mirror of https://github.com/QMCPACK/qmcpack.git
2246 lines
115 KiB
Plaintext
2246 lines
115 KiB
Plaintext
DIRAC serial starts by allocating 64000000 words ( 488.28 MB - 0.477 GB) of memory
|
|
out of the allowed maximum of 2147483648 words ( 16384.00 MB - 16.000 GB)
|
|
|
|
Note: maximum allocatable memory for serial run can be set by pam --aw/--ag
|
|
|
|
*******************************************************************************
|
|
* *
|
|
* O U T P U T *
|
|
* from *
|
|
* *
|
|
* @@@@@ @@ @@@@@ @@@@ @@@@@ *
|
|
* @@ @@ @@ @@ @@ @@ @@ *
|
|
* @@ @@ @@ @@@@@ @@@@@@ @@ *
|
|
* @@ @@ @@ @@ @@ @@ @@ @@ *
|
|
* @@@@@ @@ @@ @@ @@ @@ @@@@@ *
|
|
* *
|
|
* *
|
|
%}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:<S///</:|/:|:/::!:.::--:%
|
|
$?S$$%$$$$?%?$(SSS$SSSHMMMMMMMMMMMMMMMMMM6H&6S&SH&&k?6$r~::://///::::::.:::-::$
|
|
(%?)Z??$$$(S%$>$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::(
|
|
$S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$
|
|
SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S
|
|
SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S
|
|
?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::?
|
|
S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S
|
|
(?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/?</>?~:///::|/!:/-:-:.(
|
|
$S?%?<H(MMMMMMMMMMMMMMMMR?`. :.:`::<>:``?/*?##*)$:/> `((%://::/:::::/::/$
|
|
S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS
|
|
c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%</>!:::::c
|
|
S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S
|
|
$SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$
|
|
$%$%&MMMMMMMMMMMMMMMMM:. ?%/S:</::/::$
|
|
($?}&HMMMMMMMMMMMMMMMM>: $%%<?/i:|i::(
|
|
Z$($&MMMMMMMMMMMMMMMMHk(:. . - .S/\?\?/!:/:Z
|
|
(??$<HMMMMMMMMMMMMMMMFk|: -.-. :%/%/(:/:ii|(
|
|
SZ(S?]MMMMMMMMMMMMMMHS?:- - ::.: |/S:</::?||S
|
|
$%)$$(MMMMMMMMMMMMMMR):`:. :.:::`,,/bcokb/_ :S?%?|~:/:/:$
|
|
%$$%$)[[?$?MMMMMMMMMM: :.:-.::::$7?<&7&MMMMMMM#/ _ .. ..:</?:(:/::::%
|
|
$$$?Z?HHH~|/MMMMMMMMM/`.-.:.:/:%%%%?dHMMMMMMMMMMH?,- .,bMMMM6//./i~/~:<:::/:$
|
|
$($S$M//::S?ZHMMMMMH/:.`:::.:/%S/&MMHMMMMMMMMRM&>< ,HMMMMMMMF :::?:///:|:::$
|
|
)[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/)
|
|
$$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$
|
|
$&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SS<S:)!/////$
|
|
Z&]>b[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z
|
|
$$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$
|
|
&$&$&$k&>>|?<:<?((/$[/?)i~/:/. - - S?:%%%?/:::/::&
|
|
=[/Z[[Fp[MMH$>?Z&S$$$/$S///||..- -.- /((S$:%<:///:/=
|
|
$&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$
|
|
MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M
|
|
MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v</Jq1&&D]&M&<, :/::/?%%)S>?://:M
|
|
MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M
|
|
MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M
|
|
MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/<SM
|
|
MMMMMMMMMMMM||$)&7k&MMMMH9]$$??Z%|!/:i::` `` . SS?SS?Z/]1$/&$c/$SM
|
|
MMMMMMMMMMMM| -?>[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//<M
|
|
MMMMMMMMMMMMR `$&&&HMM9MMMMMMM&&c$%%:/:/:.:.:/\?\?/\ _MMHk/7S/]dq&1S<&&></M
|
|
MMMMMMMMMMMMM? :&96MHMMMMMMMMMMMHHk[S%(<<:// ` ,MMMMMMM&/Z6H]DkH]1$&&M
|
|
MMMMMMMMMMMMMD 99H9HMMMMMMMMMMMMMMMb&%$<:i.:.... .MMMMMMMMM6HHHRH&H&H1SFM
|
|
MMMMMMMMMMMMMM| `?HMMMMMMMMMMMMMMMMMMMHk6k&>$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM
|
|
MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M
|
|
MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M
|
|
MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM
|
|
MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M
|
|
MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M
|
|
MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM
|
|
MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M
|
|
MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M
|
|
MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M
|
|
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM
|
|
MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M
|
|
MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM
|
|
MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M
|
|
*******************************************************************************
|
|
* *
|
|
* ========================================================= *
|
|
* Program for Atomic and Molecular *
|
|
* Direct Iterative Relativistic All-electron Calculations *
|
|
* ========================================================= *
|
|
* *
|
|
* *
|
|
* Written by: *
|
|
* *
|
|
* Andre S. P. Gomes CNRS/Universite de Lille France *
|
|
* Trond Saue Universite Toulouse III France *
|
|
* Lucas Visscher Vrije Universiteit Amsterdam Netherlands *
|
|
* Hans Joergen Aa. Jensen University of Southern Denmark Denmark *
|
|
* Radovan Bast UiT The Arctic University of Norway *
|
|
* *
|
|
* with contributions from: *
|
|
* *
|
|
* Ignacio Agustin Aucar Northeast National University Argentina *
|
|
* Vebjoern Bakken University of Oslo Norway *
|
|
* Kenneth G. Dyall Schrodinger, Inc., Portland USA *
|
|
* Sebastien Dubillard University of Strasbourg France *
|
|
* Ulf Ekstroem University of Oslo Norway *
|
|
* Ephraim Eliav University of Tel Aviv Israel *
|
|
* Thomas Enevoldsen University of Southern Denmark Denmark *
|
|
* Elke Fasshauer University of Aarhus Denmark *
|
|
* Timo Fleig Universite Toulouse III France *
|
|
* Olav Fossgaard UiT The Arctic University of Norway *
|
|
* Loic Halbert Universite de Lille France *
|
|
* Erik D. Hedegaard Lund University Sweden *
|
|
* Trygve Helgaker University of Oslo Norway *
|
|
* Benjamin Helmich-Paris Max Planck Institute f. Coal Res. Germany *
|
|
* Johan Henriksson Linkoeping University Sweden *
|
|
* Miroslav Ilias Matej Bel University Slovakia *
|
|
* Christoph R. Jacob TU Braunschweig Germany *
|
|
* Stefan Knecht ETH Zuerich Switzerland *
|
|
* Stanislav Komorovsky UiT The Arctic University of Norway *
|
|
* Ossama Kullie University of Kassel Germany *
|
|
* Jon K. Laerdahl University of Oslo Norway *
|
|
* Christoffer V. Larsen University of Southern Denmark Denmark *
|
|
* Yoon Sup Lee KAIST, Daejeon South Korea *
|
|
* Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary *
|
|
* Malaya Kumar Nayak Bhabha Atomic Research Centre India *
|
|
* Patrick Norman Stockholm Inst. of Technology Sweden *
|
|
* Malgorzata Olejniczak University of Warsaw Poland *
|
|
* Jeppe Olsen Aarhus University Denmark *
|
|
* Jogvan Magnus H. Olsen University of Southern Denmark Denmark *
|
|
* Young Choon Park KAIST, Daejeon South Korea *
|
|
* Jesper K. Pedersen University of Southern Denmark Denmark *
|
|
* Markus Pernpointner University of Heidelberg Germany *
|
|
* Roberto Di Remigio UiT The Arctic University of Norway *
|
|
* Kenneth Ruud UiT The Arctic University of Norway *
|
|
* Pawel Salek Stockholm Inst. of Technology Sweden *
|
|
* Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany *
|
|
* Bruno Senjean University of Leiden Netherlands *
|
|
* Avijit Shee University of Michigan USA *
|
|
* Jetze Sikkema Vrije Universiteit Amsterdam Netherlands *
|
|
* Andreas J. Thorvaldsen UiT The Arctic University of Norway *
|
|
* Joern Thyssen University of Southern Denmark Denmark *
|
|
* Joost van Stralen Vrije Universiteit Amsterdam Netherlands *
|
|
* Marta L. Vidal Technical University of Denmark Denmark *
|
|
* Sebastien Villaume Linkoeping University Sweden *
|
|
* Olivier Visser University of Groningen Netherlands *
|
|
* Toke Winther University of Southern Denmark Denmark *
|
|
* Shigeyoshi Yamamoto Chukyo University Japan *
|
|
* *
|
|
* For more information about the DIRAC code see http://diracprogram.org *
|
|
* *
|
|
* This is an experimental code. The authors accept no responsibility *
|
|
* for the performance of the code or for the correctness of the results. *
|
|
* *
|
|
* The code (in whole or part) is not to be reproduced for further *
|
|
* distribution without the written permission of the authors or *
|
|
* their representatives. *
|
|
* *
|
|
* If results obtained with this code are published, an *
|
|
* appropriate citation would be: *
|
|
* *
|
|
* DIRAC, a relativistic ab initio electronic structure program, *
|
|
* Release DIRAC19 (2019), written by *
|
|
* A. S. P. Gomes, T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, *
|
|
* with contributions from I. A. Aucar, V. Bakken, K. G. Dyall, *
|
|
* S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, *
|
|
* T. Fleig, O. Fossgaard, L. Halbert, E. D. Hedegaard, T. Helgaker, *
|
|
* J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, *
|
|
* O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, *
|
|
* M. K. Nayak, P. Norman, M. Olejniczak, J. Olsen, J. M. H. Olsen, *
|
|
* Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, *
|
|
* P. Salek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, *
|
|
* A. J. Thorvaldsen, J. Thyssen, J. van Stralen, M. L. Vidal, S. Villaume, *
|
|
* O. Visser, T. Winther, and S. Yamamoto (see http://diracprogram.org). *
|
|
* *
|
|
*******************************************************************************
|
|
|
|
|
|
Version information
|
|
-------------------
|
|
|
|
Branch |
|
|
Commit hash |
|
|
Commit author |
|
|
Commit date |
|
|
|
|
|
|
Configuration and build information
|
|
-----------------------------------
|
|
|
|
Who compiled | cmelton
|
|
Compiled on server | cee-build013
|
|
Operating system | Linux-3.10.0-1062.9.1.el7.x86_64
|
|
CMake version | 3.10.3
|
|
CMake generator | Unix Makefiles
|
|
CMake build type | release
|
|
Configuration time | 2020-08-28 22:02:19.859135
|
|
Python version | 2.7.5
|
|
Fortran compiler | /projects/sems/install/rhel7-x86_64/sems/compiler/intel/19.0.5/base/bin/ifort
