qmcpack/tests/converter/test_Bi_dirac/df_Bi.out

2246 lines
115 KiB
Plaintext

DIRAC serial starts by allocating 64000000 words ( 488.28 MB - 0.477 GB) of memory
out of the allowed maximum of 2147483648 words ( 16384.00 MB - 16.000 GB)
Note: maximum allocatable memory for serial run can be set by pam --aw/--ag
*******************************************************************************
* *
* O U T P U T *
* from *
* *
* @@@@@ @@ @@@@@ @@@@ @@@@@ *
* @@ @@ @@ @@ @@ @@ @@ *
* @@ @@ @@ @@@@@ @@@@@@ @@ *
* @@ @@ @@ @@ @@ @@ @@ @@ *
* @@@@@ @@ @@ @@ @@ @@ @@@@@ *
* *
* *
%}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:<S///</:|/:|:/::!:.::--:%
$?S$$%$$$$?%?$(SSS$SSSHMMMMMMMMMMMMMMMMMM6H&6S&SH&&k?6$r~::://///::::::.:::-::$
(%?)Z??$$$(S%$>$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::(
$S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$
SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S
SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S
?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::?
S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S
(?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/?</>?~:///::|/!:/-:-:.(
$S?%?<H(MMMMMMMMMMMMMMMMR?`. :.:`::<>:``?/*?##*)$:/> `((%://::/:::::/::/$
S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS
c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%</>!:::::c
S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S
$SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$
$%$%&MMMMMMMMMMMMMMMMM:. ?%/S:</::/::$
($?}&HMMMMMMMMMMMMMMMM>: $%%<?/i:|i::(
Z$($&MMMMMMMMMMMMMMMMHk(:. . - .S/\?\?/!:/:Z
(??$<HMMMMMMMMMMMMMMMFk|: -.-. :%/%/(:/:ii|(
SZ(S?]MMMMMMMMMMMMMMHS?:- - ::.: |/S:</::?||S
$%)$$(MMMMMMMMMMMMMMR):`:. :.:::`,,/bcokb/_ :S?%?|~:/:/:$
%$$%$)[[?$?MMMMMMMMMM: :.:-.::::$7?<&7&MMMMMMM#/ _ .. ..:</?:(:/::::%
$$$?Z?HHH~|/MMMMMMMMM/`.-.:.:/:%%%%?dHMMMMMMMMMMH?,- .,bMMMM6//./i~/~:<:::/:$
$($S$M//::S?ZHMMMMMH/:.`:::.:/%S/&MMHMMMMMMMMRM&>< ,HMMMMMMMF :::?:///:|:::$
)[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/)
$$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$
$&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SS<S:)!/////$
Z&]>b[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z
$$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$
&$&$&$k&>>|?<:<?((/$[/?)i~/:/. - - S?:%%%?/:::/::&
=[/Z[[Fp[MMH$>?Z&S$$$/$S///||..- -.- /((S$:%<:///:/=
$&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$
MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M
MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v</Jq1&&D]&M&<, :/::/?%%)S>?://:M
MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M
MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M
MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/<SM
MMMMMMMMMMMM||$)&7k&MMMMH9]$$??Z%|!/:i::` `` . SS?SS?Z/]1$/&$c/$SM
MMMMMMMMMMMM| -?>[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//<M
MMMMMMMMMMMMR `$&&&HMM9MMMMMMM&&c$%%:/:/:.:.:/\?\?/\ _MMHk/7S/]dq&1S<&&></M
MMMMMMMMMMMMM? :&96MHMMMMMMMMMMMHHk[S%(<<:// ` ,MMMMMMM&/Z6H]DkH]1$&&M
MMMMMMMMMMMMMD 99H9HMMMMMMMMMMMMMMMb&%$<:i.:.... .MMMMMMMMM6HHHRH&H&H1SFM
MMMMMMMMMMMMMM| `?HMMMMMMMMMMMMMMMMMMMHk6k&>$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM
MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M
MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M
MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM
MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M
MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M
MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM
MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M
MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M
MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM
MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M
MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM
MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M
*******************************************************************************
* *
* ========================================================= *
* Program for Atomic and Molecular *
* Direct Iterative Relativistic All-electron Calculations *
* ========================================================= *
* *
* *
* Written by: *
* *
* Andre S. P. Gomes CNRS/Universite de Lille France *
* Trond Saue Universite Toulouse III France *
* Lucas Visscher Vrije Universiteit Amsterdam Netherlands *
* Hans Joergen Aa. Jensen University of Southern Denmark Denmark *
* Radovan Bast UiT The Arctic University of Norway *
* *
* with contributions from: *
* *
* Ignacio Agustin Aucar Northeast National University Argentina *
* Vebjoern Bakken University of Oslo Norway *
* Kenneth G. Dyall Schrodinger, Inc., Portland USA *
* Sebastien Dubillard University of Strasbourg France *
* Ulf Ekstroem University of Oslo Norway *
* Ephraim Eliav University of Tel Aviv Israel *
* Thomas Enevoldsen University of Southern Denmark Denmark *
* Elke Fasshauer University of Aarhus Denmark *
* Timo Fleig Universite Toulouse III France *
* Olav Fossgaard UiT The Arctic University of Norway *
* Loic Halbert Universite de Lille France *
* Erik D. Hedegaard Lund University Sweden *
* Trygve Helgaker University of Oslo Norway *
* Benjamin Helmich-Paris Max Planck Institute f. Coal Res. Germany *
* Johan Henriksson Linkoeping University Sweden *
* Miroslav Ilias Matej Bel University Slovakia *
* Christoph R. Jacob TU Braunschweig Germany *
* Stefan Knecht ETH Zuerich Switzerland *
* Stanislav Komorovsky UiT The Arctic University of Norway *
* Ossama Kullie University of Kassel Germany *
* Jon K. Laerdahl University of Oslo Norway *
* Christoffer V. Larsen University of Southern Denmark Denmark *
* Yoon Sup Lee KAIST, Daejeon South Korea *
* Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary *
* Malaya Kumar Nayak Bhabha Atomic Research Centre India *
* Patrick Norman Stockholm Inst. of Technology Sweden *
* Malgorzata Olejniczak University of Warsaw Poland *
* Jeppe Olsen Aarhus University Denmark *
* Jogvan Magnus H. Olsen University of Southern Denmark Denmark *
* Young Choon Park KAIST, Daejeon South Korea *
* Jesper K. Pedersen University of Southern Denmark Denmark *
* Markus Pernpointner University of Heidelberg Germany *
* Roberto Di Remigio UiT The Arctic University of Norway *
* Kenneth Ruud UiT The Arctic University of Norway *
* Pawel Salek Stockholm Inst. of Technology Sweden *
* Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany *
* Bruno Senjean University of Leiden Netherlands *
* Avijit Shee University of Michigan USA *
* Jetze Sikkema Vrije Universiteit Amsterdam Netherlands *
* Andreas J. Thorvaldsen UiT The Arctic University of Norway *
* Joern Thyssen University of Southern Denmark Denmark *
* Joost van Stralen Vrije Universiteit Amsterdam Netherlands *
* Marta L. Vidal Technical University of Denmark Denmark *
* Sebastien Villaume Linkoeping University Sweden *
* Olivier Visser University of Groningen Netherlands *
* Toke Winther University of Southern Denmark Denmark *
* Shigeyoshi Yamamoto Chukyo University Japan *
* *
* For more information about the DIRAC code see http://diracprogram.org *
* *
* This is an experimental code. The authors accept no responsibility *
* for the performance of the code or for the correctness of the results. *
* *
* The code (in whole or part) is not to be reproduced for further *
* distribution without the written permission of the authors or *
* their representatives. *
* *
* If results obtained with this code are published, an *
* appropriate citation would be: *
* *
* DIRAC, a relativistic ab initio electronic structure program, *
* Release DIRAC19 (2019), written by *
* A. S. P. Gomes, T. Saue, L. Visscher, H. J. Aa. Jensen, and R. Bast, *
* with contributions from I. A. Aucar, V. Bakken, K. G. Dyall, *
* S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, *
* T. Fleig, O. Fossgaard, L. Halbert, E. D. Hedegaard, T. Helgaker, *
* J. Henriksson, M. Ilias, Ch. R. Jacob, S. Knecht, S. Komorovsky, *
* O. Kullie, J. K. Laerdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, *
* M. K. Nayak, P. Norman, M. Olejniczak, J. Olsen, J. M. H. Olsen, *
* Y. C. Park, J. K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, *
* P. Salek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, *
* A. J. Thorvaldsen, J. Thyssen, J. van Stralen, M. L. Vidal, S. Villaume, *
* O. Visser, T. Winther, and S. Yamamoto (see http://diracprogram.org). *
* *
*******************************************************************************
Version information
-------------------
Branch |
Commit hash |
Commit author |
Commit date |
Configuration and build information
-----------------------------------
Who compiled | cmelton
Compiled on server | cee-build013
Operating system | Linux-3.10.0-1062.9.1.el7.x86_64
CMake version | 3.10.3
CMake generator | Unix Makefiles
CMake build type | release
Configuration time | 2020-08-28 22:02:19.859135
Python version | 2.7.5
Fortran compiler | /projects/sems/install/rhel7-x86_64/sems/compiler/intel/19.0.5/base/bin/ifort
Fortran compiler version | 19.0
Fortran compiler flags | -w -assume byterecl -g -traceback -DVAR_IFORT
C compiler | /projects/sems/install/rhel7-x86_64/sems/compiler/intel/19.0.5/base/bin/icc
C compiler version | 19.0
C compiler flags | -g -wd981 -wd279 -wd383 -wd1572 -wd177
C++ compiler | /projects/sems/install/rhel7-x86_64/sems/compiler/intel/19.0.5/base/bin/icpc
C++ compiler version | 19.0.5
C++ compiler flags | -Wno-unknown-pragmas
Static linking | False
64-bit integers | False
MPI parallelization | False
