\subsubsection{Spline form} \label{sec:onebodyjastrowspline} The one-body spline Jastrow function is the most commonly used one-body Jastrow for solids. This form was first described and used in \cite{EslerKimCeperleyShulenburger2012}. Here $u_{ab}$ is an interpolating 1D B-spline (tricublc spline on a linear grid) between zero distance and $r_{cut}$. In 3D periodic systems the default cutoff distance is the Wigner Seitz cell radius. For other periodicities, including isolated molecules, the $r_{cut}$ must be specified. The cusp can be set. $r_i$ and $R_I$ are most commonly the electron and ion positions, but any particlesets that can provide the needed centers can be used. \paragraph{Input specification} \begin{table}[h] \begin{center} \begin{tabular}{l c c c l } \hline \multicolumn{5}{l}{Correlation element} \\ \hline \bfseries Name & \bfseries Datatype & \bfseries Values & \bfseries Defaults & \bfseries Description \\ \hline ElementType & Text & Name & See below & Classical particle target \\ SpeciesA & Text & Name & See below & Classical particle target \\ SpeciesB & Text & Name & See below & Quantum species target \\ Size & Integer & $> 0$ & (Required) & Number of coefficients \\ Rcut & Real & $> 0$ & See below & Distance at which the correlation goes to 0 \\ Cusp & Real & $\ge 0$ & 0 & Value for use in Kato cusp condition \\ Spin & Text & Yes or no & No & Spin-dependent Jastrow factor \\ \hline \multicolumn{5}{l}{Elements}\\ \hline & Coefficients & & & \\ \hline \multicolumn{5}{l}{Contents}\\ \hline & (None) & & & \\ \hline \end{tabular} %\end{tabular*} \end{center} \end{table} Additional information: \begin{itemize} \item \ixml{elementType, speciesA, speciesB, spin}. For a spin-independent Jastrow factor (spin = ``no''), elementType should be the name of the group of ions in the classical particleset to which the quantum particles should be correlated. For a spin-dependent Jastrow factor (spin = ``yes''), set speciesA to the group name in the classical particleset and speciesB to the group name in the quantum particleset. \item \ixml{rcut}. The cutoff distance for the function in atomic units (bohr). For 3D fully periodic systems, this parameter is optional, and a default of the Wigner Seitz cell radius is used. Otherwise this parameter is required. \item \ixml{cusp}. The one-body Jastrow factor can be used to make the wavefunction satisfy the electron-ion cusp condition\cite{kato}. In this case, the derivative of the Jastrow factor as the electron approaches the nucleus will be given by \begin{equation} \left(\frac{\partial J}{\partial r_{iI}}\right)_{r_{iI} = 0} = -Z . \end{equation} Note that if the antisymmetric part of the wavefunction satisfies the electron-ion cusp condition (for instance by using single-particle orbitals that respect the cusp condition) or if a nondivergent pseudopotential is used, the Jastrow should be cuspless at the nucleus and this value should be kept at its default of 0. \end{itemize} \begin{table}[h] \begin{center} \begin{tabular}{l c c c l } \hline \multicolumn{5}{l}{Coefficients element} \\ \hline \bfseries Name & \bfseries Datatype & \bfseries Values & \bfseries Defaults & \bfseries Description \\ \hline Id & Text & & (Required) & Unique identifier \\ Type & Text & Array & (Required) & \\ Optimize & Text & Yes or no & Yes & if no, values are fixed in optimizations \\ \hline \multicolumn{5}{l}{Elements}\\ \hline (None) & & & \\ \hline \multicolumn{5}{l}{Contents}\\ \hline (No name) & Real array & & Zeros & Jastrow coefficients \\ \hline \end{tabular} %\end{tabular*} \end{center} \end{table} \paragraph{Example use cases} \label{sec:1bjsplineexamples} Specify a spin-independent function with four parameters. Because rcut is not specified, the default cutoff of the Wigner Seitz cell radius is used; this Jastrow must be used with a 3D periodic system such as a bulk solid. The name of the particleset holding the ionic positions is ``i." \begin{lstlisting}[style=QMCPXML] 0 0 0 0 \end{lstlisting} Specify a spin-dependent function with seven up-spin and seven down-spin parameters. The cutoff distance is set to 6 atomic units. Note here that the particleset holding the ions is labeled as ion0 rather than ``i,'' as in the other example. Also in this case, the ion is lithium with a coulomb potential, so the cusp condition is satisfied by setting cusp=``d." \begin{lstlisting}[style=QMCPXML] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \end{lstlisting}