|
|
Fortran compiler version | 19.0
|
|
Fortran compiler flags | -w -assume byterecl -g -traceback -DVAR_IFORT
|
|
C compiler | /projects/sems/install/rhel7-x86_64/sems/compiler/intel/19.0.5/base/bin/icc
|
|
C compiler version | 19.0
|
|
C compiler flags | -g -wd981 -wd279 -wd383 -wd1572 -wd177
|
|
C++ compiler | /projects/sems/install/rhel7-x86_64/sems/compiler/intel/19.0.5/base/bin/icpc
|
|
C++ compiler version | 19.0.5
|
|
C++ compiler flags | -Wno-unknown-pragmas
|
|
Static linking | False
|
|
64-bit integers | False
|
|
MPI parallelization | False
|
|
MPI launcher | unknown
|
|
Math libraries | /lib64/atlas/libatlas.a;/lib64/liblapack.so;/lib64/libblas.so
|
|
Builtin BLAS library | OFF
|
|
Builtin LAPACK library | OFF
|
|
Explicit libraries | unknown
|
|
Compile definitions | HAVE_SYSTEM_NATIVE_BLAS;HAVE_ATLAS_LAPACK;SYS_LINUX;PRG_DIRAC;INSTALL_WRKMEM=64000000;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES
|
|
|
|
|
|
LAPACK integer*4/8 selftest passed
|
|
Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED
|
|
|
|
Execution time and host
|
|
-----------------------
|
|
|
|
|
|
Date and time (Linux) : Mon Oct 4 09:54:21 2021
|
|
Host name : cee-compute025
|
|
|
|
|
|
Contents of the input file
|
|
--------------------------
|
|
|
|
**DIRAC
|
|
.WAVE FUNCTION
|
|
.ANALYZE
|
|
**HAMILTONIAN
|
|
.ECP
|
|
**INTEGRALS
|
|
*READIN
|
|
.UNCONTRACT
|
|
**WAVE FUNCTION
|
|
.SCF
|
|
.RESOLVE
|
|
*SCF
|
|
.CLOSED SHELL
|
|
2 0
|
|
.OPEN SHELL
|
|
1
|
|
3/0,6
|
|
.EVCCNV
|
|
1.0d-05
|
|
**ANALYZE
|
|
.PRIVEC
|
|
.MULPOP
|
|
*PRIVEC
|
|
.AOLAB
|
|
.VECPRI
|
|
1..2
|
|
1..6
|
|
.PRINT
|
|
1
|
|
*MULPOP
|
|
.AOLAB
|
|
.VECPOP
|
|
1..2
|
|
1..6
|
|
.PRINT
|
|
1
|
|
**GENERAL
|
|
.PCMOUT
|
|
*END OF
|
|
|
|
&GOSCIP IPRNT=5 &END
|
|
|
|
|
|
Contents of the molecule file
|
|
-----------------------------
|
|
|
|
INTGRL
|
|
Bi
|
|
Bi STU ecp
|
|
C 1
|
|
83. 1
|
|
Bi 0.000000 0.00000000 0.00000000
|
|
LARGE EXPLICIT 4 1 1 1 1
|
|
f 13 0
|
|
798.633
|
|
95.0023
|
|
21.2520
|
|
13.2919
|
|
8.31210
|
|
5.19476
|
|
1.90972
|
|
0.962271
|
|
0.356026
|
|
0.168327
|
|
0.0784
|
|
0.073265
|
|
0.0297
|
|
f 12 0
|
|
19.2259
|
|
12.0378
|
|
7.53621
|
|
2.16084
|
|
1.13036
|
|
0.566778
|
|
0.4469
|
|
0.271608
|
|
0.117769
|
|
0.0743
|
|
0.049304
|
|
0.0276
|
|
f 9 0
|
|
65.0224
|
|
13.6908
|
|
7.09591
|
|
2.52090
|
|
1.34066
|
|
0.682558
|
|
0.327714
|
|
0.1306
|
|
0.0488
|
|
f 2 0
|
|
0.3164
|
|
0.1188
|
|
ECP 78 5 3
|
|
3
|
|
1 40.00000 5.0
|
|
3 38.50000 200.0
|
|
2 40.00000 -74.796
|
|
2
|
|
2 1.994153 35.755622
|
|
2 0.240286 -0.404113
|
|
4
|
|
2 0.896039 2.688441
|
|
2 0.875463 5.715603
|
|
2 0.262580 -0.171255
|
|
2 0.232846 -0.150845
|
|
2
|
|
2 0.779775 4.060445
|
|
2 0.739216 5.980282
|
|
2
|
|
2 0.987519 -2.646547
|
|
2 0.959907 -3.373825
|
|
4
|
|
2 0.896039 -5.376883
|
|
2 0.875463 5.715603
|
|
2 0.262580 0.342510
|
|
2 0.232846 -0.150845
|
|
2
|
|
2 0.779775 -4.060445
|
|
2 0.739216 3.986855
|
|
2
|
|
2 0.987519 1.764365
|
|
2 0.959907 -1.686912
|
|
FINISH
|
|
|
|
|
|
*************************************************************************
|
|
********************* DIRAC: No title specified !!! *********************
|
|
*************************************************************************
|
|
|
|
Jobs in this run:
|
|
* Wave function
|
|
* Analysis
|
|
|
|
|
|
**************************************************************************
|
|
************************** General DIRAC set-up **************************
|
|
**************************************************************************
|
|
|
|
CODATA Recommended Values of the Fundamental Physical Constants: 1998
|
|
Peter J. Mohr and Barry N. Taylor
|
|
Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999
|
|
* The speed of light : 137.0359998
|
|
* Running in two-component mode
|
|
* Direct evaluation of the following two-electron integrals:
|
|
- LL-integrals
|
|
* Spherical transformation embedded in MO-transformation
|
|
for large components
|
|
* Transformation to scalar RKB basis embedded in
|
|
MO-transformation for small components
|
|
* Thresholds for linear dependence:
|
|
Large components: 1.00D-06
|
|
Small components: 1.00D-08
|
|
* MO-coefficients written to formatted file DFPCMO
|
|
* General print level : 0
|
|
|
|
|
|
*************************************************************************
|
|
****************** Output from HERMIT input processing ******************
|
|
*************************************************************************
|
|
|
|
Default print level: 1
|
|
Nuclear model: Gaussian charge distribution.
|
|
|
|
Two-electron integrals not calculated.
|
|
|
|
|
|
Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated.
|
|
|
|
|
|
|
|
Changes of defaults for *READIN
|
|
-------------------------------
|
|
|
|
|
|
Uncontracted basis forced, irrespective of basis input file.
|
|
|
|
|
|
|
|
***************************************************************************
|
|
****************** Output from MOLECULE input processing ******************
|
|
***************************************************************************
|
|
|
|
|
|
|
|
Title Cards
|
|
-----------
|
|
|
|
Bi
|
|
Bi STU ecp
|
|
Nuclear Gaussian exponent for atom of charge 83.000 : 1.3729409487D+08
|
|
* This atomic center has RECP with 78 core electrons.
|
|
The charge value is changed as 5.000
|
|
|
|
|
|
SYMADD: Detection of molecular symmetry
|
|
---------------------------------------
|
|
|
|
Symmetry test threshold: 5.00E-06
|
|
|
|
Symmetry point group found: D(oo,h)
|
|
|
|
The following symmetry elements were found: X Y Z
|
|
|
|
|
|
Symmetry Operations
|
|
-------------------
|
|
|
|
Symmetry operations: 3
|
|
|
|
|
|
|
|
SYMGRP:Point group information
|
|
------------------------------
|
|
|
|
Full group is: D(oo,h)
|
|
Represented as: D2h
|
|
|
|
* The point group was generated by:
|
|
|
|
Reflection in the yz-plane
|
|
Reflection in the xz-plane
|
|
Reflection in the xy-plane
|
|
|
|
* Group multiplication table
|
|
|
|
| E C2z C2y C2x i Oxy Oxz Oyz
|
|
-----+----------------------------------------
|
|
E | E C2z C2y C2x i Oxy Oxz Oyz
|
|
C2z | C2z E C2x C2y Oxy i Oyz Oxz
|
|
C2y | C2y C2x E C2z Oxz Oyz i Oxy
|
|
C2x | C2x C2y C2z E Oyz Oxz Oxy i
|
|
i | i Oxy Oxz Oyz E C2z C2y C2x
|
|
Oxy | Oxy i Oyz Oxz C2z E C2x C2y
|
|
Oxz | Oxz Oyz i Oxy C2y C2x E C2z
|
|
Oyz | Oyz Oxz Oxy i C2x C2y C2z E
|
|
|
|
* Character table
|
|
|
|
| E C2z C2y C2x i Oxy Oxz Oyz
|
|
-----+----------------------------------------
|
|
Ag | 1 1 1 1 1 1 1 1
|
|
B3u | 1 -1 -1 1 -1 1 1 -1
|
|
B2u | 1 -1 1 -1 -1 1 -1 1
|
|
B1g | 1 1 -1 -1 1 1 -1 -1
|
|
B1u | 1 1 -1 -1 -1 -1 1 1
|
|
B2g | 1 -1 1 -1 1 -1 1 -1
|
|
B3g | 1 -1 -1 1 1 -1 -1 1
|
|
Au | 1 1 1 1 -1 -1 -1 -1
|
|
|
|
* Direct product table
|
|
|
|
| Ag B3u B2u B1g B1u B2g B3g Au
|
|
-----+----------------------------------------
|
|
Ag | Ag B3u B2u B1g B1u B2g B3g Au
|
|
B3u | B3u Ag B1g B2u B2g B1u Au B3g
|
|
B2u | B2u B1g Ag B3u B3g Au B1u B2g
|
|
B1g | B1g B2u B3u Ag Au B3g B2g B1u
|
|
B1u | B1u B2g B3g Au Ag B3u B2u B1g
|
|
B2g | B2g B1u Au B3g B3u Ag B1g B2u
|
|
B3g | B3g Au B1u B2g B2u B1g Ag B3u
|
|
Au | Au B3g B2g B1u B1g B2u B3u Ag
|
|
|
|
|
|
**************************
|
|
*** Output from DBLGRP ***
|
|
**************************
|
|
|
|
* Two fermion irreps: E1g E1u
|
|
* Real group. NZ = 1
|
|
* Direct product decomposition:
|
|
E1g x E1g : Ag + B1g + B2g + B3g
|
|
E1u x E1g : Au + B1u + B2u + B3u
|
|
E1u x E1u : Ag + B1g + B2g + B3g
|
|
|
|
|
|
Spinor structure
|
|
----------------
|
|
|
|
|
|
* Fermion irrep no.: 1 * Fermion irrep no.: 2
|
|
|
|
La | Ag (1) B1g(2) | La | Au (1) B1u(2) |
|
|
Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) |
|
|
Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) |
|
|
Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) |
|
|
|
|
|
|
Quaternion symmetries
|
|
---------------------
|
|
|
|
Rep T(+)
|
|
-----------------------------
|
|
Ag 1
|
|
B3u k
|
|
B2u j
|
|
B1g i
|
|
B1u i
|
|
B2g j
|
|
B3g k
|
|
Au 1
|
|
|
|
QM-QM nuclear repulsion energy : 0.000000000000
|
|
|
|
|
|
|
|
Isotopic Masses
|
|
---------------
|
|
|
|
Bi 208.980374
|
|
|
|
Total mass: 208.980374 amu
|
|
Natural abundance: 100.000 %
|
|
|
|
Center-of-mass coordinates (a.u.): 0.000000000000000 0.000000000000000 0.000000000000000
|
|
|
|
|
|
Atoms and basis sets
|
|
--------------------
|
|
|
|
Number of atom types : 1
|
|
Total number of atoms: 1
|
|
|
|
label atoms charge prim cont basis
|
|
----------------------------------------------------------------------
|
|
Bi 1 83 123 123 L - [13s12p9d2f|13s12p9d2f]
|
|
0 0 S - No small component basis functions attached
|
|
----------------------------------------------------------------------
|
|
123 123 L - large components
|
|
----------------------------------------------------------------------
|
|
total: 1 83 123 123
|
|
|
|
Cartesian basis used.
|
|
Threshold for integrals (to be written to file): 1.00D-15
|
|
|
|
|
|
References for the basis sets
|
|
-----------------------------
|
|
|
|
Atom type 1
|
|
Basis set typed explicitly in input file
|
|
|
|
|
|
Cartesian Coordinates (bohr)
|
|
----------------------------
|
|
|
|
Total number of coordinates: 3
|
|
|
|
|
|
1 Bi x 0.0000000000
|
|
2 y 0.0000000000
|
|
3 z 0.0000000000
|
|
|
|
|
|
|
|
Cartesian coordinates in XYZ format (Angstrom)
|
|
----------------------------------------------
|
|
|
|
1
|
|
|
|
Bi 0.0000000000 0.0000000000 0.0000000000
|
|
|
|
|
|
Symmetry Coordinates
|
|
--------------------
|
|
|
|
Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0
|
|
|
|
|
|
Symmetry B3u( 2)
|
|
|
|
1 Bi x 1
|
|
|
|
|
|
Symmetry B2u( 3)
|
|
|
|
2 Bi y 2
|
|
|
|
|
|
Symmetry B1u( 5)
|
|
|
|
3 Bi z 3
|
|
|
|
|
|
This is an atomic calculation.