MPI launcher | unknown
Math libraries | /lib64/atlas/libatlas.a;/lib64/liblapack.so;/lib64/libblas.so
Builtin BLAS library | OFF
Builtin LAPACK library | OFF
Explicit libraries | unknown
Compile definitions | HAVE_SYSTEM_NATIVE_BLAS;HAVE_ATLAS_LAPACK;SYS_LINUX;PRG_DIRAC;INSTALL_WRKMEM=64000000;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES
LAPACK integer*4/8 selftest passed
Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED
Execution time and host
-----------------------
Date and time (Linux) : Mon Oct 4 09:54:21 2021
Host name : cee-compute025
Contents of the input file
--------------------------
**DIRAC
.WAVE FUNCTION
.ANALYZE
**HAMILTONIAN
.ECP
**INTEGRALS
*READIN
.UNCONTRACT
**WAVE FUNCTION
.SCF
.RESOLVE
*SCF
.CLOSED SHELL
2 0
.OPEN SHELL
1
3/0,6
.EVCCNV
1.0d-05
**ANALYZE
.PRIVEC
.MULPOP
*PRIVEC
.AOLAB
.VECPRI
1..2
1..6
.PRINT
1
*MULPOP
.AOLAB
.VECPOP
1..2
1..6
.PRINT
1
**GENERAL
.PCMOUT
*END OF
&GOSCIP IPRNT=5 &END
Contents of the molecule file
-----------------------------
INTGRL
Bi
Bi STU ecp
C 1
83. 1
Bi 0.000000 0.00000000 0.00000000
LARGE EXPLICIT 4 1 1 1 1
f 13 0
798.633
95.0023
21.2520
13.2919
8.31210
5.19476
1.90972
0.962271
0.356026
0.168327
0.0784
0.073265
0.0297
f 12 0
19.2259
12.0378
7.53621
2.16084
1.13036
0.566778
0.4469
0.271608
0.117769
0.0743
0.049304
0.0276
f 9 0
65.0224
13.6908
7.09591
2.52090
1.34066
0.682558
0.327714
0.1306
0.0488
f 2 0
0.3164
0.1188
ECP 78 5 3
3
1 40.00000 5.0
3 38.50000 200.0
2 40.00000 -74.796
2
2 1.994153 35.755622
2 0.240286 -0.404113
4
2 0.896039 2.688441
2 0.875463 5.715603
2 0.262580 -0.171255
2 0.232846 -0.150845
2
2 0.779775 4.060445
2 0.739216 5.980282
2
2 0.987519 -2.646547
2 0.959907 -3.373825
4
2 0.896039 -5.376883
2 0.875463 5.715603
2 0.262580 0.342510
2 0.232846 -0.150845
2
2 0.779775 -4.060445
2 0.739216 3.986855
2
2 0.987519 1.764365
2 0.959907 -1.686912
FINISH
*************************************************************************
********************* DIRAC: No title specified !!! *********************
*************************************************************************
Jobs in this run:
* Wave function
* Analysis
**************************************************************************
************************** General DIRAC set-up **************************
**************************************************************************
CODATA Recommended Values of the Fundamental Physical Constants: 1998
Peter J. Mohr and Barry N. Taylor
Journal of Physical and Chemical Reference Data, Vol. 28, No. 6, 1999
* The speed of light : 137.0359998
* Running in two-component mode
* Direct evaluation of the following two-electron integrals:
- LL-integrals
* Spherical transformation embedded in MO-transformation
for large components
* Transformation to scalar RKB basis embedded in
MO-transformation for small components
* Thresholds for linear dependence:
Large components: 1.00D-06
Small components: 1.00D-08
* MO-coefficients written to formatted file DFPCMO
* General print level : 0
*************************************************************************
****************** Output from HERMIT input processing ******************
*************************************************************************
Default print level: 1
Nuclear model: Gaussian charge distribution.
Two-electron integrals not calculated.
Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated.
Changes of defaults for *READIN
-------------------------------
Uncontracted basis forced, irrespective of basis input file.
***************************************************************************
****************** Output from MOLECULE input processing ******************
***************************************************************************
Title Cards
-----------
Bi
Bi STU ecp
Nuclear Gaussian exponent for atom of charge 83.000 : 1.3729409487D+08
* This atomic center has RECP with 78 core electrons.
The charge value is changed as 5.000
SYMADD: Detection of molecular symmetry
---------------------------------------
Symmetry test threshold: 5.00E-06
Symmetry point group found: D(oo,h)
The following symmetry elements were found: X Y Z
Symmetry Operations
-------------------
Symmetry operations: 3
SYMGRP:Point group information
------------------------------
Full group is: D(oo,h)
Represented as: D2h
* The point group was generated by:
Reflection in the yz-plane
Reflection in the xz-plane
Reflection in the xy-plane
* Group multiplication table
| E C2z C2y C2x i Oxy Oxz Oyz
-----+----------------------------------------
E | E C2z C2y C2x i Oxy Oxz Oyz
C2z | C2z E C2x C2y Oxy i Oyz Oxz
C2y | C2y C2x E C2z Oxz Oyz i Oxy
C2x | C2x C2y C2z E Oyz Oxz Oxy i
i | i Oxy Oxz Oyz E C2z C2y C2x
Oxy | Oxy i Oyz Oxz C2z E C2x C2y
Oxz | Oxz Oyz i Oxy C2y C2x E C2z
Oyz | Oyz Oxz Oxy i C2x C2y C2z E
* Character table
| E C2z C2y C2x i Oxy Oxz Oyz
-----+----------------------------------------
Ag | 1 1 1 1 1 1 1 1
B3u | 1 -1 -1 1 -1 1 1 -1
B2u | 1 -1 1 -1 -1 1 -1 1
B1g | 1 1 -1 -1 1 1 -1 -1
B1u | 1 1 -1 -1 -1 -1 1 1
B2g | 1 -1 1 -1 1 -1 1 -1
B3g | 1 -1 -1 1 1 -1 -1 1
Au | 1 1 1 1 -1 -1 -1 -1
* Direct product table
| Ag B3u B2u B1g B1u B2g B3g Au
-----+----------------------------------------
Ag | Ag B3u B2u B1g B1u B2g B3g Au
B3u | B3u Ag B1g B2u B2g B1u Au B3g
B2u | B2u B1g Ag B3u B3g Au B1u B2g
B1g | B1g B2u B3u Ag Au B3g B2g B1u
B1u | B1u B2g B3g Au Ag B3u B2u B1g
B2g | B2g B1u Au B3g B3u Ag B1g B2u
B3g | B3g Au B1u B2g B2u B1g Ag B3u
Au | Au B3g B2g B1u B1g B2u B3u Ag
**************************
*** Output from DBLGRP ***
**************************
* Two fermion irreps: E1g E1u
* Real group. NZ = 1
* Direct product decomposition:
E1g x E1g : Ag + B1g + B2g + B3g
E1u x E1g : Au + B1u + B2u + B3u
E1u x E1u : Ag + B1g + B2g + B3g
Spinor structure
----------------
* Fermion irrep no.: 1 * Fermion irrep no.: 2
La | Ag (1) B1g(2) | La | Au (1) B1u(2) |
Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) |
Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) |
Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) |
Quaternion symmetries
---------------------
Rep T(+)
-----------------------------
Ag 1
B3u k
B2u j
B1g i
B1u i
B2g j
B3g k
Au 1
QM-QM nuclear repulsion energy : 0.000000000000
Isotopic Masses
---------------
Bi 208.980374
Total mass: 208.980374 amu
Natural abundance: 100.000 %
Center-of-mass coordinates (a.u.): 0.000000000000000 0.000000000000000 0.000000000000000
Atoms and basis sets
--------------------
Number of atom types : 1
Total number of atoms: 1
label atoms charge prim cont basis
----------------------------------------------------------------------
Bi 1 83 123 123 L - [13s12p9d2f|13s12p9d2f]
0 0 S - No small component basis functions attached
----------------------------------------------------------------------
123 123 L - large components
----------------------------------------------------------------------
total: 1 83 123 123
Cartesian basis used.
Threshold for integrals (to be written to file): 1.00D-15
References for the basis sets
-----------------------------
Atom type 1
Basis set typed explicitly in input file
Cartesian Coordinates (bohr)
----------------------------
Total number of coordinates: 3
1 Bi x 0.0000000000
2 y 0.0000000000
3 z 0.0000000000
Cartesian coordinates in XYZ format (Angstrom)
----------------------------------------------
1
Bi 0.0000000000 0.0000000000 0.0000000000
Symmetry Coordinates
--------------------
Number of coordinates in each symmetry: 0 1 1 0 1 0 0 0
Symmetry B3u( 2)
1 Bi x 1
Symmetry B2u( 3)
2 Bi y 2
Symmetry B1u( 5)
3 Bi z 3
This is an atomic calculation.
GETLAB: AO-labels
-----------------
* Large components: 20
1 L Bi 1 s 2 L Bi 1 px 3 L Bi 1 py 4 L Bi 1 pz 5 L Bi 1 dxx 6 L Bi 1 dxy
7 L Bi 1 dxz 8 L Bi 1 dyy 9 L Bi 1 dyz 10 L Bi 1 dzz 11 L Bi 1 fxxx 12 L Bi 1 fxxy
13 L Bi 1 fxxz 14 L Bi 1 fxyy 15 L Bi 1 fxyz 16 L Bi 1 fxzz 17 L Bi 1 fyyy 18 L Bi 1 fyyz
19 L Bi 1 fyzz 20 L Bi 1 fzzz
* Small components: 0
GETLAB: SO-labels
-----------------
* Large components: 20
1 L Ag Bi s 2 L Ag Bi dxx 3 L Ag Bi dyy 4 L Ag Bi dzz 5 L B3uBi px 6 L B3uBi fxxx
7 L B3uBi fxyy 8 L B3uBi fxzz 9 L B2uBi py 10 L B2uBi fxxy 11 L B2uBi fyyy 12 L B2uBi fyzz
13 L B1gBi dxy 14 L B1uBi pz 15 L B1uBi fxxz 16 L B1uBi fyyz 17 L B1uBi fzzz 18 L B2gBi dxz
19 L B3gBi dyz 20 L Au Bi fxyz
* Small components: 0
Symmetry Orbitals
-----------------
Number of orbitals in each symmetry: 40 18 18 9 18 9 9 2
Number of large orbitals in each symmetry: 40 18 18 9 18 9 9 2
Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0
* Large component functions
Symmetry Ag ( 1)
13 functions: Bi s
9 functions: Bi dxx
9 functions: Bi dyy
9 functions: Bi dzz
Symmetry B3u( 2)
12 functions: Bi px
2 functions: Bi fxxx
2 functions: Bi fxyy
2 functions: Bi fxzz
Symmetry B2u( 3)
12 functions: Bi py
2 functions: Bi fxxy
2 functions: Bi fyyy
2 functions: Bi fyzz
Symmetry B1g( 4)
9 functions: Bi dxy
Symmetry B1u( 5)
12 functions: Bi pz
2 functions: Bi fxxz
2 functions: Bi fyyz
2 functions: Bi fzzz
Symmetry B2g( 6)
9 functions: Bi dxz
Symmetry B3g( 7)
9 functions: Bi dyz
Symmetry Au ( 8)
2 functions: Bi fxyz
***************************************************************************
*************************** Hamiltonian defined ***************************
***************************************************************************
* Print level: 0
employing effective-core-potentials (ECP)
* SS integrals neglected:
Interatomic Coulombic SS-contributions modelled by
classical repulsion of small component atomic charges
using tabulated charges.
