quantum-espresso/PH/symdyn_munu.f90

109 lines
2.9 KiB
Fortran
Raw Normal View History

!
! Copyright (C) 2001 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine symdyn_munu (dyn, u, xq, s, invs, rtau, irt, irgq, at, &
bg, nsymq, nat, irotmq, minus_q)
!-----------------------------------------------------------------------
!
! This routine symmetrize the dynamical matrix written in the basis
! of the modes
!
!
USE kinds, only : DP
implicit none
integer :: nat, s (3, 3, 48), irt (48, nat), irgq (48), invs (48), &
nsymq, irotmq
! input: the number of atoms
! input: the symmetry matrices
! input: the rotated of each atom
! input: the small group of q
! input: the inverse of each matrix
! input: the order of the small gro
! input: the symmetry q -> -q+G
real(DP) :: xq (3), rtau (3, 48, nat), at (3, 3), bg (3, 3)
! input: the coordinates of q
! input: the R associated at each r
! input: direct lattice vectors
! input: reciprocal lattice vectors
logical :: minus_q
! input: if true symmetry sends q->
complex(DP) :: dyn (3 * nat, 3 * nat), u (3 * nat, 3 * nat)
! inp/out: matrix to symmetrize
! input: the patterns
integer :: i, j, icart, jcart, na, nb, mu, nu
! counter on modes
! counter on modes
! counter on cartesian coordinates
! counter on cartesian coordinates
! counter on atoms
! counter on atoms
! counter on modes
! counter on modes
complex(DP) :: work, phi (3, 3, nat, nat)
! auxiliary variable
! the dynamical matrix
!
! First we transform in the cartesian coordinates
!
do i = 1, 3 * nat
na = (i - 1) / 3 + 1
icart = i - 3 * (na - 1)
do j = 1, 3 * nat
nb = (j - 1) / 3 + 1
jcart = j - 3 * (nb - 1)
work = (0.d0, 0.d0)
do mu = 1, 3 * nat
do nu = 1, 3 * nat
General cleanup of intrinsic functions: conversion to real => DBLE (including real part of a complex number) conversion to complex => CMPLX complex conjugate => CONJG imaginary part => AIMAG All functions are uppercase. CMPLX is preprocessed by f_defs.h and performs an explicit cast: #define CMPLX(a,b) cmplx(a,b,kind=DP) This implies that 1) f_defs.h must be included whenever a CMPLX is present, 2) CMPLX should stay in a single line, 3) DP must be defined. All occurrences of real, float, dreal, dfloat, dconjg, dimag, dcmplx removed - please do not reintroduce any of them. Tested only with ifc7 and g95 - beware unintended side effects Maybe not the best solution (explicit casts everywhere would be better) but it can be easily changed with a script if the need arises. The following code might be used to test for possible trouble: program test_intrinsic implicit none integer, parameter :: dp = selected_real_kind(14,200) real (kind=dp) :: a = 0.123456789012345_dp real (kind=dp) :: b = 0.987654321098765_dp complex (kind=dp) :: c = ( 0.123456789012345_dp, 0.987654321098765_dp) print *, ' A = ', a print *, ' DBLE(A)= ', DBLE(a) print *, ' C = ', c print *, 'CONJG(C)= ', CONJG(c) print *, 'DBLE(c),AIMAG(C) = ', DBLE(c), AIMAG(c) print *, 'CMPLX(A,B,kind=dp)= ', CMPLX( a, b, kind=dp) end program test_intrinsic Note that CMPLX and REAL without a cast yield single precision numbers on ifc7 and g95 !!! git-svn-id: http://qeforge.qe-forge.org/svn/q-e/trunk/espresso@2133 c92efa57-630b-4861-b058-cf58834340f0
2005-08-27 01:44:42 +08:00
work = work + u (i, mu) * dyn (mu, nu) * CONJG(u (j, nu) )
enddo
enddo
phi (icart, jcart, na, nb) = work
enddo
enddo
!
! Then we transform to the crystal axis
!
do na = 1, nat
do nb = 1, nat
call trntnsc (phi (1, 1, na, nb), at, bg, - 1)
enddo
enddo
!
! And we symmetrize in this basis
!
call symdynph_gq (xq, phi, s, invs, rtau, irt, irgq, nsymq, nat, &
irotmq, minus_q)
!
! Back to cartesian coordinates
!
do na = 1, nat
do nb = 1, nat
call trntnsc (phi (1, 1, na, nb), at, bg, + 1)
enddo
enddo
!
! rewrite the dynamical matrix on the array dyn with dimension 3nat x 3
!
do i = 1, 3 * nat
na = (i - 1) / 3 + 1
icart = i - 3 * (na - 1)
do j = 1, 3 * nat
nb = (j - 1) / 3 + 1
jcart = j - 3 * (nb - 1)
dyn (i, j) = phi (icart, jcart, na, nb)
enddo
enddo
return
end subroutine symdyn_munu