quantum-espresso/PH/setup_dgc.f90

136 lines
4.7 KiB
Fortran
Raw Normal View History

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine setup_dgc
!-----------------------------------------------------------------------
! Allocate and setup all variable needed in the gradient correction case
!
! GGA+LSDA is allowed. AdC (September 1999).
! GGA+LSDA+NLCC is allowed. AdC (November 1999).
!
#include "machine.h"
use pwcom
USE kinds, only : DP
use phcom
use funct
implicit none
integer :: k, is
real(kind=DP) :: grho2 (2), rh, zeta, grh2, epsr, epsg, fac, sx, sc, &
v1x, v2x, v1c, v2c, vrrx, vsrx, vssx, vrrc, vsrc, vssc, v1xup, &
v1xdw, v2xup, v2xdw, v1cup, v1cdw, vrrxup, vrrxdw, vrsxup, vrsxdw, &
vssxup, vssxdw, vrrcup, vrrcdw, vrscup, vrscdw, vrzcup, vrzcdw
parameter (epsr = 1.0d-6, epsg = 1.0d-10)
if (igcx.eq.0.and.igcc.eq.0) return
allocate (dvxc_rr( nrxx , nspin , nspin))
allocate (dvxc_sr( nrxx , nspin , nspin))
allocate (dvxc_ss( nrxx , nspin , nspin))
allocate (dvxc_s ( nrxx , nspin , nspin))
allocate (grho ( 3 , nrxx , nspin))
call setv (nrxx * nspin * nspin, 0.d0, dvxc_rr, 1)
call setv (nrxx * nspin * nspin, 0.d0, dvxc_sr, 1)
call setv (nrxx * nspin * nspin, 0.d0, dvxc_ss, 1)
call setv (nrxx * nspin * nspin, 0.d0, dvxc_s, 1)
call setv (3 * nrxx * nspin, 0.d0, grho, 1)
!
! add rho_core
!
fac = 1.d0 / float (nspin)
if (nlcc_any) then
do is = 1, nspin
do k = 1, nrxx
rho (k, is) = rho (k, is) + rho_core (k) * fac
enddo
enddo
endif
do is = 1, nspin
call gradient (nrx1, nrx2, nrx3, nr1, nr2, nr3, nrxx, rho (1, is), &
ngm, g, nl, alat, grho (1, 1, is) )
enddo
do k = 1, nrxx
grho2 (1) = grho (1, k, 1) **2 + grho (2, k, 1) **2 + grho (3, k, &
1) **2
if (nspin.eq.1) then
if (abs (rho (k, 1) ) .gt.epsr.and.grho2 (1) .gt.epsg) then
call gcxc (rho (k, nspin), grho2, sx, sc, v1x, v2x, v1c, &
v2c)
call dgcxc (rho (k, nspin), grho2, vrrx, vsrx, vssx, vrrc, &
vsrc, vssc)
dvxc_rr (k, 1, 1) = e2 * (vrrx + vrrc)
dvxc_sr (k, 1, 1) = e2 * (vsrx + vsrc)
dvxc_ss (k, 1, 1) = e2 * (vssx + vssc)
dvxc_s (k, 1, 1) = e2 * (v2x + v2c)
endif
else
grho2 (2) = grho (1, k, 2) **2 + grho (2, k, 2) **2 + grho (3, &
k, 2) **2
rh = rho (k, 1) + rho (k, 2)
grh2 = (grho (1, k, 1) + grho (1, k, 2) ) **2 + (grho (2, k, 1) &
+ grho (2, k, 2) ) **2 + (grho (3, k, 1) + grho (3, k, 2) ) ** &
2
call gcx_spin (rho (k, 1), rho (k, 2), grho2 (1), grho2 (2), &
sx, v1xup, v1xdw, v2xup, v2xdw)
call dgcxc_spin (rho (k, 1), rho (k, 2), grho (1, k, 1), &
grho (1, k, 2), vrrxup, vrrxdw, vrsxup, vrsxdw, vssxup, vssxdw, &
vrrcup, vrrcdw, vrscup, vrscdw, vssc, vrzcup, vrzcdw)
if (rh.gt.epsr) then
zeta = (rho (k, 1) - rho (k, 2) ) / rh
call gcc_spin (rh, zeta, grh2, sc, v1cup, v1cdw, v2c)
dvxc_rr (k, 1, 1) = e2 * (vrrxup + vrrcup + vrzcup * &
(1.d0 - zeta) / rh)
dvxc_rr (k, 1, 2) = e2 * (vrrcup - vrzcup * (1.d0 + zeta) &
/ rh)
dvxc_rr (k, 2, 1) = e2 * (vrrcdw + vrzcdw * (1.d0 - zeta) &
/ rh)
dvxc_rr (k, 2, 2) = e2 * (vrrxdw + vrrcdw - vrzcdw * &
(1.d0 + zeta) / rh)
dvxc_s (k, 1, 1) = e2 * (v2xup + v2c)
dvxc_s (k, 1, 2) = e2 * v2c
dvxc_s (k, 2, 1) = e2 * v2c
dvxc_s (k, 2, 2) = e2 * (v2xdw + v2c)
else
dvxc_rr (k, 1, 1) = 0.d0
dvxc_rr (k, 1, 2) = 0.d0
dvxc_rr (k, 2, 1) = 0.d0
dvxc_rr (k, 2, 2) = 0.d0
dvxc_s (k, 1, 1) = 0.d0
dvxc_s (k, 1, 2) = 0.d0
dvxc_s (k, 2, 1) = 0.d0
dvxc_s (k, 2, 2) = 0.d0
endif
dvxc_sr (k, 1, 1) = e2 * (vrsxup + vrscup)
dvxc_sr (k, 1, 2) = e2 * vrscup
dvxc_sr (k, 2, 1) = e2 * vrscdw
dvxc_sr (k, 2, 2) = e2 * (vrsxdw + vrscdw)
dvxc_ss (k, 1, 1) = e2 * (vssxup + vssc)
dvxc_ss (k, 1, 2) = e2 * vssc
dvxc_ss (k, 2, 1) = e2 * vssc
dvxc_ss (k, 2, 2) = e2 * (vssxdw + vssc)
endif
enddo
if (nlcc_any) then
do is = 1, nspin
do k = 1, nrxx
rho (k, is) = rho (k, is) - rho_core (k) * fac
enddo
enddo
endif
return
end subroutine setup_dgc