* Default integral flags passed to all modules
- LL-integrals: 1
- LS-integrals: 0
- SS-integrals: 0
- GT-integrals: 0
* Basis set:
- uncontracted large component basis set
**************************************************************************
************************** Wave function module **************************
**************************************************************************
Wave function types requested (in input order):
HF
RESOLVE
Wave function jobs in execution order (expanded):
* Hartree-Fock calculation
* Followed by resolution of open-shell states
===========================================================================
*SCF: Set-up for Hartree-Fock calculation:
===========================================================================
* Number of fermion irreps: 2
* Open shell SCF calculation using Average-of-Configuration
* Shell specifications:
Orbitals
#electrons irrep 1 irrep 2 f a alpha
---------- ------- ------- ------- ------- -------
Closed shell 2 1 0 1.0000 1.0000 0.0000
Open shell no. 1 3.00 0 3 0.5000 0.8000 0.4000
----------------------------------------------------------------------------
Total 5.00 1 3
f is the fraction occupation; a and alpha open shell coupling coefficients.
* Sum of atomic potentials used for start guess
* General print level : 0
***** INITIAL TRIAL SCF FUNCTION *****
* Trial vectors read from file DFCOEF
* Scaling of active-active block correction to open shell Fock operator 0.500000
to improve convergence (default value).
The final open-shell orbital energies are recalculated with 1.0 scaling,
such that all occupied orbital energies correspond to Koopmans' theorem ionization energies.
***** SCF CONVERGENCE CRITERIA *****
* Convergence on norm of error vector (gradient).
Desired convergence:1.000D-05
Allowed convergence:1.000D-05
***** CONVERGENCE CONTROL *****
* Fock matrix constructed using differential density matrix
with optimal parameter.
* DIIS (in MO basis)
* DIIS will be activated when convergence reaches : 1.00D+20
- Maximum size of B-matrix: 10
* Damping of Fock matrix when DIIS is not activated.
Weight of old matrix : 0.250
* Maximum number of SCF iterations : 50
* No quadratic convergent Hartree-Fock
* Contributions from 2-electron integrals to Fock matrix:
LL-integrals.
---> this is default setting from Hamiltonian input
***** OUTPUT CONTROL *****
* Only electron eigenvalues written out.
===========================================================================
RESINP: Set-up for resolution of open-shell states:
===========================================================================
* General print level : 0
* 4-index transformation follows scheme : 4
- write (rs)-batches of half-transformed integrals
(ij|rs) to disk; parallel scheme
* Screening threshold : 1.00E-14
* LS integrals not included.
* SS integrals not included.
* Gaunt integrals not included.
***************************************************************************
***************************** Analysis module *****************************
***************************************************************************
Jobs in this run:
* Write vectors
* Mulliken population analysis
===========================================================================
VECINP: Vector print
===========================================================================
* Coefficients written in AO-basis
* Vector print:
- Orbitals in fermion ircop E1g :1..2
- Orbitals in fermion ircop E1u :1..6
* Only large component coefficients written out.
===========================================================================
POPINP: Mulliken population analysis
===========================================================================
* Gross populations
* Label definitions based on AO-labels
* Number of spinors analyzed:
- Orbitals in fermion ircop E1g :1..2
- Orbitals in fermion ircop E1u :1..6
* Print level: 1
********************************************************************************
*************************** Input consistency checks ***************************
********************************************************************************
*************************************************************************
************************ End of input processing ************************
*************************************************************************
*************************************************************************
************************** RECP integral start **************************
*************************************************************************
-----------------------------------------------------------
Relativistic Effective Core Potential Integral routine
This routine is based on ARGOS integral
with the permission of R. M. Pitzer (Ohio State University)
and maintained by Y. S. Lee and Y. C. Park (KAIST)
Electronic mail:
YoonSupLee@kaist.ac.kr
youngc@kaist.ac.kr
Reference:
Bull.Korean.Chem.Soc. v.33, p.803 (2012)
-----------------------------------------------------------
* Warning: Symmetries higher than D2h in RECP integral is not fully tested.
The calculation results can be erroneous.
Use auto-symmetry with care.
* Nuc. Center No. : 1 (Bi )
Sym. distinct atoms : 1
Core electrons : 78
AREP blocks : 5
SO blocks : 3
* VCORE was generated : RECP_INT_C
* SOX was generated : RECP_INT_X
* SOY was generated : RECP_INT_Y
* SOZ was generated : RECP_INT_Z
***********************************************************************
************************** RECP integral end **************************
***********************************************************************
Nuclear contribution to dipole moments
--------------------------------------
All dipole components are zero by symmetry
Total time used in ONEGEN (CPU) 0.02075300s and (WALL) 0.03810000s
Generating Lowdin canonical matrix:
-----------------------------------
L Ag * Deleted: 9(Proj: 9, Lindep: 0) Smin: 0.95E-05
L B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.85E-02
L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.85E-02
L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.85E-02
L B3u * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.35E-04
L B2u * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.35E-04
L B1u * Deleted: 2(Proj: 2, Lindep: 0) Smin: 0.35E-04
L Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.41E+00
Output from LINSYM
------------------
Parity MJ Functions(total) Functions(LC) Functions(SC)
1 1/2 31 31 0
1 -3/2 18 18 0
1 5/2 9 9 0
-1 1/2 28 28 0
-1 -3/2 16 16 0
-1 5/2 4 4 0
-1 -7/2 2 2 0
**********************************************************************
************************* Orbital dimensions *************************
**********************************************************************
Irrep 1 Irrep 2 Sum
No. of electronic orbitals (NESH): 58 50 108
No. of positronic orbitals (NPSH): 0 0 0
Total no. of orbitals (NORB): 58 50 108
>>> CPU time used in PAMSET is 0.09 seconds
>>> WALL time used in PAMSET is 0.16 seconds
****************************************************************************
************************* Hartree-Fock calculation *************************
****************************************************************************
*** INFO *** No trial vectors found.
Using bare nucleus approximation for initial trial vectors.
Improved by a sum of atomic screening potentials.
########## START ITERATION NO. 1 ########## Mon Oct 4 09:54:21 2021
E_HOMO...E_LUMO, symmetry 1: 1 -0.15921 2 0.03934
E_HOMO...E_LUMO, symmetry 2: 59 -0.01235 60 -0.00097 61 -0.00097 62 0.06621
=> Calculating sum of orbital energies
It. 1 -0.3327150046490 0.00D+00 0.00D+00 0.00D+00 0.08109100s Atom. scrpot Mon Oct 4
########## START ITERATION NO. 2 ########## Mon Oct 4 09:54:21 2021
* GETGAB: label "GABAO1XX" not found; calling GABGEN.
