qiskit/test/python/synthesis/test_synthesis.py

1825 lines
77 KiB
Python

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for quantum synthesis methods."""
import pickle
import unittest
import contextlib
import logging
import math
import numpy as np
import scipy
import scipy.stats
from ddt import ddt, data
from qiskit import QiskitError, transpile
from qiskit.dagcircuit.dagcircuit import DAGCircuit
from qiskit.circuit import QuantumCircuit, QuantumRegister, Gate
from qiskit.circuit.parameterexpression import ParameterValueType
from qiskit.converters import dag_to_circuit, circuit_to_dag
from qiskit.circuit.library import (
HGate,
IGate,
RGate,
SdgGate,
SGate,
U3Gate,
UGate,
XGate,
YGate,
ZGate,
CXGate,
CZGate,
iSwapGate,
SwapGate,
RXXGate,
RYYGate,
RZZGate,
RZXGate,
CPhaseGate,
CRZGate,
CRXGate,
CRYGate,
RXGate,
RYGate,
RZGate,
UnitaryGate,
)
from qiskit.quantum_info.operators import Operator
from qiskit.quantum_info.random import random_unitary
from qiskit.synthesis.one_qubit.one_qubit_decompose import OneQubitEulerDecomposer
from qiskit.synthesis.two_qubit.two_qubit_decompose import (
TwoQubitWeylDecomposition,
two_qubit_cnot_decompose,
TwoQubitBasisDecomposer,
TwoQubitControlledUDecomposer,
decompose_two_qubit_product_gate,
)
from qiskit._accelerate.two_qubit_decompose import two_qubit_decompose_up_to_diagonal
from qiskit._accelerate.two_qubit_decompose import Specialization
from qiskit._accelerate.two_qubit_decompose import Ud
from qiskit.synthesis.unitary import qsd
from test import combine # pylint: disable=wrong-import-order
from test import QiskitTestCase # pylint: disable=wrong-import-order
def make_oneq_cliffords():
"""Make as list of 1q Cliffords"""
ixyz_list = [g().to_matrix() for g in (IGate, XGate, YGate, ZGate)]
ih_list = [g().to_matrix() for g in (IGate, HGate)]
irs_list = [
IGate().to_matrix(),
SdgGate().to_matrix() @ HGate().to_matrix(),
HGate().to_matrix() @ SGate().to_matrix(),
]
oneq_cliffords = [
Operator(ixyz @ ih @ irs) for ixyz in ixyz_list for ih in ih_list for irs in irs_list
]
return oneq_cliffords
ONEQ_CLIFFORDS = make_oneq_cliffords()
def make_hard_thetas_oneq(smallest=1e-18, factor=3.2, steps=22, phi=0.7, lam=0.9):
"""Make 1q gates with theta/2 close to 0, pi/2, pi, 3pi/2"""
return (
[U3Gate(smallest * factor**i, phi, lam) for i in range(steps)]
+ [U3Gate(-smallest * factor**i, phi, lam) for i in range(steps)]
+ [U3Gate(np.pi / 2 + smallest * factor**i, phi, lam) for i in range(steps)]
+ [U3Gate(np.pi / 2 - smallest * factor**i, phi, lam) for i in range(steps)]
+ [U3Gate(np.pi + smallest * factor**i, phi, lam) for i in range(steps)]
+ [U3Gate(np.pi - smallest * factor**i, phi, lam) for i in range(steps)]
+ [U3Gate(3 * np.pi / 2 + smallest * factor**i, phi, lam) for i in range(steps)]
+ [U3Gate(3 * np.pi / 2 - smallest * factor**i, phi, lam) for i in range(steps)]
)
HARD_THETA_ONEQS = make_hard_thetas_oneq()
# It's too slow to use all 24**4 Clifford combos. If we can make it faster, use a larger set
K1K2S = [
(ONEQ_CLIFFORDS[3], ONEQ_CLIFFORDS[5], ONEQ_CLIFFORDS[2], ONEQ_CLIFFORDS[21]),
(ONEQ_CLIFFORDS[5], ONEQ_CLIFFORDS[6], ONEQ_CLIFFORDS[9], ONEQ_CLIFFORDS[7]),
(ONEQ_CLIFFORDS[2], ONEQ_CLIFFORDS[1], ONEQ_CLIFFORDS[0], ONEQ_CLIFFORDS[4]),
[
Operator(U3Gate(x, y, z))
for x, y, z in [(0.2, 0.3, 0.1), (0.7, 0.15, 0.22), (0.001, 0.97, 2.2), (3.14, 2.1, 0.9)]
],
]
class CheckDecompositions(QiskitTestCase):
"""Implements decomposition checkers."""
def check_one_qubit_euler_angles(self, operator, basis="U3", tolerance=1e-14, simplify=False):
"""Check OneQubitEulerDecomposer works for the given unitary"""
target_unitary = operator.data
if basis is None:
angles = OneQubitEulerDecomposer().angles(target_unitary)
decomp_unitary = U3Gate(*angles).to_matrix()
else:
decomposer = OneQubitEulerDecomposer(basis)
decomp_unitary = Operator(decomposer(target_unitary, simplify=simplify)).data
maxdist = np.max(np.abs(target_unitary - decomp_unitary))
self.assertTrue(
np.abs(maxdist) < tolerance, f"Operator {operator}: Worst distance {maxdist}"
)
@contextlib.contextmanager
def assertDebugOnly(self): # FIXME: when at python 3.10+ replace with assertNoLogs
"""Context manager, asserts log is emitted at level DEBUG but no higher"""
with self.assertLogs("qiskit.synthesis", "DEBUG") as ctx:
yield
for i, record in enumerate(ctx.records):
self.assertLessEqual(
record.levelno,
logging.DEBUG,
msg=f"Unexpected logging entry: {ctx.output[i]}",
)
self.assertIn("Requested fidelity:", record.getMessage())
def assertRoundTrip(self, weyl1: TwoQubitWeylDecomposition):
"""Fail if eval(repr(weyl1)) not equal to weyl1"""
repr1 = repr(weyl1)
with self.assertDebugOnly():
weyl2: TwoQubitWeylDecomposition = eval(repr1) # pylint: disable=eval-used
msg_base = f"weyl1:\n{repr1}\nweyl2:\n{repr(weyl2)}"
self.assertEqual(type(weyl1), type(weyl2), msg_base)
maxdiff = np.max(abs(weyl1.unitary_matrix - weyl2.unitary_matrix))
self.assertEqual(maxdiff, 0, msg=f"Unitary matrix differs by {maxdiff}\n" + msg_base)
self.assertEqual(weyl1.requested_fidelity, weyl2.requested_fidelity, msg_base)
self.assertEqual(weyl1.a, weyl2.a, msg=msg_base)
self.assertEqual(weyl1.b, weyl2.b, msg=msg_base)
self.assertEqual(weyl1.c, weyl2.c, msg=msg_base)
maxdiff = np.max(np.abs(weyl1.K1l - weyl2.K1l))
