quantum-espresso/GWW/minpack/lmpar.f90

265 lines
8.1 KiB
Fortran
Raw Normal View History

subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,wa1, &
& wa2)
integer n,ldr
integer ipvt(n)
double precision delta,par
double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa1(n), &
& wa2(n)
! **********
!
! subroutine lmpar
!
! given an m by n matrix a, an n by n nonsingular diagonal
! matrix d, an m-vector b, and a positive number delta,
! the problem is to determine a value for the parameter
! par such that if x solves the system
!
! a*x = b , sqrt(par)*d*x = 0 ,
!
! in the least squares sense, and dxnorm is the euclidean
! norm of d*x, then either par is zero and
!
! (dxnorm-delta) .le. 0.1*delta ,
!
! or par is positive and
!
! abs(dxnorm-delta) .le. 0.1*delta .
!
! this subroutine completes the solution of the problem
! if it is provided with the necessary information from the
! qr factorization, with column pivoting, of a. that is, if
! a*p = q*r, where p is a permutation matrix, q has orthogonal
! columns, and r is an upper triangular matrix with diagonal
! elements of nonincreasing magnitude, then lmpar expects
! the full upper triangle of r, the permutation matrix p,
! and the first n components of (q transpose)*b. on output
! lmpar also provides an upper triangular matrix s such that
!
! t t t
! p *(a *a + par*d*d)*p = s *s .
!
! s is employed within lmpar and may be of separate interest.
!
! only a few iterations are generally needed for convergence
! of the algorithm. if, however, the limit of 10 iterations
! is reached, then the output par will contain the best
! value obtained so far.
!
! the subroutine statement is
!
! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,
! wa1,wa2)
!
! where
!
! n is a positive integer input variable set to the order of r.
!
! r is an n by n array. on input the full upper triangle
! must contain the full upper triangle of the matrix r.
! on output the full upper triangle is unaltered, and the
! strict lower triangle contains the strict upper triangle
! (transposed) of the upper triangular matrix s.
!
! ldr is a positive integer input variable not less than n
! which specifies the leading dimension of the array r.
!
! ipvt is an integer input array of length n which defines the
! permutation matrix p such that a*p = q*r. column j of p
! is column ipvt(j) of the identity matrix.
!
! diag is an input array of length n which must contain the
! diagonal elements of the matrix d.
!
! qtb is an input array of length n which must contain the first
! n elements of the vector (q transpose)*b.
!
! delta is a positive input variable which specifies an upper
! bound on the euclidean norm of d*x.
!
! par is a nonnegative variable. on input par contains an
! initial estimate of the levenberg-marquardt parameter.
! on output par contains the final estimate.
!
! x is an output array of length n which contains the least
! squares solution of the system a*x = b, sqrt(par)*d*x = 0,
! for the output par.
!
! sdiag is an output array of length n which contains the
! diagonal elements of the upper triangular matrix s.
!
! wa1 and wa2 are work arrays of length n.
!
! subprograms called
!
! minpack-supplied ... dpmpar,enorm,qrsolv
!
! fortran-supplied ... dabs,dmax1,dmin1,dsqrt
!
! argonne national laboratory. minpack project. march 1980.
! burton s. garbow, kenneth e. hillstrom, jorge j. more
!
! **********
integer i,iter,j,jm1,jp1,k,l,nsing
double precision dxnorm,dwarf,fp,gnorm,parc,parl,paru,p1,p001, &
& sum,temp,zero
double precision dpmpar,enorm
data p1,p001,zero /1.0d-1,1.0d-3,0.0d0/
!
! dwarf is the smallest positive magnitude.
!
dwarf = dpmpar(2)
!
! compute and store in x the gauss-newton direction. if the
! jacobian is rank-deficient, obtain a least squares solution.