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 45.95% 8.94% 8.24% 31.58% 0.12168498s
>>> CPU time used in SO Fock is 0.20 seconds
>>> WALL time used in SO Fock is 0.20 seconds
E_HOMO...E_LUMO, symmetry 1: 1 -0.99594 2 -0.07758
E_HOMO...E_LUMO, symmetry 2: 59 -0.51472 60 -0.41266 61 -0.41266 62 -0.01283
>>> Total wall time: 0.23600000s, and total CPU time : 0.20531500s
########## END ITERATION NO. 2 ########## Mon Oct 4 09:54:21 2021
It. 2 -4.439964146227 4.11D+00 -5.25D+00 8.14D-01 0.23600000s LL Mon Oct 4
########## START ITERATION NO. 3 ########## Mon Oct 4 09:54:21 2021
3 *** Differential density matrix. DCOVLP = 0.3623
3 *** Differential density matrix. DVOVLP( 1) = 0.0001
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 51.57% 1.27% 8.01% 30.68% 0.17886898s
>>> CPU time used in SO Fock is 0.18 seconds
>>> WALL time used in SO Fock is 0.18 seconds
E_HOMO...E_LUMO, symmetry 1: 1 -0.68614 2 0.03690
E_HOMO...E_LUMO, symmetry 2: 59 -0.26637 60 -0.19578 61 -0.19578 62 0.05195
>>> Total wall time: 0.22630000s, and total CPU time : 0.19160100s
########## END ITERATION NO. 3 ########## Mon Oct 4 09:54:22 2021
It. 3 -5.208203064223 7.68D-01 7.48D-01 1.30D-01 DIIS 2 0.22630000s LL Mon Oct 4
########## START ITERATION NO. 4 ########## Mon Oct 4 09:54:22 2021
4 *** Differential density matrix. DCOVLP = 0.8124
4 *** Differential density matrix. DVOVLP( 1) = 0.9209
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 52.30% 0.18% 7.98% 30.55% 0.16209298s
>>> CPU time used in SO Fock is 0.16 seconds
>>> WALL time used in SO Fock is 0.16 seconds
E_HOMO...E_LUMO, symmetry 1: 1 -0.67928 2 0.04340
E_HOMO...E_LUMO, symmetry 2: 59 -0.26280 60 -0.19229 61 -0.19229 62 0.05490
>>> Total wall time: 0.21150000s, and total CPU time : 0.17397700s
########## END ITERATION NO. 4 ########## Mon Oct 4 09:54:22 2021
It. 4 -5.221809127263 1.36D-02 -6.35D-02 1.63D-02 DIIS 3 0.21150000s LL Mon Oct 4
########## START ITERATION NO. 5 ########## Mon Oct 4 09:54:22 2021
5 *** Differential density matrix. DCOVLP = 0.9857
5 *** Differential density matrix. DVOVLP( 1) = 1.0142
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 51.57% 1.29% 8.01% 30.67% 0.13093501s
>>> CPU time used in SO Fock is 0.13 seconds
>>> WALL time used in SO Fock is 0.13 seconds
E_HOMO...E_LUMO, symmetry 1: 1 -0.68077 2 0.04290
E_HOMO...E_LUMO, symmetry 2: 59 -0.26351 60 -0.19270 61 -0.19270 62 0.05440
>>> Total wall time: 0.17780000s, and total CPU time : 0.14325700s
########## END ITERATION NO. 5 ########## Mon Oct 4 09:54:22 2021
It. 5 -5.222161363780 3.52D-04 -5.18D-03 1.92D-03 DIIS 4 0.17780000s LL Mon Oct 4
########## START ITERATION NO. 6 ########## Mon Oct 4 09:54:22 2021
6 *** Differential density matrix. DCOVLP = 1.0009
6 *** Differential density matrix. DVOVLP( 1) = 0.9933
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 45.95% 9.03% 8.25% 31.37% 0.13942999s
>>> CPU time used in SO Fock is 0.14 seconds
>>> WALL time used in SO Fock is 0.14 seconds
E_HOMO...E_LUMO, symmetry 1: 1 -0.68092 2 0.04286
E_HOMO...E_LUMO, symmetry 2: 59 -0.26364 60 -0.19281 61 -0.19281 62 0.05439
>>> Total wall time: 0.18400000s, and total CPU time : 0.15098000s
########## END ITERATION NO. 6 ########## Mon Oct 4 09:54:22 2021
It. 6 -5.222164254292 2.89D-06 7.10D-04 1.79D-04 DIIS 5 0.18400000s LL Mon Oct 4
########## START ITERATION NO. 7 ########## Mon Oct 4 09:54:22 2021
7 *** Differential density matrix. DCOVLP = 1.0002
7 *** Differential density matrix. DVOVLP( 1) = 0.9994
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 51.57% 1.52% 8.02% 30.61% 0.12749696s
>>> CPU time used in SO Fock is 0.13 seconds
>>> WALL time used in SO Fock is 0.13 seconds
E_HOMO...E_LUMO, symmetry 1: 1 -0.68094 2 0.04285
E_HOMO...E_LUMO, symmetry 2: 59 -0.26365 60 -0.19282 61 -0.19282 62 0.05439
>>> Total wall time: 0.17680000s, and total CPU time : 0.14083200s
########## END ITERATION NO. 7 ########## Mon Oct 4 09:54:22 2021
It. 7 -5.222164303207 4.89D-08 2.27D-05 2.53D-05 DIIS 6 0.17680000s LL Mon Oct 4
########## START ITERATION NO. 8 ########## Mon Oct 4 09:54:22 2021
8 *** Differential density matrix. DCOVLP = 1.0001
8 *** Differential density matrix. DVOVLP( 1) = 1.0001
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 45.95% 9.32% 8.26% 31.45% 0.13610399s
>>> CPU time used in SO Fock is 0.14 seconds
>>> WALL time used in SO Fock is 0.14 seconds
>>> Total wall time: 0.17790000s, and total CPU time : 0.14569900s
########## END ITERATION NO. 8 ########## Mon Oct 4 09:54:22 2021
It. 8 -5.222164304323 1.12D-09 -2.86D-06 1.48D-06 DIIS 6 0.17790000s LL Mon Oct 4
SCF - CYCLE
-----------
* Convergence on norm of error vector (gradient).
Desired convergence:1.000D-05
Allowed convergence:1.000D-05
* ERGVAL - convergence in total energy
* FCKVAL - convergence in maximum change in total Fock matrix
* EVCVAL - convergence in error vector (gradient)
--------------------------------------------------------------------------------------------------------------------------------
Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp
--------------------------------------------------------------------------------------------------------------------------------
It. 1 -0.3327150046490 0.00D+00 0.00D+00 0.00D+00 0.08109100s Atom. scrpot Mon Oct 4
It. 2 -4.439964146227 4.11D+00 -5.25D+00 8.14D-01 0.23600000s LL Mon Oct 4
It. 3 -5.208203064223 7.68D-01 7.48D-01 1.30D-01 DIIS 2 0.22630000s LL Mon Oct 4
It. 4 -5.221809127263 1.36D-02 -6.35D-02 1.63D-02 DIIS 3 0.21150000s LL Mon Oct 4
It. 5 -5.222161363780 3.52D-04 -5.18D-03 1.92D-03 DIIS 4 0.17780000s LL Mon Oct 4
It. 6 -5.222164254292 2.89D-06 7.10D-04 1.79D-04 DIIS 5 0.18400000s LL Mon Oct 4
It. 7 -5.222164303207 4.89D-08 2.27D-05 2.53D-05 DIIS 6 0.17680000s LL Mon Oct 4
It. 8 -5.222164304323 1.12D-09 -2.86D-06 1.48D-06 DIIS 6 0.17790000s LL Mon Oct 4
--------------------------------------------------------------------------------------------------------------------------------
* Convergence after 8 iterations.
* Average elapsed time per iteration:
No 2-ints : 0.09770000s
LL : 0.19861429s
TOTAL ENERGY
------------
Electronic energy : -5.2221643043234707
Other contributions to the total energy
Nuclear repulsion energy : 0.0000000000000000
Sum of all contributions to the energy
Total energy : -5.2221643043234707
Eigenvalues
-----------
* Block 1 in E1g: Omega = 1/2
* Closed shell, f = 1.0000
-0.680942747093 ( 2)
* Virtual eigenvalues, f = 0.0000
0.042850206906 ( 2) 0.133671484496 ( 2) 0.134794262444 ( 2) 0.212950601698 ( 2) 0.408636942362 ( 2)
0.415236774265 ( 2) 0.614429354016 ( 2) 1.250042481624 ( 2) 1.284246818043 ( 2) 1.598749638496 ( 2)
3.480256027970 ( 2) 3.564907117358 ( 2) 4.966804577762 ( 2) 7.893772735614 ( 2) 7.982631629747 ( 2)
13.126170760673 ( 2) 15.582825428942 ( 2) 15.615709929945 ( 2) 21.416849621897 ( 2) 32.629657469684 ( 2)
32.666689817034 ( 2) 36.904893461226 ( 2) 68.397033624018 ( 2) 71.303166871522 ( 2) 71.403190504837 ( 2)
125.083578350175 ( 2) 240.729207134018 ( 2) 240.890170689356 ( 2) 291.320904868750 ( 2) 1566.752519274441 ( 2)
* Block 2 in E1g: Omega = 3/2
* Virtual eigenvalues, f = 0.0000
0.133671484496 ( 2) 0.134794262444 ( 2) 0.408636942362 ( 2) 0.415236774265 ( 2) 1.250042481624 ( 2)
1.284246818043 ( 2) 3.480256027970 ( 2) 3.564907117358 ( 2) 7.893772735614 ( 2) 7.982631629747 ( 2)
15.582825428942 ( 2) 15.615709929945 ( 2) 32.629657469684 ( 2) 32.666689817034 ( 2) 71.303166871522 ( 2)
71.403190504837 ( 2) 240.729207134018 ( 2) 240.890170689356 ( 2)
* Block 3 in E1g: Omega = 5/2
* Virtual eigenvalues, f = 0.0000
0.133671484496 ( 2) 0.415236774265 ( 2) 1.284246818043 ( 2) 3.564907117358 ( 2) 7.982631629747 ( 2)
15.615709929945 ( 2) 32.629657469684 ( 2) 71.303166871521 ( 2) 240.729207134018 ( 2)
* Block 1 in E1u: Omega = 1/2
* Open shell #1, f = 0.5000
-0.263650341693 ( 2) -0.192817837929 ( 2)
* Virtual eigenvalues, f = 0.0000
0.054387836921 ( 2) 0.058924110266 ( 2) 0.195148486000 ( 2) 0.211658315537 ( 2) 0.447805555145 ( 2)
0.448991491036 ( 2) 0.467920420798 ( 2) 0.502497778026 ( 2) 0.978081254033 ( 2) 1.050306917678 ( 2)
1.106660849670 ( 2) 1.108355768815 ( 2) 1.906033047310 ( 2) 2.048690699409 ( 2) 3.417967632634 ( 2)
3.666669348640 ( 2) 5.986321821894 ( 2) 6.347001569821 ( 2) 10.897814678559 ( 2) 11.373037433253 ( 2)
22.331152208116 ( 2) 22.935978728616 ( 2) 49.119247535588 ( 2) 49.808407853308 ( 2) 101.082434540067 ( 2)
101.819095960363 ( 2)
* Block 2 in E1u: Omega = 3/2
* Open shell #1, f = 0.5000
-0.192817837928 ( 2)
* Virtual eigenvalues, f = 0.0000
0.058924110266 ( 2) 0.211658315537 ( 2) 0.447805555145 ( 2) 0.448991491036 ( 2) 0.502497778027 ( 2)
1.050306917681 ( 2) 1.106660849670 ( 2) 1.108355768815 ( 2) 2.048690699415 ( 2) 3.666669348649 ( 2)
6.347001569831 ( 2) 11.373037433262 ( 2) 22.935978728623 ( 2) 49.808407853314 ( 2) 101.819095960374 ( 2)
* Block 3 in E1u: Omega = 5/2
* Virtual eigenvalues, f = 0.0000
0.447805555145 ( 2) 0.448991491036 ( 2) 1.106660849670 ( 2) 1.108355768815 ( 2)
* Block 4 in E1u: Omega = 7/2
* Virtual eigenvalues, f = 0.0000
0.447805555145 ( 2) 1.106660849670 ( 2)
* Occupation in fermion symmetry E1g
* Inactive orbitals
1/2
* Virtual orbitals
1/2 5/2 3/2 1/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 3/2 5/2 1/2
1/2 3/2 1/2 5/2 1/2 3/2 1/2 3/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 5/2 3/2 1/2
1/2 5/2 3/2 1/2 3/2 1/2 1/2 1/2 5/2 3/2 1/2 3/2 1/2 1/2 5/2 3/2 1/2 3/2
1/2 1/2 1/2
* Occupation in fermion symmetry E1u
* Active orbitals
1/2 1/2 3/2
* Virtual orbitals
1/2 1/2 3/2 1/2 1/2 3/2 7/2 1/2 3/2 5/2 1/2 5/2 3/2 1/2 1/2 3/2 1/2 1/2
3/2 3/2 1/2 7/2 5/2 1/2 3/2 5/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2
1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2 1/2 1/2 3/2
* Occupation of subblocks
E1g: 1/2 3/2 5/2
closed shells (f=1.0000): 1 0 0
open shell #1 (f=0.5000): 0 0 0
virtual shells (f=0.0000): 30 18 9
tot.num. of pos.erg shells: 31 18 9
E1u: 1/2 3/2 5/2 7/2
closed shells (f=1.0000): 0 0 0 0
open shell #1 (f=0.5000): 2 1 0 0
virtual shells (f=0.0000): 26 15 4 2
tot.num. of pos.erg shells: 28 16 4 2
* HOMO - LUMO gap:
E(LUMO) : 0.04285021 au (symmetry E1g)
- E(HOMO) : -0.19281784 au (symmetry E1u)
------------------------------------------
gap : 0.23566804 au
**************************************************************************
****************************** Vector print ******************************
**************************************************************************
Coefficients from DFCOEF
