qmcpack/tests/afqmc/C_1x1x1_dzvp/pyscf/scf.uhf.out

488 lines
24 KiB
Plaintext

#INFO: **** input file is /g/g90/malone14/projects/qmcpack/tests/afqmc/C_uhf/pyscf/scf.py ****
#! /usr/bin/env python3
import numpy
from functools import reduce
from pyscf.pbc import gto, scf
from pyscf.pbc import tools as pbctools
alat0 = 3.6
cell = gto.Cell()
cell.a = (numpy.ones((3,3))-numpy.eye(3))*alat0/2.0
cell.atom = (('C',0,0,0),('C',numpy.array([0.25,0.25,0.25])*alat0))
cell.basis = 'gth-dzvp'
cell.pseudo = 'gth-pade'
cell.gs = [10]*3
cell.verbose = 5
cell.build()
nk = [1,1,1]
kpts = cell.make_kpts(nk)
mf = scf.KUHF(cell)
mf.chkfile = 'scf.dump'
ehf = mf.kernel()
import h5py
from pyscftools import integrals_from_chkfile
hcore = mf.get_hcore() # obtain and store core hamiltonian
fock = (hcore + mf.get_veff()) # store fock matrix (required with orthoAO)
X,nmo_per_kpt = integrals_from_chkfile.getOrthoAORotation(cell,kpts,1e-8) # store rotation to orthogonal PAO basis
with h5py.File(mf.chkfile) as fh5:
fh5['scf/hcore'] = hcore
fh5['scf/fock'] = fock
fh5['scf/orthoAORot'] = X
fh5['scf/nmo_per_kpt'] = nmo_per_kpt
integrals_from_chkfile.eri_to_h5("choldump", "./scf.dump", orthoAO=True, gtol=1e-5, gtol_chol=1e-5)
#INFO: ******************** input file end ********************
System: ('Linux', 'quartz17', '3.10.0-862.14.4.1chaos.ch6.x86_64', '#1 SMP Wed Sep 26 12:27:08 PDT 2018', 'x86_64', 'x86_64') Threads 36
Python 2.7.14 (default, Jan 17 2018, 10:04:29)
[GCC 4.9.3]
numpy 1.13.3 scipy 1.0.0
Date: Wed Dec 19 14:03:22 2018
PySCF version 1.5.4
PySCF path /g/g90/malone14/projects/pyscf/pyscf
GIT ORIG_HEAD 00b878518d58a6085638359273a44f59928509d9
GIT HEAD ref: refs/heads/master
GIT master branch 322458783fdde178d8c6983df2ab92bb5d12fda9
[CONFIG] conf_file None
[INPUT] verbose = 5
[INPUT] max_memory = 4000
[INPUT] num. atoms = 2
[INPUT] num. electrons = 8
[INPUT] charge = 0
[INPUT] spin (= nelec alpha-beta = 2S) = 0
[INPUT] symmetry False subgroup None
[INPUT] Mole.unit = angstrom
[INPUT] 1 C 0.000000000000 0.000000000000 0.000000000000 AA 0.000000000000 0.000000000000 0.000000000000 Bohr
[INPUT] 2 C 0.900000000000 0.900000000000 0.900000000000 AA 1.700753512109 1.700753512109 1.700753512109 Bohr
[INPUT] ---------------- BASIS SET ----------------
[INPUT] l, kappa, [nprim/nctr], expnt, c_1 c_2 ...
[INPUT] C
[INPUT] 0 0 [4 /2 ] 4.3362376436 0.1490797872 0
1.2881838513 -0.0292640031 0
0.4037767149 -0.688204051 0
0.1187877657 -0.3964426906 1
[INPUT] 1 0 [4 /2 ] 4.3362376436 -0.0878123619 0
1.2881838513 -0.27755603 0
0.4037767149 -0.4712295093 0
0.1187877657 -0.4058039291 1
[INPUT] 2 0 [1 /1 ] 0.55 1
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
nuclear repulsion = -12.6692033995315
number of shells = 6
number of NR pGTOs = 42
number of NR cGTOs = 26
basis = gth-dzvp
ecp = {}
CPU time: 1.50
lattice vectors a1 [0.000000000, 3.401507024, 3.401507024]
a2 [3.401507024, 0.000000000, 3.401507024]
a3 [3.401507024, 3.401507024, 0.000000000]
dimension = 3
Cell volume = 78.7126
rcut = 20.6071062272 (nimgs = [6 6 6])
lattice sum = 1097 cells
precision = 1e-08
pseudo = gth-pade
mesh = [21, 21, 21] (9261 PWs)
= ke_cutoff [ 141.06746378 141.06746378 141.06746378]
ew_eta = 1.55387
ew_cut = 4.38941179257 (nimgs = [2 2 2])
[[ 0. 0. 0.]]
