Documentation on crystal structure upated

git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@8031 c92efa57-630b-4861-b058-cf58834340f0
This commit is contained in:
giannozz 2011-08-01 08:12:35 +00:00
parent a0203f0e7c
commit 3b3b025d71
1 changed files with 85 additions and 107 deletions

View File

@ -354,116 +354,94 @@ input_description -distribution {Quantum Espresso} -package PWscf -program pw.x
var ibrav -type INTEGER {
status { REQUIRED }
info {
Bravais-lattice index:
ibrav structure celldm(2)-celldm(6)
0 "free", see above not used
1 cubic P (sc) not used
2 cubic F (fcc) not used
3 cubic I (bcc) not used
4 Hexagonal and Trigonal P celldm(3)=c/a
5 Trigonal R, 3fold axis c celldm(4)=cos(alpha)
-5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha)
6 Tetragonal P (st) celldm(3)=c/a
7 Tetragonal I (bct) celldm(3)=c/a
8 Orthorhombic P celldm(2)=b/a,celldm(3)=c/a
9 Orthorhombic base-centered(bco) celldm(2)=b/a,celldm(3)=c/a
10 Orthorhombic face-centered celldm(2)=b/a,celldm(3)=c/a
11 Orthorhombic body-centered celldm(2)=b/a,celldm(3)=c/a
12 Monoclinic P, unique axis c celldm(2)=b/a,celldm(3)=c/a,
celldm(4)=cos(ab)
-12 Monoclinic P, unique axis b celldm(2)=b/a,celldm(3)=c/a,
celldm(5)=cos(ac)
13 Monoclinic base-centered celldm(2)=b/a,celldm(3)=c/a,
celldm(4)=cos(ab)
14 Triclinic celldm(2)= b/a,
celldm(3)= c/a,
celldm(4)= cos(bc),
celldm(5)= cos(ac),
celldm(6)= cos(ab)
For P lattices: the special (or unique) axis (c) is the z-axis, one basal-plane
vector (a) is along x, the other basal-plane vector (b) is at angle
gamma for monoclinic, at 120 degrees for trigonal and hexagonal
lattices, at 90 degrees for cubic, tetragonal, orthorhombic lattices
Alternate choice (more commonly used in crystallography) for monoclinic:
axis b is unique (orthogonal to a); axis c forms angle beta with axis a.
sc simple cubic
====================
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1)
fcc face centered cubic
====================
v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0).
bcc body entered cubic
====================
v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1).
simple hexagonal and trigonal(p)
====================
v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a).
trigonal(r)
===================
ibrav=5: The z-axis is chosen as the 3-fold axis, the crystallographic
vectors form a three-fold star around the z-axis, the primitive cell
is a simple rhombohedron. The crystallographic vectors are:
v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz).
where c=cos(alpha) is the cosine of the angle alpha between any pair
of crystallographic vectors, tc, ty, tz are defined as
Bravais-lattice index. In all cases except ibrav=0,
either [celldm(1)-celldm(6)] or [a,b,c,cosab,cosac,cosbc]
must be specified: see their description. For ibrav=0
you may specify the lattice parameter celldm(1) or a.
ibrav structure celldm(2)-celldm(6)
or: b,c,cosab,cosac,cosbc
0 free
crystal axis provided in input: see card CELL_PARAMETERS
1 cubic P (sc)
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1)
2 cubic F (fcc)
v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)
3 cubic I (bcc)
v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1)
4 Hexagonal and Trigonal P celldm(3)=c/a
v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a)
5 Trigonal R, 3fold axis c celldm(4)=cos(alpha)
The crystallographic vectors form a three-fold star around
the z-axis, the primitive cell is a simple rhombohedron:
v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz)
where c=cos(alpha) is the cosine of the angle alpha between
any pair of crystallographic vectors, tx, ty, tz are:
tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
ibrav=-5, alternate description: the crystallographic vectors are
v1 = a/sqrt(3) (u,v,v), v2 = a/sqrt(3) (v,u,v), v3 = a/sqrt(3) (v,v,u)
and form a three-fold star around <111>. u and v are defined as
-5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha)
The crystallographic vectors form a three-fold star around
<111>. Defining a' = a/sqrt(3) :
v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u)
where u and v are defined as
u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty
and tx, ty, tz as for case ibrav=5
simple tetragonal (p)
====================
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a)
body centered tetragonal (i)
================================
v1 = (a/2)(1,-1,c/a), v2 = (a/2)(1,1,c/a), v3 = (a/2)(-1,-1,c/a).
simple orthorhombic (p)
=============================
v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c)
bco base centered orthorhombic
=============================
v1 = (a/2,b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c)
face centered orthorhombic
=============================
v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2)
body centered orthorhombic
=============================
v1 = (a/2,b/2,c/2), v2 = (-a/2,b/2,c/2), v3 = (-a/2,-b/2,c/2)
monoclinic (p)
=============================
v1 = (a,0,0), v2= (b*cos(gamma), b*sin(gamma), 0), v3 = (0,0,c)
(unique axis c) where gamma is the angle between axis a and b.
Alternate choice (ibrav=-12) uses b as unique axis:
v1 = (a,0,0), v2 = (0,b,0), v3 = (a*sin(beta),0,c*cos(beta))
where beta is the angle between axis a and c
base centered monoclinic
=============================
v1 = ( a/2, 0, -c/2),
v2 = (b*cos(gamma), b*sin(gamma), 0),
v3 = ( a/2, 0, c/2),
where gamma is the angle between axis a and b
triclinic
=============================
v1 = (a, 0, 0),
v2 = (b*cos(gamma), b*sin(gamma), 0)
v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
6 Tetragonal P (st) celldm(3)=c/a
v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a)
7 Tetragonal I (bct) celldm(3)=c/a
v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a)
8 Orthorhombic P celldm(2)=b/a
celldm(3)=c/a
v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c)
9 Orthorhombic base-centered(bco) celldm(2)=b/a
celldm(3)=c/a
v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c)
-9 as 9, alternate description
v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c)
10 Orthorhombic face-centered celldm(2)=b/a
celldm(3)=c/a
v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2)
11 Orthorhombic body-centered celldm(2)=b/a
celldm(3)=c/a
v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2)
12 Monoclinic P, unique axis c celldm(2)=b/a
celldm(3)=c/a,
celldm(4)=cos(ab)
v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c)
where gamma is the angle between axis a and b.
-12 Monoclinic P, unique axis b celldm(2)=b/a
celldm(3)=c/a,
celldm(5)=cos(ac)
v1 = (a,0,0), v2 = (0,b,0), v3 = (a*sin(beta),0,c*cos(beta))
where beta is the angle between axis a and c
13 Monoclinic base-centered celldm(2)=b/a
celldm(3)=c/a,
celldm(4)=cos(ab)
v1 = ( a/2, 0, -c/2),
v2 = (b*cos(gamma), b*sin(gamma), 0),
v3 = ( a/2, 0, c/2),
where gamma is the angle between axis a and b
14 Triclinic celldm(2)= b/a,
celldm(3)= c/a,
celldm(4)= cos(bc),
celldm(5)= cos(ac),
celldm(6)= cos(ab)
v1 = (a, 0, 0),
v2 = (b*cos(gamma), b*sin(gamma), 0)
v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
c*sqrt( 1 + 2*cos(alpha)cos(beta)cos(gamma)
- cos(alpha)^2-cos(beta)^2-cos(gamma)^2 )/sin(gamma) )
where alpha is the angle between axis b and c