------------------------
Fermion ircop E1g
-----------------
* Electronic eigenvalue no. 1: -0.6809427470926
====================================================
1 L Bi 1 s 0.0000118468 0.0000000000 0.0000000000 0.0000000000
2 L Bi 1 s -0.0002761289 0.0000000000 0.0000000000 0.0000000000
3 L Bi 1 s 0.0078211695 0.0000000000 0.0000000000 0.0000000000
4 L Bi 1 s -0.0357117702 0.0000000000 0.0000000000 0.0000000000
5 L Bi 1 s 0.0728822560 0.0000000000 0.0000000000 0.0000000000
6 L Bi 1 s -0.0697734364 0.0000000000 0.0000000000 0.0000000000
7 L Bi 1 s -0.1179067312 0.0000000000 0.0000000000 0.0000000000
8 L Bi 1 s 0.6499623220 0.0000000000 0.0000000000 0.0000000000
9 L Bi 1 s -0.3608275864 0.0000000000 0.0000000000 0.0000000000
10 L Bi 1 s -0.7264489967 0.0000000000 0.0000000000 0.0000000000
11 L Bi 1 s -0.2021179484 0.0000000000 0.0000000000 0.0000000000
12 L Bi 1 s -0.0472371298 0.0000000000 0.0000000000 0.0000000000
13 L Bi 1 s -0.0086532154 0.0000000000 0.0000000000 0.0000000000
* Electronic eigenvalue no. 2: 0.428502069E-01
====================================================
1 L Bi 1 s -0.0000123730 0.0000000000 0.0000000000 0.0000000000
2 L Bi 1 s 0.0002680892 0.0000000000 0.0000000000 0.0000000000
3 L Bi 1 s -0.0091642464 0.0000000000 0.0000000000 0.0000000000
4 L Bi 1 s 0.0382679064 0.0000000000 0.0000000000 0.0000000000
5 L Bi 1 s -0.0752958899 0.0000000000 0.0000000000 0.0000000000
6 L Bi 1 s 0.0740442548 0.0000000000 0.0000000000 0.0000000000
7 L Bi 1 s -0.0539750955 0.0000000000 0.0000000000 0.0000000000
8 L Bi 1 s -0.0106468363 0.0000000000 0.0000000000 0.0000000000
9 L Bi 1 s -0.3753359659 0.0000000000 0.0000000000 0.0000000000
10 L Bi 1 s 2.0255852380 0.0000000000 0.0000000000 0.0000000000
11 L Bi 1 s -32.5065105522 0.0000000000 0.0000000000 0.0000000000
12 L Bi 1 s 33.5179399407 0.0000000000 0.0000000000 0.0000000000
13 L Bi 1 s -3.2103985119 0.0000000000 0.0000000000 0.0000000000
Fermion ircop E1u
-----------------
* Electronic eigenvalue no. 1: -0.2636503416927
====================================================
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0010664311
15 L Bi 1 py 0.0000000000 0.0000000000 0.0010664311 0.0000000000
16 L Bi 1 pz 0.0000000000 -0.0010664311 0.0000000000 0.0000000000
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0009145817
18 L Bi 1 py 0.0000000000 0.0000000000 -0.0009145817 0.0000000000
19 L Bi 1 pz 0.0000000000 0.0009145817 0.0000000000 0.0000000000
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0022787769
21 L Bi 1 py 0.0000000000 0.0000000000 0.0022787769 0.0000000000
22 L Bi 1 pz 0.0000000000 -0.0022787769 0.0000000000 0.0000000000
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0142999493
24 L Bi 1 py 0.0000000000 0.0000000000 0.0142999493 0.0000000000
25 L Bi 1 pz 0.0000000000 -0.0142999493 0.0000000000 0.0000000000
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0255353336
27 L Bi 1 py 0.0000000000 0.0000000000 -0.0255353336 0.0000000000
28 L Bi 1 pz 0.0000000000 0.0255353336 0.0000000000 0.0000000000
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0916992854
30 L Bi 1 py 0.0000000000 0.0000000000 -0.0916992854 0.0000000000
31 L Bi 1 pz 0.0000000000 0.0916992854 0.0000000000 0.0000000000
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0765564516
33 L Bi 1 py 0.0000000000 0.0000000000 0.0765564516 0.0000000000
34 L Bi 1 pz 0.0000000000 -0.0765564516 0.0000000000 0.0000000000
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.2383356284
36 L Bi 1 py 0.0000000000 0.0000000000 0.2383356284 0.0000000000
37 L Bi 1 pz 0.0000000000 -0.2383356284 0.0000000000 0.0000000000
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.3123989553
39 L Bi 1 py 0.0000000000 0.0000000000 0.3123989553 0.0000000000
40 L Bi 1 pz 0.0000000000 -0.3123989553 0.0000000000 0.0000000000
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0125555045
42 L Bi 1 py 0.0000000000 0.0000000000 -0.0125555045 0.0000000000
43 L Bi 1 pz 0.0000000000 0.0125555045 0.0000000000 0.0000000000
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.1010892747
45 L Bi 1 py 0.0000000000 0.0000000000 0.1010892747 0.0000000000
46 L Bi 1 pz 0.0000000000 -0.1010892747 0.0000000000 0.0000000000
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0007348726
48 L Bi 1 py 0.0000000000 0.0000000000 -0.0007348726 0.0000000000
49 L Bi 1 pz 0.0000000000 0.0007348726 0.0000000000 0.0000000000
* Electronic eigenvalue no. 2: -0.1928178379291
====================================================
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0004036805
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0004036805 0.0000000000
16 L Bi 1 pz 0.0000000000 -0.0008073610 0.0000000000 0.0000000000
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0002003656
18 L Bi 1 py 0.0000000000 0.0000000000 0.0002003656 0.0000000000
19 L Bi 1 pz 0.0000000000 0.0004007312 0.0000000000 0.0000000000
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0007203456
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0007203456 0.0000000000
22 L Bi 1 pz 0.0000000000 -0.0014406912 0.0000000000 0.0000000000
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0068774706
24 L Bi 1 py 0.0000000000 0.0000000000 -0.0068774706 0.0000000000
25 L Bi 1 pz 0.0000000000 -0.0137549412 0.0000000000 0.0000000000
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0094516522
27 L Bi 1 py 0.0000000000 0.0000000000 0.0094516522 0.0000000000
28 L Bi 1 pz 0.0000000000 0.0189033045 0.0000000000 0.0000000000
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0709138753
30 L Bi 1 py 0.0000000000 0.0000000000 0.0709138753 0.0000000000
31 L Bi 1 pz 0.0000000000 0.1418277505 0.0000000000 0.0000000000
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0328136420
33 L Bi 1 py 0.0000000000 0.0000000000 -0.0328136420 0.0000000000
34 L Bi 1 pz 0.0000000000 -0.0656272839 0.0000000000 0.0000000000
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.1285309325
36 L Bi 1 py 0.0000000000 0.0000000000 -0.1285309325 0.0000000000
37 L Bi 1 pz 0.0000000000 -0.2570618651 0.0000000000 0.0000000000
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.2159596100
39 L Bi 1 py 0.0000000000 0.0000000000 -0.2159596100 0.0000000000
40 L Bi 1 pz 0.0000000000 -0.4319192199 0.0000000000 0.0000000000
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0178843144
42 L Bi 1 py 0.0000000000 0.0000000000 -0.0178843144 0.0000000000
43 L Bi 1 pz 0.0000000000 -0.0357686287 0.0000000000 0.0000000000
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0964700414
45 L Bi 1 py 0.0000000000 0.0000000000 -0.0964700414 0.0000000000
46 L Bi 1 pz 0.0000000000 -0.1929400828 0.0000000000 0.0000000000
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0142709326
48 L Bi 1 py 0.0000000000 0.0000000000 -0.0142709326 0.0000000000
49 L Bi 1 pz 0.0000000000 -0.0285418653 0.0000000000 0.0000000000
* Electronic eigenvalue no. 3: -0.1928178379281
====================================================
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0006991951
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0006991951 0.0000000000
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0003470434
18 L Bi 1 py 0.0000000000 0.0000000000 0.0003470434 0.0000000000
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0012476751
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0012476751 0.0000000000
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0119121285
24 L Bi 1 py 0.0000000000 0.0000000000 -0.0119121285 0.0000000000
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0163707419
27 L Bi 1 py 0.0000000000 0.0000000000 0.0163707419 0.0000000000
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.1228264349
30 L Bi 1 py 0.0000000000 0.0000000000 0.1228264349 0.0000000000
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0568348951
33 L Bi 1 py 0.0000000000 0.0000000000 -0.0568348951 0.0000000000
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.2226221055
36 L Bi 1 py 0.0000000000 0.0000000000 -0.2226221055 0.0000000000
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.3740530169
39 L Bi 1 py 0.0000000000 0.0000000000 -0.3740530169 0.0000000000
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0309765411
42 L Bi 1 py 0.0000000000 0.0000000000 -0.0309765411 0.0000000000
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.1670910131
45 L Bi 1 py 0.0000000000 0.0000000000 -0.1670910131 0.0000000000
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0247179804
48 L Bi 1 py 0.0000000000 0.0000000000 -0.0247179804 0.0000000000
* Electronic eigenvalue no. 4: 0.543878369E-01
====================================================
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0013319044
15 L Bi 1 py 0.0000000000 0.0000000000 0.0013319044 0.0000000000
16 L Bi 1 pz 0.0000000000 -0.0013319044 0.0000000000 0.0000000000
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0040384751
18 L Bi 1 py 0.0000000000 0.0000000000 -0.0040384751 0.0000000000
19 L Bi 1 pz 0.0000000000 0.0040384751 0.0000000000 0.0000000000
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0052227269
21 L Bi 1 py 0.0000000000 0.0000000000 0.0052227269 0.0000000000
22 L Bi 1 pz 0.0000000000 -0.0052227269 0.0000000000 0.0000000000
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0152711907
24 L Bi 1 py 0.0000000000 0.0000000000 -0.0152711907 0.0000000000
25 L Bi 1 pz 0.0000000000 0.0152711907 0.0000000000 0.0000000000
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0750690662
27 L Bi 1 py 0.0000000000 0.0000000000 0.0750690662 0.0000000000
28 L Bi 1 pz 0.0000000000 -0.0750690662 0.0000000000 0.0000000000
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.6682604103
30 L Bi 1 py 0.0000000000 0.0000000000 -0.6682604103 0.0000000000
31 L Bi 1 pz 0.0000000000 0.6682604103 0.0000000000 0.0000000000
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.0210077023
33 L Bi 1 py 0.0000000000 0.0000000000 1.0210077022 0.0000000000
34 L Bi 1 pz 0.0000000000 -1.0210077023 0.0000000000 0.0000000000
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.6983648033
36 L Bi 1 py 0.0000000000 0.0000000000 -0.6983648033 0.0000000000
37 L Bi 1 pz 0.0000000000 0.6983648034 0.0000000000 0.0000000000
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.6575038167
39 L Bi 1 py 0.0000000000 0.0000000000 1.6575038167 0.0000000000
40 L Bi 1 pz 0.0000000000 -1.6575038167 0.0000000000 0.0000000000
