 0.1250000), wk = 0.0000000
k( 35) = ( -0.1250000 0.6250000 0.1240000), wk = 0.0000000
k( 36) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.3750000
k( 37) = ( 0.6260000 -0.1250000 0.8750000), wk = 0.0000000
k( 38) = ( 0.6250000 -0.1240000 0.8750000), wk = 0.0000000
k( 39) = ( 0.6250000 -0.1250000 0.8760000), wk = 0.0000000
k( 40) = ( 0.6240000 -0.1250000 0.8750000), wk = 0.0000000
k( 41) = ( 0.6250000 -0.1260000 0.8750000), wk = 0.0000000
k( 42) = ( 0.6250000 -0.1250000 0.8740000), wk = 0.0000000
k( 43) = ( 0.3750000 0.1250000 0.6250000), wk = 0.3750000
k( 44) = ( 0.3760000 0.1250000 0.6250000), wk = 0.0000000
k( 45) = ( 0.3750000 0.1260000 0.6250000), wk = 0.0000000
k( 46) = ( 0.3750000 0.1250000 0.6260000), wk = 0.0000000
k( 47) = ( 0.3740000 0.1250000 0.6250000), wk = 0.0000000
k( 48) = ( 0.3750000 0.1240000 0.6250000), wk = 0.0000000
k( 49) = ( 0.3750000 0.1250000 0.6240000), wk = 0.0000000
k( 50) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.1875000
k( 51) = ( -0.1240000 -0.8750000 0.1250000), wk = 0.0000000
k( 52) = ( -0.1250000 -0.8740000 0.1250000), wk = 0.0000000
k( 53) = ( -0.1250000 -0.8750000 0.1260000), wk = 0.0000000
k( 54) = ( -0.1260000 -0.8750000 0.1250000), wk = 0.0000000
k( 55) = ( -0.1250000 -0.8760000 0.1250000), wk = 0.0000000
k( 56) = ( -0.1250000 -0.8750000 0.1240000), wk = 0.0000000
k( 57) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0625000
k( 58) = ( -0.3740000 0.3750000 0.3750000), wk = 0.0000000
k( 59) = ( -0.3750000 0.3760000 0.3750000), wk = 0.0000000
k( 60) = ( -0.3750000 0.3750000 0.3760000), wk = 0.0000000
k( 61) = ( -0.3760000 0.3750000 0.3750000), wk = 0.0000000
k( 62) = ( -0.3750000 0.3740000 0.3750000), wk = 0.0000000
k( 63) = ( -0.3750000 0.3750000 0.3740000), wk = 0.0000000
k( 64) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.1875000
k( 65) = ( 0.3760000 -0.3750000 1.1250000), wk = 0.0000000
k( 66) = ( 0.3750000 -0.3740000 1.1250000), wk = 0.0000000
k( 67) = ( 0.3750000 -0.3750000 1.1260000), wk = 0.0000000
k( 68) = ( 0.3740000 -0.3750000 1.1250000), wk = 0.0000000
k( 69) = ( 0.3750000 -0.3760000 1.1250000), wk = 0.0000000
k( 70) = ( 0.3750000 -0.3750000 1.1240000), wk = 0.0000000
G cutoff = 113.3081 ( 1243 G-vectors) FFT grid: ( 16, 16, 16)
nbndx = 16 nbnd = 4 natomwfc = 13 npwx = 165
nelec = 8.00 nkb = 8 ngl = 39
The potential is recalculated from file alas.rho
Starting wfc are atomic
total cpu time spent up to now is 0.47 secs
Band Structure Calculation
Davidson diagonalization (with overlap)
ethr = 1.25E-10, avg # of iterations = 10.0
total cpu time spent up to now is 1.80 secs
End of band structure calculation
k =-0.1250 0.1250 0.1250 band energies (ev):
-6.7203 3.6323 4.7967 4.7967
k =-0.1240 0.1250 0.1250 band energies (ev):
-6.7211 3.6375 4.7962 4.7987
k =-0.1250 0.1260 0.1250 band energies (ev):
-6.7194 3.6270 4.7947 4.7971
k =-0.1250 0.1250 0.1260 band energies (ev):
-6.7194 3.6270 4.7947 4.7971
k =-0.1260 0.1250 0.1250 band energies (ev):
-6.7194 3.6270 4.7947 4.7971
k =-0.1250 0.1240 0.1250 band energies (ev):
-6.7211 3.6375 4.7962 4.7987
k =-0.1250 0.1250 0.1240 band energies (ev):
-6.7211 3.6375 4.7962 4.7987
k =-0.3750 0.3750-0.1250 band energies (ev):
-5.8921 1.0582 3.2885 4.4801
k =-0.3740 0.3750-0.1250 band energies (ev):
-5.8941 1.0624 3.2922 4.4814
k =-0.3750 0.3760-0.1250 band energies (ev):
-5.8900 1.0539 3.2847 4.4788
k =-0.3750 0.3750-0.1240 band energies (ev):
-5.8927 1.0623 3.2837 4.4806
k =-0.3760 0.3750-0.1250 band energies (ev):
-5.8900 1.0539 3.2847 4.4788
k =-0.3750 0.3740-0.1250 band energies (ev):
-5.8941 1.0624 3.2922 4.4814
k =-0.3750 0.3750-0.1260 band energies (ev):
-5.8915 1.0540 3.2932 4.4796
k = 0.3750-0.3750 0.6250 band energies (ev):
-5.1945 -0.4860 3.2823 3.8705
k = 0.3760-0.3750 0.6250 band energies (ev):
-5.1943 -0.4876 3.2843 3.8718
k = 0.3750-0.3740 0.6250 band energies (ev):
-5.1947 -0.4843 3.2803 3.8693
k = 0.3750-0.3750 0.6260 band energies (ev):
-5.1930 -0.4863 3.2760 3.8691
k = 0.3740-0.3750 0.6250 band energies (ev):
-5.1947 -0.4843 3.2803 3.8693
k = 0.3750-0.3760 0.6250 band energies (ev):
-5.1943 -0.4876 3.2843 3.8718
k = 0.3750-0.3750 0.6240 band energies (ev):
-5.1959 -0.4857 3.2886 3.8720
k = 0.1250-0.1250 0.3750 band energies (ev):
-6.2796 2.1983 4.0713 4.1315
k = 0.1260-0.1250 0.3750 band energies (ev):
-6.2788 2.1941 4.0715 4.1323
k = 0.1250-0.1240 0.3750 band energies (ev):
-6.2803 2.2025 4.0708 4.1310
k = 0.1250-0.1250 0.3760 band energies (ev):
-6.2772 2.1925 4.0680 4.1268
k = 0.1240-0.1250 0.3750 band energies (ev):