|
|
|
|
|
|
GETLAB: AO-labels
|
|
-----------------
|
|
|
|
* Large components: 20
|
|
1 L Bi 1 s 2 L Bi 1 px 3 L Bi 1 py 4 L Bi 1 pz 5 L Bi 1 dxx 6 L Bi 1 dxy
|
|
7 L Bi 1 dxz 8 L Bi 1 dyy 9 L Bi 1 dyz 10 L Bi 1 dzz 11 L Bi 1 fxxx 12 L Bi 1 fxxy
|
|
13 L Bi 1 fxxz 14 L Bi 1 fxyy 15 L Bi 1 fxyz 16 L Bi 1 fxzz 17 L Bi 1 fyyy 18 L Bi 1 fyyz
|
|
19 L Bi 1 fyzz 20 L Bi 1 fzzz
|
|
* Small components: 0
|
|
|
|
|
|
|
|
GETLAB: SO-labels
|
|
-----------------
|
|
|
|
* Large components: 20
|
|
1 L Ag Bi s 2 L Ag Bi dxx 3 L Ag Bi dyy 4 L Ag Bi dzz 5 L B3uBi px 6 L B3uBi fxxx
|
|
7 L B3uBi fxyy 8 L B3uBi fxzz 9 L B2uBi py 10 L B2uBi fxxy 11 L B2uBi fyyy 12 L B2uBi fyzz
|
|
13 L B1gBi dxy 14 L B1uBi pz 15 L B1uBi fxxz 16 L B1uBi fyyz 17 L B1uBi fzzz 18 L B2gBi dxz
|
|
19 L B3gBi dyz 20 L Au Bi fxyz
|
|
* Small components: 0
|
|
|
|
|
|
|
|
Symmetry Orbitals
|
|
-----------------
|
|
|
|
Number of orbitals in each symmetry: 40 18 18 9 18 9 9 2
|
|
Number of large orbitals in each symmetry: 40 18 18 9 18 9 9 2
|
|
Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0
|
|
|
|
* Large component functions
|
|
|
|
Symmetry Ag ( 1)
|
|
|
|
13 functions: Bi s
|
|
9 functions: Bi dxx
|
|
9 functions: Bi dyy
|
|
9 functions: Bi dzz
|
|
|
|
Symmetry B3u( 2)
|
|
|
|
12 functions: Bi px
|
|
2 functions: Bi fxxx
|
|
2 functions: Bi fxyy
|
|
2 functions: Bi fxzz
|
|
|
|
Symmetry B2u( 3)
|
|
|
|
12 functions: Bi py
|
|
2 functions: Bi fxxy
|
|
2 functions: Bi fyyy
|
|
2 functions: Bi fyzz
|
|
|
|
Symmetry B1g( 4)
|
|
|
|
9 functions: Bi dxy
|
|
|
|
Symmetry B1u( 5)
|
|
|
|
12 functions: Bi pz
|
|
2 functions: Bi fxxz
|
|
2 functions: Bi fyyz
|
|
2 functions: Bi fzzz
|
|
|
|
Symmetry B2g( 6)
|
|
|
|
9 functions: Bi dxz
|
|
|
|
Symmetry B3g( 7)
|
|
|
|
9 functions: Bi dyz
|
|
|
|
Symmetry Au ( 8)
|
|
|
|
2 functions: Bi fxyz
|
|
|
|
|
|
***************************************************************************
|
|
*************************** Hamiltonian defined ***************************
|
|
***************************************************************************
|
|
|
|
* Print level: 0
|
|
employing effective-core-potentials (ECP)
|
|
* SS integrals neglected:
|
|
Interatomic Coulombic SS-contributions modelled by
|
|
classical repulsion of small component atomic charges
|
|
using tabulated charges.
|
|
* Default integral flags passed to all modules
|
|
- LL-integrals: 1
|
|
- LS-integrals: 0
|
|
- SS-integrals: 0
|
|
- GT-integrals: 0
|
|
* Basis set:
|
|
- uncontracted large component basis set
|
|
|
|
|
|
**************************************************************************
|
|
************************** Wave function module **************************
|
|
**************************************************************************
|
|
|
|
Wave function types requested (in input order):
|
|
HF
|
|
RESOLVE
|
|
|
|
Wave function jobs in execution order (expanded):
|
|
* Hartree-Fock calculation
|
|
* Followed by resolution of open-shell states
|
|
===========================================================================
|
|
*SCF: Set-up for Hartree-Fock calculation:
|
|
===========================================================================
|
|
* Number of fermion irreps: 2
|
|
* Open shell SCF calculation using Average-of-Configuration
|
|
|
|
* Shell specifications:
|
|
|
|
Orbitals
|
|
#electrons irrep 1 irrep 2 f a alpha
|
|
---------- ------- ------- ------- ------- -------
|
|
Closed shell 2 1 0 1.0000 1.0000 0.0000
|
|
Open shell no. 1 3.00 0 3 0.5000 0.8000 0.4000
|
|
----------------------------------------------------------------------------
|
|
Total 5.00 1 3
|
|
|
|
f is the fraction occupation; a and alpha open shell coupling coefficients.
|
|
|
|
* Sum of atomic potentials used for start guess
|
|
* General print level : 0
|
|
|
|
***** INITIAL TRIAL SCF FUNCTION *****
|
|
* Trial vectors read from file DFCOEF
|
|
* Scaling of active-active block correction to open shell Fock operator 0.500000
|
|
to improve convergence (default value).
|
|
The final open-shell orbital energies are recalculated with 1.0 scaling,
|
|
such that all occupied orbital energies correspond to Koopmans' theorem ionization energies.
|
|
|
|
***** SCF CONVERGENCE CRITERIA *****
|
|
* Convergence on norm of error vector (gradient).
|
|
Desired convergence:1.000D-05
|
|
Allowed convergence:1.000D-05
|
|
|
|
***** CONVERGENCE CONTROL *****
|
|
* Fock matrix constructed using differential density matrix
|
|
with optimal parameter.
|
|
* DIIS (in MO basis)
|
|
* DIIS will be activated when convergence reaches : 1.00D+20
|
|
- Maximum size of B-matrix: 10
|
|
* Damping of Fock matrix when DIIS is not activated.
|
|
Weight of old matrix : 0.250
|
|
* Maximum number of SCF iterations : 50
|
|
* No quadratic convergent Hartree-Fock
|
|
* Contributions from 2-electron integrals to Fock matrix:
|
|
LL-integrals.
|
|
---> this is default setting from Hamiltonian input
|
|
***** OUTPUT CONTROL *****
|
|
* Only electron eigenvalues written out.
|
|
===========================================================================
|
|
RESINP: Set-up for resolution of open-shell states:
|
|
===========================================================================
|
|
* General print level : 0
|
|
* 4-index transformation follows scheme : 4
|
|
- write (rs)-batches of half-transformed integrals
|
|
(ij|rs) to disk; parallel scheme
|
|
* Screening threshold : 1.00E-14
|
|
* LS integrals not included.
|
|
* SS integrals not included.
|
|
* Gaunt integrals not included.
|
|
|
|
|
|
***************************************************************************
|
|
***************************** Analysis module *****************************
|
|
***************************************************************************
|
|
|
|
Jobs in this run:
|
|
* Write vectors
|
|
* Mulliken population analysis
|
|
===========================================================================
|
|
VECINP: Vector print
|
|
===========================================================================
|
|
* Coefficients written in AO-basis
|
|
* Vector print:
|
|
- Orbitals in fermion ircop E1g :1..2
|
|
- Orbitals in fermion ircop E1u :1..6
|
|
* Only large component coefficients written out.
|
|
===========================================================================
|
|
POPINP: Mulliken population analysis
|
|
===========================================================================
|
|
* Gross populations
|
|
* Label definitions based on AO-labels
|
|
* Number of spinors analyzed:
|
|
- Orbitals in fermion ircop E1g :1..2
|
|
- Orbitals in fermion ircop E1u :1..6
|
|
* Print level: 1
|
|
|
|
|
|
********************************************************************************
|
|
*************************** Input consistency checks ***************************
|
|
********************************************************************************
|
|
|
|
|
|
|
|
*************************************************************************
|
|
************************ End of input processing ************************
|
|
*************************************************************************
|
|
|
|
|
|
|
|
*************************************************************************
|
|
************************** RECP integral start **************************
|
|
*************************************************************************
|
|
|
|
|
|
|
|
-----------------------------------------------------------
|
|
Relativistic Effective Core Potential Integral routine
|
|
This routine is based on ARGOS integral
|
|
with the permission of R. M. Pitzer (Ohio State University)
|
|
and maintained by Y. S. Lee and Y. C. Park (KAIST)
|
|
|
|
Electronic mail:
|
|
YoonSupLee@kaist.ac.kr
|
|
youngc@kaist.ac.kr
|
|
|
|
Reference:
|
|
Bull.Korean.Chem.Soc. v.33, p.803 (2012)
|
|
-----------------------------------------------------------
|
|
|
|
|
|
* Warning: Symmetries higher than D2h in RECP integral is not fully tested.
|
|
The calculation results can be erroneous.
|
|
Use auto-symmetry with care.
|
|
|
|
* Nuc. Center No. : 1 (Bi )
|
|
Sym. distinct atoms : 1
|
|
Core electrons : 78
|
|
AREP blocks : 5
|
|
SO blocks : 3
|
|
|
|
* VCORE was generated : RECP_INT_C
|
|
* SOX was generated : RECP_INT_X
|
|
* SOY was generated : RECP_INT_Y
|
|
* SOZ was generated : RECP_INT_Z
|
|
|
|
|
|
***********************************************************************
|
|
************************** RECP integral end **************************
|
|
***********************************************************************
|
|
|
|
|
|
|
|
Nuclear contribution to dipole moments
|
|
--------------------------------------
|
|
|
|
All dipole components are zero by symmetry
|
|
|
|
Total time used in ONEGEN (CPU) 0.02075300s and (WALL) 0.03810000s
|
|
|
|
|
|
Generating Lowdin canonical matrix:
|
|
-----------------------------------
|
|
|
|
L Ag * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.95E-05
|
|
L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.85E-02
|
|
L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.85E-02
|
|
L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.85E-02
|
|
L B3u * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.35E-04
|
|
L B2u * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.35E-04
|
|
L B1u * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.35E-04
|
|
L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.41E+00
|
|
|
|
|
|
Output from LINSYM
|
|
------------------
|
|
|
|
|
|
Parity MJ Functions(total) Functions(LC) Functions(SC)
|
|
1 1/2 31 31 0
|
|
1 -3/2 18 18 0
|
|
1 5/2 9 9 0
|
|
-1 1/2 28 28 0
|
|
-1 -3/2 16 16 0
|
|
-1 5/2 4 4 0
|
|
-1 -7/2 2 2 0
|
|
|
|
|
|
**********************************************************************
|
|
************************* Orbital dimensions *************************
|
|
**********************************************************************
|
|
|
|
Irrep 1 Irrep 2 Sum
|
|
No. of electronic orbitals (NESH): 58 50 108
|
|
No. of positronic orbitals (NPSH): 0 0 0
|
|
Total no. of orbitals (NORB): 58 50 108
|
|
>>> CPU time used in PAMSET is 0.09 seconds
|
|
>>> WALL time used in PAMSET is 0.16 seconds
|
|
|
|
|
|
****************************************************************************
|
|
************************* Hartree-Fock calculation *************************
|
|
****************************************************************************
|
|
|
|
|
|
*** INFO *** No trial vectors found.
|
|
Using bare nucleus approximation for initial trial vectors.
|
|
Improved by a sum of atomic screening potentials.
|
|
|
|
|
|
########## START ITERATION NO. 1 ########## Mon Oct 4 09:54:21 2021
|
|
|
|
E_HOMO...E_LUMO, symmetry 1: 1 -0.15921 2 0.03934
|
|
E_HOMO...E_LUMO, symmetry 2: 59 -0.01235 60 -0.00097 61 -0.00097 62 0.06621
|
|
|
|
=> Calculating sum of orbital energies
|
|
It. 1 -0.3327150046490 0.00D+00 0.00D+00 0.00D+00 0.08109100s Atom. scrpot Mon Oct 4
|
|
|
|
########## START ITERATION NO. 2 ########## Mon Oct 4 09:54:21 2021
|
|
|
|
|
|
* GETGAB: label "GABAO1XX" not found; calling GABGEN.