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 3.5151843985
42 L Bi 1 py 0.0000000000 0.0000000000 -3.5151843985 0.0000000000
43 L Bi 1 pz 0.0000000000 3.5151843987 0.0000000000 0.0000000000
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -3.8003792165
45 L Bi 1 py 0.0000000000 0.0000000000 3.8003792165 0.0000000000
46 L Bi 1 pz 0.0000000000 -3.8003792166 0.0000000000 0.0000000000
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 2.0263404596
48 L Bi 1 py 0.0000000000 0.0000000000 -2.0263404596 0.0000000000
49 L Bi 1 pz 0.0000000000 2.0263404596 0.0000000000 0.0000000000
* Electronic eigenvalue no. 5: 0.589241103E-01
====================================================
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0009506600
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0009506600 0.0000000000
16 L Bi 1 pz 0.0000000000 -0.0019013201 0.0000000000 0.0000000000
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0029790091
18 L Bi 1 py 0.0000000000 0.0000000000 0.0029790091 0.0000000000
19 L Bi 1 pz 0.0000000000 0.0059580182 0.0000000000 0.0000000000
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0037958004
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0037958004 0.0000000000
22 L Bi 1 pz 0.0000000000 -0.0075916008 0.0000000000 0.0000000000
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0120214854
24 L Bi 1 py 0.0000000000 0.0000000000 0.0120214854 0.0000000000
25 L Bi 1 pz 0.0000000000 0.0240429707 0.0000000000 0.0000000000
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0584402700
27 L Bi 1 py 0.0000000000 0.0000000000 -0.0584402700 0.0000000000
28 L Bi 1 pz 0.0000000000 -0.1168805400 0.0000000000 0.0000000000
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.5112896978
30 L Bi 1 py 0.0000000000 0.0000000000 0.5112896978 0.0000000000
31 L Bi 1 pz 0.0000000000 1.0225793956 0.0000000000 0.0000000000
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.7720825867
33 L Bi 1 py 0.0000000000 0.0000000000 -0.7720825867 0.0000000000
34 L Bi 1 pz 0.0000000000 -1.5441651734 0.0000000000 0.0000000000
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.5358952890
36 L Bi 1 py 0.0000000000 0.0000000000 0.5358952890 0.0000000000
37 L Bi 1 pz 0.0000000000 1.0717905780 0.0000000000 0.0000000000
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 1.2671965479
39 L Bi 1 py 0.0000000000 0.0000000000 -1.2671965479 0.0000000000
40 L Bi 1 pz 0.0000000000 -2.5343930958 0.0000000000 0.0000000000
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -2.6766954804
42 L Bi 1 py 0.0000000000 0.0000000000 2.6766954804 0.0000000000
43 L Bi 1 pz 0.0000000000 5.3533909607 0.0000000000 0.0000000000
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 2.9077366750
45 L Bi 1 py 0.0000000000 0.0000000000 -2.9077366750 0.0000000000
46 L Bi 1 pz 0.0000000000 -5.8154733500 0.0000000000 0.0000000000
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.5051505383
48 L Bi 1 py 0.0000000000 0.0000000000 1.5051505383 0.0000000000
49 L Bi 1 pz 0.0000000000 3.0103010765 0.0000000000 0.0000000000
* Electronic eigenvalue no. 6: 0.589241103E-01
====================================================
14 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0016465915
15 L Bi 1 py 0.0000000000 0.0000000000 -0.0016465915 0.0000000000
17 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0051597951
18 L Bi 1 py 0.0000000000 0.0000000000 0.0051597951 0.0000000000
20 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.0065745192
21 L Bi 1 py 0.0000000000 0.0000000000 -0.0065745192 0.0000000000
23 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.0208218234
24 L Bi 1 py 0.0000000000 0.0000000000 0.0208218234 0.0000000000
26 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -0.1012215169
27 L Bi 1 py 0.0000000000 0.0000000000 -0.1012215169 0.0000000000
29 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.8855797340
30 L Bi 1 py 0.0000000000 0.0000000000 0.8855797339 0.0000000000
32 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -1.3372862678
33 L Bi 1 py 0.0000000000 0.0000000000 -1.3372862677 0.0000000000
35 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 0.9281978681
36 L Bi 1 py 0.0000000000 0.0000000000 0.9281978681 0.0000000000
38 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -2.1948488042
39 L Bi 1 py 0.0000000000 0.0000000000 -2.1948488041 0.0000000000
41 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 4.6361725683
42 L Bi 1 py 0.0000000000 0.0000000000 4.6361725683 0.0000000000
44 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 -5.0363476561
45 L Bi 1 py 0.0000000000 0.0000000000 -5.0363476561 0.0000000000
47 L Bi 1 px 0.0000000000 0.0000000000 0.0000000000 2.6069972053
48 L Bi 1 py 0.0000000000 0.0000000000 2.6069972053 0.0000000000
**************************************************************************
********************** Mulliken population analysis **********************
**************************************************************************
Fermion ircop E1g
-----------------
Fermion ircop E1g
-----------------
* Electronic eigenvalue no. 1: -0.6809427470926 (Occupation : f = 1.0000) m_j= 1/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 s
--------------------------------------
alpha 1.0000 | 1.0000
beta 0.0000 | 0.0000
* Electronic eigenvalue no. 2: 0.428502069E-01 (Occupation : f = 0.0000) m_j= 1/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 s
--------------------------------------
alpha 1.0000 | 1.0000
beta 0.0000 | 0.0000
** Total gross population of fermion ircop E1g **
Gross Total | L Bi 1 s
--------------------------------------
total 2.00000 | 2.00000
Fermion ircop E1u
-----------------
Fermion ircop E1u
-----------------
* Electronic eigenvalue no. 1: -0.2636503416927 (Occupation : f = 0.5000) m_j= 1/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
--------------------------------------------------------------------
alpha 0.3333 | 0.0000 0.0000 0.3333
beta 0.6667 | 0.3333 0.3333 0.0000
* Electronic eigenvalue no. 2: -0.1928178379291 (Occupation : f = 0.5000) m_j= 1/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
--------------------------------------------------------------------
alpha 0.6667 | 0.0000 0.0000 0.6667
beta 0.3333 | 0.1667 0.1667 0.0000
* Electronic eigenvalue no. 3: -0.1928178379281 (Occupation : f = 0.5000) m_j= -3/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 px L Bi 1 py
-----------------------------------------------------
alpha 0.0000 | 0.0000 0.0000
beta 1.0000 | 0.5000 0.5000
* Electronic eigenvalue no. 4: 0.543878369E-01 (Occupation : f = 0.0000) m_j= 1/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
--------------------------------------------------------------------
alpha 0.3333 | 0.0000 0.0000 0.3333
beta 0.6667 | 0.3333 0.3333 0.0000
* Electronic eigenvalue no. 5: 0.589241103E-01 (Occupation : f = 0.0000) m_j= 1/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
--------------------------------------------------------------------
alpha 0.6667 | 0.0000 0.0000 0.6667
beta 0.3333 | 0.1667 0.1667 0.0000
* Electronic eigenvalue no. 6: 0.589241103E-01 (Occupation : f = 0.0000) m_j= -3/2
============================================================================================
* Gross populations greater than 0.00010
Gross Total | L Bi 1 px L Bi 1 py
-----------------------------------------------------
alpha 0.0000 | 0.0000 0.0000
beta 1.0000 | 0.5000 0.5000
** Total gross population of fermion ircop E1u **
Gross Total | L Bi 1 px L Bi 1 py L Bi 1 pz
--------------------------------------------------------------------
total 3.00000 | 1.00000 1.00000 1.00000
*** Total gross population ***
Gross Total | L Bi 1 s L Bi 1 px L Bi 1 py L Bi 1 pz
-----------------------------------------------------------------------------------
total 5.00000 | 2.00000 1.00000 1.00000 1.00000
===========================================================================
* PCMOUT: Coefficients read from unformatted DFCOEF
and written to formatted DFPCMO
===========================================================================
*************************************************************************
******************** Resolution of open-shell states ********************
*************************************************************************
- Number of active electrons: 3
- Active orbitals:
* Fermion ircop E1g
No orbitals for index 1
* Fermion ircop E1u
Index 1 3 orbitals
1 2 3
- Core orbitals:
* Fermion ircop E1g
Index 1 1 orbitals
1
* Fermion ircop E1u
No orbitals for index 1
**************************************************************************
**************** Transformation to Molecular Spinor Basis ****************
**************************************************************************
Written by Luuk Visscher, Jon Laerdahl & Trond Saue
Odense, 1997
********************************************************************
**************** Transformation of core Fock matrix ****************
********************************************************************
Transformation started at : Mon Oct 4 09:54:22 2021
* REACMO: Coefficients read from file DFCOEF - Total energy: -5.22216430320653835
* Heading :DIRAC: No title specified !!! Mon Oct 4 09:54:22 2021
SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time
SOfock:LL 1.00D-12 93.19% 0.94% 1.41% 2.14% 0.02173698s
* REAFCK: Fock matrix read from file /home/cmelton/DIRAC_scratch_directory/cmelton/DIRAC_df_Bi_45
* Heading :DIRAC: No title specified !!! Mon Oct 4 09:54:21 2021
Core energy (includes nuclear repulsion) : -3.5207856104
- Electronic part : -3.5207856104
- One-electron terms : -3.9101963154
- Two-electron terms : 0.3894107050
MOLFDIR file MRCONEE is written
**************************************************************************
**************** Transformation to Molecular Spinor Basis ****************
**************************************************************************
Written by Luuk Visscher, Jon Laerdahl & Trond Saue
Odense, 1997
************************************************************************
**************** Transformation of 2-electron integrals ****************
************************************************************************
Transformation started at : Mon Oct 4 09:54:23 2021
* REACMO: Coefficients read from file DFCOEF - Total energy: -5.22216430320653835
* Heading :DIRAC: No title specified !!! Mon Oct 4 09:54:22 2021
- Integral class 1 : (LL|??)