self.assertEqual(maxdiff, 0, msg=f"K1l matrix differs by {maxdiff}" + msg_base)
maxdiff = np.max(np.abs(weyl1.K1r - weyl2.K1r))
self.assertEqual(maxdiff, 0, msg=f"K1r matrix differs by {maxdiff}" + msg_base)
maxdiff = np.max(np.abs(weyl1.K2l - weyl2.K2l))
self.assertEqual(maxdiff, 0, msg=f"K2l matrix differs by {maxdiff}" + msg_base)
maxdiff = np.max(np.abs(weyl1.K2r - weyl2.K2r))
self.assertEqual(maxdiff, 0, msg=f"K2r matrix differs by {maxdiff}" + msg_base)
def assertRoundTripPickle(self, weyl1: TwoQubitWeylDecomposition):
"""Fail if loads(dumps(weyl1)) not equal to weyl1"""
pkl = pickle.dumps(weyl1, protocol=max(4, pickle.DEFAULT_PROTOCOL))
weyl2 = pickle.loads(pkl)
msg_base = f"weyl1:\n{weyl1}\nweyl2:\n{repr(weyl2)}"
self.assertEqual(type(weyl1), type(weyl2), msg_base)
maxdiff = np.max(abs(weyl1.unitary_matrix - weyl2.unitary_matrix))
self.assertEqual(maxdiff, 0, msg=f"Unitary matrix differs by {maxdiff}\n" + msg_base)
self.assertEqual(weyl1.requested_fidelity, weyl2.requested_fidelity, msg_base)
self.assertEqual(weyl1.a, weyl2.a, msg=msg_base)
self.assertEqual(weyl1.b, weyl2.b, msg=msg_base)
self.assertEqual(weyl1.c, weyl2.c, msg=msg_base)
maxdiff = np.max(np.abs(weyl1.K1l - weyl2.K1l))
self.assertEqual(maxdiff, 0, msg=f"K1l matrix differs by {maxdiff}" + msg_base)
maxdiff = np.max(np.abs(weyl1.K1r - weyl2.K1r))
self.assertEqual(maxdiff, 0, msg=f"K1r matrix differs by {maxdiff}" + msg_base)
maxdiff = np.max(np.abs(weyl1.K2l - weyl2.K2l))
self.assertEqual(maxdiff, 0, msg=f"K2l matrix differs by {maxdiff}" + msg_base)
maxdiff = np.max(np.abs(weyl1.K2r - weyl2.K2r))
self.assertEqual(maxdiff, 0, msg=f"K2r matrix differs by {maxdiff}" + msg_base)
def check_two_qubit_weyl_decomposition(self, target_unitary, tolerance=1.0e-12):
"""Check TwoQubitWeylDecomposition() works for a given operator"""
# pylint: disable=invalid-name
with self.assertDebugOnly():
decomp = TwoQubitWeylDecomposition(target_unitary, fidelity=None)
# self.assertRoundTrip(decomp) # Too slow
op = np.exp(1j * decomp.global_phase) * Operator(np.eye(4))
for u, qs in (
(decomp.K2r, [0]),
(decomp.K2l, [1]),
(Ud(decomp.a, decomp.b, decomp.c), [0, 1]),
(decomp.K1r, [0]),
(decomp.K1l, [1]),
):
op = op.compose(u, qs)
decomp_unitary = op.data
maxdist = np.max(np.abs(target_unitary - decomp_unitary))
self.assertLess(
np.abs(maxdist),
tolerance,
f"{decomp}\nactual fid: {decomp.actual_fidelity()}\n"
f"Unitary {target_unitary}:\nWorst distance {maxdist}",
)
def check_two_qubit_weyl_specialization(
self, target_unitary, fidelity, expected_specialization, expected_gates
):
"""Check that the two qubit Weyl decomposition gets specialized as expected"""
# Loop to check both for implicit and explicitly specialization
for decomposer in (TwoQubitWeylDecomposition, expected_specialization):
if isinstance(decomposer, TwoQubitWeylDecomposition):
with self.assertDebugOnly():
decomp = decomposer(target_unitary, fidelity=fidelity)
decomp_name = decomp.specialization
else:
with self.assertDebugOnly():
decomp = TwoQubitWeylDecomposition(
target_unitary, fidelity=None, _specialization=expected_specialization
)
decomp_name = expected_specialization
self.assertRoundTrip(decomp)
self.assertRoundTripPickle(decomp)
self.assertEqual(
np.max(np.abs(decomp.unitary_matrix - target_unitary)),
0,
"Incorrect saved unitary in the decomposition.",
)
self.assertEqual(
decomp._inner_decomposition.specialization,
expected_specialization,
"Incorrect Weyl specialization.",
)
circ = decomp.circuit(simplify=True)
self.assertDictEqual(
dict(circ.count_ops()), expected_gates, f"Gate counts of {decomp_name}"
)
actual_fid = decomp.actual_fidelity()
self.assertAlmostEqual(decomp.calculated_fidelity, actual_fid, places=13)
self.assertGreaterEqual(actual_fid, fidelity, f"fidelity of {decomp_name}")
actual_unitary = Operator(circ).data
trace = np.trace(actual_unitary.T.conj() @ target_unitary)
self.assertAlmostEqual(trace.imag, 0, places=13, msg=f"Real trace for {decomp_name}")
with self.assertDebugOnly():
decomp2 = TwoQubitWeylDecomposition(
target_unitary, fidelity=None, _specialization=expected_specialization
) # Shouldn't raise
self.assertRoundTrip(decomp2)
self.assertRoundTripPickle(decomp2)
if expected_specialization != Specialization.General:
with self.assertRaises(QiskitError) as exc:
_ = TwoQubitWeylDecomposition(
target_unitary, fidelity=1.0, _specialization=expected_specialization
)
self.assertIn("worse than requested", str(exc.exception))
def check_exact_decomposition(
self, target_unitary, decomposer, tolerance=1.0e-12, num_basis_uses=None
):
"""Check exact decomposition for a particular target"""
decomp_circuit = decomposer(target_unitary, _num_basis_uses=num_basis_uses)
if isinstance(decomp_circuit, DAGCircuit):
decomp_circuit = dag_to_circuit(decomp_circuit)
if num_basis_uses is not None:
self.assertEqual(num_basis_uses, decomp_circuit.count_ops().get("unitary", 0))
decomp_unitary = Operator(decomp_circuit).data
maxdist = np.max(np.abs(target_unitary - decomp_unitary))
self.assertTrue(
np.abs(maxdist) < tolerance,
f"Unitary {target_unitary}: Worst distance {maxdist}",
)
@ddt
class TestEulerAngles1Q(CheckDecompositions):
"""Test euler_angles_1q()"""
@combine(clifford=ONEQ_CLIFFORDS)
def test_euler_angles_1q_clifford(self, clifford):
"""Verify euler_angles_1q produces correct Euler angles for all Cliffords."""