-6.2803 2.2025 4.0708 4.1310
k = 0.1250-0.1260 0.3750 band energies (ev):
-6.2788 2.1941 4.0715 4.1323
k = 0.1250-0.1250 0.3740 band energies (ev):
-6.2820 2.2040 4.0746 4.1361
k =-0.1250 0.6250 0.1250 band energies (ev):
-5.4840 0.8267 2.9808 3.3356
k =-0.1240 0.6250 0.1250 band energies (ev):
-5.4845 0.8286 2.9821 3.3349
k =-0.1250 0.6260 0.1250 band energies (ev):
-5.4807 0.8216 2.9768 3.3331
k =-0.1250 0.6250 0.1260 band energies (ev):
-5.4835 0.8249 2.9795 3.3362
k =-0.1260 0.6250 0.1250 band energies (ev):
-5.4835 0.8249 2.9795 3.3362
k =-0.1250 0.6240 0.1250 band energies (ev):
-5.4873 0.8318 2.9848 3.3380
k =-0.1250 0.6250 0.1240 band energies (ev):
-5.4845 0.8286 2.9821 3.3349
k = 0.6250-0.1250 0.8750 band energies (ev):
-4.7239 -0.1497 1.6753 2.7187
k = 0.6260-0.1250 0.8750 band energies (ev):
-4.7240 -0.1500 1.6765 2.7199
k = 0.6250-0.1240 0.8750 band energies (ev):
-4.7226 -0.1501 1.6732 2.7168
k = 0.6250-0.1250 0.8760 band energies (ev):
-4.7235 -0.1493 1.6765 2.7146
k = 0.6240-0.1250 0.8750 band energies (ev):
-4.7238 -0.1494 1.6740 2.7175
k = 0.6250-0.1260 0.8750 band energies (ev):
-4.7252 -0.1493 1.6773 2.7205
k = 0.6250-0.1250 0.8740 band energies (ev):
-4.7243 -0.1501 1.6741 2.7227
k = 0.3750 0.1250 0.6250 band energies (ev):
-5.2651 0.1959 2.3927 3.5960
k = 0.3760 0.1250 0.6250 band energies (ev):
-5.2638 0.1935 2.3897 3.5971
k = 0.3750 0.1260 0.6250 band energies (ev):
-5.2649 0.1929 2.3964 3.5966
k = 0.3750 0.1250 0.6260 band energies (ev):
-5.2625 0.1935 2.3894 3.5914
k = 0.3740 0.1250 0.6250 band energies (ev):
-5.2664 0.1982 2.3956 3.5948
k = 0.3750 0.1240 0.6250 band energies (ev):
-5.2653 0.1988 2.3889 3.5953
k = 0.3750 0.1250 0.6240 band energies (ev):
-5.2677 0.1982 2.3960 3.6005
k =-0.1250-0.8750 0.1250 band energies (ev):
-4.7817 -0.2455 2.2803 2.9207
k =-0.1240-0.8750 0.1250 band energies (ev):
-4.7818 -0.2458 2.2836 2.9199
k =-0.1250-0.8740 0.1250 band energies (ev):
-4.7837 -0.2428 2.2818 2.9215
k =-0.1250-0.8750 0.1260 band energies (ev):
-4.7816 -0.2452 2.2771 2.9214
k =-0.1260-0.8750 0.1250 band energies (ev):
-4.7816 -0.2452 2.2771 2.9214
k =-0.1250-0.8760 0.1250 band energies (ev):
-4.7798 -0.2481 2.2789 2.9198
k =-0.1250-0.8750 0.1240 band energies (ev):
-4.7818 -0.2458 2.2836 2.9199
k =-0.3750 0.3750 0.3750 band energies (ev):
-5.5855 0.0197 4.2392 4.2392
k =-0.3740 0.3750 0.3750 band energies (ev):
-5.5870 0.0231 4.2388 4.2406
k =-0.3750 0.3760 0.3750 band energies (ev):
-5.5840 0.0163 4.2379 4.2396
k =-0.3750 0.3750 0.3760 band energies (ev):
-5.5840 0.0163 4.2379 4.2396
k =-0.3760 0.3750 0.3750 band energies (ev):
-5.5840 0.0163 4.2379 4.2396
k =-0.3750 0.3740 0.3750 band energies (ev):
-5.5870 0.0231 4.2388 4.2406
k =-0.3750 0.3750 0.3740 band energies (ev):
-5.5870 0.0231 4.2388 4.2406
k = 0.3750-0.3750 1.1250 band energies (ev):
-4.9465 -0.1900 1.7578 3.6104
k = 0.3760-0.3750 1.1250 band energies (ev):
-4.9476 -0.1895 1.7595 3.6123
k = 0.3750-0.3740 1.1250 band energies (ev):
-4.9453 -0.1905 1.7560 3.6086
k = 0.3750-0.3750 1.1260 band energies (ev):
-4.9470 -0.1922 1.7626 3.6110
k = 0.3740-0.3750 1.1250 band energies (ev):
-4.9453 -0.1905 1.7560 3.6086
k = 0.3750-0.3760 1.1250 band energies (ev):
-4.9476 -0.1895 1.7595 3.6123
k = 0.3750-0.3750 1.1240 band energies (ev):
-4.9459 -0.1879 1.7530 3.6099
Forces acting on atoms (Ry/au):
atom 1 type 1 force = 0.00000000 0.00000000 0.00000000
atom 2 type 2 force = 0.00000000 0.00000000 0.00000000
Total force = 0.000000 Total SCF correction = 0.000000
Writing file alas.save for program phonon
PWSCF : 1.90s CPU time
init_run : 0.46s CPU
electrons : 1.33s CPU
forces : 0.02s CPU
electrons : 1.33s CPU
c_bands : 1.33s CPU
sum_band : 0.06s CPU
v_of_rho : 0.00s CPU
c_bands : 1.33s CPU
init_us_2 : 0.03s CPU ( 280 calls, 0.000 s avg)
cegterg : 1.31s CPU ( 70 calls, 0.019 s avg)
sum_band : 0.06s CPU
wfcrot : 0.32s CPU ( 70 calls, 0.005 s avg)
cegterg : 1.31s CPU ( 70 calls, 0.019 s avg)
h_psi : 1.16s CPU ( 840 calls, 0.001 s avg)
g_psi : 0.02s CPU ( 700 calls, 0.000 s avg)
overlap : 0.04s CPU ( 700 calls, 0.000 s avg)
cdiaghg : 0.25s CPU ( 770 calls, 0.000 s avg)
update : 0.11s CPU ( 700 calls, 0.000 s avg)
last : 0.02s CPU ( 231 calls, 0.000 s avg)
h_psi : 1.16s CPU ( 840 calls, 0.001 s avg)
init : 0.00s CPU ( 840 calls, 0.000 s avg)
firstfft : 0.53s CPU ( 3703 calls, 0.000 s avg)
secondfft : 0.48s CPU ( 3703 calls, 0.000 s avg)
add_vuspsi : 0.04s CPU ( 840 calls, 0.000 s avg)
General routines
ccalbec : 0.04s CPU ( 910 calls, 0.000 s avg)
cft3 : 0.00s CPU ( 5 calls, 0.000 s avg)
