quantum-espresso/upflib/ylmr2.f90

138 lines
3.8 KiB
Fortran
Raw Normal View History

!
! Copyright (C) 2001-2007 Quantum ESPRESSO group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!-----------------------------------------------------------------------
subroutine ylmr2 (lmax2, ng, g, gg, ylm)
!-----------------------------------------------------------------------
!
! Real spherical harmonics ylm(G) up to l=lmax
! lmax2 = (lmax+1)^2 is the total number of spherical harmonics
! Numerical recursive algorithm based on the one given in Numerical
! Recipes but avoiding the calculation of factorials that generate
! overflow for lmax > 11
!
USE upf_kinds, ONLY : DP
USE upf_const, ONLY : pi, fpi
!
IMPLICIT NONE
!
integer, intent(in) :: lmax2, ng
real(DP), intent(in) :: g (3, ng), gg (ng)
!
! BEWARE: gg = g(1)^2 + g(2)^2 +g(3)^2 is not checked on input
! incorrect results will ensue if the above does not hold
!
real(DP), intent(out) :: ylm (ng,lmax2)
!
! local variables
!
real(DP), parameter :: eps = 1.0d-9
real(DP), allocatable :: Q(:,:,:)
real(DP) :: cost , sent, phi
real(DP) :: c, gmod
integer :: lmax, ig, l, m, lm
!
if (ng < 1 .or. lmax2 < 1) return
do lmax = 0, 25
if ((lmax+1)**2 == lmax2) go to 10
end do
call errore (' ylmr', 'l > 25 or wrong number of Ylm required',lmax2)
10 continue
!
if (lmax == 0) then
ylm(:,1) = sqrt (1.d0 / fpi)
return
end if
!
! theta and phi are polar angles, cost = cos(theta)
!
allocate( Q(ng,0:lmax,0:lmax) )
!
!$omp parallel do default(shared), private(ig,gmod,lm,cost,sent,phi,l,c,m)
do ig=1,ng
gmod = sqrt (gg (ig) )
if (gmod < eps) then
cost = 0.d0
else
cost = g(3,ig)/gmod
endif
!
! beware the arc tan, it is defined modulo pi
!
if (g(1,ig) > eps) then
phi = atan( g(2,ig)/g(1,ig) )
else if (g(1,ig) < -eps) then
phi = atan( g(2,ig)/g(1,ig) ) + pi
else
phi = sign( pi/2.d0,g(2,ig) )
end if
sent = sqrt(max(0d0,1.d0-cost*cost))
!
! Q(:,l,m) are defined as sqrt ((l-m)!/(l+m)!) * P(:,l,m) where
! P(:,l,m) are the Legendre Polynomials (0 <= m <= l)
!
Q (ig,0,0) = 1.d0
Q (ig,1,0) = cost
Q (ig,1,1) =-sent/sqrt(2.d0)
c = sqrt (3.d0 / fpi)
ylm(ig, 1) = sqrt (1.d0 / fpi)* Q(ig,0,0)
ylm(ig, 2) = c* Q(ig,1,0)
ylm(ig, 3) = c*sqrt (2.d0)* Q(ig,1,1) * cos (phi)
ylm(ig, 4) = c*sqrt (2.d0)* Q(ig,1,1) * sin (phi)
lm = 4
do l = 2, lmax
c = sqrt (DBLE(2*l+1) / fpi)
!if ( l == 0 ) then
! Q (0,0) = 1.d0
!else if ( l == 1 ) then
! Q (1,0) = cost
! Q (1,1) =-sent/sqrt(2.d0)
!else
!
! recursion on l for Q(:,l,m)
!
do m = 0, l - 2
Q(ig,l,m) = cost*(2*l-1)/sqrt(DBLE(l*l-m*m))*Q(ig,l-1,m) &
- sqrt(DBLE((l-1)*(l-1)-m*m))/sqrt(DBLE(l*l-m*m))*Q(ig,l-2,m)
end do
Q(ig,l,l-1) = cost * sqrt(DBLE(2*l-1)) * Q(ig,l-1,l-1)
Q(ig,l,l) = - sqrt(DBLE(2*l-1))/sqrt(DBLE(2*l))*sent*Q(ig,l-1,l-1)
!end if
!
! Y_lm, m = 0
!
lm = lm + 1
ylm(ig, lm) = c * Q(ig,l,0)
!
do m = 1, l
!
! Y_lm, m > 0
!
!lm = lm + 1
! ylm(ig, lm) = c * sqrt(2.d0) * Q(ig,l,m) * cos (m*phi)
ylm(ig, lm+2*m-1) = c * sqrt(2.d0) * Q(ig,l,m) * cos (m*phi)
!
! Y_lm, m < 0
!
!lm = lm + 1
!ylm(ig, lm) = c * sqrt(2.d0) * Q(ig,l,m) * sin (m*phi)
ylm(ig, lm+2*m) = c * sqrt(2.d0) * Q(ig,l,m) * sin (m*phi)
end do
lm=lm+2*l
!if (ig==1) print *,lm,l
end do
enddo
!$omp end parallel do
!
deallocate( Q)
!
return
end subroutine ylmr2