self.check_one_qubit_euler_angles(clifford)
@combine(gate=HARD_THETA_ONEQS)
def test_euler_angles_1q_hard_thetas(self, gate):
"""Verify euler_angles_1q for close-to-degenerate theta"""
self.check_one_qubit_euler_angles(Operator(gate))
@combine(seed=range(5), name="test_euler_angles_1q_random_{seed}")
def test_euler_angles_1q_random(self, seed):
"""Verify euler_angles_1q produces correct Euler angles for random_unitary (seed={seed})."""
unitary = random_unitary(2, seed=seed)
self.check_one_qubit_euler_angles(unitary)
ANGEXP_ZYZ = [
[(1.0e-13, 0.1, -0.1, 0), (0, 0)],
[(1.0e-13, 0.2, -0.1, 0), (1, 0)],
[(1.0e-13, np.pi, np.pi, 0), (0, 0)],
[(1.0e-13, np.pi, np.pi, np.pi), (0, 0)],
[(np.pi, np.pi, np.pi, 0), (0, 1)],
[(np.pi - 1.0e-13, np.pi, np.pi, np.pi), (0, 1)],
[(np.pi, 0.1, 0.2, 0), (1, 1)],
[(np.pi, 0.2, 0.2, 0), (0, 1)],
[(1.0e-13, 0.1, 0.2, 0), (1, 0)],
[(0.1, 0.2, 1.0e-13, 0), (1, 1)],
[(0.1, 0.0, 0.0, 0), (0, 1)],
[(0.1, 1.0e-13, 0.2, 0), (1, 1)],
[(0.1, 0.2, 0.3, 0), (2, 1)],
[(0.1, 0.2, np.pi, 0), (1, 1)],
[(0.1, np.pi, 0.1, 0), (1, 1)],
[(0.1, np.pi, np.pi, 0), (0, 1)],
]
"""
Special cases for ZYZ type expansions. Each list entry is of the format
(alpha, beta, gamma, delta), (r, s),
and encodes the assertion that
(K(b) @ A(a) @ K(c), global_phase=d)
re-synthesizes to have r applications of the K gate and s of the A gate.
"""
ANGEXP_PSX = [
[(0.0, 0.1, -0.1), (0, 0)],
[(0.0, 0.1, 0.2), (1, 0)],
[(-np.pi / 2, 0.2, 0.0), (2, 1)],
[(np.pi / 2, 0.0, 0.21), (2, 1)],
[(np.pi / 2, 0.12, 0.2), (2, 1)],
[(np.pi / 2, -np.pi / 2, 0.21), (1, 1)],
[(np.pi, np.pi, 0), (0, 2)],
[(np.pi, np.pi + 0.1, 0.1), (0, 2)],
[(np.pi, np.pi + 0.2, -0.1), (1, 2)],
[(0.1, 0.2, 0.3), (3, 2)],
[(0.1, np.pi, 0.2), (2, 2)],
[(0.1, 0.2, 0.0), (2, 2)],
[(0.1, 0.2, np.pi), (2, 2)],
[(0.1, np.pi, 0), (1, 2)],
]
"""
Special cases for Z.X90.Z.X90.Z type expansions. Each list entry is of the format
(alpha, beta, gamma), (r, s),
and encodes the assertion that
U3(alpha, beta, gamma)
re-synthesizes to have r applications of the P gate and s of the SX gate.
"""
@ddt
class TestOneQubitEulerSpecial(CheckDecompositions):
"""Test special cases for OneQubitEulerDecomposer.
FIXME: Currently these are more like smoke tests that exercise each of the code paths
and shapes of decompositions that can be made, but they don't check all the corner cases
where a wrap by 2*pi might happen, etc
"""
def check_oneq_special_cases(
self,
target,
basis,
expected_gates=None,
tolerance=1.0e-12,
):
"""Check OneQubitEulerDecomposer produces the expected gates"""
decomposer = OneQubitEulerDecomposer(basis)
circ = decomposer(target, simplify=True)
cdata = Operator(circ).data
maxdist = np.max(np.abs(target.data - cdata))
trace = np.trace(cdata.T.conj() @ target)
self.assertLess(
np.abs(maxdist),
tolerance,
f"Worst case distance: {maxdist}, trace: {trace}\n"
f"Target:\n{target}\nActual:\n{cdata}\n{circ}",
)
if expected_gates is not None:
self.assertDictEqual(dict(circ.count_ops()), expected_gates, f"Circuit:\n{circ}")
@combine(angexp=ANGEXP_ZYZ)
def test_special_ZYZ(self, angexp):
"""Special cases of ZYZ. {angexp[0]}"""
a, b, c, d = angexp[0]
exp = {("rz", "ry")[g]: angexp[1][g] for g in (0, 1) if angexp[1][g]}
tgt = np.exp(1j * d) * RZGate(b).to_matrix() @ RYGate(a).to_matrix() @ RZGate(c).to_matrix()
self.check_oneq_special_cases(tgt, "ZYZ", exp)
@combine(angexp=ANGEXP_ZYZ)
def test_special_ZXZ(self, angexp):
"""Special cases of ZXZ. {angexp[0]}"""
a, b, c, d = angexp[0]
exp = {("rz", "rx")[g]: angexp[1][g] for g in (0, 1) if angexp[1][g]}
tgt = np.exp(1j * d) * RZGate(b).to_matrix() @ RXGate(a).to_matrix() @ RZGate(c).to_matrix()
self.check_oneq_special_cases(tgt, "ZXZ", exp)
@combine(angexp=ANGEXP_ZYZ)
def test_special_XYX(self, angexp):
"""Special cases of XYX. {angexp[0]}"""
a, b, c, d = angexp[0]
exp = {("rx", "ry")[g]: angexp[1][g] for g in (0, 1) if angexp[1][g]}
tgt = np.exp(1j * d) * RXGate(b).to_matrix() @ RYGate(a).to_matrix() @ RXGate(c).to_matrix()
self.check_oneq_special_cases(tgt, "XYX", exp)
def test_special_U321(self):
"""Special cases of U321"""
self.check_oneq_special_cases(U3Gate(0.0, 0.1, -0.1).to_matrix(), "U321", {})
self.check_oneq_special_cases(U3Gate(0.0, 0.11, 0.2).to_matrix(), "U321", {"u1": 1})
self.check_oneq_special_cases(U3Gate(np.pi / 2, 0.2, 0.0).to_matrix(), "U321", {"u2": 1})
self.check_oneq_special_cases(U3Gate(np.pi / 2, 0.0, 0.2).to_matrix(), "U321", {"u2": 1})