!
nsing = n
do 10 j = 1, n
wa1(j) = qtb(j)
if (r(j,j) .eq. zero .and. nsing .eq. n) nsing = j - 1
if (nsing .lt. n) wa1(j) = zero
10 continue
if (nsing .lt. 1) go to 50
do 40 k = 1, nsing
j = nsing - k + 1
wa1(j) = wa1(j)/r(j,j)
temp = wa1(j)
jm1 = j - 1
if (jm1 .lt. 1) go to 30
do 20 i = 1, jm1
wa1(i) = wa1(i) - r(i,j)*temp
20 continue
30 continue
40 continue
50 continue
do 60 j = 1, n
l = ipvt(j)
x(l) = wa1(j)
60 continue
!
! initialize the iteration counter.
! evaluate the function at the origin, and test
! for acceptance of the gauss-newton direction.
!
iter = 0
do 70 j = 1, n
wa2(j) = diag(j)*x(j)
70 continue
dxnorm = enorm(n,wa2)
fp = dxnorm - delta
if (fp .le. p1*delta) go to 220
!
! if the jacobian is not rank deficient, the newton
! step provides a lower bound, parl, for the zero of
! the function. otherwise set this bound to zero.
!
parl = zero
if (nsing .lt. n) go to 120
do 80 j = 1, n
l = ipvt(j)
wa1(j) = diag(l)*(wa2(l)/dxnorm)
80 continue
do 110 j = 1, n
sum = zero
jm1 = j - 1
if (jm1 .lt. 1) go to 100
do 90 i = 1, jm1
sum = sum + r(i,j)*wa1(i)
90 continue
100 continue
wa1(j) = (wa1(j) - sum)/r(j,j)
110 continue
temp = enorm(n,wa1)
parl = ((fp/delta)/temp)/temp
120 continue
!
! calculate an upper bound, paru, for the zero of the function.
!
do 140 j = 1, n
sum = zero
do 130 i = 1, j
sum = sum + r(i,j)*qtb(i)
130 continue
l = ipvt(j)
wa1(j) = sum/diag(l)
140 continue
gnorm = enorm(n,wa1)
paru = gnorm/delta
if (paru .eq. zero) paru = dwarf/dmin1(delta,p1)
!
! if the input par lies outside of the interval (parl,paru),
! set par to the closer endpoint.
!
par = dmax1(par,parl)
par = dmin1(par,paru)
if (par .eq. zero) par = gnorm/dxnorm
!
! beginning of an iteration.
!
150 continue
iter = iter + 1
!
! evaluate the function at the current value of par.
!
if (par .eq. zero) par = dmax1(dwarf,p001*paru)
temp = dsqrt(par)
do 160 j = 1, n
wa1(j) = temp*diag(j)
160 continue
call qrsolv(n,r,ldr,ipvt,wa1,qtb,x,sdiag,wa2)
do 170 j = 1, n
wa2(j) = diag(j)*x(j)
170 continue
dxnorm = enorm(n,wa2)
temp = fp
fp = dxnorm - delta
!
! if the function is small enough, accept the current value
! of par. also test for the exceptional cases where parl
! is zero or the number of iterations has reached 10.
!
if (dabs(fp) .le. p1*delta &
& .or. parl .eq. zero .and. fp .le. temp &
& .and. temp .lt. zero .or. iter .eq. 10) go to 220
!
! compute the newton correction.
!
do 180 j = 1, n
l = ipvt(j)
wa1(j) = diag(l)*(wa2(l)/dxnorm)
180 continue
do 210 j = 1, n
wa1(j) = wa1(j)/sdiag(j)
temp = wa1(j)
jp1 = j + 1
if (n .lt. jp1) go to 200
do 190 i = jp1, n
wa1(i) = wa1(i) - r(i,j)*temp
190 continue
200 continue
210 continue
temp = enorm(n,wa1)
parc = ((fp/delta)/temp)/temp
!
! depending on the sign of the function, update parl or paru.
!
if (fp .gt. zero) parl = dmax1(parl,par)
if (fp .lt. zero) paru = dmin1(paru,par)
!
! compute an improved estimate for par.
!
par = dmax1(parl,par+parc)
!
! end of an iteration.
!
go to 150
220 continue
!
! termination.
!
if (iter .eq. 0) par = zero
return
!
! last card of subroutine lmpar.
!
end