- Beginning task 1 of 4 after 0. seconds and 0. CPU-seconds
- Beginning task 2 of 4 after 0. seconds and 0. CPU-seconds
- Beginning task 3 of 4 after 0. seconds and 0. CPU-seconds
- Beginning task 4 of 4 after 0. seconds and 0. CPU-seconds
* Screening statistics:
(LL|LL)ints : 97.71%
Total : 97.71%
- Starting symmetrization after 0.11 seconds
- Finished symmetrization after 0.11 seconds
- Binary file MDCINT was written.
------ Timing report (in CPU seconds) of module integral transformation
Time in Initializing MS4IND file 0.002 seconds
Time in Computing+transform. integral 0.089 seconds
Time in Symmetrizing MO integrals 0.000 seconds
Total wall time used in RESOLV : 0.11310000s
Total CPU time used in RESOLV : 0.09297000s
Transformation ended at : Mon Oct 4 09:54:23 2021
GASRES: Set up the following information:
1g -1g 3g -3g 5g -5g 7g -7g 9g -9g 11g -11g 13g -13g 15g -15g 1u -1u 3u -3u 5u -5u 7u -7u 9u -9u 11u -11u 13u -13u 15u -15u
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0
0
GOSCIP (Version 1.8)
Today is : 4 Oct 21
The time is : 09:54:23
&POPAN
THRESH = 1.000000000000000E-003,
DEGEN = 1.000000000000000E-010,
SELPOP = 100.000000000000 ,
MAXPOP = 100
/
All information read from MRCONEE (and input)
Number of electrons: 3
Decimal representation of frozen orbitals: 0
IACEL (number of active electrons)
has been calculated from MAXE: 0
Breit interaction included : F
Core energy : -3.520785610
Number of active orbitals : 6
Orbital Representation Orbital energy
1 Eu 1Eu -0.2636503417
2 Eu 1Eu -0.1928178379
3 Eu 1Eu -0.1928178379
4 Eu 2Eu -0.2636503417
5 Eu 2Eu -0.1928178379
6 Eu 2Eu -0.1928178379
Number of determinants:
Symmetry 1g : 0
Symmetry -1g : 0
Symmetry 3g : 0
Symmetry -3g : 0
Symmetry 5g : 0
Symmetry -5g : 0
Symmetry 7g : 0
Symmetry -7g : 0
Symmetry 9g : 0
Symmetry -9g : 0
Symmetry 11g : 0
Symmetry -11g : 0
Symmetry 13g : 0
Symmetry -13g : 0
Symmetry 15g : 0
Symmetry -15g : 0
Symmetry 1u : 5
Symmetry -1u : 5
Symmetry 3u : 4
Symmetry -3u : 4
Symmetry 5u : 1
Symmetry -5u : 1
Symmetry 7u : 0
Symmetry -7u : 0
Symmetry 9u : 0
Symmetry -9u : 0
Symmetry 11u : 0
Symmetry -11u : 0
Symmetry 13u : 0
Symmetry -13u : 0
Symmetry 15u : 0
Symmetry -15u : 0
Coulomb integral file was generated at 4Oct21 09:54:23
Read 66 unique integrals
Representation 1u; 5 vectors written to file MDTRIV_ 1u
Eigenvalues -5.300947773703
-5.244255749591
-5.222705799962
-5.186731495648
-5.138193550557
CPU time for this representation
Generation of determinants : 0.0000
Building the CI matrix : 0.0000
Diagonalization : 0.0037
Writing CI vectors : 0.0008
Population analysis for representation 1u
The first 5 vectors are analyzed
energy det# determinant norm Re Im
------ ---- ----------- ---- -- --
-5.30094777
1 110100 0.7371 -0.8586 0.0000
2 110010 0.0416 0.2040 0.0000
3 101001 0.0416 -0.2040 0.0000
4 011001 0.0547 -0.2340 0.0000
5 000111 0.1249 -0.3534 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.8204
2 -0.1928178379 0.8335
3 -0.1928178379 0.0964
4 -0.2636503417 0.8620
5 -0.1928178379 0.1665
6 -0.1928178379 0.2212
Sum of occupations : 3.0000
-5.24425575
1 110100 0.2246 -0.4740 0.0000
2 110010 0.1550 -0.3937 0.0000
3 101001 0.1550 0.3937 0.0000
5 000111 0.4649 0.6818 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.5346
2 -0.1928178379 0.3801
3 -0.1928178379 0.1555
4 -0.2636503417 0.6895
5 -0.1928178379 0.6199
6 -0.1928178379 0.6204
Sum of occupations : 3.0000
-5.22270580
2 110010 0.3000 -0.5477 0.0000
3 101001 0.3000 0.5477 0.0000
5 000111 0.4000 -0.6325 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.6000
2 -0.1928178379 0.3000
3 -0.1928178379 0.3000
4 -0.2636503417 0.4000
5 -0.1928178379 0.7000
6 -0.1928178379 0.7000
Sum of occupations : 3.0000
-5.18673150
2 110010 0.5000 0.7071 0.0000
3 101001 0.5000 0.7071 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 1.0000
2 -0.1928178379 0.5000
3 -0.1928178379 0.5000
4 -0.2636503417 0.0000
5 -0.1928178379 0.5000
6 -0.1928178379 0.5000
Sum of occupations : 3.0000
-5.13819355
1 110100 0.0382 0.1955 0.0000
2 110010 0.0034 -0.0583 0.0000
3 101001 0.0034 0.0583 0.0000
4 011001 0.9447 -0.9720 0.0000
5 000111 0.0102 0.1011 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.0450
2 -0.1928178379 0.9864
3 -0.1928178379 0.9482
4 -0.2636503417 0.0484
5 -0.1928178379 0.0136
6 -0.1928178379 0.9584
Sum of occupations : 3.0000
Representation -1u; 5 vectors written to file MDTRIV_ -1u
Eigenvalues -5.300947773703
-5.244255749591
-5.222705799962
-5.186731495648
-5.138193550557
CPU time for this representation
Generation of determinants : 0.0000
Building the CI matrix : 0.0000
Diagonalization : 0.0035
Writing CI vectors : 0.0007
Population analysis for representation -1u
The first 5 vectors are analyzed
energy det# determinant norm Re Im
------ ---- ----------- ---- -- --
-5.30094777
1 111000 0.1249 -0.3534 0.0000
2 100110 0.7371 -0.8586 0.0000
3 010110 0.0416 0.2040 0.0000
4 001101 0.0416 -0.2040 0.0000
5 001011 0.0547 -0.2340 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.8620
2 -0.1928178379 0.1665
3 -0.1928178379 0.2212
4 -0.2636503417 0.8204
5 -0.1928178379 0.8335
6 -0.1928178379 0.0964
Sum of occupations : 3.0000
-5.24425575
1 111000 0.4649 0.6818 0.0000
2 100110 0.2246 -0.4740 0.0000
3 010110 0.1550 -0.3937 0.0000
4 001101 0.1550 0.3937 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.6895
2 -0.1928178379 0.6199
3 -0.1928178379 0.6204
4 -0.2636503417 0.5346
5 -0.1928178379 0.3801
6 -0.1928178379 0.1555
Sum of occupations : 3.0000
-5.22270580
1 111000 0.4000 0.6325 0.0000
3 010110 0.3000 0.5477 0.0000
4 001101 0.3000 -0.5477 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.4000
2 -0.1928178379 0.7000
3 -0.1928178379 0.7000
4 -0.2636503417 0.6000
5 -0.1928178379 0.3000
6 -0.1928178379 0.3000
Sum of occupations : 3.0000
-5.18673150
3 010110 0.5000 0.7071 0.0000
4 001101 0.5000 0.7071 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.0000
2 -0.1928178379 0.5000
3 -0.1928178379 0.5000
4 -0.2636503417 1.0000
5 -0.1928178379 0.5000
6 -0.1928178379 0.5000
Sum of occupations : 3.0000
-5.13819355
1 111000 0.0102 -0.1011 0.0000
2 100110 0.0382 -0.1955 0.0000
3 010110 0.0034 0.0583 0.0000
4 001101 0.0034 -0.0583 0.0000
5 001011 0.9447 0.9720 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.0484
2 -0.1928178379 0.0136
3 -0.1928178379 0.9584
4 -0.2636503417 0.0450
5 -0.1928178379 0.9864
6 -0.1928178379 0.9482
Sum of occupations : 3.0000
Representation 3u; 4 vectors written to file MDTRIV_ 3u
Eigenvalues -5.300947773703
-5.244255749591
-5.222705799962
-5.138193550557
CPU time for this representation
Generation of determinants : 0.0000
Building the CI matrix : 0.0000
Diagonalization : 0.0035
Writing CI vectors : 0.0006
Population analysis for representation 3u
The first 4 vectors are analyzed
energy det# determinant norm Re Im
------ ---- ----------- ---- -- --
-5.30094777
1 100101 0.7371 -0.8586 0.0000
2 010101 0.1665 -0.4081 0.0000
3 100011 0.0416 0.2040 0.0000
4 010011 0.0547 0.2340 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.7788
2 -0.1928178379 0.2212
3 -0.1928178379 0.0000
4 -0.2636503417 0.9036
5 -0.1928178379 0.0964
6 -0.1928178379 1.0000
Sum of occupations : 3.0000
-5.24425575
1 100101 0.2246 -0.4740 0.0000
2 010101 0.6199 0.7873 0.0000