self.check_oneq_special_cases(U3Gate(0.11, 0.27, 0.3).to_matrix(), "U321", {"u3": 1})
def test_special_U3(self):
"""Special cases of U3"""
self.check_oneq_special_cases(U3Gate(0.0, 0.1, -0.1).to_matrix(), "U3", {})
self.check_oneq_special_cases(U3Gate(0.0, 0.1, 0.2).to_matrix(), "U3", {"u3": 1})
self.check_oneq_special_cases(U3Gate(np.pi / 2, 0.2, 0.0).to_matrix(), "U3", {"u3": 1})
self.check_oneq_special_cases(U3Gate(np.pi / 2, 0.0, 0.2).to_matrix(), "U3", {"u3": 1})
self.check_oneq_special_cases(U3Gate(0.11, 0.27, 0.3).to_matrix(), "U3", {"u3": 1})
def test_special_U(self):
"""Special cases of U"""
self.check_oneq_special_cases(U3Gate(0.0, 0.1, -0.1).to_matrix(), "U", {})
self.check_oneq_special_cases(U3Gate(0.0, 0.1, 0.2).to_matrix(), "U", {"u": 1})
self.check_oneq_special_cases(U3Gate(np.pi / 2, 0.2, 0.0).to_matrix(), "U", {"u": 1})
self.check_oneq_special_cases(U3Gate(np.pi / 2, 0.0, 0.2).to_matrix(), "U", {"u": 1})
self.check_oneq_special_cases(U3Gate(0.1, 0.2, 0.3).to_matrix(), "U", {"u": 1})
def test_special_RR(self):
"""Special cases of RR"""
self.check_oneq_special_cases(U3Gate(0.0, 0.1, -0.1).to_matrix(), "RR", {})
self.check_oneq_special_cases(U3Gate(0.0, 0.1, 0.2).to_matrix(), "RR", {"r": 2})
self.check_oneq_special_cases(U3Gate(-np.pi, 0.2, 0.0).to_matrix(), "RR", {"r": 1})
self.check_oneq_special_cases(U3Gate(np.pi, 0.0, 0.2).to_matrix(), "RR", {"r": 1})
self.check_oneq_special_cases(U3Gate(0.1, 0.2, 0.3).to_matrix(), "RR", {"r": 2})
self.check_oneq_special_cases(U3Gate(0.1, 0.2, -0.2).to_matrix(), "RR", {"r": 1})
self.check_oneq_special_cases(RGate(0.1, 0.2).to_matrix(), "RR", {"r": 1})
def test_special_U1X(self):
"""Special cases of U1X"""
self.check_oneq_special_cases(U3Gate(0.0, 0.1, -0.1).to_matrix(), "U1X", {})
self.check_oneq_special_cases(U3Gate(0.0, 0.1, 0.2).to_matrix(), "U1X", {"u1": 1})
self.check_oneq_special_cases(
U3Gate(-np.pi / 2, 0.2, 0.0).to_matrix(), "U1X", {"u1": 2, "rx": 1}
)
self.check_oneq_special_cases(
U3Gate(np.pi / 2, 0.0, 0.21).to_matrix(), "U1X", {"u1": 2, "rx": 1}
)
self.check_oneq_special_cases(
U3Gate(np.pi / 2, 0.12, 0.2).to_matrix(), "U1X", {"u1": 2, "rx": 1}
)
self.check_oneq_special_cases(U3Gate(0.1, 0.2, 0.3).to_matrix(), "U1X", {"u1": 3, "rx": 2})
@combine(angexp=ANGEXP_PSX)
def test_special_PSX(self, angexp):
"""Special cases of PSX. {angexp[0]}"""
a, b, c = angexp[0]
tgt = U3Gate(a, b, c).to_matrix()
exp = {("p", "sx")[g]: angexp[1][g] for g in (0, 1) if angexp[1][g]}
self.check_oneq_special_cases(tgt, "PSX", exp)
def test_special_ZSX(self):
"""Special cases of ZSX"""
self.check_oneq_special_cases(U3Gate(0.0, 0.1, -0.1).to_matrix(), "ZSX", {})
self.check_oneq_special_cases(U3Gate(0.0, 0.1, 0.2).to_matrix(), "ZSX", {"rz": 1})
self.check_oneq_special_cases(
U3Gate(-np.pi / 2, 0.2, 0.0).to_matrix(), "ZSX", {"rz": 2, "sx": 1}
)
self.check_oneq_special_cases(
U3Gate(np.pi / 2, 0.0, 0.21).to_matrix(), "ZSX", {"rz": 2, "sx": 1}
)
self.check_oneq_special_cases(
U3Gate(np.pi / 2, 0.12, 0.2).to_matrix(), "ZSX", {"rz": 2, "sx": 1}
)
self.check_oneq_special_cases(U3Gate(0.1, 0.2, 0.3).to_matrix(), "ZSX", {"rz": 3, "sx": 2})
def test_special_ZSXX(self):
"""Special cases of ZSXX"""
self.check_oneq_special_cases(U3Gate(0.0, 0.1, -0.1).to_matrix(), "ZSXX", {})
self.check_oneq_special_cases(U3Gate(0.0, 0.1, 0.2).to_matrix(), "ZSXX", {"rz": 1})
self.check_oneq_special_cases(
U3Gate(-np.pi / 2, 0.2, 0.0).to_matrix(), "ZSXX", {"rz": 2, "sx": 1}
)
self.check_oneq_special_cases(
U3Gate(np.pi / 2, 0.0, 0.21).to_matrix(), "ZSXX", {"rz": 2, "sx": 1}
)
self.check_oneq_special_cases(
U3Gate(np.pi / 2, 0.12, 0.2).to_matrix(), "ZSXX", {"rz": 2, "sx": 1}
)
self.check_oneq_special_cases(U3Gate(0.1, 0.2, 0.3).to_matrix(), "ZSXX", {"rz": 3, "sx": 2})
self.check_oneq_special_cases(
U3Gate(np.pi, 0.2, 0.3).to_matrix(), "ZSXX", {"rz": 1, "x": 1}
)
self.check_oneq_special_cases(
U3Gate(np.pi, -np.pi / 2, np.pi / 2).to_matrix(), "ZSXX", {"x": 1}
)
ONEQ_BASES = ["U3", "U321", "U", "U1X", "PSX", "ZSX", "ZSXX", "ZYZ", "ZXZ", "XYX", "RR", "XZX"]
SIMP_TOL = [
(False, 1.0e-14),
(True, 1.0e-12),
] # Please don't broaden the tolerance (fix the decomp)
@ddt
class TestOneQubitEulerDecomposer(CheckDecompositions):
"""Test OneQubitEulerDecomposer"""
@combine(
basis=ONEQ_BASES,
simp_tol=SIMP_TOL,
name="test_one_qubit_clifford_{basis}_basis_simplify_{simp_tol[0]}",
)
def test_one_qubit_clifford_all_basis(self, basis, simp_tol):
"""Verify for {basis} basis and all Cliffords."""