******** <class 'pyscf.pbc.scf.kuhf.KUHF'> flags ********
method = KUHF-UHF-UHF
initial guess = minao
damping factor = 0
level shift factor = 0
DIIS = <class 'pyscf.scf.diis.CDIIS'>
DIIS start cycle = 1
DIIS space = 8
SCF tol = 1e-07
SCF gradient tol = None
max. SCF cycles = 50
direct_scf = False
chkfile to save SCF result = scf.dump
max_memory 4000 MB (current use 54 MB)
******** PBC SCF flags ********
N kpts = 1
kpts = [[ 0. 0. 0.]]
Exchange divergence treatment (exxdiv) = ewald
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
madelung (= occupied orbital energy shift) = 0.673945701372
Total energy shift due to Ewald probe charge = -1/2 * Nelec*madelung/cell.vol = -2.69578280549
DF object = <pyscf.pbc.df.fft.FFTDF object at 0x2aaac5b419d0>
******** <class 'pyscf.pbc.df.fft.FFTDF'> flags ********
mesh = [21, 21, 21] (9261 PWs)
len(kpts) = 1
number of electrons per unit cell alpha = 4 beta = 4
Set gradient conv threshold to 0.000316228
cond(S) = [ 84647.06237231]
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.83 sec, wall time 0.54 sec
E1 = 3.29083606501 E_coul = -13.5844110048
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
init E= -22.9627783393618
CPU time for initialize scf 8.14 sec, wall time 0.74 sec
alpha HOMO = 0.53636612033 LUMO = 0.790014205549
beta HOMO = 0.546407498717 LUMO = 0.798479205908
k-point alpha mo_energy
0 ( 0.000 0.000 0.000) [-2.91501147 0.5363661 0.53636612 0.53636612] [ 0.79001421 0.79001422 0.79001422 0.99803715 1.71380881 1.71590294
1.71590294 1.99742722 1.99742727 1.99742727 2.56120136 2.56120144
2.56120144 3.46069698 3.460697 3.460697 3.58180926 3.58180926
4.05466378 4.63238254 4.63238255 4.63238255]
k-point beta mo_energy
0 ( 0.000 0.000 0.000) [-2.85278463 0.54640748 0.5464075 0.5464075 ] [ 0.79847921 0.79847922 0.79847922 1.00829519 1.71917374 1.7208609
1.7208609 2.00158512 2.00158516 2.00158516 2.56454762 2.56454771
2.56454771 3.46346883 3.46346885 3.46346885 3.58480558 3.58480558
4.05730965 4.63471855 4.63471856 4.63471856]
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.48 sec, wall time 0.52 sec
E1 = 4.55069200121 E_coul = -2.19472917657
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
cycle= 1 E= -10.3132405748942 delta_E= 12.6 |g|= 0.102 |ddm|= 4.62
CPU time for cycle= 1 5.55 sec, wall time 0.58 sec
alpha HOMO = 0.236474645897 LUMO = 1.06106747681
beta HOMO = 0.236485714284 LUMO = 1.0610576952
k-point alpha mo_energy
0 ( 0.000 0.000 0.000) [-0.63118012 0.23647463 0.23647465 0.23647465] [ 1.06106748 1.0610675 1.0610675 1.36048915 1.82759374 1.82759374
1.83501586 2.11216238 2.11216243 2.11216243 2.66855907 2.66855917
2.66855917 3.50772477 3.50772479 3.50772479 3.65374261 3.65374261
