qmcpack/tests/solids/bccH_1x1x1_ae/dft-inputs/scf.out

274 lines
11 KiB
Plaintext

Program PWSCF v.4.2 starts on 12Aug2015 at 7:54:24
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please acknowledge
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/wiki/index.php/Citing_Quantum-ESPRESSO
Parallel version (MPI), running on 16 processors
R & G space division: proc/pool = 16
EXPERIMENTAL VERSION WITH EXACT EXCHANGE
Current dimensions of program PWSCF are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
Waiting for input...
XC functional enforced from input :
Exchange-correlation = LDA (1100)
EXX-fraction = 0.00
!!! Any further DFT definition will be discarded
!!! Please, verify this is what you really want !
Subspace diagonalization in iterative solution of the eigenvalue problem:
Too few electrons for parallel algorithm: we need # of bands >= SQRT(nproc)
a serial algorithm will be used
Found symmetry operation: I + ( 0.5000 0.5000 -0.5000)
This is a supercell, fractional translation are disabled
Planes per process (thick) : nr3 = 54 npp = 4 ncplane = 2916
Proc/ planes cols G planes cols G columns G
Pool (dense grid) (smooth grid) (wavefct grid)
1 4 141 5083 4 141 5083 35 633
2 4 141 5083 4 141 5083 35 633
3 4 141 5083 4 141 5083 35 635
4 4 141 5083 4 141 5083 35 633
5 4 141 5083 4 141 5083 35 633
6 4 141 5083 4 141 5083 35 633
7 3 141 5083 3 141 5083 35 633
8 3 141 5083 3 141 5083 35 633
9 3 140 5080 3 140 5080 35 633
10 3 140 5080 3 140 5080 35 633
11 3 140 5080 3 140 5080 35 633
12 3 141 5085 3 141 5085 36 634
13 3 141 5081 3 141 5081 37 633
14 3 141 5081 3 141 5081 37 633
15 3 141 5081 3 141 5081 37 633
16 3 141 5081 3 141 5081 37 633
tot 54 2253 81313 54 2253 81313 569 10131
bravais-lattice index = 0
lattice parameter (a_0) = 1.0000 a.u.
unit-cell volume = 53.9867 (a.u.)^3
number of atoms/cell = 2
number of atomic types = 1
number of electrons = 2.00
number of Kohn-Sham states= 5
kinetic-energy cutoff = 500.0000 Ry
charge density cutoff = 2000.0000 Ry
convergence threshold = 1.0E-08
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation = LDA (1100)
EXX-fraction = 0.00
celldm(1)= 1.000000 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of a_0)
a(1) = ( 3.779452 0.000000 0.000000 )
a(2) = ( 0.000000 3.779452 0.000000 )
a(3) = ( 0.000000 0.000000 3.779452 )
reciprocal axes: (cart. coord. in units 2 pi/a_0)
b(1) = ( 0.264589 0.000000 0.000000 )
b(2) = ( 0.000000 0.264589 0.000000 )
b(3) = ( 0.000000 0.000000 0.264589 )
PseudoPot. # 1 for H read from file H.coulomb-ae.UPF
Pseudo is Norm-conserving, Zval = 1.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1451 points, 0 beta functions with:
atomic species valence mass pseudopotential
H 1.00 1.00794 H ( 1.00)
No symmetry found
s frac. trans.
isym = 1 identity
cryst. s( 1) = ( 1 0 0 ) f =( 0.0000000 )
( 0 1 0 ) ( 0.0000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 )
( 0.0000000 1.0000000 0.0000000 ) ( 0.0000000 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
point group C_1 (1)
there are 1 classes
the character table:
E
A 1.00
the symmetry operations in each class:
E 1
Cartesian axes
site n. atom positions (a_0 units)
1 H tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 H tau( 2) = ( 1.8897261 1.8897261 1.8897261 )
Crystallographic axes
site n. atom positions (cryst. coord.)
1 H tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 H tau( 2) = ( 0.5000000 0.5000000 0.5000000 )
number of k points= 1 gaussian broad. (Ry)= 0.0001 ngauss = -99
cart. coord. in units 2pi/a_0
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
cryst. coord.