cft3s : 0.94s CPU ( 7686 calls, 0.000 s avg)
davcio : 0.02s CPU ( 350 calls, 0.000 s avg)

View File

@ -0,0 +1,456 @@
Program PHONON v.2.1cvs starts ...
Today is 29Jul2005 at 18:20:40
Ultrasoft (Vanderbilt) Pseudopotentials
Reading file alas.save ... only dimensions
read complete
Reading file alas.save ... all except wavefuctions
read complete
nbndx = 4 nbnd = 4 natomwfc = 13 npwx = 165
nelec = 8.00 nkb = 8 ngl = 39
WRITING PATTERNS TO FILE alas.drho.pat
phonons of AlAs at Gamma
crystal is
bravais-lattice index = 2
lattice parameter (a_0) = 10.5750 a.u.
unit-cell volume = 295.6522 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 2
kinetic-energy cut-off = 10.0000 Ry
charge density cut-off = 40.0000 Ry
convergence threshold = 1.0E-12
beta = 0.7000
number of iterations used = 4
celldm(1)= 10.57500 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Al 69.7200 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 As 26.9800 tau( 2) = ( 0.25000 0.25000 0.25000 )
Computing dynamical matrix for
q = ( 0.00000 0.00000 0.00000 )
25 Sym.Ops. (with q -> -q+G )
G cutoff = 113.3081 ( 1243 G-vectors) FFT grid: ( 16, 16, 16)
number of k points= 10
cart. coord. in units 2pi/a_0
k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0625000
k( 2) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.1875000
k( 3) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.1875000
k( 4) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.1875000
k( 5) = ( -0.1250000 0.6250000 0.1250000), wk = 0.1875000
k( 6) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.3750000
k( 7) = ( 0.3750000 0.1250000 0.6250000), wk = 0.3750000
k( 8) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.1875000
k( 9) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0625000
k( 10) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.1875000
pseudo 1 is Al zval = 3.0 lmax= 1 lloc= 0
(in numerical form: 171 grid points, xmin = 0.00, dx = 0.0000)
pseudo 2 is As zval = 5.0 lmax= 1 lloc= 0
(in numerical form: 525 grid points, xmin = 0.00, dx = 0.0000)
Atomic displacements:
There are 2 irreducible representations
Representation 1 3 modes - To be done
Representation 2 3 modes - To be done
PHONON : 0.11s CPU time
Alpha used in Ewald sum = 0.4000
Electric Fields Calculation
iter # 1 total cpu time : 1.4 secs av.it.: 6.0
thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.227E-05
iter # 2 total cpu time : 2.0 secs av.it.: 9.6
thresh= 0.151E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.113E-06
iter # 3 total cpu time : 2.5 secs av.it.: 9.3
thresh= 0.336E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.715E-09
iter # 4 total cpu time : 2.8 secs av.it.: 9.4
thresh= 0.267E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.312E-11
iter # 5 total cpu time : 3.4 secs av.it.: 8.9
thresh= 0.177E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.645E-13
End of electric fields calculation
Dielectric constant in cartesian axis
( 8.812677610 0.000000000 0.000000000 )
( 0.000000000 8.812677610 0.000000000 )
( 0.000000000 0.000000000 8.812677610 )
Effective charges E-U in cartesian axis
atom 1
( 2.14274 0.00000 0.00000 )
( 0.00000 2.14274 0.00000 )
( 0.00000 0.00000 2.14274 )
atom 2
( -2.14417 0.00000 0.00000 )
( 0.00000 -2.14417 0.00000 )
( 0.00000 0.00000 -2.14417 )
Calling punch_plot_e
Writing on file alas.drho
Computing Pc [DH,Drho] |psi>
Derivative coefficient: 0.001000
k( 1) = ( -0.1250000 0.1250000 0.1250000)
Non-scf u_k: 1 ,thr. = 1.00E-12, avg iteration # = 24.0
Non-scf Du_k: 1 ,thr. = 1.00E-12, avg iteration # = 25.9
k( 2) = ( -0.3750000 0.3750000 -0.1250000)
Non-scf u_k: 2 ,thr. = 1.00E-12, avg iteration # = 11.8
Non-scf Du_k: 2 ,thr. = 1.00E-12, avg iteration # = 20.2
k( 3) = ( 0.3750000 -0.3750000 0.6250000)
Non-scf u_k: 3 ,thr. = 1.00E-12, avg iteration # = 14.5
Non-scf Du_k: 3 ,thr. = 1.00E-12, avg iteration # = 21.4
k( 4) = ( 0.1250000 -0.1250000 0.3750000)
Non-scf u_k: 4 ,thr. = 1.00E-12, avg iteration # = 16.5
Non-scf Du_k: 4 ,thr. = 1.00E-12, avg iteration # = 22.4
k( 5) = ( -0.1250000 0.6250000 0.1250000)
Non-scf u_k: 5 ,thr. = 1.00E-12, avg iteration # = 15.2
Non-scf Du_k: 5 ,thr. = 1.00E-12, avg iteration # = 21.7
k( 6) = ( 0.6250000 -0.1250000 0.8750000)
Non-scf u_k: 6 ,thr. = 1.00E-12, avg iteration # = 12.7
Non-scf Du_k: 6 ,thr. = 1.00E-12, avg iteration # = 19.0
k( 7) = ( 0.3750000 0.1250000 0.6250000)
Non-scf u_k: 7 ,thr. = 1.00E-12, avg iteration # = 13.3
Non-scf Du_k: 7 ,thr. = 1.00E-12, avg iteration # = 19.8
k( 8) = ( -0.1250000 -0.8750000 0.1250000)