4.13457406 4.69645562 4.69645563 4.69645563]
k-point beta mo_energy
0 ( 0.000 0.000 0.000) [-0.63117764 0.23648569 0.23648571 0.23648571] [ 1.0610577 1.06105771 1.06105771 1.3604757 1.8275958 1.8275958
1.83502036 2.11215659 2.11215664 2.11215664 2.66855965 2.66855975
2.66855975 3.507726 3.50772602 3.50772602 3.65373833 3.65373833
4.13457457 4.69645325 4.69645325 4.69645325]
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.87 sec, wall time 0.55 sec
E1 = 4.55101974241 E_coul = -2.201080562
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
cycle= 2 E= -10.3192642191224 delta_E= -0.00602 |g|= 0.0281 |ddm|= 0.984
CPU time for cycle= 2 5.95 sec, wall time 0.59 sec
alpha HOMO = 0.23526600082 LUMO = 1.06185434187
beta HOMO = 0.235265241947 LUMO = 1.06185363672
k-point alpha mo_energy
0 ( 0.000 0.000 0.000) [-0.6330914 0.23526598 0.235266 0.235266 ] [ 1.06185434 1.06185436 1.06185436 1.36019563 1.82776715 1.82776715
1.8346363 2.11233838 2.11233843 2.11233843 2.66734692 2.66734702
2.66734702 3.50798637 3.50798639 3.50798639 3.6548107 3.6548107
4.1312084 4.69690215 4.69690216 4.69690216]
k-point beta mo_energy
0 ( 0.000 0.000 0.000) [-0.63309088 0.23526522 0.23526524 0.23526524] [ 1.06185364 1.06185366 1.06185366 1.36019415 1.82776824 1.82776824
1.83463588 2.11233838 2.11233843 2.11233843 2.66734572 2.66734582
2.66734582 3.50798632 3.50798634 3.50798634 3.65481096 3.65481096
4.13120833 4.69690196 4.69690196 4.69690196]
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.41 sec, wall time 0.52 sec
E1 = 4.55485249292 E_coul = -2.20542627193
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
cycle= 3 E= -10.3197771785355 delta_E= -0.000513 |g|= 0.000862 |ddm|= 0.455
CPU time for cycle= 3 5.48 sec, wall time 0.56 sec
alpha HOMO = 0.234966855405 LUMO = 1.0616554011
beta HOMO = 0.234966808492 LUMO = 1.06165521872
k-point alpha mo_energy
0 ( 0.000 0.000 0.000) [-0.63311033 0.23496683 0.23496686 0.23496686] [ 1.0616554 1.06165542 1.06165542 1.35988761 1.82765923 1.82765923
1.83450486 2.1121386 2.11213865 2.11213865 2.66694757 2.66694767
2.66694767 3.50788493 3.50788495 3.50788495 3.65462117 3.65462117
4.13106129 4.69670582 4.69670583 4.69670583]
k-point beta mo_energy
0 ( 0.000 0.000 0.000) [-0.63311029 0.23496679 0.23496681 0.23496681] [ 1.06165522 1.06165524 1.06165524 1.35988723 1.82765947 1.82765947
1.83450488 2.11213852 2.11213857 2.11213857 2.66694734 2.66694744
2.66694744 3.50788488 3.5078849 3.5078849 3.65462122 3.65462122
4.13106131 4.69670576 4.69670577 4.69670577]
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.47 sec, wall time 0.56 sec
E1 = 4.55522983503 E_coul = -2.20580410668
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