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 45.95% 8.94% 8.24% 31.58% 0.12168498s
|
|
>>> CPU time used in SO Fock is 0.20 seconds
|
|
>>> WALL time used in SO Fock is 0.20 seconds
|
|
E_HOMO...E_LUMO, symmetry 1: 1 -0.99594 2 -0.07758
|
|
E_HOMO...E_LUMO, symmetry 2: 59 -0.51472 60 -0.41266 61 -0.41266 62 -0.01283
|
|
>>> Total wall time: 0.23600000s, and total CPU time : 0.20531500s
|
|
|
|
########## END ITERATION NO. 2 ########## Mon Oct 4 09:54:21 2021
|
|
|
|
It. 2 -4.439964146227 4.11D+00 -5.25D+00 8.14D-01 0.23600000s LL Mon Oct 4
|
|
|
|
########## START ITERATION NO. 3 ########## Mon Oct 4 09:54:21 2021
|
|
|
|
3 *** Differential density matrix. DCOVLP = 0.3623
|
|
3 *** Differential density matrix. DVOVLP( 1) = 0.0001
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 51.57% 1.27% 8.01% 30.68% 0.17886898s
|
|
>>> CPU time used in SO Fock is 0.18 seconds
|
|
>>> WALL time used in SO Fock is 0.18 seconds
|
|
E_HOMO...E_LUMO, symmetry 1: 1 -0.68614 2 0.03690
|
|
E_HOMO...E_LUMO, symmetry 2: 59 -0.26637 60 -0.19578 61 -0.19578 62 0.05195
|
|
>>> Total wall time: 0.22630000s, and total CPU time : 0.19160100s
|
|
|
|
########## END ITERATION NO. 3 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
It. 3 -5.208203064223 7.68D-01 7.48D-01 1.30D-01 DIIS 2 0.22630000s LL Mon Oct 4
|
|
|
|
########## START ITERATION NO. 4 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
4 *** Differential density matrix. DCOVLP = 0.8124
|
|
4 *** Differential density matrix. DVOVLP( 1) = 0.9209
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 52.30% 0.18% 7.98% 30.55% 0.16209298s
|
|
>>> CPU time used in SO Fock is 0.16 seconds
|
|
>>> WALL time used in SO Fock is 0.16 seconds
|
|
E_HOMO...E_LUMO, symmetry 1: 1 -0.67928 2 0.04340
|
|
E_HOMO...E_LUMO, symmetry 2: 59 -0.26280 60 -0.19229 61 -0.19229 62 0.05490
|
|
>>> Total wall time: 0.21150000s, and total CPU time : 0.17397700s
|
|
|
|
########## END ITERATION NO. 4 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
It. 4 -5.221809127263 1.36D-02 -6.35D-02 1.63D-02 DIIS 3 0.21150000s LL Mon Oct 4
|
|
|
|
########## START ITERATION NO. 5 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
5 *** Differential density matrix. DCOVLP = 0.9857
|
|
5 *** Differential density matrix. DVOVLP( 1) = 1.0142
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 51.57% 1.29% 8.01% 30.67% 0.13093501s
|
|
>>> CPU time used in SO Fock is 0.13 seconds
|
|
>>> WALL time used in SO Fock is 0.13 seconds
|
|
E_HOMO...E_LUMO, symmetry 1: 1 -0.68077 2 0.04290
|
|
E_HOMO...E_LUMO, symmetry 2: 59 -0.26351 60 -0.19270 61 -0.19270 62 0.05440
|
|
>>> Total wall time: 0.17780000s, and total CPU time : 0.14325700s
|
|
|
|
########## END ITERATION NO. 5 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
It. 5 -5.222161363780 3.52D-04 -5.18D-03 1.92D-03 DIIS 4 0.17780000s LL Mon Oct 4
|
|
|
|
########## START ITERATION NO. 6 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
6 *** Differential density matrix. DCOVLP = 1.0009
|
|
6 *** Differential density matrix. DVOVLP( 1) = 0.9933
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 45.95% 9.03% 8.25% 31.37% 0.13942999s
|
|
>>> CPU time used in SO Fock is 0.14 seconds
|
|
>>> WALL time used in SO Fock is 0.14 seconds
|
|
E_HOMO...E_LUMO, symmetry 1: 1 -0.68092 2 0.04286
|
|
E_HOMO...E_LUMO, symmetry 2: 59 -0.26364 60 -0.19281 61 -0.19281 62 0.05439
|
|
>>> Total wall time: 0.18400000s, and total CPU time : 0.15098000s
|
|
|
|
########## END ITERATION NO. 6 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
It. 6 -5.222164254292 2.89D-06 7.10D-04 1.79D-04 DIIS 5 0.18400000s LL Mon Oct 4
|
|
|
|
########## START ITERATION NO. 7 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
7 *** Differential density matrix. DCOVLP = 1.0002
|
|
7 *** Differential density matrix. DVOVLP( 1) = 0.9994
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 51.57% 1.52% 8.02% 30.61% 0.12749696s
|
|
>>> CPU time used in SO Fock is 0.13 seconds
|
|
>>> WALL time used in SO Fock is 0.13 seconds
|
|
E_HOMO...E_LUMO, symmetry 1: 1 -0.68094 2 0.04285
|
|
E_HOMO...E_LUMO, symmetry 2: 59 -0.26365 60 -0.19282 61 -0.19282 62 0.05439
|
|
>>> Total wall time: 0.17680000s, and total CPU time : 0.14083200s
|
|
|
|
########## END ITERATION NO. 7 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
It. 7 -5.222164303207 4.89D-08 2.27D-05 2.53D-05 DIIS 6 0.17680000s LL Mon Oct 4
|
|
|
|
########## START ITERATION NO. 8 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
8 *** Differential density matrix. DCOVLP = 1.0001
|
|
8 *** Differential density matrix. DVOVLP( 1) = 1.0001
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 45.95% 9.32% 8.26% 31.45% 0.13610399s
|
|
>>> CPU time used in SO Fock is 0.14 seconds
|
|
>>> WALL time used in SO Fock is 0.14 seconds
|
|
>>> Total wall time: 0.17790000s, and total CPU time : 0.14569900s
|
|
|
|
########## END ITERATION NO. 8 ########## Mon Oct 4 09:54:22 2021
|
|
|
|
It. 8 -5.222164304323 1.12D-09 -2.86D-06 1.48D-06 DIIS 6 0.17790000s LL Mon Oct 4
|
|
|
|
|
|
SCF - CYCLE
|
|
-----------
|
|
|
|
* Convergence on norm of error vector (gradient).
|
|
Desired convergence:1.000D-05
|
|
Allowed convergence:1.000D-05
|
|
|
|
* ERGVAL - convergence in total energy
|
|
* FCKVAL - convergence in maximum change in total Fock matrix
|
|
* EVCVAL - convergence in error vector (gradient)
|
|
--------------------------------------------------------------------------------------------------------------------------------
|
|
Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp
|
|
--------------------------------------------------------------------------------------------------------------------------------
|
|
It. 1 -0.3327150046490 0.00D+00 0.00D+00 0.00D+00 0.08109100s Atom. scrpot Mon Oct 4
|
|
It. 2 -4.439964146227 4.11D+00 -5.25D+00 8.14D-01 0.23600000s LL Mon Oct 4
|
|
It. 3 -5.208203064223 7.68D-01 7.48D-01 1.30D-01 DIIS 2 0.22630000s LL Mon Oct 4
|
|
It. 4 -5.221809127263 1.36D-02 -6.35D-02 1.63D-02 DIIS 3 0.21150000s LL Mon Oct 4
|
|
It. 5 -5.222161363780 3.52D-04 -5.18D-03 1.92D-03 DIIS 4 0.17780000s LL Mon Oct 4
|
|
It. 6 -5.222164254292 2.89D-06 7.10D-04 1.79D-04 DIIS 5 0.18400000s LL Mon Oct 4
|
|
It. 7 -5.222164303207 4.89D-08 2.27D-05 2.53D-05 DIIS 6 0.17680000s LL Mon Oct 4
|
|
It. 8 -5.222164304323 1.12D-09 -2.86D-06 1.48D-06 DIIS 6 0.17790000s LL Mon Oct 4
|
|
--------------------------------------------------------------------------------------------------------------------------------
|
|
* Convergence after 8 iterations.
|
|
* Average elapsed time per iteration:
|
|
No 2-ints : 0.09770000s
|
|
LL : 0.19861429s
|
|
|
|
|
|
TOTAL ENERGY
|
|
------------
|
|
|
|
Electronic energy : -5.2221643043234707
|
|
|
|
Other contributions to the total energy
|
|
Nuclear repulsion energy : 0.0000000000000000
|
|
|
|
Sum of all contributions to the energy
|
|
Total energy : -5.2221643043234707
|
|
|
|
|
|
Eigenvalues
|
|
-----------
|
|
|
|
|
|
* Block 1 in E1g: Omega = 1/2
|
|
* Closed shell, f = 1.0000
|
|
-0.680942747093 ( 2)
|
|
* Virtual eigenvalues, f = 0.0000
|
|
0.042850206906 ( 2) 0.133671484496 ( 2) 0.134794262444 ( 2) 0.212950601698 ( 2) 0.408636942362 ( 2)
|
|
0.415236774265 ( 2) 0.614429354016 ( 2) 1.250042481624 ( 2) 1.284246818043 ( 2) 1.598749638496 ( 2)
|
|
3.480256027970 ( 2) 3.564907117358 ( 2) 4.966804577762 ( 2) 7.893772735614 ( 2) 7.982631629747 ( 2)
|
|
13.126170760673 ( 2) 15.582825428942 ( 2) 15.615709929945 ( 2) 21.416849621897 ( 2) 32.629657469684 ( 2)
|
|
32.666689817034 ( 2) 36.904893461226 ( 2) 68.397033624018 ( 2) 71.303166871522 ( 2) 71.403190504837 ( 2)
|
|
125.083578350175 ( 2) 240.729207134018 ( 2) 240.890170689356 ( 2) 291.320904868750 ( 2) 1566.752519274441 ( 2)
|
|
|
|
* Block 2 in E1g: Omega = 3/2
|
|
* Virtual eigenvalues, f = 0.0000
|
|
0.133671484496 ( 2) 0.134794262444 ( 2) 0.408636942362 ( 2) 0.415236774265 ( 2) 1.250042481624 ( 2)
|
|
1.284246818043 ( 2) 3.480256027970 ( 2) 3.564907117358 ( 2) 7.893772735614 ( 2) 7.982631629747 ( 2)
|
|
15.582825428942 ( 2) 15.615709929945 ( 2) 32.629657469684 ( 2) 32.666689817034 ( 2) 71.303166871522 ( 2)
|
|
71.403190504837 ( 2) 240.729207134018 ( 2) 240.890170689356 ( 2)
|
|
|
|
* Block 3 in E1g: Omega = 5/2
|
|
* Virtual eigenvalues, f = 0.0000
|
|
0.133671484496 ( 2) 0.415236774265 ( 2) 1.284246818043 ( 2) 3.564907117358 ( 2) 7.982631629747 ( 2)
|
|
15.615709929945 ( 2) 32.629657469684 ( 2) 71.303166871521 ( 2) 240.729207134018 ( 2)
|
|
|
|
* Block 1 in E1u: Omega = 1/2
|
|
* Open shell #1, f = 0.5000
|
|
-0.263650341693 ( 2) -0.192817837929 ( 2)
|
|
* Virtual eigenvalues, f = 0.0000
|
|
0.054387836921 ( 2) 0.058924110266 ( 2) 0.195148486000 ( 2) 0.211658315537 ( 2) 0.447805555145 ( 2)
|
|
0.448991491036 ( 2) 0.467920420798 ( 2) 0.502497778026 ( 2) 0.978081254033 ( 2) 1.050306917678 ( 2)
|
|
1.106660849670 ( 2) 1.108355768815 ( 2) 1.906033047310 ( 2) 2.048690699409 ( 2) 3.417967632634 ( 2)
|
|
3.666669348640 ( 2) 5.986321821894 ( 2) 6.347001569821 ( 2) 10.897814678559 ( 2) 11.373037433253 ( 2)
|
|
22.331152208116 ( 2) 22.935978728616 ( 2) 49.119247535588 ( 2) 49.808407853308 ( 2) 101.082434540067 ( 2)
|
|
101.819095960363 ( 2)
|
|
|
|
* Block 2 in E1u: Omega = 3/2
|
|
* Open shell #1, f = 0.5000
|
|
-0.192817837928 ( 2)
|
|
* Virtual eigenvalues, f = 0.0000
|
|
0.058924110266 ( 2) 0.211658315537 ( 2) 0.447805555145 ( 2) 0.448991491036 ( 2) 0.502497778027 ( 2)
|
|
1.050306917681 ( 2) 1.106660849670 ( 2) 1.108355768815 ( 2) 2.048690699415 ( 2) 3.666669348649 ( 2)
|
|
6.347001569831 ( 2) 11.373037433262 ( 2) 22.935978728623 ( 2) 49.808407853314 ( 2) 101.819095960374 ( 2)
|
|
|
|
* Block 3 in E1u: Omega = 5/2
|
|
* Virtual eigenvalues, f = 0.0000
|
|
0.447805555145 ( 2) 0.448991491036 ( 2) 1.106660849670 ( 2) 1.108355768815 ( 2)
|
|
|
|
* Block 4 in E1u: Omega = 7/2
|
|
* Virtual eigenvalues, f = 0.0000
|
|
0.447805555145 ( 2) 1.106660849670 ( 2)
|
|
|
|
* Occupation in fermion symmetry E1g
|
|
* Inactive orbitals
|
|
1/2
|
|
* Virtual orbitals
|
|
1/2 5/2 3/2 1/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2
|
|
1/2 3/2 1/2 5/2 1/2 3/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2
|
|
1/2 5/2 3/2 1/2 3/2 1/2 1/2 1/2 5/2 3/2 1/2 3/2 1/2 1/2 5/2 3/2 1/2 3/2
|
|
1/2 1/2 1/2
|
|
|
|
* Occupation in fermion symmetry E1u
|
|
* Active orbitals
|
|
1/2 1/2 3/2
|
|
* Virtual orbitals
|
|
1/2 1/2 3/2 1/2 1/2 3/2 7/2 1/2 3/2 5/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 1/2
|
|
3/2 3/2 1/2 7/2 5/2 1/2 3/2 5/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2
|
|
1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2
|
|
|
|
* Occupation of subblocks
|
|
E1g: 1/2 3/2 5/2
|
|
closed shells (f=1.0000): 1 0 0
|
|
open shell #1 (f=0.5000): 0 0 0
|
|
virtual shells (f=0.0000): 30 18 9
|
|
tot.num. of pos.erg shells: 31 18 9
|
|
E1u: 1/2 3/2 5/2 7/2
|
|
closed shells (f=1.0000): 0 0 0 0
|
|
open shell #1 (f=0.5000): 2 1 0 0
|
|
virtual shells (f=0.0000): 26 15 4 2
|
|
tot.num. of pos.erg shells: 28 16 4 2
|
|
|
|
|
|
* HOMO - LUMO gap:
|
|
|
|
E(LUMO) : 0.04285021 au (symmetry E1g)
|
|
- E(HOMO) : -0.19281784 au (symmetry E1u)
|
|
------------------------------------------
|
|
gap : 0.23566804 au
|
|
|
|
|
|
|
|
**************************************************************************
|
|
****************************** Vector print ******************************
|