Non-scf u_k: 8 ,thr. = 1.00E-12, avg iteration # = 12.1
Non-scf Du_k: 8 ,thr. = 1.00E-12, avg iteration # = 18.8
k( 9) = ( -0.3750000 0.3750000 0.3750000)
Non-scf u_k: 9 ,thr. = 1.00E-12, avg iteration # = 19.9
Non-scf Du_k: 9 ,thr. = 1.00E-12, avg iteration # = 23.8
k( 10) = ( 0.3750000 -0.3750000 1.1250000)
Non-scf u_k: 10 ,thr. = 1.00E-12, avg iteration # = 12.3
Non-scf Du_k: 10 ,thr. = 1.00E-12, avg iteration # = 18.8
Dielectric constant from finite-differences
( 8.812485115 0.000000000 0.000000000 )
( 0.000000000 8.812485115 0.000000000 )
( 0.000000000 0.000000000 8.812485115 )
Electro-optic tensor is defined as
the derivative of the dielectric tensor
with respect to one electric field
units are Rydberg a.u.
to obtain the static chi^2 multiply by 1/2
to convert to pm/Volt multiply per 2.7502
Electro-optic tensor in cartesian axis:
( 0.000000000 0.000000000 0.000000000 )
( 0.000000000 0.000000000 40.478778873 )
( 0.000000000 40.478778873 0.000000000 )
( 0.000000000 0.000000000 40.478778873 )
( 0.000000000 0.000000000 0.000000000 )
( 40.478778873 0.000000000 0.000000000 )
( 0.000000000 40.478778873 0.000000000 )
( 40.478778873 0.000000000 0.000000000 )
( 0.000000000 0.000000000 0.000000000 )
Computing Second order response
iter # 1 av.it.: 8.9
thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.207E-04
iter # 2 av.it.: 10.1
thresh= 0.455E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.163E-05
iter # 3 av.it.: 9.8
thresh= 0.128E-03 alpha_mix = 0.700 |ddv_scf|^2 = 0.639E-07
iter # 4 av.it.: 9.8
thresh= 0.253E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.203E-08
iter # 5 av.it.: 9.8
thresh= 0.451E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.383E-10
iter # 6 av.it.: 9.9
thresh= 0.619E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.855E-12
Raman tensor (au^-1) in cartesian axis
atom 1
( 0.000000000 0.000000000 0.000000000 )
( 0.000000000 0.000000000 -0.784693842 )
( 0.000000000 -0.784693842 0.000000000 )
( 0.000000000 0.000000000 -0.784693842 )
( 0.000000000 0.000000000 0.000000000 )
( -0.784693842 0.000000000 0.000000000 )
( 0.000000000 -0.784693842 0.000000000 )
( -0.784693842 0.000000000 0.000000000 )
( 0.000000000 0.000000000 0.000000000 )
atom 2
( 0.000000000 0.000000000 0.000000000 )
( 0.000000000 0.000000000 0.789254479 )
( 0.000000000 0.789254479 0.000000000 )
( 0.000000000 0.000000000 0.789254479 )
( 0.000000000 0.000000000 0.000000000 )
( 0.789254479 0.000000000 0.000000000 )
( 0.000000000 0.789254479 0.000000000 )
( 0.789254479 0.000000000 0.000000000 )
( 0.000000000 0.000000000 0.000000000 )
Raman tensor (A^2)
atom # 1 pol. 1
-0.109336223475E-14 -0.369533577599E-15 -0.361914328576E-15
-0.110098148377E-14 -0.109336223475E-14 -0.516979611376E+01
0.552395554142E-15 -0.516979611376E+01 -0.179052352032E-15
atom # 1 pol. 2
0.109336223475E-14 0.183242938995E-14 -0.516979611376E+01
0.369533577599E-15 0.361914328576E-15 -0.109336223475E-14
-0.516979611376E+01 0.369533577599E-15 -0.369533577599E-15
atom # 1 pol. 3
-0.237339607056E-14 -0.516979611376E+01 -0.179052352032E-15
-0.516979611376E+01 0.128384346032E-14 -0.552395554142E-15
-0.179052352032E-15 -0.552395554142E-15 0.552395554142E-15
atom # 2 pol. 1
0.145527656333E-14 0.739067155197E-15 0.145527656333E-14
0.128765308483E-14 0.127241458678E-14 0.519984294354E+01
0.127241458678E-14 0.519984294354E+01 0.127241458678E-14
atom # 2 pol. 2
0.190481225566E-15 -0.190481225566E-15 0.519984294354E+01
-0.190481225566E-15 0.190481225566E-15 -0.190481225566E-15
0.519984294354E+01 -0.190481225566E-15 0.190481225566E-15
atom # 2 pol. 3
-0.190481225566E-15 0.519984294354E+01 -0.190481225566E-15
0.519984294354E+01 -0.190481225566E-15 0.190481225566E-15
-0.190481225566E-15 -0.540966680608E-15 -0.921929131741E-15
Representation # 1 modes # 1 2 3
Self-consistent Calculation
iter # 1 total cpu time : 27.1 secs av.it.: 4.8
thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.542E-07
iter # 2 total cpu time : 27.7 secs av.it.: 9.3
thresh= 0.233E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.464E-09
iter # 3 total cpu time : 28.3 secs av.it.: 9.2
thresh= 0.215E-05 alpha_mix = 0.700 |ddv_scf|^2 = 0.387E-10
iter # 4 total cpu time : 28.9 secs av.it.: 8.9
thresh= 0.622E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.225E-11
iter # 5 total cpu time : 29.5 secs av.it.: 9.3
thresh= 0.150E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.845E-15
End of self-consistent calculation
Convergence has been achieved
Representation # 2 modes # 4 5 6
Self-consistent Calculation
iter # 1 total cpu time : 30.0 secs av.it.: 5.7