cycle= 4 E= -10.3197776711744 delta_E= -4.93e-07 |g|= 5.69e-05 |ddm|= 0.0115
CPU time for cycle= 4 5.54 sec, wall time 0.60 sec
alpha HOMO = 0.234980558319 LUMO = 1.06167731765
beta HOMO = 0.23498052184 LUMO = 1.06167725929
k-point alpha mo_energy
0 ( 0.000 0.000 0.000) [-0.63313217 0.23498054 0.23498056 0.23498056] [ 1.06167732 1.06167734 1.06167734 1.35992293 1.82766869 1.82766869
1.83453452 2.11216537 2.11216543 2.11216543 2.666979 2.6669791
2.6669791 3.50789392 3.50789394 3.50789394 3.6546418 3.6546418
4.13106825 4.69672557 4.69672557 4.69672557]
k-point beta mo_energy
0 ( 0.000 0.000 0.000) [-0.63313216 0.2349805 0.23498052 0.23498052] [ 1.06167726 1.06167728 1.06167728 1.35992281 1.82766875 1.82766875
1.83453452 2.11216537 2.11216542 2.11216542 2.66697894 2.66697904
2.66697904 3.50789391 3.50789393 3.50789393 3.65464181 3.65464181
4.13106826 4.69672555 4.69672555 4.69672555]
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.43 sec, wall time 0.52 sec
E1 = 4.55522027086 E_coul = -2.20579454405
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
cycle= 5 E= -10.3197776727143 delta_E= -1.54e-09 |g|= 1.42e-06 |ddm|= 0.00182
CPU time for cycle= 5 5.51 sec, wall time 0.56 sec
alpha HOMO = 0.234981475534 LUMO = 1.06167689797
beta HOMO = 0.234981463973 LUMO = 1.06167687449
k-point alpha mo_energy
0 ( 0.000 0.000 0.000) [-0.6331288 0.23498145 0.23498148 0.23498148] [ 1.0616769 1.06167692 1.06167692 1.35992217 1.82766857 1.82766857
1.8345313 2.11216366 2.11216371 2.11216371 2.66697828 2.66697838
2.66697838 3.5078936 3.50789362 3.50789362 3.65464125 3.65464125
4.1310684 4.69672499 4.69672499 4.69672499]
k-point beta mo_energy
0 ( 0.000 0.000 0.000) [-0.63312879 0.23498144 0.23498146 0.23498146] [ 1.06167687 1.06167689 1.06167689 1.35992212 1.8276686 1.8276686
1.8345313 2.11216366 2.11216371 2.11216371 2.66697826 2.66697836
2.66697836 3.5078936 3.50789362 3.50789362 3.65464125 3.65464125
4.1310684 4.69672498 4.69672499 4.69672499]
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.61 sec, wall time 0.53 sec
E1 = 4.55521951256 E_coul = -2.20579378574
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
Extra cycle E= -10.3197776727154 delta_E= -1.07e-12 |g|= 2.41e-07 |ddm|= 3.67e-05
CPU time for scf_cycle 41.85 sec, wall time 4.19 sec
CPU time for SCF 41.85 sec, wall time 4.19 sec
converged SCF energy = -10.3197776727154 <S^2> = 2.3536728e-14 2S+1 = 1
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
CPU time for vj and vk 5.50 sec, wall time 0.52 sec
Total number of orbitals: 26
Time to reach cholesky: 0.05
Approx. total memory required: 0.18657553196 GB.
Generating orbital products. 0.1
Time to generate orbital products: 4.67