|
**************************************************************************
|
|
|
|
|
|
|
|
Coefficients from DFCOEF
|
|
------------------------
|
|
|
|
|
|
|
|
Fermion ircop E1g
|
|
-----------------
|
|
|
|
|
|
* Electronic eigenvalue no. 1: -0.6809427470926
|
|
====================================================
|
|
1 L Bi 1 s 0.0000118468 0.0000000000 0.0000000000 0.0000000000
|
|
2 L Bi 1 s -0.0002761289 0.0000000000 0.0000000000 0.0000000000
|
|
3 L Bi 1 s 0.0078211695 0.0000000000 0.0000000000 0.0000000000
|
|
4 L Bi 1 s -0.0357117702 0.0000000000 0.0000000000 0.0000000000
|
|
5 L Bi 1 s 0.0728822560 0.0000000000 0.0000000000 0.0000000000
|
|
6 L Bi 1 s -0.0697734364 0.0000000000 0.0000000000 0.0000000000
|
|
7 L Bi 1 s -0.1179067312 0.0000000000 0.0000000000 0.0000000000
|
|
8 L Bi 1 s 0.6499623220 0.0000000000 0.0000000000 0.0000000000
|
|
9 L Bi 1 s -0.3608275864 0.0000000000 0.0000000000 0.0000000000
|
|
10 L Bi 1 s -0.7264489967 0.0000000000 0.0000000000 0.0000000000
|
|
11 L Bi 1 s -0.2021179484 0.0000000000 0.0000000000 0.0000000000
|
|
12 L Bi 1 s -0.0472371298 0.0000000000 0.0000000000 0.0000000000
|
|
13 L Bi 1 s -0.0086532154 0.0000000000 0.0000000000 0.0000000000
|
|
|
|
* Electronic eigenvalue no. 2: 0.428502069E-01
|
|
====================================================
|
|
1 L Bi 1 s -0.0000123730 0.0000000000 0.0000000000 0.0000000000
|
|
2 L Bi 1 s 0.0002680892 0.0000000000 0.0000000000 0.0000000000
|
|
3 L Bi 1 s -0.0091642464 0.0000000000 0.0000000000 0.0000000000
|
|
4 L Bi 1 s 0.0382679064 0.0000000000 0.0000000000 0.0000000000
|
|
5 L Bi 1 s -0.0752958899 0.0000000000 0.0000000000 0.0000000000
|
|
6 L Bi 1 s 0.0740442548 0.0000000000 0.0000000000 0.0000000000
|
|
7 L Bi 1 s -0.0539750955 0.0000000000 0.0000000000 0.0000000000
|
|
8 L Bi 1 s -0.0106468363 0.0000000000 0.0000000000 0.0000000000
|
|
9 L Bi 1 s -0.3753359659 0.0000000000 0.0000000000 0.0000000000
|
|
10 L Bi 1 s 2.0255852380 0.0000000000 0.0000000000 0.0000000000
|
|
11 L Bi 1 s -32.5065105522 0.0000000000 0.0000000000 0.0000000000
|
|
12 L Bi 1 s 33.5179399407 0.0000000000 0.0000000000 0.0000000000
|
|
13 L Bi 1 s -3.2103985119 0.0000000000 0.0000000000 0.0000000000
|
|
|
|
|
|
Fermion ircop E1u
|
|
-----------------
|
|
|
|
|
|
* Electronic eigenvalue no. 1: -0.2636503416927
|
|
====================================================
|
|
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0010664311
|
|
15 L Bi 1 py 0.0000000000 0.0000000000 0.0010664311 0.0000000000
|
|
16 L Bi 1 pz 0.0000000000 -0.0010664311 0.0000000000 0.0000000000
|
|
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0009145817
|
|
18 L Bi 1 py 0.0000000000 0.0000000000 -0.0009145817 0.0000000000
|
|
19 L Bi 1 pz 0.0000000000 0.0009145817 0.0000000000 0.0000000000
|
|
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0022787769
|
|
21 L Bi 1 py 0.0000000000 0.0000000000 0.0022787769 0.0000000000
|
|
22 L Bi 1 pz 0.0000000000 -0.0022787769 0.0000000000 0.0000000000
|
|
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0142999493
|
|
24 L Bi 1 py 0.0000000000 0.0000000000 0.0142999493 0.0000000000
|
|
25 L Bi 1 pz 0.0000000000 -0.0142999493 0.0000000000 0.0000000000
|
|
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0255353336
|
|
27 L Bi 1 py 0.0000000000 0.0000000000 -0.0255353336 0.0000000000
|
|
28 L Bi 1 pz 0.0000000000 0.0255353336 0.0000000000 0.0000000000
|
|
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0916992854
|
|
30 L Bi 1 py 0.0000000000 0.0000000000 -0.0916992854 0.0000000000
|
|
31 L Bi 1 pz 0.0000000000 0.0916992854 0.0000000000 0.0000000000
|
|
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0765564516
|
|
33 L Bi 1 py 0.0000000000 0.0000000000 0.0765564516 0.0000000000
|
|
34 L Bi 1 pz 0.0000000000 -0.0765564516 0.0000000000 0.0000000000
|
|
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.2383356284
|
|
36 L Bi 1 py 0.0000000000 0.0000000000 0.2383356284 0.0000000000
|
|
37 L Bi 1 pz 0.0000000000 -0.2383356284 0.0000000000 0.0000000000
|
|
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.3123989553
|
|
39 L Bi 1 py 0.0000000000 0.0000000000 0.3123989553 0.0000000000
|
|
40 L Bi 1 pz 0.0000000000 -0.3123989553 0.0000000000 0.0000000000
|
|
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0125555045
|
|
42 L Bi 1 py 0.0000000000 0.0000000000 -0.0125555045 0.0000000000
|
|
43 L Bi 1 pz 0.0000000000 0.0125555045 0.0000000000 0.0000000000
|
|
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.1010892747
|
|
45 L Bi 1 py 0.0000000000 0.0000000000 0.1010892747 0.0000000000
|
|
46 L Bi 1 pz 0.0000000000 -0.1010892747 0.0000000000 0.0000000000
|
|
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0007348726
|
|
48 L Bi 1 py 0.0000000000 0.0000000000 -0.0007348726 0.0000000000
|
|
49 L Bi 1 pz 0.0000000000 0.0007348726 0.0000000000 0.0000000000
|
|
|
|
* Electronic eigenvalue no. 2: -0.1928178379291
|
|
====================================================
|
|
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0004036805
|
|
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0004036805 0.0000000000
|
|
16 L Bi 1 pz 0.0000000000 -0.0008073610 0.0000000000 0.0000000000
|
|
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0002003656
|
|
18 L Bi 1 py 0.0000000000 0.0000000000 0.0002003656 0.0000000000
|
|
19 L Bi 1 pz 0.0000000000 0.0004007312 0.0000000000 0.0000000000
|
|
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0007203456
|
|
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0007203456 0.0000000000
|
|
22 L Bi 1 pz 0.0000000000 -0.0014406912 0.0000000000 0.0000000000
|
|
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0068774706
|
|
24 L Bi 1 py 0.0000000000 0.0000000000 -0.0068774706 0.0000000000
|
|
25 L Bi 1 pz 0.0000000000 -0.0137549412 0.0000000000 0.0000000000
|
|
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0094516522
|
|
27 L Bi 1 py 0.0000000000 0.0000000000 0.0094516522 0.0000000000
|
|
28 L Bi 1 pz 0.0000000000 0.0189033045 0.0000000000 0.0000000000
|
|
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0709138753
|
|
30 L Bi 1 py 0.0000000000 0.0000000000 0.0709138753 0.0000000000
|
|
31 L Bi 1 pz 0.0000000000 0.1418277505 0.0000000000 0.0000000000
|
|
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0328136420
|
|
33 L Bi 1 py 0.0000000000 0.0000000000 -0.0328136420 0.0000000000
|
|
34 L Bi 1 pz 0.0000000000 -0.0656272839 0.0000000000 0.0000000000
|
|
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.1285309325
|
|
36 L Bi 1 py 0.0000000000 0.0000000000 -0.1285309325 0.0000000000
|
|
37 L Bi 1 pz 0.0000000000 -0.2570618651 0.0000000000 0.0000000000
|
|
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.2159596100
|
|
39 L Bi 1 py 0.0000000000 0.0000000000 -0.2159596100 0.0000000000
|
|
40 L Bi 1 pz 0.0000000000 -0.4319192199 0.0000000000 0.0000000000
|
|
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0178843144
|
|
42 L Bi 1 py 0.0000000000 0.0000000000 -0.0178843144 0.0000000000
|
|
43 L Bi 1 pz 0.0000000000 -0.0357686287 0.0000000000 0.0000000000
|
|
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0964700414
|
|
45 L Bi 1 py 0.0000000000 0.0000000000 -0.0964700414 0.0000000000
|
|
46 L Bi 1 pz 0.0000000000 -0.1929400828 0.0000000000 0.0000000000
|
|
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0142709326
|
|
48 L Bi 1 py 0.0000000000 0.0000000000 -0.0142709326 0.0000000000
|
|
49 L Bi 1 pz 0.0000000000 -0.0285418653 0.0000000000 0.0000000000
|
|
|
|
* Electronic eigenvalue no. 3: -0.1928178379281
|
|
====================================================
|
|
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0006991951
|
|
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0006991951 0.0000000000
|
|
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0003470434
|
|
18 L Bi 1 py 0.0000000000 0.0000000000 0.0003470434 0.0000000000
|
|
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0012476751
|
|
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0012476751 0.0000000000
|
|
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0119121285
|
|
24 L Bi 1 py 0.0000000000 0.0000000000 -0.0119121285 0.0000000000
|
|
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0163707419
|
|
27 L Bi 1 py 0.0000000000 0.0000000000 0.0163707419 0.0000000000
|
|
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.1228264349
|
|
30 L Bi 1 py 0.0000000000 0.0000000000 0.1228264349 0.0000000000
|
|
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0568348951
|
|
33 L Bi 1 py 0.0000000000 0.0000000000 -0.0568348951 0.0000000000
|
|
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.2226221055
|
|
36 L Bi 1 py 0.0000000000 0.0000000000 -0.2226221055 0.0000000000
|
|
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.3740530169
|
|
39 L Bi 1 py 0.0000000000 0.0000000000 -0.3740530169 0.0000000000
|
|
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0309765411
|
|
42 L Bi 1 py 0.0000000000 0.0000000000 -0.0309765411 0.0000000000
|
|
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.1670910131
|
|
45 L Bi 1 py 0.0000000000 0.0000000000 -0.1670910131 0.0000000000
|
|
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0247179804
|
|
48 L Bi 1 py 0.0000000000 0.0000000000 -0.0247179804 0.0000000000
|
|
|
|
* Electronic eigenvalue no. 4: 0.543878369E-01
|
|
====================================================
|
|
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0013319044
|
|
15 L Bi 1 py 0.0000000000 0.0000000000 0.0013319044 0.0000000000
|
|
16 L Bi 1 pz 0.0000000000 -0.0013319044 0.0000000000 0.0000000000
|
|
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0040384751
|
|
18 L Bi 1 py 0.0000000000 0.0000000000 -0.0040384751 0.0000000000
|
|
19 L Bi 1 pz 0.0000000000 0.0040384751 0.0000000000 0.0000000000
|
|
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0052227269
|
|
21 L Bi 1 py 0.0000000000 0.0000000000 0.0052227269 0.0000000000
|
|
22 L Bi 1 pz 0.0000000000 -0.0052227269 0.0000000000 0.0000000000
|
|
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0152711907
|
|
24 L Bi 1 py 0.0000000000 0.0000000000 -0.0152711907 0.0000000000
|
|
25 L Bi 1 pz 0.0000000000 0.0152711907 0.0000000000 0.0000000000
|
|
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0750690662
|
|
27 L Bi 1 py 0.0000000000 0.0000000000 0.0750690662 0.0000000000
|
|
28 L Bi 1 pz 0.0000000000 -0.0750690662 0.0000000000 0.0000000000
|
|
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.6682604103
|
|
30 L Bi 1 py 0.0000000000 0.0000000000 -0.6682604103 0.0000000000
|
|
31 L Bi 1 pz 0.0000000000 0.6682604103 0.0000000000 0.0000000000
|
|
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.0210077023
|
|
33 L Bi 1 py 0.0000000000 0.0000000000 1.0210077022 0.0000000000
|
|
34 L Bi 1 pz 0.0000000000 -1.0210077023 0.0000000000 0.0000000000
|
|
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.6983648033
|
|
36 L Bi 1 py 0.0000000000 0.0000000000 -0.6983648033 0.0000000000
|
|
37 L Bi 1 pz 0.0000000000 0.6983648034 0.0000000000 0.0000000000
|
|
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.6575038167
|
|
39 L Bi 1 py 0.0000000000 0.0000000000 1.6575038167 0.0000000000
|
|
40 L Bi 1 pz 0.0000000000 -1.6575038167 0.0000000000 0.0000000000
|
|
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 3.5151843985
|
|
42 L Bi 1 py 0.0000000000 0.0000000000 -3.5151843985 0.0000000000