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000
G cutoff = 50.6606 ( 81313 G-vectors) FFT grid: ( 54, 54, 54)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 0.05 Mb ( 633, 5)
NL pseudopotentials 0.00 Mb ( 633, 0)
Each V/rho on FFT grid 0.18 Mb ( 11664)
Each G-vector array 0.04 Mb ( 5083)
G-vector shells 0.00 Mb ( 570)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 0.19 Mb ( 633, 20)
Each subspace H/S matrix 0.01 Mb ( 20, 20)
Each <psi_i|beta_j> matrix 0.00 Mb ( 0, 5)
Arrays for rho mixing 1.42 Mb ( 11664, 8)
Initial potential from superposition of free atoms
starting charge 1.99998, renormalised to 2.00000
Starting wfc are 0 atomic + 5 random wfc
total cpu time spent up to now is 0.21 secs
per-process dynamical memory: 2.5 Mb
Self-consistent Calculation
iteration # 1 ecut= 500.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 1.00E-02, avg # of iterations = 7.0
Threshold (ethr) on eigenvalues was too large:
Diagonalizing with lowered threshold
Davidson diagonalization with overlap
ethr = 3.61E-04, avg # of iterations = 1.0
total cpu time spent up to now is 0.26 secs
total energy = -3.32703330 Ry
Harris-Foulkes estimate = -3.32732837 Ry
estimated scf accuracy < 0.00721886 Ry
iteration # 2 ecut= 500.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 3.61E-04, avg # of iterations = 1.0
total cpu time spent up to now is 0.29 secs
total energy = -3.32703560 Ry
Harris-Foulkes estimate = -3.32703467 Ry
estimated scf accuracy < 0.00063665 Ry
iteration # 3 ecut= 500.00 Ry beta=0.70
Davidson diagonalization with overlap
ethr = 3.18E-05, avg # of iterations = 4.0
total cpu time spent up to now is 0.30 secs
End of self-consistent calculation
k = 0.0000 0.0000 0.0000 ( 10131 PWs) bands (ev):
-11.8626 13.1229 28.2289 28.2290 28.2297
occupation numbers
2.0000 0.0000 0.0000 0.0000 0.0000
the Fermi energy is 8.1836 ev
! total energy = -3.32703564 Ry
Harris-Foulkes estimate = -3.32703564 Ry
estimated scf accuracy < 7.3E-09 Ry
The total energy is the sum of the following terms:
one-electron contribution = -0.22344861 Ry
hartree contribution = 0.02196768 Ry
xc contribution = -1.19975531 Ry
ewald contribution = -1.92579940 Ry
- averaged Fock potential = 0.00000000 Ry
+ Fock energy = 0.00000000 Ry
smearing contrib. (-TS) = 0.00000000 Ry
convergence has been achieved in 3 iterations
Writing output data file pwscf.save
Writing output data file pwscf.save
init_run : 0.05s CPU 0.08s WALL ( 1 calls)
electrons : 0.08s CPU 0.09s WALL ( 1 calls)
Called by init_run:
wfcinit : 0.00s CPU 0.02s WALL ( 1 calls)
potinit : 0.01s CPU 0.01s WALL ( 1 calls)
Called by electrons:
c_bands : 0.05s CPU 0.05s WALL ( 4 calls)
sum_band : 0.01s CPU 0.01s WALL ( 4 calls)
v_of_rho : 0.00s CPU 0.01s WALL ( 4 calls)
v_h : 0.00s CPU 0.00s WALL ( 4 calls)
v_xc : 0.00s CPU 0.00s WALL ( 4 calls)
mix_rho : 0.00s CPU 0.01s WALL ( 4 calls)
Called by c_bands:
cegterg : 0.05s CPU 0.05s WALL ( 4 calls)
Called by sum_band:
Called by *egterg:
h_psi : 0.04s CPU 0.04s WALL ( 18 calls)
g_psi : 0.00s CPU 0.00s WALL ( 13 calls)
cdiaghg : 0.01s CPU 0.02s WALL ( 16 calls)
cegterg:over : 0.00s CPU 0.00s WALL ( 13 calls)
cegterg:upda : 0.00s CPU 0.00s WALL ( 13 calls)
cegterg:last : 0.00s CPU 0.00s WALL ( 6 calls)
Called by h_psi:
h_psi:vloc : 0.04s CPU 0.04s WALL ( 18 calls)
General routines
cft3s : 0.05s CPU 0.06s WALL ( 187 calls)
Parallel routines
fft_scatter : 0.04s CPU 0.01s WALL ( 187 calls)
EXX routines
PWSCF : 0.24s CPU time, 0.42s WALL time
This run was terminated on: 7:54:24 12Aug2015
=------------------------------------------------------------------------------=
JOB DONE.
=------------------------------------------------------------------------------=