Time to generate diagonal (initial residual): 0.13
0 0.120157318521 0.02 0.0 0.01 0.01 0.0 0.0
1 0.0895312452214 0.01 0.0 0.01 0.0 0.0 0.0
2 0.0888543957922 0.01 0.0 0.01 0.0 0.0 0.0
3 0.0784786043191 0.01 0.0 0.01 0.0 0.0 0.0
4 0.0773113282276 0.01 0.0 0.01 0.0 0.0 0.0
5 0.0773110520824 0.01 0.0 0.01 0.0 0.0 0.0
6 0.0773110246735 0.01 0.0 0.01 0.0 0.0 0.0
7 0.0715866882964 0.01 0.0 0.0 0.01 0.0 0.0
8 0.0685974817353 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0683897748023 0.01 0.0 0.01 0.0 0.0 0.0
10 0.0573436495911 0.01 0.0 0.01 0.0 0.0 0.0
11 0.055999305569 0.01 0.0 0.01 0.0 0.0 0.0
12 0.0549235695892 0.01 0.0 0.01 0.0 0.0 0.0
13 0.0502548812575 0.01 0.0 0.01 0.0 0.0 0.0
14 0.0476354403623 0.01 0.0 0.01 0.0 0.0 0.0
15 0.0443410022072 0.01 0.0 0.01 0.0 0.0 0.0
16 0.0425739912453 0.01 0.0 0.01 0.0 0.0 0.0
17 0.0420554275487 0.01 0.0 0.01 0.0 0.0 0.0
18 0.0381868351538 0.01 0.0 0.01 0.0 0.0 0.0
19 0.0367264453747 0.01 0.0 0.01 0.0 0.0 0.0
20 0.0357779005905 0.01 0.0 0.0 0.01 0.0 0.0
21 0.0307958000395 0.01 0.0 0.0 0.0 0.0 0.01
22 0.0303444081039 0.0 0.0 0.0 0.0 0.0 0.0
23 0.0298363865846 0.02 0.0 0.01 0.0 0.01 0.0
24 0.0294352976082 0.03 -0.01 0.02 0.0 0.0 0.0
25 0.0274209435877 0.01 0.0 0.01 0.0 0.0 0.0
26 0.0267555532061 0.01 0.0 0.01 0.0 0.0 0.0
27 0.0239512898756 0.01 0.0 0.01 0.0 0.0 0.0
28 0.0238309103417 0.01 0.0 0.01 0.0 0.0 0.0
29 0.0219508152084 0.01 0.0 0.01 0.0 0.0 0.0
30 0.0204331372551 0.01 0.0 0.01 0.0 0.0 0.0
31 0.019599937873 0.01 0.0 0.01 0.0 0.0 0.0
32 0.0184982471673 0.01 0.0 0.0 0.01 0.0 0.0
33 0.0175548740662 0.01 -0.01 0.0 0.0 0.0 0.0
34 0.0170330106552 0.01 -0.01 0.0 0.0 0.0 0.0
35 0.0168532366165 0.01 0.0 0.01 0.0 0.0 0.0
36 0.0167756445582 0.01 0.0 0.01 0.0 0.0 0.0
37 0.0165828200465 0.01 0.0 0.01 0.0 0.0 0.0
38 0.0158812337976 0.01 0.0 0.01 0.0 0.0 0.0
39 0.0151169922654 0.01 0.0 0.01 0.0 0.0 0.0
40 0.0148993591871 0.01 0.0 0.01 0.0 0.0 0.0
41 0.014567384614 0.01 0.0 0.01 0.0 0.0 0.0
42 0.0142596301361 0.01 0.0 0.01 0.0 0.0 0.0
43 0.0135173899981 0.01 0.0 0.01 0.0 0.0 0.0
44 0.0133105360376 0.01 0.0 0.01 0.0 0.0 0.0
45 0.0132285012044 0.01 0.0 0.01 0.0 0.0 0.0
46 0.0131087031912 0.01 0.0 0.01 0.0 0.0 0.0
47 0.0130804077324 0.01 0.0 0.0 0.01 0.0 0.0
48 0.0128262079037 0.0 0.0 0.0 0.0 0.0 0.0
49 0.0125241144064 0.01 -0.01 0.0 0.0 0.0 0.0
50 0.0122307813331 0.01 0.0 0.01 0.0 0.0 0.0
51 0.0118693835592 0.01 0.0 0.01 0.0 0.0 0.0
52 0.0116636123081 0.01 0.0 0.01 0.0 0.0 0.0
53 0.0115529463522 0.01 0.0 0.01 0.0 0.0 0.0
54 0.0113637716555 0.01 0.0 0.01 0.0 0.0 0.0
55 0.0112109481007 0.01 0.0 0.01 0.0 0.0 0.0
56 0.0109424566133 0.01 0.0 0.01 0.0 0.0 0.0
57 0.010556664275 0.01 0.0 0.01 0.0 0.0 0.0
58 0.010429384471 0.01 0.0 0.01 0.0 0.0 0.0