for clifford in ONEQ_CLIFFORDS:
self.check_one_qubit_euler_angles(
clifford, basis, simplify=simp_tol[0], tolerance=simp_tol[1]
)
@combine(
basis=ONEQ_BASES,
simp_tol=SIMP_TOL,
name="test_one_qubit_hard_thetas_{basis}_basis_simplify_{simp_tol[0]}",
)
def test_one_qubit_hard_thetas_all_basis(self, basis, simp_tol):
"""Verify for {basis} basis and close-to-degenerate theta."""
for gate in HARD_THETA_ONEQS:
self.check_one_qubit_euler_angles(
Operator(gate), basis, simplify=simp_tol[0], tolerance=simp_tol[1]
)
@combine(
basis=ONEQ_BASES,
simp_tol=SIMP_TOL,
seed=range(50),
name="test_one_qubit_random_{basis}_basis_simplify_{simp_tol[0]}_{seed}",
)
def test_one_qubit_random_all_basis(self, basis, simp_tol, seed):
"""Verify for {basis} basis and random_unitary (seed={seed})."""
unitary = random_unitary(2, seed=seed)
self.check_one_qubit_euler_angles(
unitary, basis, simplify=simp_tol[0], tolerance=simp_tol[1]
)
def test_psx_zsx_special_cases(self):
"""Test decompositions of psx and zsx at special values of parameters"""
oqed_psx = OneQubitEulerDecomposer(basis="PSX")
oqed_zsx = OneQubitEulerDecomposer(basis="ZSX")
oqed_zsxx = OneQubitEulerDecomposer(basis="ZSXX")
theta = np.pi / 3
phi = np.pi / 5
lam = np.pi / 7
test_gates = [
UGate(np.pi, phi, lam),
UGate(-np.pi, phi, lam),
# test abs(lam + phi + theta) near 0
UGate(np.pi, np.pi / 3, 2 * np.pi / 3),
# test theta=pi/2
UGate(np.pi / 2, phi, lam),
# test theta=pi/2 and theta+lam=0
UGate(np.pi / 2, phi, -np.pi / 2),
# test theta close to 3*pi/2 and theta+phi=2*pi
UGate(3 * np.pi / 2, np.pi / 2, lam),
# test theta 0
UGate(0, phi, lam),
# test phi 0
UGate(theta, 0, lam),
# test lam 0
UGate(theta, phi, 0),
]
for gate in test_gates:
unitary = gate.to_matrix()
qc_psx = oqed_psx(unitary)
qc_zsx = oqed_zsx(unitary)
qc_zsxx = oqed_zsxx(unitary)
self.assertTrue(np.allclose(unitary, Operator(qc_psx).data))
self.assertTrue(np.allclose(unitary, Operator(qc_zsx).data))
self.assertTrue(np.allclose(unitary, Operator(qc_zsxx).data))
def test_float_input_angles_and_phase(self):
"""Test angles and phase with float input."""
decomposer = OneQubitEulerDecomposer("PSX")
input_matrix = np.array(
[
[0.70710678, 0.70710678],
[0.70710678, -0.70710678],
],
dtype=np.float64,
)
(theta, phi, lam, gamma) = decomposer.angles_and_phase(input_matrix)
expected_theta = 1.5707963267948966
expected_phi = 0.0
expected_lam = 3.141592653589793
expected_gamma = -0.7853981633974483
self.assertAlmostEqual(theta, expected_theta)
self.assertAlmostEqual(phi, expected_phi)
self.assertAlmostEqual(lam, expected_lam)
self.assertAlmostEqual(gamma, expected_gamma)
def test_float_input_angles(self):
"""Test angles with float input."""
decomposer = OneQubitEulerDecomposer("PSX")
input_matrix = np.array(
[
[0.70710678, 0.70710678],
[0.70710678, -0.70710678],
],
dtype=np.float64,
)
(theta, phi, lam) = decomposer.angles(input_matrix)
expected_theta = 1.5707963267948966
expected_phi = 0.0
expected_lam = 3.141592653589793
self.assertAlmostEqual(theta, expected_theta)
self.assertAlmostEqual(phi, expected_phi)
self.assertAlmostEqual(lam, expected_lam)
# FIXME: streamline the set of test cases
class TestTwoQubitWeylDecomposition(CheckDecompositions):
"""Test TwoQubitWeylDecomposition()"""
def test_TwoQubitWeylDecomposition_repr(self, seed=42):
"""Check that eval(__repr__) is exact round trip"""
target = random_unitary(4, seed=seed)
weyl1 = TwoQubitWeylDecomposition(target, fidelity=0.99)
self.assertRoundTrip(weyl1)
def test_TwoQubitWeylDecomposition_pickle(self, seed=42):
"""Check that loads(dumps()) is exact round trip"""
target = random_unitary(4, seed=seed)
weyl1 = TwoQubitWeylDecomposition(target, fidelity=0.99)
self.assertRoundTripPickle(weyl1)
def test_two_qubit_weyl_decomposition_cnot(self):
"""Verify Weyl KAK decomposition for U~CNOT"""
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(np.pi / 4, 0, 0)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_iswap(self):
"""Verify Weyl KAK decomposition for U~iswap"""
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(np.pi / 4, np.pi / 4, 0)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_swap(self):
"""Verify Weyl KAK decomposition for U~swap"""
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(np.pi / 4, np.pi / 4, np.pi / 4)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_bgate(self):
"""Verify Weyl KAK decomposition for U~B"""
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(np.pi / 4, np.pi / 8, 0)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_a00(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,0,0)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, 0, 0)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_aa0(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,a,0)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, aaa, 0)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_aaa(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,a,a)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, aaa, aaa)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_aama(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,a,-a)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, aaa, -aaa)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_ab0(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,b,0)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for bbb in np.linspace(0, aaa, 10):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, bbb, 0)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_abb(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,b,b)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for bbb in np.linspace(0, aaa, 6):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, bbb, bbb)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_abmb(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,b,-b)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for bbb in np.linspace(0, aaa, 6):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, bbb, -bbb)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_aac(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,a,c)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for ccc in np.linspace(-aaa, aaa, 6):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, aaa, ccc)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
