quantum-espresso/PW/qvan2.f90

139 lines
4.1 KiB
Fortran
Raw Normal View History

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
!-----------------------------------------------------------------------
subroutine qvan2 (ngy, ih, jh, np, qmod, qg, ylmk0)
!-----------------------------------------------------------------------
!
! This routine computes the fourier transform of the Q function assum
! that the radial fourier trasform is already computed and stored
! in qrad.
!
! The formula implemented here is
!
! q(g,l,k) = sum_lm (-i)^l ap(lm,l,k) yr_lm(g^) qrad(g,l,l,k)
!
!
! here the dummy variables
!
#include "machine.h"
use pwcom
implicit none
integer :: ngy, ih, jh, np
! input: the number of G vectors to compute
! input: the first index of Q
! input: the second index of Q
! input: the number of the pseudopotential
real(kind=DP) :: ylmk0 (ngy, lqx * lqx), qmod (ngy)
! the spherical harmonics
! input: moduli of the q+g vectors
complex(kind=DP) :: qg (ngy)
! output: the fourier transform of interest
!
! here the local variables
!
complex(kind=DP) :: sig
! (-i)^L
integer :: nb, mb, nmb, ivl, jvl, ig, lp, l, lm, i0, i1, i2, i3
! the atomic index corresponding to ih
! the atomic index corresponding to jh
! combined index (nb,mb)
! the lm corresponding to ih
! the lm corresponding to jh
! counter on g vectors
! the actual LM
! the angular momentum L
! the possible LM's compatible with ih,j
! counters for interpolation table
real(kind=DP) :: sixth, dqi, qm, px, ux, vx, wx, uvx, pwx, work
! 1 divided by six
! 1 divided dq
! qmod/dq
! measures for interpolation table
! auxiliary variables for intepolation
! auxiliary variable
!
! compute the indices which correspond to ih,jh
!
sixth = 1.d0 / 6.d0
dqi = 1 / dq
nb = indv (ih, np)
mb = indv (jh, np)
if (nb.ge.mb) then
nmb = nb * (nb - 1) / 2 + mb
else
nmb = mb * (mb - 1) / 2 + nb
endif
ivl = nhtol (ih, np) * nhtol (ih, np) + nhtom (ih, np)
jvl = nhtol (jh, np) * nhtol (jh, np) + nhtom (jh, np)
if (nb.gt.nbrx) call error (' qvan2 ', ' nb.gt.nbrx ', nb)
if (mb.gt.nbrx) call error (' qvan2 ', ' mb.gt.nbrx ', mb)
if (ivl.gt.nlx) call error (' qvan2 ', ' ivl.gt.nlx ', ivl)
if (jvl.gt.nlx) call error (' qvan2 ', ' jvl.gt.nlx ', jvl)
qg(:) = (0.d0, 0.d0)
!
! and make the sum over the non zero LM
!
do lm = 1, lpx (ivl, jvl)
lp = lpl (ivl, jvl, lm)
!
! extraction of angular momentum l from lp:
!
if (lp.eq.1) then
l = 1
elseif ( (lp.ge.2) .and. (lp.le.4) ) then
l = 2
elseif ( (lp.ge.5) .and. (lp.le.9) ) then
l = 3
elseif ( (lp.ge.10) .and. (lp.le.16) ) then
l = 4
elseif ( (lp.ge.17) .and. (lp.le.25) ) then
l = 5
elseif ( (lp.ge.26) .and. (lp.le.36) ) then
l = 6
elseif ( (lp.ge.37) .and. (lp.le.49) ) then
l = 7
else
call error (' qvan ', ' lp > 49 ', lp)
endif
sig = (0.d0, - 1.d0) ** (l - 1)
sig = sig * ap (lp, ivl, jvl)
do ig = 1, ngy
!
! calculate quantites depending on the module of G only when needed
!
if (ig.eq.1.or.abs (qmod (ig) - qmod (ig - 1) ) .gt.1.0d-6) then
qm = qmod (ig) * dqi
px = qm - int (qm)
ux = 1.d0 - px
vx = 2.d0 - px
wx = 3.d0 - px
i0 = qm + 1
i1 = i0 + 1
i2 = i0 + 2
i3 = i0 + 3
uvx = ux * vx * sixth
pwx = px * wx * 0.5d0
work = qrad (i0, nmb, l, np) * uvx * wx + &
qrad (i1, nmb, l, np) * pwx * vx - &
qrad (i2, nmb, l, np) * pwx * ux + &
qrad (i3, nmb, l, np) * px * uvx
endif
qg (ig) = qg (ig) + sig * ylmk0 (ig, lp) * work
enddo
enddo
return
end subroutine qvan2