59 0.0102521468588 0.01 0.0 0.01 0.0 0.0 0.0
60 0.010170293226 0.01 0.0 0.01 0.0 0.0 0.0
61 0.0101283977262 0.01 0.0 0.0 0.01 0.0 0.0
62 0.00973852734712 0.0 0.0 0.0 0.0 0.0 0.0
63 0.00946171303443 0.01 0.0 0.0 0.0 0.0 0.0
64 0.00903362194735 0.01 0.0 0.01 0.0 0.0 0.0
65 0.0087602734146 0.01 0.0 0.01 0.0 0.0 0.0
66 0.00858799531743 0.01 0.0 0.01 0.0 0.0 0.0
67 0.00857249838162 0.01 0.0 0.01 0.0 0.0 0.0
68 0.00843404882489 0.01 0.0 0.01 0.0 0.0 0.0
69 0.00842567645775 0.01 0.0 0.01 0.0 0.0 0.0
70 0.00816350611807 0.01 0.0 0.01 0.0 0.0 0.0
71 0.00775829932006 0.01 0.0 0.01 0.0 0.0 0.0
72 0.00734053584921 0.01 0.0 0.01 0.0 0.0 0.0
73 0.00680298320493 0.01 0.0 0.01 0.0 0.0 0.0
74 0.00677542426753 0.01 0.0 0.01 0.0 0.0 0.0
75 0.00665926740944 0.01 0.0 0.01 0.0 0.0 0.0
76 0.00664662658799 0.01 0.0 0.0 0.01 0.0 0.0
77 0.00622344457705 0.0 0.0 0.0 0.0 0.0 0.01
78 0.00608689681954 0.0 0.0 0.0 0.0 0.0 0.0
79 0.00597574641366 0.01 0.0 0.01 0.0 0.0 0.0
80 0.00583012324478 0.01 0.0 0.01 0.0 0.0 0.0
81 0.00576062187882 0.01 0.0 0.01 0.0 0.0 0.0
82 0.00547905571116 0.01 0.0 0.01 0.0 0.0 0.0
83 0.005427646655 0.01 0.0 0.01 0.0 0.0 0.0
84 0.00532954918899 0.01 0.0 0.01 0.0 0.0 0.0
85 0.0053105040138 0.01 0.0 0.01 0.0 0.0 0.0
86 0.00504119533528 0.01 0.0 0.01 0.0 0.0 0.0
87 0.00496796686697 0.01 0.0 0.01 0.0 0.0 0.0
88 0.00483852298225 0.01 0.0 0.01 0.0 0.0 0.0
89 0.00481287703377 0.01 0.0 0.01 0.0 0.0 0.0
90 0.00476892153103 0.01 0.0 0.01 0.0 0.0 0.0
91 0.00473247470068 0.01 0.0 0.0 0.01 0.0 0.0
92 0.0046938853177 0.01 0.0 0.0 0.01 0.0 0.0
93 0.00456943806099 0.0 0.0 0.0 0.0 0.0 0.0
94 0.00452308339027 0.01 0.0 0.01 0.0 0.0 0.0
95 0.00448822043131 0.01 0.0 0.01 0.0 0.0 0.0
96 0.00438726884441 0.01 0.0 0.01 0.0 0.0 0.0
97 0.00438271160494 0.01 0.0 0.01 0.0 0.0 0.0
98 0.00431557691635 0.01 0.0 0.01 0.0 0.0 0.0
99 0.00425152550878 0.01 0.0 0.01 0.0 0.0 0.0
100 0.00402880280234 0.01 0.0 0.01 0.0 0.0 0.0
101 0.00401729418474 0.01 0.0 0.01 0.0 0.0 0.0
102 0.00397427481054 0.01 0.0 0.01 0.0 0.0 0.0
103 0.00385034248732 0.01 0.0 0.01 0.0 0.0 0.0
104 0.00384011897326 0.01 0.0 0.01 0.0 0.0 0.0
105 0.00373039903819 0.01 0.0 0.01 0.0 0.0 0.0
106 0.00361434427207 0.01 0.0 0.0 0.01 0.0 0.0
107 0.00361314330866 0.0 0.0 0.0 0.0 0.0 0.0
108 0.00360364868612 0.01 -0.01 0.0 0.0 0.0 0.0
109 0.00355862981659 0.01 0.0 0.01 0.0 0.0 0.0
110 0.00351178447663 0.01 0.0 0.01 0.0 0.0 0.0
111 0.00340933411322 0.01 0.0 0.01 0.0 0.0 0.0
112 0.00339223229268 0.01 0.0 0.01 0.0 0.0 0.0
113 0.00328339127236 0.01 0.0 0.01 0.0 0.0 0.0
114 0.00323111395086 0.01 0.0 0.01 0.0 0.0 0.0
115 0.00320050969631 0.01 0.0 0.01 0.0 0.0 0.0
116 0.00314784018105 0.01 0.0 0.01 0.0 0.0 0.0
117 0.00314496259458 0.01 0.0 0.01 0.0 0.0 0.0