thresh= 0.100E-01 alpha_mix = 0.700 |ddv_scf|^2 = 0.877E-06
iter # 2 total cpu time : 30.6 secs av.it.: 9.5
thresh= 0.937E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.429E-07
iter # 3 total cpu time : 31.3 secs av.it.: 9.3
thresh= 0.207E-04 alpha_mix = 0.700 |ddv_scf|^2 = 0.509E-10
iter # 4 total cpu time : 31.9 secs av.it.: 9.5
thresh= 0.714E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.116E-11
iter # 5 total cpu time : 32.5 secs av.it.: 9.3
thresh= 0.108E-06 alpha_mix = 0.700 |ddv_scf|^2 = 0.124E-13
End of self-consistent calculation
Convergence has been achieved
Number of q in the star = 1
List of q in the star:
1 0.000000000 0.000000000 0.000000000
Dielectric constant in cartesian axis
( 8.81249 0.00000 0.00000 )
( 0.00000 8.81249 0.00000 )
( 0.00000 0.00000 8.81249 )
Effective charges E-U in cartesian axis
atom 1
( 2.14274 0.00000 0.00000 )
( 0.00000 2.14274 0.00000 )
( 0.00000 0.00000 2.14274 )
atom 2
( -2.14417 0.00000 0.00000 )
( 0.00000 -2.14417 0.00000 )
( 0.00000 0.00000 -2.14417 )
Diagonalizing the dynamical matrix
q = ( 0.000000000 0.000000000 0.000000000 )
**************************************************************************
omega( 1) = 0.076337 [THz] = 2.546361 [cm-1]
omega( 2) = 0.076337 [THz] = 2.546361 [cm-1]
omega( 3) = 0.076337 [THz] = 2.546361 [cm-1]
omega( 4) = 10.685499 [THz] = 356.432249 [cm-1]
omega( 5) = 10.685499 [THz] = 356.432249 [cm-1]
omega( 6) = 10.685499 [THz] = 356.432249 [cm-1]
**************************************************************************
Calling punch_plot_ph
Writing on file alas.drho
PHONON : 32.66s CPU time
INITIALIZATION:
phq_setup : 0.00s CPU
phq_init : 0.09s CPU
phq_init : 0.09s CPU
init_vloc : 0.00s CPU ( 2 calls, 0.000 s avg)
init_us_1 : 0.04s CPU
DIELECTRIC CONSTANT AND EFFECTIVE CHARGES:
solve_e : 3.26s CPU
dielec : 0.00s CPU
zstar_eu : 0.12s CPU
RAMAN COEFFICIENTS, THIRD-ORDER CHI:
dhdrhopsi : 13.87s CPU
el_opt : 0.01s CPU
dvpsi_e2 : 0.41s CPU
solve_e2 : 8.22s CPU
DYNAMICAL MATRIX:
dynmat0 : 0.01s CPU
phqscf : 5.93s CPU
dynmatrix : 0.01s CPU
phqscf : 5.93s CPU
solve_linter : 5.91s CPU ( 2 calls, 2.955 s avg)
drhodv : 0.02s CPU ( 2 calls, 0.010 s avg)
dynmat0 : 0.01s CPU
dynmat_us : 0.01s CPU
d2ionq : 0.00s CPU
dynmat_us : 0.01s CPU
phqscf : 5.93s CPU
solve_linter : 5.91s CPU ( 2 calls, 2.955 s avg)
solve_linter : 5.91s CPU ( 2 calls, 2.955 s avg)
dvqpsi_us : 0.83s CPU ( 360 calls, 0.002 s avg)
ortho : 0.00s CPU ( 300 calls, 0.000 s avg)
cgsolve : 24.21s CPU ( 1200 calls, 0.020 s avg)
incdrhoscf : 1.45s CPU ( 810 calls, 0.002 s avg)
vpsifft : 0.43s CPU ( 240 calls, 0.002 s avg)
dv_of_drho : 0.15s CPU ( 90 calls, 0.002 s avg)
mix_pot : 0.17s CPU ( 21 calls, 0.008 s avg)
symdvscf : 0.46s CPU ( 12 calls, 0.038 s avg)
dvqpsi_us : 0.83s CPU ( 360 calls, 0.002 s avg)
dvqpsi_us_on : 0.09s CPU ( 360 calls, 0.000 s avg)
cgsolve : 24.21s CPU ( 1200 calls, 0.020 s avg)
ch_psi : 23.27s CPU ( 17026 calls, 0.001 s avg)
ch_psi : 23.27s CPU ( 17026 calls, 0.001 s avg)
h_psiq : 21.30s CPU ( 17026 calls, 0.001 s avg)
last : 1.74s CPU ( 17026 calls, 0.000 s avg)
h_psiq : 21.30s CPU ( 17026 calls, 0.001 s avg)
firstfft : 9.95s CPU ( 65804 calls, 0.000 s avg)
secondfft : 9.48s CPU ( 65804 calls, 0.000 s avg)
add_vuspsi : 0.75s CPU ( 20654 calls, 0.000 s avg)
incdrhoscf : 1.45s CPU ( 810 calls, 0.002 s avg)
General routines
ccalbec : 1.20s CPU ( 43198 calls, 0.000 s avg)
cft3 : 0.13s CPU ( 272 calls, 0.000 s avg)
cft3s : 21.05s CPU ( 149580 calls, 0.000 s avg)
davcio : 0.38s CPU ( 4039 calls, 0.000 s avg)
write_rec : 0.01s CPU ( 10 calls, 0.001 s avg)

View File

@ -1,21 +0,0 @@
Raman tensor
1
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 5.45758383092E+00
0.00000000000E+00 5.45758383092E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 5.45758383092E+00
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00
5.45758383092E+00 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 5.45758383092E+00 0.00000000000E+00
5.45758383092E+00 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00
2
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 -5.32185578444E+00
0.00000000000E+00 -5.32185578444E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 -5.32185578444E+00
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00
-5.32185578444E+00 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 -5.32185578444E+00 0.00000000000E+00
-5.32185578444E+00 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00

View File

@ -1,236 +0,0 @@
Program RAMAN v.2.1cvs starts ...