|
|
43 L Bi 1 pz 0.0000000000 3.5151843987 0.0000000000 0.0000000000
|
|
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -3.8003792165
|
|
45 L Bi 1 py 0.0000000000 0.0000000000 3.8003792165 0.0000000000
|
|
46 L Bi 1 pz 0.0000000000 -3.8003792166 0.0000000000 0.0000000000
|
|
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 2.0263404596
|
|
48 L Bi 1 py 0.0000000000 0.0000000000 -2.0263404596 0.0000000000
|
|
49 L Bi 1 pz 0.0000000000 2.0263404596 0.0000000000 0.0000000000
|
|
|
|
* Electronic eigenvalue no. 5: 0.589241103E-01
|
|
====================================================
|
|
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0009506600
|
|
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0009506600 0.0000000000
|
|
16 L Bi 1 pz 0.0000000000 -0.0019013201 0.0000000000 0.0000000000
|
|
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0029790091
|
|
18 L Bi 1 py 0.0000000000 0.0000000000 0.0029790091 0.0000000000
|
|
19 L Bi 1 pz 0.0000000000 0.0059580182 0.0000000000 0.0000000000
|
|
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0037958004
|
|
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0037958004 0.0000000000
|
|
22 L Bi 1 pz 0.0000000000 -0.0075916008 0.0000000000 0.0000000000
|
|
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0120214854
|
|
24 L Bi 1 py 0.0000000000 0.0000000000 0.0120214854 0.0000000000
|
|
25 L Bi 1 pz 0.0000000000 0.0240429707 0.0000000000 0.0000000000
|
|
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0584402700
|
|
27 L Bi 1 py 0.0000000000 0.0000000000 -0.0584402700 0.0000000000
|
|
28 L Bi 1 pz 0.0000000000 -0.1168805400 0.0000000000 0.0000000000
|
|
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.5112896978
|
|
30 L Bi 1 py 0.0000000000 0.0000000000 0.5112896978 0.0000000000
|
|
31 L Bi 1 pz 0.0000000000 1.0225793956 0.0000000000 0.0000000000
|
|
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.7720825867
|
|
33 L Bi 1 py 0.0000000000 0.0000000000 -0.7720825867 0.0000000000
|
|
34 L Bi 1 pz 0.0000000000 -1.5441651734 0.0000000000 0.0000000000
|
|
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.5358952890
|
|
36 L Bi 1 py 0.0000000000 0.0000000000 0.5358952890 0.0000000000
|
|
37 L Bi 1 pz 0.0000000000 1.0717905780 0.0000000000 0.0000000000
|
|
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 1.2671965479
|
|
39 L Bi 1 py 0.0000000000 0.0000000000 -1.2671965479 0.0000000000
|
|
40 L Bi 1 pz 0.0000000000 -2.5343930958 0.0000000000 0.0000000000
|
|
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -2.6766954804
|
|
42 L Bi 1 py 0.0000000000 0.0000000000 2.6766954804 0.0000000000
|
|
43 L Bi 1 pz 0.0000000000 5.3533909607 0.0000000000 0.0000000000
|
|
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 2.9077366750
|
|
45 L Bi 1 py 0.0000000000 0.0000000000 -2.9077366750 0.0000000000
|
|
46 L Bi 1 pz 0.0000000000 -5.8154733500 0.0000000000 0.0000000000
|
|
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.5051505383
|
|
48 L Bi 1 py 0.0000000000 0.0000000000 1.5051505383 0.0000000000
|
|
49 L Bi 1 pz 0.0000000000 3.0103010765 0.0000000000 0.0000000000
|
|
|
|
* Electronic eigenvalue no. 6: 0.589241103E-01
|
|
====================================================
|
|
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0016465915
|
|
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0016465915 0.0000000000
|
|
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0051597951
|
|
18 L Bi 1 py 0.0000000000 0.0000000000 0.0051597951 0.0000000000
|
|
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0065745192
|
|
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0065745192 0.0000000000
|
|
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0208218234
|
|
24 L Bi 1 py 0.0000000000 0.0000000000 0.0208218234 0.0000000000
|
|
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.1012215169
|
|
27 L Bi 1 py 0.0000000000 0.0000000000 -0.1012215169 0.0000000000
|
|
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.8855797340
|
|
30 L Bi 1 py 0.0000000000 0.0000000000 0.8855797339 0.0000000000
|
|
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.3372862678
|
|
33 L Bi 1 py 0.0000000000 0.0000000000 -1.3372862677 0.0000000000
|
|
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.9281978681
|
|
36 L Bi 1 py 0.0000000000 0.0000000000 0.9281978681 0.0000000000
|
|
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -2.1948488042
|
|
39 L Bi 1 py 0.0000000000 0.0000000000 -2.1948488041 0.0000000000
|
|
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 4.6361725683
|
|
42 L Bi 1 py 0.0000000000 0.0000000000 4.6361725683 0.0000000000
|
|
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -5.0363476561
|
|
45 L Bi 1 py 0.0000000000 0.0000000000 -5.0363476561 0.0000000000
|
|
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 2.6069972053
|
|
48 L Bi 1 py 0.0000000000 0.0000000000 2.6069972053 0.0000000000
|
|
|
|
|
|
**************************************************************************
|
|
********************** Mulliken population analysis **********************
|
|
**************************************************************************
|
|
|
|
|
|
|
|
Fermion ircop E1g
|
|
-----------------
|
|
|
|
|
|
|
|
Fermion ircop E1g
|
|
-----------------
|
|
|
|
|
|
* Electronic eigenvalue no. 1: -0.6809427470926 (Occupation : f = 1.0000) m_j= 1/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 s
|
|
--------------------------------------
|
|
alpha 1.0000 | 1.0000
|
|
beta 0.0000 | 0.0000
|
|
|
|
* Electronic eigenvalue no. 2: 0.428502069E-01 (Occupation : f = 0.0000) m_j= 1/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 s
|
|
--------------------------------------
|
|
alpha 1.0000 | 1.0000
|
|
beta 0.0000 | 0.0000
|
|
|
|
|
|
** Total gross population of fermion ircop E1g **
|
|
|
|
Gross Total | L Bi 1 s
|
|
--------------------------------------
|
|
total 2.00000 | 2.00000
|
|
|
|
|
|
Fermion ircop E1u
|
|
-----------------
|
|
|
|
|
|
|
|
Fermion ircop E1u
|
|
-----------------
|
|
|
|
|
|
* Electronic eigenvalue no. 1: -0.2636503416927 (Occupation : f = 0.5000) m_j= 1/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
|
|
--------------------------------------------------------------------
|
|
alpha 0.3333 | 0.0000 0.0000 0.3333
|
|
beta 0.6667 | 0.3333 0.3333 0.0000
|
|
|
|
* Electronic eigenvalue no. 2: -0.1928178379291 (Occupation : f = 0.5000) m_j= 1/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
|
|
--------------------------------------------------------------------
|
|
alpha 0.6667 | 0.0000 0.0000 0.6667
|
|
beta 0.3333 | 0.1667 0.1667 0.0000
|
|
|
|
* Electronic eigenvalue no. 3: -0.1928178379281 (Occupation : f = 0.5000) m_j= -3/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 px L Bi 1 py
|
|
-----------------------------------------------------
|
|
alpha 0.0000 | 0.0000 0.0000
|
|
beta 1.0000 | 0.5000 0.5000
|
|
|
|
* Electronic eigenvalue no. 4: 0.543878369E-01 (Occupation : f = 0.0000) m_j= 1/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
|
|
--------------------------------------------------------------------
|
|
alpha 0.3333 | 0.0000 0.0000 0.3333
|
|
beta 0.6667 | 0.3333 0.3333 0.0000
|
|
|
|
* Electronic eigenvalue no. 5: 0.589241103E-01 (Occupation : f = 0.0000) m_j= 1/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
|
|
--------------------------------------------------------------------
|
|
alpha 0.6667 | 0.0000 0.0000 0.6667
|
|
beta 0.3333 | 0.1667 0.1667 0.0000
|
|
|
|
* Electronic eigenvalue no. 6: 0.589241103E-01 (Occupation : f = 0.0000) m_j= -3/2
|
|
============================================================================================
|
|
|
|
* Gross populations greater than 0.00010
|
|
|
|
Gross Total | L Bi 1 px L Bi 1 py
|
|
-----------------------------------------------------
|
|
alpha 0.0000 | 0.0000 0.0000
|
|
beta 1.0000 | 0.5000 0.5000
|
|
|
|
|
|
** Total gross population of fermion ircop E1u **
|
|
|
|
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
|
|
--------------------------------------------------------------------
|
|
total 3.00000 | 1.00000 1.00000 1.00000
|
|
|
|
|
|
*** Total gross population ***
|
|
|
|
Gross Total | L Bi 1 s L Bi 1 px L Bi 1 py L Bi 1 pz
|
|
-----------------------------------------------------------------------------------
|
|
total 5.00000 | 2.00000 1.00000 1.00000 1.00000
|
|
===========================================================================
|
|
* PCMOUT: Coefficients read from unformatted DFCOEF
|
|
and written to formatted DFPCMO
|
|
===========================================================================
|
|
|
|
|
|
*************************************************************************
|
|
******************** Resolution of open-shell states ********************
|
|
*************************************************************************
|
|
|
|
- Number of active electrons: 3
|
|
- Active orbitals:
|
|
|
|
|
|
* Fermion ircop E1g
|
|
|
|
No orbitals for index 1
|
|
|
|
|
|
* Fermion ircop E1u
|
|
|
|
Index 1 3 orbitals
|
|
1 2 3
|
|
- Core orbitals:
|
|
|
|
|
|
* Fermion ircop E1g
|
|
|
|
Index 1 1 orbitals
|
|
1
|
|
|
|
|
|
* Fermion ircop E1u
|
|
|
|
No orbitals for index 1
|
|
|
|
|
|
**************************************************************************
|
|
**************** Transformation to Molecular Spinor Basis ****************
|
|
**************************************************************************
|
|
|
|
|
|
Written by Luuk Visscher, Jon Laerdahl & Trond Saue
|
|
Odense, 1997
|
|
|
|
|
|
|
|
|
|
********************************************************************
|
|
**************** Transformation of core Fock matrix ****************
|
|
********************************************************************
|
|
|
|
|
|
Transformation started at : Mon Oct 4 09:54:22 2021
|
|
|
|
* REACMO: Coefficients read from file DFCOEF - Total energy: -5.22216430320653835
|
|
* Heading :DIRAC: No title specified !!! Mon Oct 4 09:54:22 2021
|
|
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
|
|
SOfock:LL 1.00D-12 93.19% 0.94% 1.41% 2.14% 0.02173698s
|
|
|
|
* REAFCK: Fock matrix read from file /home/cmelton/DIRAC_scratch_directory/cmelton/DIRAC_df_Bi_45
|
|
* Heading :DIRAC: No title specified !!! Mon Oct 4 09:54:21 2021
|
|
|
|
|
|
Core energy (includes nuclear repulsion) : -3.5207856104
|
|
- Electronic part : -3.5207856104
|
|
- One-electron terms : -3.9101963154
|
|
- Two-electron terms : 0.3894107050
|
|
|
|
|
|
MOLFDIR file MRCONEE is written
|
|
|
|
|
|
**************************************************************************
|
|
**************** Transformation to Molecular Spinor Basis ****************
|
|
**************************************************************************
|
|
|
|
|
|
Written by Luuk Visscher, Jon Laerdahl & Trond Saue
|
|
Odense, 1997
|
|
|
|
|
|
|
|
|
|
************************************************************************
|
|
**************** Transformation of 2-electron integrals ****************
|
|
************************************************************************
|
|
|
|
|
|
Transformation started at : Mon Oct 4 09:54:23 2021
|
|
|
|
* REACMO: Coefficients read from file DFCOEF - Total energy: -5.22216430320653835
|
|
* Heading :DIRAC: No title specified !!! Mon Oct 4 09:54:22 2021
|
|
- Integral class 1 : (LL|??)
