quantum-espresso/test-suite/not_epw_comp/symdyn_munu.f90

194 lines
5.1 KiB
Fortran
Raw Normal View History

!
! Copyright (C) 2001-2012 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine symdyn_munu_new (dyn, u, xq, s, invs, rtau, irt, at, &
bg, nsymq, nat, irotmq, minus_q)
!-----------------------------------------------------------------------
!
! This routine symmetrize the dynamical matrix written in the basis
! of the modes
!
!
USE kinds, only : DP
implicit none
integer :: nat, s (3, 3, 48), irt (48, nat), invs (48), &
nsymq, irotmq
! input: the number of atoms
! input: the symmetry matrices
! input: the rotated of each atom
! input: the small group of q
! input: the inverse of each matrix
! input: the order of the small gro
! input: the symmetry q -> -q+G
real(DP) :: xq (3), rtau (3, 48, nat), at (3, 3), bg (3, 3)
! input: the coordinates of q
! input: the R associated at each r
! input: direct lattice vectors
! input: reciprocal lattice vectors
logical :: minus_q
! input: if true symmetry sends q->
complex(DP) :: dyn (3 * nat, 3 * nat), u (3 * nat, 3 * nat)
! inp/out: matrix to symmetrize
! input: the patterns
integer :: i, j, icart, jcart, na, nb, mu, nu
! counter on modes
! counter on modes
! counter on cartesian coordinates
! counter on cartesian coordinates
! counter on atoms
! counter on atoms
! counter on modes
! counter on modes
complex(DP) :: work, phi (3, 3, nat, nat)
! auxiliary variable
! the dynamical matrix
!
! First we transform in the cartesian coordinates
!
CALL dyn_pattern_to_cart(nat, u, dyn, phi)
!
! Then we transform to the crystal axis
!
do na = 1, nat
do nb = 1, nat
call trntnsc (phi (1, 1, na, nb), at, bg, - 1)
enddo
enddo
!
! And we symmetrize in this basis
!
call symdynph_gq_new (xq, phi, s, invs, rtau, irt, nsymq, nat, &
irotmq, minus_q)
!
! Back to cartesian coordinates
!
do na = 1, nat
do nb = 1, nat
call trntnsc (phi (1, 1, na, nb), at, bg, + 1)
enddo
enddo
!
! rewrite the dynamical matrix on the array dyn with dimension 3nat x 3nat
!
CALL compact_dyn(nat, dyn, phi)
return
end subroutine symdyn_munu_new
!
!-----------------------------------------------------------------------
subroutine symdyn_munu2 (dyn, u, xq, s, invs, rtau, irt, at, &
bg, nsymq, nat, irotmq, minus_q)
!-----------------------------------------------------------------------
!
! This routine symmetrize the dynamical matrix written in the basis
! of the modes
!
!
!#include "f_defs.h"
USE kinds, only : DP
implicit none
integer :: nat, s (3, 3, 48), irt (48, nat), invs (48), &
nsymq, irotmq
! input: the number of atoms
! input: the symmetry matrices
! input: the rotated of each atom
! input: the small group of q
! input: the inverse of each matrix
! input: the order of the small gro
! input: the symmetry q -> -q+G
real(kind=DP) :: xq (3), rtau (3, 48, nat), at (3, 3), bg (3, 3)
! input: the coordinates of q
! input: the R associated at each r
! input: direct lattice vectors
! input: reciprocal lattice vectors
logical :: minus_q
! input: if true symmetry sends q->
complex(kind=DP) :: dyn (3 * nat, 3 * nat), u (3 * nat, 3 * nat)
! inp/out: matrix to symmetrize
! input: the patterns
integer :: i, j, icart, jcart, na, nb, mu, nu
! counter on modes
! counter on modes
! counter on cartesian coordinates
! counter on cartesian coordinates
! counter on atoms
! counter on atoms
! counter on modes
! counter on modes
complex(kind=DP) :: work, wrk (3, 3), phi (3, 3, nat, nat)
! auxiliary variable
! auxiliary variable
! the dynamical matrix
!
! First we transform in the cartesian coordinates
!
do i = 1, 3 * nat
na = (i - 1) / 3 + 1
icart = i - 3 * (na - 1)
do j = 1, 3 * nat
nb = (j - 1) / 3 + 1
jcart = j - 3 * (nb - 1)
work = (0.d0, 0.d0)
do mu = 1, 3 * nat
do nu = 1, 3 * nat
work = work + u (i, mu) * dyn (mu, nu) * conjg (u (j, nu) )
enddo
enddo
phi (icart, jcart, na, nb) = work
enddo
enddo
!
!@ ! Then we transform to the crystal axis
!@ !
!@ do na = 1, nat
!@ do nb = 1, nat
!@ call trntnsc (phi (1, 1, na, nb), at, bg, - 1)
!@ enddo
!@ enddo
!@ !
!@ ! And we symmetrize in this basis
!@ !
!@ call symdynph_gq (xq, phi, s, invs, rtau, irt, irgq, nsymq, nat, &
!@ irotmq, minus_q)
!@ !
!@ ! Back to cartesian coordinates
!@ !
!@ do na = 1, nat
!@ do nb = 1, nat
!@ call trntnsc (phi (1, 1, na, nb), at, bg, + 1)
!@ enddo
!@ enddo
!
! rewrite the dynamical matrix on the array dyn with dimension 3nat x 3
!
do i = 1, 3 * nat
na = (i - 1) / 3 + 1
icart = i - 3 * (na - 1)
do j = 1, 3 * nat
nb = (j - 1) / 3 + 1
jcart = j - 3 * (nb - 1)
dyn (i, j) = phi (icart, jcart, na, nb)
enddo
enddo
return
end subroutine symdyn_munu2