Today is 28Jul2005 at 17:35:12
**********************************************
* Calculation of the Raman tensor by using *
* the 2n+1 theorem *
**********************************************
Reading file alas.save ... only dimensions
read complete
Reading file alas.save ... all except wavefuctions
read complete
nbndx = 4 nbnd = 4 natomwfc = 13 npwx = 165
nelec = 8.00 nkb = 8 ngl = 39
WRITING PATTERNS TO FILE alas.drho.pat
phonons of AlAs at Gamma
crystal is
bravais-lattice index = 2
lattice parameter (a_0) = 10.5750 a.u.
unit-cell volume = 295.6522 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 2
kinetic-energy cut-off = 10.0000 Ry
charge density cut-off = 40.0000 Ry
convergence threshold = 1.0E-12
beta = 0.7000
number of iterations used = 4
celldm(1)= 10.57500 celldm(2)= 0.00000 celldm(3)= 0.00000
celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( -0.5000 0.0000 0.5000 )
a(2) = ( 0.0000 0.5000 0.5000 )
a(3) = ( -0.5000 0.5000 0.0000 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( -1.0000 -1.0000 1.0000 )
b(2) = ( 1.0000 1.0000 1.0000 )
b(3) = ( -1.0000 1.0000 -1.0000 )
Atoms inside the unit cell:
Cartesian axes
site n. atom mass positions (a_0 units)
1 Al 69.7200 tau( 1) = ( 0.00000 0.00000 0.00000 )
2 As 26.9800 tau( 2) = ( 0.25000 0.25000 0.25000 )
Computing dynamical matrix for
q = ( 0.00000 0.00000 0.00000 )
25 Sym.Ops. (with q -> -q+G )
G cutoff = 113.3081 ( 1243 G-vectors) FFT grid: ( 16, 16, 16)
number of k points= 70
cart. coord. in units 2pi/a_0
k( 1) = ( -0.1250000 0.1250000 0.1250000), wk = 0.0625000
k( 2) = ( -0.1240000 0.1250000 0.1250000), wk = 0.0000000
k( 3) = ( -0.1250000 0.1260000 0.1250000), wk = 0.0000000
k( 4) = ( -0.1250000 0.1250000 0.1260000), wk = 0.0000000
k( 5) = ( -0.1260000 0.1250000 0.1250000), wk = 0.0000000
k( 6) = ( -0.1250000 0.1240000 0.1250000), wk = 0.0000000
k( 7) = ( -0.1250000 0.1250000 0.1240000), wk = 0.0000000
k( 8) = ( -0.3750000 0.3750000 -0.1250000), wk = 0.1875000
k( 9) = ( -0.3740000 0.3750000 -0.1250000), wk = 0.0000000
k( 10) = ( -0.3750000 0.3760000 -0.1250000), wk = 0.0000000
k( 11) = ( -0.3750000 0.3750000 -0.1240000), wk = 0.0000000
k( 12) = ( -0.3760000 0.3750000 -0.1250000), wk = 0.0000000
k( 13) = ( -0.3750000 0.3740000 -0.1250000), wk = 0.0000000
k( 14) = ( -0.3750000 0.3750000 -0.1260000), wk = 0.0000000
k( 15) = ( 0.3750000 -0.3750000 0.6250000), wk = 0.1875000
k( 16) = ( 0.3760000 -0.3750000 0.6250000), wk = 0.0000000
k( 17) = ( 0.3750000 -0.3740000 0.6250000), wk = 0.0000000
k( 18) = ( 0.3750000 -0.3750000 0.6260000), wk = 0.0000000
k( 19) = ( 0.3740000 -0.3750000 0.6250000), wk = 0.0000000
k( 20) = ( 0.3750000 -0.3760000 0.6250000), wk = 0.0000000
k( 21) = ( 0.3750000 -0.3750000 0.6240000), wk = 0.0000000
k( 22) = ( 0.1250000 -0.1250000 0.3750000), wk = 0.1875000
k( 23) = ( 0.1260000 -0.1250000 0.3750000), wk = 0.0000000
k( 24) = ( 0.1250000 -0.1240000 0.3750000), wk = 0.0000000
k( 25) = ( 0.1250000 -0.1250000 0.3760000), wk = 0.0000000
k( 26) = ( 0.1240000 -0.1250000 0.3750000), wk = 0.0000000
k( 27) = ( 0.1250000 -0.1260000 0.3750000), wk = 0.0000000
k( 28) = ( 0.1250000 -0.1250000 0.3740000), wk = 0.0000000
k( 29) = ( -0.1250000 0.6250000 0.1250000), wk = 0.1875000
k( 30) = ( -0.1240000 0.6250000 0.1250000), wk = 0.0000000
k( 31) = ( -0.1250000 0.6260000 0.1250000), wk = 0.0000000
k( 32) = ( -0.1250000 0.6250000 0.1260000), wk = 0.0000000
k( 33) = ( -0.1260000 0.6250000 0.1250000), wk = 0.0000000
k( 34) = ( -0.1250000 0.6240000 0.1250000), wk = 0.0000000
k( 35) = ( -0.1250000 0.6250000 0.1240000), wk = 0.0000000
k( 36) = ( 0.6250000 -0.1250000 0.8750000), wk = 0.3750000
k( 37) = ( 0.6260000 -0.1250000 0.8750000), wk = 0.0000000
k( 38) = ( 0.6250000 -0.1240000 0.8750000), wk = 0.0000000