118 0.0030971285268 0.01 0.0 0.01 0.0 0.0 0.0
119 0.00307066175418 0.01 0.0 0.01 0.0 0.0 0.0
120 0.0029444883462 0.01 0.0 0.0 0.01 0.0 0.0
121 0.00291408906276 0.01 0.0 0.0 0.01 0.0 0.0
122 0.0028724441672 0.0 0.0 0.0 0.0 0.0 0.0
123 0.00272390670546 0.01 0.0 0.01 0.0 0.0 0.0
124 0.00268929216961 0.01 0.0 0.01 0.0 0.0 0.0
125 0.00251194707709 0.01 0.0 0.01 0.0 0.0 0.0
126 0.00248698905278 0.01 0.0 0.01 0.0 0.0 0.0
127 0.00246781483442 0.01 0.0 0.01 0.0 0.0 0.0
128 0.00236771422653 0.01 0.0 0.01 0.0 0.0 0.0
129 0.0022868709561 0.01 0.0 0.01 0.0 0.0 0.0
130 0.00224719489058 0.01 0.0 0.01 0.0 0.0 0.0
131 0.00222872848082 0.01 0.0 0.01 0.0 0.0 0.0
132 0.00214137470466 0.01 0.0 0.01 0.0 0.0 0.0
133 0.00209920875541 0.01 0.0 0.01 0.0 0.0 0.0
134 0.00207972431899 0.01 0.0 0.01 0.0 0.0 0.0
135 0.00202916967267 0.01 0.0 0.01 0.0 0.0 0.0
136 0.00193577310523 0.01 0.0 0.0 0.01 0.0 0.0
137 0.00190429894386 0.01 0.0 0.0 0.01 0.0 0.0
138 0.00188670489578 0.0 0.0 0.0 0.0 0.0 0.0
139 0.00185725040537 0.01 0.0 0.01 0.0 0.0 0.0
140 0.00181998744459 0.01 0.0 0.01 0.0 0.0 0.0
141 0.00177649215691 0.01 0.0 0.01 0.0 0.0 0.0
142 0.00165805723227 0.01 0.0 0.01 0.0 0.0 0.0
143 0.00165471134571 0.01 0.0 0.01 0.0 0.0 0.0
144 0.00164930563285 0.01 0.0 0.01 0.0 0.0 0.0
145 0.00149520200981 0.01 0.0 0.01 0.0 0.0 0.0
146 0.00145404260661 0.01 0.0 0.01 0.0 0.0 0.0
147 0.00143287899556 0.01 0.0 0.01 0.0 0.0 0.0
148 0.00140505576787 0.01 0.0 0.01 0.0 0.0 0.0
149 0.00134433566543 0.01 0.0 0.01 0.0 0.0 0.0
150 0.00134369276831 0.01 0.0 0.01 0.0 0.0 0.0
151 0.00133215132846 0.01 0.0 0.01 0.0 0.0 0.0
152 0.00128265170322 0.01 0.0 0.01 0.0 0.0 0.0
153 0.00122198671009 0.01 0.0 0.0 0.01 0.0 0.0
154 0.00121112392153 0.0 0.0 0.0 0.0 0.0 0.0
155 0.00116894892982 0.01 -0.01 0.0 0.0 0.0 0.0
156 0.00112850642033 0.01 0.0 0.01 0.0 0.0 0.0
157 0.00112391828106 0.01 0.0 0.01 0.0 0.0 0.0
158 0.00110758127692 0.01 0.0 0.01 0.0 0.0 0.0
159 0.00103290219554 0.01 0.0 0.01 0.0 0.0 0.0
160 0.00098709199471 0.01 0.0 0.01 0.0 0.0 0.0
161 0.000986945552045 0.01 0.0 0.01 0.0 0.0 0.0
162 0.000923671085977 0.01 0.0 0.01 0.0 0.0 0.0
163 0.000917760154424 0.01 0.0 0.01 0.0 0.0 0.0
164 0.000834880940289 0.01 0.0 0.01 0.0 0.0 0.0
165 0.000802209641199 0.01 0.0 0.01 0.0 0.0 0.0
166 0.000751682889801 0.01 0.0 0.01 0.0 0.0 0.0
167 0.000720785436171 0.01 0.0 0.01 0.0 0.0 0.0
168 0.000712378575688 0.01 0.0 0.01 0.0 0.0 0.0
169 0.000692055699743 0.01 0.0 0.0 0.01 0.0 0.0
170 0.000683760907985 0.0 0.0 0.0 0.0 0.0 0.0
171 0.000664579339876 0.01 -0.01 0.0 0.0 0.0 0.0
172 0.000602545389707 0.01 0.0 0.01 0.0 0.0 0.0
173 0.000578188454343 0.01 0.0 0.01 0.0 0.0 0.0
174 0.000571420493697 0.01 0.0 0.01 0.0 0.0 0.0