def test_two_qubit_weyl_decomposition_abc(self, smallest=1e-18, factor=9.8, steps=11):
"""Verify Weyl KAK decomposition for U~Ud(a,b,c)"""
for aaa in (
[smallest * factor**i for i in range(steps)]
+ [np.pi / 4 - smallest * factor**i for i in range(steps)]
+ [np.pi / 8, 0.113 * np.pi, 0.1972 * np.pi]
):
for bbb in np.linspace(0, aaa, 4):
for ccc in np.linspace(-bbb, bbb, 4):
for k1l, k1r, k2l, k2r in K1K2S:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
a = Ud(aaa, bbb, ccc)
self.check_two_qubit_weyl_decomposition(k1 @ a @ k2)
K1K2SB = [
[Operator(U3Gate(*xyz)) for xyz in xyzs]
for xyzs in [
[(0.2, 0.3, 0.1), (0.7, 0.15, 0.22), (0.1, 0.97, 2.2), (3.14, 2.1, 0.9)],
[(0.21, 0.13, 0.45), (2.1, 0.77, 0.88), (1.5, 2.3, 2.3), (2.1, 0.4, 1.7)],
]
]
DELTAS = [
(-0.019, 0.018, 0.021),
(0.01, 0.015, 0.02),
(-0.01, -0.009, 0.011),
(-0.002, -0.003, -0.004),
]
class TestTwoQubitWeylDecompositionSpecialization(CheckDecompositions):
"""Check TwoQubitWeylDecomposition specialized subclasses"""
def test_weyl_specialize_id(self):
"""Weyl specialization for Id gate"""
a, b, c = 0.0, 0.0, 0.0
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.IdEquiv,
{"rz": 4, "ry": 2},
)
def test_weyl_specialize_swap(self):
"""Weyl specialization for swap gate"""
a, b, c = np.pi / 4, np.pi / 4, np.pi / 4
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.SWAPEquiv,
{"rz": 4, "ry": 2, "swap": 1},
)
def test_weyl_specialize_flip_swap(self):
"""Weyl specialization for flip swap gate"""
a, b, c = np.pi / 4, np.pi / 4, -np.pi / 4
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.SWAPEquiv,
{"rz": 4, "ry": 2, "swap": 1},
)
def test_weyl_specialize_pswap(self, theta=0.123):
"""Weyl specialization for partial swap gate"""
a, b, c = theta, theta, theta
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.PartialSWAPEquiv,
{"rz": 6, "ry": 3, "rxx": 1, "ryy": 1, "rzz": 1},
)
def test_weyl_specialize_flip_pswap(self, theta=0.123):
"""Weyl specialization for flipped partial swap gate"""
a, b, c = theta, theta, -theta
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.PartialSWAPFlipEquiv,
{"rz": 6, "ry": 3, "rxx": 1, "ryy": 1, "rzz": 1},
)
def test_weyl_specialize_fsim_aab(self, aaa=0.456, bbb=0.132):
"""Weyl specialization for partial swap gate"""
a, b, c = aaa, aaa, bbb
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.fSimaabEquiv,
{"rz": 7, "ry": 4, "rxx": 1, "ryy": 1, "rzz": 1},
)
def test_weyl_specialize_fsim_abb(self, aaa=0.456, bbb=0.132):
"""Weyl specialization for partial swap gate"""
a, b, c = aaa, bbb, bbb
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.fSimabbEquiv,
{"rx": 7, "ry": 4, "rxx": 1, "ryy": 1, "rzz": 1},
)
def test_weyl_specialize_fsim_abmb(self, aaa=0.456, bbb=0.132):
"""Weyl specialization for partial swap gate"""
a, b, c = aaa, bbb, -bbb
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.fSimabmbEquiv,
{"rx": 7, "ry": 4, "rxx": 1, "ryy": 1, "rzz": 1},
)
def test_weyl_specialize_ctrl(self, aaa=0.456):
"""Weyl specialization for partial swap gate"""
a, b, c = aaa, 0.0, 0.0
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.ControlledEquiv,
{"rx": 6, "ry": 4, "rxx": 1},
)
def test_weyl_specialize_mirror_ctrl(self, aaa=-0.456):
"""Weyl specialization for partial swap gate"""
a, b, c = np.pi / 4, np.pi / 4, aaa
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.MirrorControlledEquiv,
{"rz": 6, "ry": 4, "rzz": 1, "swap": 1},
)
def test_weyl_specialize_general(self, aaa=0.456, bbb=0.345, ccc=0.123):
"""Weyl specialization for partial swap gate"""
a, b, c = aaa, bbb, ccc
for da, db, dc in DELTAS:
for k1l, k1r, k2l, k2r in K1K2SB:
k1 = np.kron(k1l.data, k1r.data)
k2 = np.kron(k2l.data, k2r.data)
self.check_two_qubit_weyl_specialization(
k1 @ Ud(a + da, b + db, c + dc) @ k2,
0.999,
Specialization.General,
{"rz": 8, "ry": 4, "rxx": 1, "ryy": 1, "rzz": 1},
)
@ddt
class TestTwoQubitDecompose(CheckDecompositions):
"""Test TwoQubitBasisDecomposer() for exact/approx decompositions"""
@combine(seed=range(10), name="test_exact_two_qubit_cnot_decompose_random_{seed}")
def test_exact_two_qubit_cnot_decompose_random(self, seed):
"""Verify exact CNOT decomposition for random Haar 4x4 unitary (seed={seed})."""
unitary = random_unitary(4, seed=seed)
self.check_exact_decomposition(unitary.data, two_qubit_cnot_decompose)
def test_exact_two_qubit_cnot_decompose_paulis(self):
"""Verify exact CNOT decomposition for Paulis"""
unitary = Operator.from_label("XZ")
self.check_exact_decomposition(unitary.data, two_qubit_cnot_decompose)
def make_random_supercontrolled_decomposer(self, seed):
"""Return a random supercontrolled unitary given a seed"""
state = np.random.default_rng(seed)
basis_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_phase = state.random() * 2 * np.pi
basis_b = state.random() * np.pi / 4
basis_unitary = np.exp(1j * basis_phase) * basis_k1 @ Ud(np.pi / 4, basis_b, 0) @ basis_k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary))
return decomposer
@combine(seed=range(10), name="test_exact_supercontrolled_decompose_random_{seed}")
def test_exact_supercontrolled_decompose_random(self, seed):
"""Exact decomposition for random supercontrolled basis and random target (seed={seed})"""
state = np.random.default_rng(seed)
decomposer = self.make_random_supercontrolled_decomposer(state)
self.check_exact_decomposition(random_unitary(4, seed=state).data, decomposer)
@combine(seed=range(10), name="seed_{seed}")
def test_exact_supercontrolled_decompose_phase_0_use_random(self, seed):
"""Exact decomposition supercontrolled basis, random target (0 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
decomposer = self.make_random_supercontrolled_decomposer(state)
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
tgt_unitary = np.exp(1j * tgt_phase) * tgt_k1 @ Ud(0, 0, 0) @ tgt_k2
self.check_exact_decomposition(tgt_unitary, decomposer, num_basis_uses=0)
@combine(seed=range(10), name="seed_{seed}")
def test_exact_supercontrolled_decompose_phase_1_use_random(self, seed):
"""Exact decomposition supercontrolled basis, random tgt (1 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
basis_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_phase = state.random() * 2 * np.pi