k( 39) = ( 0.6250000 -0.1250000 0.8760000), wk = 0.0000000
k( 40) = ( 0.6240000 -0.1250000 0.8750000), wk = 0.0000000
k( 41) = ( 0.6250000 -0.1260000 0.8750000), wk = 0.0000000
k( 42) = ( 0.6250000 -0.1250000 0.8740000), wk = 0.0000000
k( 43) = ( 0.3750000 0.1250000 0.6250000), wk = 0.3750000
k( 44) = ( 0.3760000 0.1250000 0.6250000), wk = 0.0000000
k( 45) = ( 0.3750000 0.1260000 0.6250000), wk = 0.0000000
k( 46) = ( 0.3750000 0.1250000 0.6260000), wk = 0.0000000
k( 47) = ( 0.3740000 0.1250000 0.6250000), wk = 0.0000000
k( 48) = ( 0.3750000 0.1240000 0.6250000), wk = 0.0000000
k( 49) = ( 0.3750000 0.1250000 0.6240000), wk = 0.0000000
k( 50) = ( -0.1250000 -0.8750000 0.1250000), wk = 0.1875000
k( 51) = ( -0.1240000 -0.8750000 0.1250000), wk = 0.0000000
k( 52) = ( -0.1250000 -0.8740000 0.1250000), wk = 0.0000000
k( 53) = ( -0.1250000 -0.8750000 0.1260000), wk = 0.0000000
k( 54) = ( -0.1260000 -0.8750000 0.1250000), wk = 0.0000000
k( 55) = ( -0.1250000 -0.8760000 0.1250000), wk = 0.0000000
k( 56) = ( -0.1250000 -0.8750000 0.1240000), wk = 0.0000000
k( 57) = ( -0.3750000 0.3750000 0.3750000), wk = 0.0625000
k( 58) = ( -0.3740000 0.3750000 0.3750000), wk = 0.0000000
k( 59) = ( -0.3750000 0.3760000 0.3750000), wk = 0.0000000
k( 60) = ( -0.3750000 0.3750000 0.3760000), wk = 0.0000000
k( 61) = ( -0.3760000 0.3750000 0.3750000), wk = 0.0000000
k( 62) = ( -0.3750000 0.3740000 0.3750000), wk = 0.0000000
k( 63) = ( -0.3750000 0.3750000 0.3740000), wk = 0.0000000
k( 64) = ( 0.3750000 -0.3750000 1.1250000), wk = 0.1875000
k( 65) = ( 0.3760000 -0.3750000 1.1250000), wk = 0.0000000
k( 66) = ( 0.3750000 -0.3740000 1.1250000), wk = 0.0000000
k( 67) = ( 0.3750000 -0.3750000 1.1260000), wk = 0.0000000
k( 68) = ( 0.3740000 -0.3750000 1.1250000), wk = 0.0000000
k( 69) = ( 0.3750000 -0.3760000 1.1250000), wk = 0.0000000
k( 70) = ( 0.3750000 -0.3750000 1.1240000), wk = 0.0000000
pseudo 1 is Al zval = 3.0 lmax= 1 lloc= 0
(in numerical form: 171 grid points, xmin = 0.00, dx = 0.0000)
pseudo 2 is As zval = 5.0 lmax= 1 lloc= 0
(in numerical form: 525 grid points, xmin = 0.00, dx = 0.0000)
Atomic displacements:
There are 2 irreducible representations
Representation 1 3 modes - To be done
Representation 2 3 modes - To be done
The vectors for the finite differences are:
in cartesian axes:
0.0010000 0.0000000 0.0000000 500000.000
0.0000000 0.0010000 0.0000000 500000.000
0.0000000 0.0000000 0.0010000 500000.000
-0.0010000 0.0000000 0.0000000 500000.000
0.0000000 -0.0010000 0.0000000 500000.000
0.0000000 0.0000000 -0.0010000 500000.000
in crystal axes:
-0.0005000 0.0000000 -0.0005000 500000.000
0.0000000 0.0005000 0.0005000 500000.000
0.0005000 0.0005000 0.0000000 500000.000
0.0005000 0.0000000 0.0005000 500000.000
0.0000000 -0.0005000 -0.0005000 500000.000
-0.0005000 -0.0005000 0.0000000 500000.000
RAMAN : 0.13s CPU time
Computing electric fields
Non scf calculation
for all points, including k+b
Finished non-scf calculation
Calculation of the non-linear susceptibility
Computing atomic displacement perturbation
Non scf calculation
and calculation of the Raman tensor for each mode
for all points, including k+b
Representation # 1 modes # 1 2 3
Representation # 2 modes # 4 5 6
The part without the appearance of the position operator
will be written to file alas.ram.no_r
The part with just the atomic position perturbed wavefunctions
on the enlarged mesh
will be written to file alas.ram.atom
The part with just the electric field perturbed wavefunctions
on the enlarged mesh
will be written to file alas.ram.elf
The part with both perturbed wavefunctions
on the enlarged mesh
will be written to file alas.ram.both
This will be used for the whole Raman tensor !!!