|
|
- Beginning task 1 of 4 after 0. seconds and 0. CPU-seconds
|
|
- Beginning task 2 of 4 after 0. seconds and 0. CPU-seconds
|
|
- Beginning task 3 of 4 after 0. seconds and 0. CPU-seconds
|
|
- Beginning task 4 of 4 after 0. seconds and 0. CPU-seconds
|
|
* Screening statistics:
|
|
(LL|LL)ints : 97.71%
|
|
Total : 97.71%
|
|
|
|
- Starting symmetrization after 0.11 seconds
|
|
- Finished symmetrization after 0.11 seconds
|
|
|
|
- Binary file MDCINT was written.
|
|
|
|
------ Timing report (in CPU seconds) of module integral transformation
|
|
|
|
Time in Initializing MS4IND file 0.002 seconds
|
|
Time in Computing+transform. integral 0.089 seconds
|
|
Time in Symmetrizing MO integrals 0.000 seconds
|
|
|
|
|
|
Total wall time used in RESOLV : 0.11310000s
|
|
Total CPU time used in RESOLV : 0.09297000s
|
|
|
|
Transformation ended at : Mon Oct 4 09:54:23 2021
|
|
GASRES: Set up the following information:
|
|
1g -1g 3g -3g 5g -5g 7g -7g 9g -9g 11g -11g 13g -13g 15g -15g 1u -1u 3u -3u 5u -5u 7u -7u 9u -9u 11u -11u 13u -13u 15u -15u
|
|
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0
|
|
0
|
|
|
|
|
|
|
|
GOSCIP (Version 1.8)
|
|
|
|
Today is : 4 Oct 21
|
|
The time is : 09:54:23
|
|
|
|
|
|
&POPAN
|
|
THRESH = 1.000000000000000E-003,
|
|
DEGEN = 1.000000000000000E-010,
|
|
SELPOP = 100.000000000000 ,
|
|
MAXPOP = 100
|
|
/
|
|
|
|
|
|
All information read from MRCONEE (and input)
|
|
|
|
|
|
Number of electrons: 3
|
|
Decimal representation of frozen orbitals: 0
|
|
|
|
IACEL (number of active electrons)
|
|
has been calculated from MAXE: 0
|
|
|
|
|
|
Breit interaction included : F
|
|
Core energy : -3.520785610
|
|
Number of active orbitals : 6
|
|
|
|
Orbital Representation Orbital energy
|
|
1 Eu 1Eu -0.2636503417
|
|
2 Eu 1Eu -0.1928178379
|
|
3 Eu 1Eu -0.1928178379
|
|
4 Eu 2Eu -0.2636503417
|
|
5 Eu 2Eu -0.1928178379
|
|
6 Eu 2Eu -0.1928178379
|
|
Number of determinants:
|
|
Symmetry 1g : 0
|
|
Symmetry -1g : 0
|
|
Symmetry 3g : 0
|
|
Symmetry -3g : 0
|
|
Symmetry 5g : 0
|
|
Symmetry -5g : 0
|
|
Symmetry 7g : 0
|
|
Symmetry -7g : 0
|
|
Symmetry 9g : 0
|
|
Symmetry -9g : 0
|
|
Symmetry 11g : 0
|
|
Symmetry -11g : 0
|
|
Symmetry 13g : 0
|
|
Symmetry -13g : 0
|
|
Symmetry 15g : 0
|
|
Symmetry -15g : 0
|
|
Symmetry 1u : 5
|
|
Symmetry -1u : 5
|
|
Symmetry 3u : 4
|
|
Symmetry -3u : 4
|
|
Symmetry 5u : 1
|
|
Symmetry -5u : 1
|
|
Symmetry 7u : 0
|
|
Symmetry -7u : 0
|
|
Symmetry 9u : 0
|
|
Symmetry -9u : 0
|
|
Symmetry 11u : 0
|
|
Symmetry -11u : 0
|
|
Symmetry 13u : 0
|
|
Symmetry -13u : 0
|
|
Symmetry 15u : 0
|
|
Symmetry -15u : 0
|
|
|
|
Coulomb integral file was generated at 4Oct21 09:54:23
|
|
Read 66 unique integrals
|
|
|
|
Representation 1u; 5 vectors written to file MDTRIV_ 1u
|
|
|
|
Eigenvalues -5.300947773703
|
|
-5.244255749591
|
|
-5.222705799962
|
|
-5.186731495648
|
|
-5.138193550557
|
|
|
|
CPU time for this representation
|
|
|
|
Generation of determinants : 0.0000
|
|
Building the CI matrix : 0.0000
|
|
Diagonalization : 0.0037
|
|
Writing CI vectors : 0.0008
|
|
|
|
Population analysis for representation 1u
|
|
The first 5 vectors are analyzed
|
|
|
|
energy det# determinant norm Re Im
|
|
------ ---- ----------- ---- -- --
|
|
-5.30094777
|
|
1 110100 0.7371 -0.8586 0.0000
|
|
2 110010 0.0416 0.2040 0.0000
|
|
3 101001 0.0416 -0.2040 0.0000
|
|
4 011001 0.0547 -0.2340 0.0000
|
|
5 000111 0.1249 -0.3534 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.8204
|
|
2 -0.1928178379 0.8335
|
|
3 -0.1928178379 0.0964
|
|
4 -0.2636503417 0.8620
|
|
5 -0.1928178379 0.1665
|
|
6 -0.1928178379 0.2212
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.24425575
|
|
1 110100 0.2246 -0.4740 0.0000
|
|
2 110010 0.1550 -0.3937 0.0000
|
|
3 101001 0.1550 0.3937 0.0000
|
|
5 000111 0.4649 0.6818 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.5346
|
|
2 -0.1928178379 0.3801
|
|
3 -0.1928178379 0.1555
|
|
4 -0.2636503417 0.6895
|
|
5 -0.1928178379 0.6199
|
|
6 -0.1928178379 0.6204
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.22270580
|
|
2 110010 0.3000 -0.5477 0.0000
|
|
3 101001 0.3000 0.5477 0.0000
|
|
5 000111 0.4000 -0.6325 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.6000
|
|
2 -0.1928178379 0.3000
|
|
3 -0.1928178379 0.3000
|
|
4 -0.2636503417 0.4000
|
|
5 -0.1928178379 0.7000
|
|
6 -0.1928178379 0.7000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.18673150
|
|
2 110010 0.5000 0.7071 0.0000
|
|
3 101001 0.5000 0.7071 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 1.0000
|
|
2 -0.1928178379 0.5000
|
|
3 -0.1928178379 0.5000
|
|
4 -0.2636503417 0.0000
|
|
5 -0.1928178379 0.5000
|
|
6 -0.1928178379 0.5000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.13819355
|
|
1 110100 0.0382 0.1955 0.0000
|
|
2 110010 0.0034 -0.0583 0.0000
|
|
3 101001 0.0034 0.0583 0.0000
|
|
4 011001 0.9447 -0.9720 0.0000
|
|
5 000111 0.0102 0.1011 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.0450
|
|
2 -0.1928178379 0.9864
|
|
3 -0.1928178379 0.9482
|
|
4 -0.2636503417 0.0484
|
|
5 -0.1928178379 0.0136
|
|
6 -0.1928178379 0.9584
|
|
Sum of occupations : 3.0000
|
|
|
|
|
|
Representation -1u; 5 vectors written to file MDTRIV_ -1u
|
|
|
|
Eigenvalues -5.300947773703
|
|
-5.244255749591
|
|
-5.222705799962
|
|
-5.186731495648
|
|
-5.138193550557
|
|
|
|
CPU time for this representation
|
|
|
|
Generation of determinants : 0.0000
|
|
Building the CI matrix : 0.0000
|
|
Diagonalization : 0.0035
|
|
Writing CI vectors : 0.0007
|
|
|
|
Population analysis for representation -1u
|
|
The first 5 vectors are analyzed
|
|
|
|
energy det# determinant norm Re Im
|
|
------ ---- ----------- ---- -- --
|
|
-5.30094777
|
|
1 111000 0.1249 -0.3534 0.0000
|
|
2 100110 0.7371 -0.8586 0.0000
|
|
3 010110 0.0416 0.2040 0.0000
|
|
4 001101 0.0416 -0.2040 0.0000
|
|
5 001011 0.0547 -0.2340 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.8620
|
|
2 -0.1928178379 0.1665
|
|
3 -0.1928178379 0.2212
|
|
4 -0.2636503417 0.8204
|
|
5 -0.1928178379 0.8335
|
|
6 -0.1928178379 0.0964
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.24425575
|
|
1 111000 0.4649 0.6818 0.0000
|
|
2 100110 0.2246 -0.4740 0.0000
|
|
3 010110 0.1550 -0.3937 0.0000
|
|
4 001101 0.1550 0.3937 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.6895
|
|
2 -0.1928178379 0.6199
|
|
3 -0.1928178379 0.6204
|
|
4 -0.2636503417 0.5346
|
|
5 -0.1928178379 0.3801
|
|
6 -0.1928178379 0.1555
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.22270580
|
|
1 111000 0.4000 0.6325 0.0000
|
|
3 010110 0.3000 0.5477 0.0000
|
|
4 001101 0.3000 -0.5477 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.4000
|
|
2 -0.1928178379 0.7000
|
|
3 -0.1928178379 0.7000
|
|
4 -0.2636503417 0.6000
|
|
5 -0.1928178379 0.3000
|
|
6 -0.1928178379 0.3000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.18673150
|
|
3 010110 0.5000 0.7071 0.0000
|
|
4 001101 0.5000 0.7071 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.0000
|
|
2 -0.1928178379 0.5000
|
|
3 -0.1928178379 0.5000
|
|
4 -0.2636503417 1.0000
|
|
5 -0.1928178379 0.5000
|
|
6 -0.1928178379 0.5000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.13819355
|
|
1 111000 0.0102 -0.1011 0.0000
|
|
2 100110 0.0382 -0.1955 0.0000
|
|
3 010110 0.0034 0.0583 0.0000
|
|
4 001101 0.0034 -0.0583 0.0000
|
|
5 001011 0.9447 0.9720 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.0484
|
|
2 -0.1928178379 0.0136
|
|
3 -0.1928178379 0.9584
|
|
4 -0.2636503417 0.0450
|
|
5 -0.1928178379 0.9864
|
|
6 -0.1928178379 0.9482
|
|
Sum of occupations : 3.0000
|
|
|
|
|
|
Representation 3u; 4 vectors written to file MDTRIV_ 3u
|
|
|
|
Eigenvalues -5.300947773703
|
|
-5.244255749591
|
|
-5.222705799962
|
|
-5.138193550557
|
|
|
|
CPU time for this representation
|
|
|
|
Generation of determinants : 0.0000
|
|
Building the CI matrix : 0.0000
|
|
Diagonalization : 0.0035
|
|
Writing CI vectors : 0.0006
|
|
|
|
Population analysis for representation 3u
|
|
The first 4 vectors are analyzed
|
|
|
|
energy det# determinant norm Re Im
|
|
------ ---- ----------- ---- -- --
|
|
-5.30094777
|
|
1 100101 0.7371 -0.8586 0.0000
|
|
2 010101 0.1665 -0.4081 0.0000
|
|
3 100011 0.0416 0.2040 0.0000
|
|
4 010011 0.0547 0.2340 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.7788
|
|
2 -0.1928178379 0.2212
|
|
3 -0.1928178379 0.0000
|
|
4 -0.2636503417 0.9036
|
|
5 -0.1928178379 0.0964
|
|
6 -0.1928178379 1.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.24425575