175 0.000537793347086 0.01 0.0 0.01 0.0 0.0 0.0
176 0.000519724625185 0.01 0.0 0.01 0.0 0.0 0.0
177 0.000465046787317 0.01 0.0 0.01 0.0 0.0 0.0
178 0.000446289373292 0.01 0.0 0.01 0.0 0.0 0.0
179 0.000428232205166 0.01 0.0 0.01 0.0 0.0 0.0
180 0.000427561322315 0.01 0.0 0.01 0.0 0.0 0.0
181 0.00042674594915 0.01 0.0 0.01 0.0 0.0 0.0
182 0.000410830686832 0.01 0.0 0.01 0.0 0.0 0.0
183 0.000407393151584 0.01 0.0 0.01 0.0 0.0 0.0
184 0.000406955664155 0.01 0.0 0.01 0.0 0.0 0.0
185 0.000405740557628 0.01 0.0 0.01 0.0 0.0 0.0
186 0.000394974908295 0.01 0.0 0.0 0.01 0.0 0.0
187 0.000383741011477 0.01 0.0 0.0 0.01 0.0 0.0
188 0.000367396896292 0.0 0.0 0.0 0.0 0.0 0.0
189 0.000322907258856 0.01 -0.01 0.0 0.0 0.0 0.0
190 0.000312718932439 0.01 0.0 0.01 0.0 0.0 0.0
191 0.0002592042382 0.01 0.0 0.01 0.0 0.0 0.0
192 0.000249136665222 0.01 0.0 0.01 0.0 0.0 0.0
193 0.000243384136365 0.01 0.0 0.01 0.0 0.0 0.0
194 0.000233046607212 0.01 0.0 0.01 0.0 0.0 0.0
195 0.000218529963505 0.01 0.0 0.01 0.0 0.0 0.0
196 0.000203670951404 0.01 0.0 0.01 0.0 0.0 0.0
197 0.000200589694223 0.01 0.0 0.01 0.0 0.0 0.0
198 0.000190115511918 0.01 0.0 0.01 0.0 0.0 0.0
199 0.000168553887491 0.01 0.0 0.01 0.0 0.0 0.0
200 0.000159189353324 0.01 0.0 0.01 0.0 0.0 0.0
201 0.000144824547538 0.01 0.0 0.01 0.0 0.0 0.0
202 0.000106627310472 0.01 0.0 0.0 0.01 0.0 0.0
203 8.28169249316e-05 0.01 0.0 0.0 0.01 0.0 0.0
204 8.02643549095e-05 0.0 0.0 0.0 0.0 0.0 0.0
205 7.2380091755e-05 0.01 0.0 0.0 0.0 0.0 0.0
206 6.96490074607e-05 0.01 0.0 0.01 0.0 0.0 0.0
207 6.45432415188e-05 0.01 0.0 0.01 0.0 0.0 0.0
208 6.08165208728e-05 0.01 0.0 0.01 0.0 0.0 0.0
209 5.4661145145e-05 0.01 0.0 0.01 0.0 0.0 0.0
210 5.38241453339e-05 0.01 0.0 0.01 0.0 0.0 0.0
211 4.71937813131e-05 0.01 0.0 0.01 0.0 0.0 0.0
212 4.43644740276e-05 0.01 0.0 0.01 0.0 0.0 0.0
213 3.76858582272e-05 0.01 0.0 0.01 0.0 0.0 0.0
214 3.19614574865e-05 0.01 0.0 0.01 0.0 0.0 0.0
215 3.12398927251e-05 0.01 0.0 0.01 0.0 0.0 0.0
216 2.93929795619e-05 0.01 0.0 0.01 0.0 0.0 0.0
217 2.43062762417e-05 0.02 0.0 0.02 0.0 0.0 0.0
218 2.42900491297e-05 0.01 0.0 0.01 0.0 0.0 0.0
219 1.85292197722e-05 0.01 0.0 0.01 0.0 0.0 0.0
220 1.55984353607e-05 0.01 0.0 0.01 0.0 0.0 0.0
221 1.23090204775e-05 0.01 0.0 0.01 0.0 0.0 0.0
222 1.20892116763e-05 0.01 0.0 0.01 0.0 0.0 0.0
223 1.18875854416e-05 0.01 0.0 0.01 0.0 0.0 0.0
224 1.04532578981e-05 0.01 0.0 0.01 0.0 0.0 0.0
225 1.00967936864e-05 0.01 0.0 0.01 0.0 0.0 0.0
226 9.80968827676e-06 0.01 0.0 0.0 0.01 0.0 0.0
Ewald components = 2.08194966776067e-09, -28.5826438811942, 15.9134404795808
Ewald components = 5.06560363094887e-26, -0.884942558135828, 0.547969707449875
Adding ewald correction to the energy: -2.69578280549