THE RAMAN TENSOR WILL BE WRITTEN ON FILE: alas.ram
Finished this calculation
RAMAN : 4m45.87s CPU time
INITIALIZATION:
phq_setup : 0.01s CPU
phq_init : 0.11s CPU
ram_init : 0.00s CPU
NSCF ROUTINES:
nscf_e : 14.20s CPU
nscf_u : 14.78s CPU ( 2 calls, 7.390 s avg)
NONL. SUSCEPT.:
pdvp_dpdp : 0.01s CPU
dpsidvdpsi : 0.13s CPU
sus_xc : 0.11s CPU
sus_findif : 41.20s CPU
RAMAN TENSOR:
dpE_dvu_dpE : 0.37s CPU ( 60 calls, 0.006 s avg)
dpE_dpu_dHE : 0.00s CPU ( 2 calls, 0.000 s avg)
dpE_dpE_dHu : 0.01s CPU ( 2 calls, 0.005 s avg)
dpE_dhE_dpu : 0.37s CPU ( 2 calls, 0.185 s avg)
dpE_dHu_dpE : 0.38s CPU ( 2 calls, 0.190 s avg)
ram_xc : 0.15s CPU
findif_el : 73.20s CPU ( 2 calls, 36.600 s avg)
findif_at : 61.37s CPU ( 2 calls, 30.685 s avg)
findif_both : 79.83s CPU ( 2 calls, 39.915 s avg)

View File

@ -1,10 +0,0 @@
Nonlinear susceptibilities in pm/V:
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 6.65947468521E+01
0.00000000000E+00 6.65947468521E+01 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 6.65947468521E+01
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00
6.65947468521E+01 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 6.65947468521E+01 0.00000000000E+00
6.65947468521E+01 0.00000000000E+00 0.00000000000E+00
0.00000000000E+00 0.00000000000E+00 0.00000000000E+00

View File

@ -10,14 +10,14 @@ if test "`echo -e`" = "-e" ; then ECHO=echo ; else ECHO="echo -e" ; fi
$ECHO
$ECHO "$EXAMPLE_DIR : starting"
$ECHO
$ECHO "This example shows how to use pw.x, ph.x, and ram.x to calculate"
$ECHO "This example shows how to use pw.x and ph.x to calculate"
$ECHO "the Raman tensor for AlAs."
# set the needed environment variables
. ../environment_variables
# required executables and pseudopotentials
BIN_LIST="pw.x ph.x ram.x"
BIN_LIST="pw.x ph.x"
PSEUDO_LIST="Al.vbc.UPF As.gon.UPF"
$ECHO
@ -66,12 +66,10 @@ $ECHO " done"
# how to run executables
PW_COMMAND="$PARA_PREFIX $BIN_DIR/pw.x $PARA_POSTFIX"
PH_COMMAND="$PARA_PREFIX $BIN_DIR/ph.x $PARA_POSTFIX"
RAM_COMMAND="$PARA_PREFIX $BIN_DIR/ram.x $PARA_POSTFIX"
$ECHO
$ECHO " running pw.x as: $PW_COMMAND"
$ECHO " running ph.x as: $PH_COMMAND"
$ECHO " running ram.x as: $RAM_COMMAND"
$ECHO
# clean TMP_DIR
@ -124,7 +122,8 @@ phonons of AlAs at Gamma
prefix='alas',
epsil=.true.,
trans=.true.,
zue=.false.,
lraman=.true.,
elop=.true.,
amass(1)=69.72,
amass(2)=26.98,
outdir='$TMP_DIR/',
@ -138,78 +137,5 @@ $ECHO " running the response calculation...\c"
$PH_COMMAND < alas.ph.in > alas.ph.out
$ECHO " done"
#
# non self-consistent calculation
#
cat > alas.nscf.in <<EOF
&control
calculation='raman',
restart_mode='from_scratch',
tstress = .true.
tprnfor = .true.
prefix='alas',
pseudo_dir = '$PSEUDO_DIR/',
outdir='$TMP_DIR/'
/
&system
nosym = .false.,
ibrav= 2, celldm(1) =10.575, nat= 2, ntyp= 2,
ecutwfc = 10.0
/
&electrons
conv_thr = 1.0d-8
mixing_beta = 0.7
/
&raman
b_length = 0.001,
lcart = .true.,
/
ATOMIC_SPECIES
Al 26.98 Al.vbc.UPF
As 74.92 As.gon.UPF
ATOMIC_POSITIONS
Al 0.00 0.00 0.00
As 0.25 0.25 0.25
K_POINTS {automatic}
4 4 4 1 1 1
EOF
$ECHO " running the non self-consistent calculation for the ground state...\c"
$PW_COMMAND < alas.nscf.in > alas.nscf.out
$ECHO " done"
cat > alas.ram.in << EOF
phonons of AlAs at Gamma
&inputph
tr2_ph=1.0d-12,
prefix='alas',
epsil=.true.,
trans=.false.,
zue=.false.,
amass(1)=69.72,
amass(2)=26.98,
outdir='$TMP_DIR/',
fildyn='alas.dynG',
fildrho='alas.drho',
/
0.0 0.0 0.0
&inputram
b_length = 0.001,
lcart = .true.,
lsus = .true.,
lram = .true.,
lboth = .true.,
latomic = .true.,
lelfield = .true.,
filsus = 'alas.sus',
filram = 'alas.ram'
/
EOF
$ECHO " running the non self-consistent calculation for the perturbed"
$ECHO " wavefunctions and the Raman tensor ...\c"
$RAM_COMMAND < alas.ram.in > alas.ram.out
$ECHO " done"
$ECHO
$ECHO "$EXAMPLE_DIR: done"