basis_b = state.random() * np.pi / 4
basis_unitary = np.exp(1j * basis_phase) * basis_k1 @ Ud(np.pi / 4, basis_b, 0) @ basis_k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary))
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
tgt_unitary = np.exp(1j * tgt_phase) * tgt_k1 @ Ud(np.pi / 4, basis_b, 0) @ tgt_k2
self.check_exact_decomposition(tgt_unitary, decomposer, num_basis_uses=1)
@combine(seed=range(10), name="seed_{seed}")
def test_exact_supercontrolled_decompose_phase_2_use_random(self, seed):
"""Exact decomposition supercontrolled basis, random tgt (2 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
decomposer = self.make_random_supercontrolled_decomposer(state)
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
tgt_a, tgt_b = state.random(size=2) * np.pi / 4
tgt_unitary = np.exp(1j * tgt_phase) * tgt_k1 @ Ud(tgt_a, tgt_b, 0) @ tgt_k2
self.check_exact_decomposition(tgt_unitary, decomposer, num_basis_uses=2)
@combine(seed=range(10), name="seed_{seed}")
def test_exact_supercontrolled_decompose_phase_3_use_random(self, seed):
"""Exact decomposition supercontrolled basis, random tgt (3 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
decomposer = self.make_random_supercontrolled_decomposer(state)
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
tgt_a, tgt_b = state.random(size=2) * np.pi / 4
tgt_c = state.random() * np.pi / 2 - np.pi / 4
tgt_unitary = np.exp(1j * tgt_phase) * tgt_k1 @ Ud(tgt_a, tgt_b, tgt_c) @ tgt_k2
self.check_exact_decomposition(tgt_unitary, decomposer, num_basis_uses=3)
def test_exact_nonsupercontrolled_decompose(self):
"""Check that the nonsupercontrolled basis throws a warning"""
with self.assertWarns(UserWarning, msg="Supposed to warn when basis non-supercontrolled"):
TwoQubitBasisDecomposer(UnitaryGate(Ud(np.pi / 4, 0.2, 0.1)))
@combine(seed=range(10), name="seed_{seed}")
def test_approx_supercontrolled_decompose_random(self, seed):
"""Check that n-uses of supercontrolled basis give the expected trace distance"""
state = np.random.default_rng(seed)
decomposer = self.make_random_supercontrolled_decomposer(state)
tgt_phase = state.random() * 2 * np.pi
tgt = random_unitary(4, seed=state).data
tgt *= np.exp(1j * tgt_phase)
with self.assertDebugOnly():
traces_pred = decomposer.traces(TwoQubitWeylDecomposition(tgt))
for i in range(4):
with self.subTest(i=i):
decomp_circuit = decomposer(tgt, _num_basis_uses=i)
decomp_unitary = Operator(decomp_circuit).data
tr_actual = np.trace(decomp_unitary.conj().T @ tgt)
self.assertAlmostEqual(
traces_pred[i],
tr_actual,
places=13,
msg=f"Trace doesn't match for {i}-basis decomposition",
)
def test_cx_equivalence_0cx(self, seed=0):
"""Check circuits with 0 cx gates locally equivalent to identity"""
state = np.random.default_rng(seed)
rnd = 2 * np.pi * state.random(size=6)
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
unitary = Operator(qc).data
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 0)
self.assertTrue(Operator(two_qubit_cnot_decompose(unitary)).equiv(unitary))
def test_cx_equivalence_1cx(self, seed=1):
"""Check circuits with 1 cx gates locally equivalent to a cx"""
state = np.random.default_rng(seed)
rnd = 2 * np.pi * state.random(size=12)
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
unitary = Operator(qc).data
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 1)
self.assertTrue(Operator(two_qubit_cnot_decompose(unitary)).equiv(unitary))
def test_cx_equivalence_2cx(self, seed=2):
"""Check circuits with 2 cx gates locally equivalent to some circuit with 2 cx."""
state = np.random.default_rng(seed)
rnd = 2 * np.pi * state.random(size=18)
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
unitary = Operator(qc).data
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 2)
self.assertTrue(Operator(two_qubit_cnot_decompose(unitary)).equiv(unitary))
def test_cx_equivalence_3cx(self, seed=3):
"""Check circuits with 3 cx gates are outside the 0, 1, and 2 qubit regions."""
state = np.random.default_rng(seed)
rnd = 2 * np.pi * state.random(size=24)
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[18], rnd[19], rnd[20], qr[0])
qc.u(rnd[21], rnd[22], rnd[23], qr[1])
unitary = Operator(qc).data
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 3)
self.assertTrue(Operator(two_qubit_cnot_decompose(unitary)).equiv(unitary))
def test_seed_289(self):
"""This specific case failed when PR #3585 was applied
See https://github.com/Qiskit/qiskit-terra/pull/3652"""
unitary = random_unitary(4, seed=289)
self.check_exact_decomposition(unitary.data, two_qubit_cnot_decompose)
@combine(
seed=range(10),
euler_bases=[
("U321", ["u3", "u2", "u1"]),
("U3", ["u3"]),
("U", ["u"]),
("U1X", ["u1", "rx"]),
("RR", ["r"]),
("PSX", ["p", "sx"]),
("ZYZ", ["rz", "ry"]),
("ZXZ", ["rz", "rx"]),
("XYX", ["rx", "ry"]),
("ZSX", ["rz", "sx"]),
("ZSXX", ["rz", "sx", "x"]),
],
kak_gates=[
(CXGate(), "cx"),
(CZGate(), "cz"),
(iSwapGate(), "iswap"),
(RXXGate(np.pi / 2), "rxx"),
],
name="test_euler_basis_selection_{seed}_{euler_bases[0]}_{kak_gates[1]}",
)
def test_euler_basis_selection(self, euler_bases, kak_gates, seed):
"""Verify decomposition uses euler_basis for 1q gates."""
(euler_basis, oneq_gates) = euler_bases
(kak_gate, kak_gate_name) = kak_gates
with self.subTest(euler_basis=euler_basis, kak_gate=kak_gate):
decomposer = TwoQubitBasisDecomposer(kak_gate, euler_basis=euler_basis)
unitary = random_unitary(4, seed=seed)
self.check_exact_decomposition(unitary.data, decomposer)
decomposition_basis = set(decomposer(unitary).count_ops())
requested_basis = set(oneq_gates + [kak_gate_name])
self.assertTrue(decomposition_basis.issubset(requested_basis))
@combine(
seed=range(10),
euler_bases=[
("U321", ["u3", "u2", "u1"]),
("U3", ["u3"]),
("U", ["u"]),
("U1X", ["u1", "rx"]),
("RR", ["r"]),
("PSX", ["p", "sx"]),
("ZYZ", ["rz", "ry"]),
("ZXZ", ["rz", "rx"]),
("XYX", ["rx", "ry"]),
("ZSX", ["rz", "sx"]),
("ZSXX", ["rz", "sx", "x"]),
],
kak_gates=[
(CXGate(), "cx"),
(CZGate(), "cz"),
(iSwapGate(), "iswap"),
(RXXGate(np.pi / 2), "rxx"),
],
name="test_euler_basis_selection_{seed}_{euler_bases[0]}_{kak_gates[1]}",
)
def test_use_dag(self, euler_bases, kak_gates, seed):
"""Test the use_dag flag returns a correct dagcircuit with various target bases."""