|
|
1 100101 0.2246 -0.4740 0.0000
|
|
2 010101 0.6199 0.7873 0.0000
|
|
3 100011 0.1550 -0.3937 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.3796
|
|
2 -0.1928178379 0.6204
|
|
3 -0.1928178379 0.0000
|
|
4 -0.2636503417 0.8445
|
|
5 -0.1928178379 0.1555
|
|
6 -0.1928178379 1.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.22270580
|
|
2 010101 0.2000 0.4472 0.0000
|
|
3 100011 0.8000 0.8944 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.8000
|
|
2 -0.1928178379 0.2000
|
|
3 -0.1928178379 0.0000
|
|
4 -0.2636503417 0.2000
|
|
5 -0.1928178379 0.8000
|
|
6 -0.1928178379 1.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.13819355
|
|
1 100101 0.0382 0.1955 0.0000
|
|
2 010101 0.0136 0.1167 0.0000
|
|
3 100011 0.0034 -0.0583 0.0000
|
|
4 010011 0.9447 0.9720 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.0416
|
|
2 -0.1928178379 0.9584
|
|
3 -0.1928178379 0.0000
|
|
4 -0.2636503417 0.0518
|
|
5 -0.1928178379 0.9482
|
|
6 -0.1928178379 1.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
|
|
Representation -3u; 4 vectors written to file MDTRIV_ -3u
|
|
|
|
Eigenvalues -5.300947773703
|
|
-5.244255749591
|
|
-5.222705799962
|
|
-5.138193550557
|
|
|
|
CPU time for this representation
|
|
|
|
Generation of determinants : 0.0000
|
|
Building the CI matrix : 0.0000
|
|
Diagonalization : 0.0036
|
|
Writing CI vectors : 0.0006
|
|
|
|
Population analysis for representation -3u
|
|
The first 4 vectors are analyzed
|
|
|
|
energy det# determinant norm Re Im
|
|
------ ---- ----------- ---- -- --
|
|
-5.30094777
|
|
1 101100 0.7371 0.8586 0.0000
|
|
2 011100 0.0416 -0.2040 0.0000
|
|
3 101010 0.1665 0.4081 0.0000
|
|
4 011010 0.0547 -0.2340 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.9036
|
|
2 -0.1928178379 0.0964
|
|
3 -0.1928178379 1.0000
|
|
4 -0.2636503417 0.7788
|
|
5 -0.1928178379 0.2212
|
|
6 -0.1928178379 0.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.24425575
|
|
1 101100 0.2246 0.4740 0.0000
|
|
2 011100 0.1550 0.3937 0.0000
|
|
3 101010 0.6199 -0.7873 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.8445
|
|
2 -0.1928178379 0.1555
|
|
3 -0.1928178379 1.0000
|
|
4 -0.2636503417 0.3796
|
|
5 -0.1928178379 0.6204
|
|
6 -0.1928178379 0.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.22270580
|
|
2 011100 0.8000 -0.8944 0.0000
|
|
3 101010 0.2000 -0.4472 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.2000
|
|
2 -0.1928178379 0.8000
|
|
3 -0.1928178379 1.0000
|
|
4 -0.2636503417 0.8000
|
|
5 -0.1928178379 0.2000
|
|
6 -0.1928178379 0.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
-5.13819355
|
|
1 101100 0.0382 0.1955 0.0000
|
|
2 011100 0.0034 -0.0583 0.0000
|
|
3 101010 0.0136 0.1167 0.0000
|
|
4 011010 0.9447 0.9720 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.0518
|
|
2 -0.1928178379 0.9482
|
|
3 -0.1928178379 1.0000
|
|
4 -0.2636503417 0.0416
|
|
5 -0.1928178379 0.9584
|
|
6 -0.1928178379 0.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
|
|
Representation 5u; 1 vectors written to file MDTRIV_ 5u
|
|
|
|
Eigenvalues -5.222705799962
|
|
|
|
CPU time for this representation
|
|
|
|
Generation of determinants : 0.0000
|
|
Building the CI matrix : 0.0000
|
|
Diagonalization : 0.0038
|
|
Writing CI vectors : 0.0005
|
|
|
|
Population analysis for representation 5u
|
|
The first 1 vectors are analyzed
|
|
|
|
energy det# determinant norm Re Im
|
|
------ ---- ----------- ---- -- --
|
|
-5.22270580
|
|
1 110001 1.0000 1.0000 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 1.0000
|
|
2 -0.1928178379 1.0000
|
|
3 -0.1928178379 0.0000
|
|
4 -0.2636503417 0.0000
|
|
5 -0.1928178379 0.0000
|
|
6 -0.1928178379 1.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
|
|
Representation -5u; 1 vectors written to file MDTRIV_ -5u
|
|
|
|
Eigenvalues -5.222705799962
|
|
|
|
CPU time for this representation
|
|
|
|
Generation of determinants : 0.0000
|
|
Building the CI matrix : 0.0000
|
|
Diagonalization : 0.0037
|
|
Writing CI vectors : 0.0005
|
|
|
|
Population analysis for representation -5u
|
|
The first 1 vectors are analyzed
|
|
|
|
energy det# determinant norm Re Im
|
|
------ ---- ----------- ---- -- --
|
|
-5.22270580
|
|
1 001110 1.0000 1.0000 0.0000
|
|
Orb. Orbital energy Occupation
|
|
1 -0.2636503417 0.0000
|
|
2 -0.1928178379 0.0000
|
|
3 -0.1928178379 1.0000
|
|
4 -0.2636503417 1.0000
|
|
5 -0.1928178379 1.0000
|
|
6 -0.1928178379 0.0000
|
|
Sum of occupations : 3.0000
|
|
|
|
|
|
( 1 au = 27.2113834378 eV / 219474.631280634 cm-1)
|
|
|
|
|
|
Energy eigenvalues in atomic units
|
|
|
|
Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy
|
|
|
|
1 0.0000000000 -1.780162163308 -5.300947773703 ( 4 * )
|
|
2 0.0566920241 -1.723470139197 -5.244255749591 ( 4 * )
|
|
3 0.0782419737 -1.701920189567 -5.222705799962 ( 6 * )
|
|
4 0.1142162781 -1.665945885253 -5.186731495648 ( 2 * )
|
|
5 0.1627542231 -1.617407940163 -5.138193550557 ( 4 * )
|
|
|
|
|
|
Total average: -5.2221643043
|
|
|
|
|
|
Relative real eigenvalues in other units;
|
|
Symmetry Classification in the Abelian subgroup
|
|
|
|
Level eigenvalue (eV) Eigenvalue (cm-1) 1g| -1g| 3g| -3g| 5g| -5g| 7g| -7g|
|
|
|
|
1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0|
|
|
2 1.542668406 12442.461088 0| 0| 0| 0| 0| 0| 0| 0|
|
|
3 2.129072348 17172.128337 0| 0| 0| 0| 0| 0| 0| 0|
|
|
4 3.107982937 25067.575512 0| 0| 0| 0| 0| 0| 0| 0|
|
|
5 4.428767572 35720.423114 0| 0| 0| 0| 0| 0| 0| 0|
|
|
|
|
|
|
Relative real eigenvalues in other units;
|
|
Symmetry Classification in the Abelian subgroup
|
|
|
|
Level eigenvalue (eV) Eigenvalue (cm-1) 9g| -9g| 11g|-11g| 13g|-13g| 15g|-15g|
|
|
|
|
1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0|
|
|
2 1.542668406 12442.461088 0| 0| 0| 0| 0| 0| 0| 0|
|
|
3 2.129072348 17172.128337 0| 0| 0| 0| 0| 0| 0| 0|
|
|
4 3.107982937 25067.575512 0| 0| 0| 0| 0| 0| 0| 0|
|
|
5 4.428767572 35720.423114 0| 0| 0| 0| 0| 0| 0| 0|
|
|
|
|
|
|
Relative real eigenvalues in other units;
|
|
Symmetry Classification in the Abelian subgroup
|
|
|
|
Level eigenvalue (eV) Eigenvalue (cm-1) 1u| -1u| 3u| -3u| 5u| -5u| 7u| -7u|
|
|
|
|
1 0.000000000 0.000000 1| 1| 1| 1| 0| 0| 0| 0|
|
|
2 1.542668406 12442.461088 1| 1| 1| 1| 0| 0| 0| 0|
|
|
3 2.129072348 17172.128337 1| 1| 1| 1| 1| 1| 0| 0|
|
|
4 3.107982937 25067.575512 1| 1| 0| 0| 0| 0| 0| 0|
|
|
5 4.428767572 35720.423114 1| 1| 1| 1| 0| 0| 0| 0|
|
|
|
|
|
|
Relative real eigenvalues in other units;
|
|
Symmetry Classification in the Abelian subgroup
|
|
|
|
Level eigenvalue (eV) Eigenvalue (cm-1) 9u| -9u| 11u|-11u| 13u|-13u| 15u|-15u|
|
|
|
|
1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0|
|
|
2 1.542668406 12442.461088 0| 0| 0| 0| 0| 0| 0| 0|
|
|
3 2.129072348 17172.128337 0| 0| 0| 0| 0| 0| 0| 0|
|
|
4 3.107982937 25067.575512 0| 0| 0| 0| 0| 0| 0| 0|
|
|
5 4.428767572 35720.423114 0| 0| 0| 0| 0| 0| 0| 0|
|
|
=====================
|
|
|
|
|
|
Total CPU time : 0.0313
|
|
|
|
(NORMAL END OF PROGRAM)
|
|
|
|
|
|
|
|
|
|
*****************************************************
|
|
********** E N D of D I R A C output **********
|
|
*****************************************************
|
|
|
|
|
|
|
|
Date and time (Linux) : Mon Oct 4 09:54:23 2021
|
|
Host name : cee-compute025
|
|
|
|
|
|
Dynamical Memory Usage Summary for Master
|
|
|
|
Mean allocation size (Mb) : 84.22
|
|
|
|
Largest 10 allocations
|
|
|
|
488.28 Mb at subroutine resolv_+0x9e for WORK in RESOLV
|
|
488.28 Mb at subroutine pamana_+0x97 for WORK in PAMANA
|
|
488.28 Mb at subroutine psiscf_+0xa5 for WORK in PSISCF
|
|
488.28 Mb at subroutine pamset_+0x1833 for WORK in PAMSET - 2
|
|
488.28 Mb at subroutine gmotra_+0x537b for WORK in GMOTRA
|
|
488.28 Mb at subroutine pamset_+0x91 for WORK in PAMSET - 1
|
|
488.28 Mb at subroutine MAIN__+0x2a8 for test allocation of work array in DIRAC mai
|
|
244.14 Mb at subroutine diagh_+0x100 for ee
|
|
244.14 Mb at subroutine diagh_+0x100 for ee
|
|
244.14 Mb at subroutine diagh_+0x100 for ee
|
|
|
|
Peak memory usage: 732.54 MB
|
|
Peak memory usage: 0.715 GB
|
|
reached at subroutine : diagh_+0x133
|
|
for variable : e2
|
|
|
|
MEMGET high-water mark: 0.00 MB
|
|
|
|
*****************************************************
|
|
>>>> Node 0, utime: 1, stime: 0, minflt: 6592, majflt: 34, nvcsw: 639, nivcsw: 2, maxrss: 158076
|
|
>>>> Total WALL time used in DIRAC: 2s
|
|
DIRAC pam run in /home/cmelton/codes/qmcpack/tests/converter/test_Bi_dirac
|