3 100011 0.1550 -0.3937 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.3796
2 -0.1928178379 0.6204
3 -0.1928178379 0.0000
4 -0.2636503417 0.8445
5 -0.1928178379 0.1555
6 -0.1928178379 1.0000
Sum of occupations : 3.0000
-5.22270580
2 010101 0.2000 0.4472 0.0000
3 100011 0.8000 0.8944 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.8000
2 -0.1928178379 0.2000
3 -0.1928178379 0.0000
4 -0.2636503417 0.2000
5 -0.1928178379 0.8000
6 -0.1928178379 1.0000
Sum of occupations : 3.0000
-5.13819355
1 100101 0.0382 0.1955 0.0000
2 010101 0.0136 0.1167 0.0000
3 100011 0.0034 -0.0583 0.0000
4 010011 0.9447 0.9720 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.0416
2 -0.1928178379 0.9584
3 -0.1928178379 0.0000
4 -0.2636503417 0.0518
5 -0.1928178379 0.9482
6 -0.1928178379 1.0000
Sum of occupations : 3.0000
Representation -3u; 4 vectors written to file MDTRIV_ -3u
Eigenvalues -5.300947773703
-5.244255749591
-5.222705799962
-5.138193550557
CPU time for this representation
Generation of determinants : 0.0000
Building the CI matrix : 0.0000
Diagonalization : 0.0036
Writing CI vectors : 0.0006
Population analysis for representation -3u
The first 4 vectors are analyzed
energy det# determinant norm Re Im
------ ---- ----------- ---- -- --
-5.30094777
1 101100 0.7371 0.8586 0.0000
2 011100 0.0416 -0.2040 0.0000
3 101010 0.1665 0.4081 0.0000
4 011010 0.0547 -0.2340 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.9036
2 -0.1928178379 0.0964
3 -0.1928178379 1.0000
4 -0.2636503417 0.7788
5 -0.1928178379 0.2212
6 -0.1928178379 0.0000
Sum of occupations : 3.0000
-5.24425575
1 101100 0.2246 0.4740 0.0000
2 011100 0.1550 0.3937 0.0000
3 101010 0.6199 -0.7873 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.8445
2 -0.1928178379 0.1555
3 -0.1928178379 1.0000
4 -0.2636503417 0.3796
5 -0.1928178379 0.6204
6 -0.1928178379 0.0000
Sum of occupations : 3.0000
-5.22270580
2 011100 0.8000 -0.8944 0.0000
3 101010 0.2000 -0.4472 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.2000
2 -0.1928178379 0.8000
3 -0.1928178379 1.0000
4 -0.2636503417 0.8000
5 -0.1928178379 0.2000
6 -0.1928178379 0.0000
Sum of occupations : 3.0000
-5.13819355
1 101100 0.0382 0.1955 0.0000
2 011100 0.0034 -0.0583 0.0000
3 101010 0.0136 0.1167 0.0000
4 011010 0.9447 0.9720 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.0518
2 -0.1928178379 0.9482
3 -0.1928178379 1.0000
4 -0.2636503417 0.0416
5 -0.1928178379 0.9584
6 -0.1928178379 0.0000
Sum of occupations : 3.0000
Representation 5u; 1 vectors written to file MDTRIV_ 5u
Eigenvalues -5.222705799962
CPU time for this representation
Generation of determinants : 0.0000
Building the CI matrix : 0.0000
Diagonalization : 0.0038
Writing CI vectors : 0.0005
Population analysis for representation 5u
The first 1 vectors are analyzed
energy det# determinant norm Re Im
------ ---- ----------- ---- -- --
-5.22270580
1 110001 1.0000 1.0000 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 1.0000
2 -0.1928178379 1.0000
3 -0.1928178379 0.0000
4 -0.2636503417 0.0000
5 -0.1928178379 0.0000
6 -0.1928178379 1.0000
Sum of occupations : 3.0000
Representation -5u; 1 vectors written to file MDTRIV_ -5u
Eigenvalues -5.222705799962
CPU time for this representation
Generation of determinants : 0.0000
Building the CI matrix : 0.0000
Diagonalization : 0.0037
Writing CI vectors : 0.0005
Population analysis for representation -5u
The first 1 vectors are analyzed
energy det# determinant norm Re Im
------ ---- ----------- ---- -- --
-5.22270580
1 001110 1.0000 1.0000 0.0000
Orb. Orbital energy Occupation
1 -0.2636503417 0.0000
2 -0.1928178379 0.0000
3 -0.1928178379 1.0000
4 -0.2636503417 1.0000
5 -0.1928178379 1.0000
6 -0.1928178379 0.0000
Sum of occupations : 3.0000
( 1 au = 27.2113834378 eV / 219474.631280634 cm-1)
Energy eigenvalues in atomic units
Level Rel eigenvalue Abs eigenvalue Total Energy Degeneracy
1 0.0000000000 -1.780162163308 -5.300947773703 ( 4 * )
2 0.0566920241 -1.723470139197 -5.244255749591 ( 4 * )
3 0.0782419737 -1.701920189567 -5.222705799962 ( 6 * )
4 0.1142162781 -1.665945885253 -5.186731495648 ( 2 * )
5 0.1627542231 -1.617407940163 -5.138193550557 ( 4 * )
Total average: -5.2221643043
Relative real eigenvalues in other units;
Symmetry Classification in the Abelian subgroup
Level eigenvalue (eV) Eigenvalue (cm-1) 1g| -1g| 3g| -3g| 5g| -5g| 7g| -7g|
1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0|
2 1.542668406 12442.461088 0| 0| 0| 0| 0| 0| 0| 0|
3 2.129072348 17172.128337 0| 0| 0| 0| 0| 0| 0| 0|
4 3.107982937 25067.575512 0| 0| 0| 0| 0| 0| 0| 0|
5 4.428767572 35720.423114 0| 0| 0| 0| 0| 0| 0| 0|
Relative real eigenvalues in other units;
Symmetry Classification in the Abelian subgroup
Level eigenvalue (eV) Eigenvalue (cm-1) 9g| -9g| 11g|-11g| 13g|-13g| 15g|-15g|
1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0|
2 1.542668406 12442.461088 0| 0| 0| 0| 0| 0| 0| 0|
3 2.129072348 17172.128337 0| 0| 0| 0| 0| 0| 0| 0|
4 3.107982937 25067.575512 0| 0| 0| 0| 0| 0| 0| 0|
5 4.428767572 35720.423114 0| 0| 0| 0| 0| 0| 0| 0|
Relative real eigenvalues in other units;
Symmetry Classification in the Abelian subgroup
Level eigenvalue (eV) Eigenvalue (cm-1) 1u| -1u| 3u| -3u| 5u| -5u| 7u| -7u|
1 0.000000000 0.000000 1| 1| 1| 1| 0| 0| 0| 0|
2 1.542668406 12442.461088 1| 1| 1| 1| 0| 0| 0| 0|
3 2.129072348 17172.128337 1| 1| 1| 1| 1| 1| 0| 0|
4 3.107982937 25067.575512 1| 1| 0| 0| 0| 0| 0| 0|
5 4.428767572 35720.423114 1| 1| 1| 1| 0| 0| 0| 0|
Relative real eigenvalues in other units;
Symmetry Classification in the Abelian subgroup
Level eigenvalue (eV) Eigenvalue (cm-1) 9u| -9u| 11u|-11u| 13u|-13u| 15u|-15u|
1 0.000000000 0.000000 0| 0| 0| 0| 0| 0| 0| 0|
2 1.542668406 12442.461088 0| 0| 0| 0| 0| 0| 0| 0|
3 2.129072348 17172.128337 0| 0| 0| 0| 0| 0| 0| 0|
4 3.107982937 25067.575512 0| 0| 0| 0| 0| 0| 0| 0|
5 4.428767572 35720.423114 0| 0| 0| 0| 0| 0| 0| 0|
=====================
Total CPU time : 0.0313
(NORMAL END OF PROGRAM)
*****************************************************
********** E N D of D I R A C output **********
*****************************************************
Date and time (Linux) : Mon Oct 4 09:54:23 2021
Host name : cee-compute025
Dynamical Memory Usage Summary for Master
Mean allocation size (Mb) : 84.22
Largest 10 allocations
488.28 Mb at subroutine resolv_+0x9e for WORK in RESOLV
488.28 Mb at subroutine pamana_+0x97 for WORK in PAMANA
488.28 Mb at subroutine psiscf_+0xa5 for WORK in PSISCF
488.28 Mb at subroutine pamset_+0x1833 for WORK in PAMSET - 2
488.28 Mb at subroutine gmotra_+0x537b for WORK in GMOTRA
488.28 Mb at subroutine pamset_+0x91 for WORK in PAMSET - 1
488.28 Mb at subroutine MAIN__+0x2a8 for test allocation of work array in DIRAC mai
244.14 Mb at subroutine diagh_+0x100 for ee
244.14 Mb at subroutine diagh_+0x100 for ee
244.14 Mb at subroutine diagh_+0x100 for ee
Peak memory usage: 732.54 MB
Peak memory usage: 0.715 GB
reached at subroutine : diagh_+0x133
for variable : e2
MEMGET high-water mark: 0.00 MB
*****************************************************
>>>> Node 0, utime: 1, stime: 0, minflt: 6592, majflt: 34, nvcsw: 639, nivcsw: 2, maxrss: 158076
>>>> Total WALL time used in DIRAC: 2s
DIRAC pam run in /home/cmelton/codes/qmcpack/tests/converter/test_Bi_dirac