(euler_basis, oneq_gates) = euler_bases
(kak_gate, kak_gate_name) = kak_gates
with self.subTest(euler_basis=euler_basis, kak_gate=kak_gate):
decomposer = TwoQubitBasisDecomposer(kak_gate, euler_basis=euler_basis)
unitary = random_unitary(4, seed=seed)
self.assertIsInstance(decomposer(unitary, use_dag=True), DAGCircuit)
self.check_exact_decomposition(unitary.data, decomposer)
decomposition_basis = set(decomposer(unitary).count_ops())
requested_basis = set(oneq_gates + [kak_gate_name])
self.assertTrue(decomposition_basis.issubset(requested_basis))
def test_non_std_gate(self):
"""Test that the TwoQubitBasisDecomposer class can be correctly instantiated with a
non-standard KAK gate.
Reproduce from: https://github.com/Qiskit/qiskit/issues/12998
"""
# note that `CXGate(ctrl_state=0)` is not handled as a "standard" gate.
decomposer = TwoQubitBasisDecomposer(CXGate(ctrl_state=0))
unitary = SwapGate().to_matrix()
decomposed_unitary = decomposer(unitary)
self.assertEqual(Operator(unitary), Operator(decomposed_unitary))
self.assertNotIn("swap", decomposed_unitary.count_ops())
self.assertNotIn("cx", decomposed_unitary.count_ops())
self.assertEqual(3, decomposed_unitary.count_ops()["cx_o0"])
@ddt
class TestPulseOptimalDecompose(CheckDecompositions):
"""Check pulse optimal decomposition."""
@combine(seed=range(10), name="seed_{seed}")
def test_sx_virtz_3cnot_optimal(self, seed):
"""Test 3 CNOT ZSX pulse optimal decomposition"""
unitary = random_unitary(4, seed=seed)
decomposer = TwoQubitBasisDecomposer(CXGate(), euler_basis="ZSX", pulse_optimize=True)
circ = decomposer(unitary)
self.assertEqual(Operator(unitary), Operator(circ))
self.assertEqual(self._remove_pre_post_1q(circ).count_ops().get("sx"), 2)
@combine(seed=range(10), name="seed_{seed}")
def test_sx_virtz_2cnot_optimal(self, seed):
"""Test 2 CNOT ZSX pulse optimal decomposition"""
rng = np.random.default_rng(seed)
decomposer = TwoQubitBasisDecomposer(CXGate(), euler_basis="ZSX", pulse_optimize=True)
tgt_k1 = np.kron(random_unitary(2, seed=rng).data, random_unitary(2, seed=rng).data)
tgt_k2 = np.kron(random_unitary(2, seed=rng).data, random_unitary(2, seed=rng).data)
tgt_phase = rng.random() * 2 * np.pi
tgt_a, tgt_b = rng.random(size=2) * np.pi / 4
tgt_unitary = np.exp(1j * tgt_phase) * tgt_k1 @ Ud(tgt_a, tgt_b, 0) @ tgt_k2
circ = decomposer(tgt_unitary)
self.assertEqual(Operator(tgt_unitary), Operator(circ))
def _remove_pre_post_1q(self, circ):
"""remove single qubit operations before and after all multi-qubit ops"""
dag = circuit_to_dag(circ)
del_list = []
for node in dag.topological_op_nodes():
if len(node.qargs) > 1:
break
del_list.append(node)
for node in reversed(list(dag.topological_op_nodes())):
if len(node.qargs) > 1:
break
del_list.append(node)
for node in del_list:
dag.remove_op_node(node)
return dag_to_circuit(dag)
@ddt
class TestTwoQubitDecomposeApprox(CheckDecompositions):
"""Smoke tests for automatically-chosen approximate decompositions"""
def check_approx_decomposition(self, target_unitary, decomposer, num_basis_uses):
"""Check approx decomposition for a particular target"""
self.assertEqual(decomposer.num_basis_gates(target_unitary), num_basis_uses)
decomp_circuit = decomposer(target_unitary)
self.assertEqual(num_basis_uses, decomp_circuit.count_ops().get("unitary", 0))
@combine(seed=range(10), name="seed_{seed}")
def test_approx_supercontrolled_decompose_phase_0_use_random(self, seed, delta=0.01):
"""Approx decomposition supercontrolled basis, random target (0 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
basis_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_phase = state.random() * 2 * np.pi
basis_b = 0.4 # how to safely randomize?
basis_unitary = np.exp(1j * basis_phase) * basis_k1 @ Ud(np.pi / 4, basis_b, 0) @ basis_k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary), basis_fidelity=0.99)
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
d1, d2, d3 = state.random(size=3) * delta
tgt_unitary = np.exp(1j * tgt_phase) * tgt_k1 @ Ud(d1, d2, d3) @ tgt_k2
self.check_approx_decomposition(tgt_unitary, decomposer, num_basis_uses=0)
@combine(seed=range(10), name="seed_{seed}")
def test_approx_supercontrolled_decompose_phase_1_use_random(self, seed, delta=0.01):
"""Approximate decomposition supercontrolled basis, random tgt (1 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
basis_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_phase = state.random() * 2 * np.pi
basis_b = 0.4 # how to safely randomize?
basis_unitary = np.exp(1j * basis_phase) * basis_k1 @ Ud(np.pi / 4, basis_b, 0) @ basis_k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary), basis_fidelity=0.99)
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
d1, d2, d3 = state.random(size=3) * delta
tgt_unitary = (
np.exp(1j * tgt_phase) * tgt_k1 @ Ud(np.pi / 4 - d1, basis_b + d2, d3) @ tgt_k2
)
self.check_approx_decomposition(tgt_unitary, decomposer, num_basis_uses=1)
@combine(seed=range(10), name="seed_{seed}")
def test_approx_supercontrolled_decompose_phase_2_use_random(self, seed, delta=0.01):
"""Approximate decomposition supercontrolled basis, random tgt (2 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
basis_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_phase = state.random() * 2 * np.pi
basis_b = 0.4 # how to safely randomize?
basis_unitary = np.exp(1j * basis_phase) * basis_k1 @ Ud(np.pi / 4, basis_b, 0) @ basis_k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary), basis_fidelity=0.99)
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
tgt_a, tgt_b = 0.3, 0.2 # how to safely randomize?
d1, d2, d3 = state.random(size=3) * delta
tgt_unitary = np.exp(1j * tgt_phase) * tgt_k1 @ Ud(tgt_a + d1, tgt_b + d2, d3) @ tgt_k2
self.check_approx_decomposition(tgt_unitary, decomposer, num_basis_uses=2)
@combine(seed=range(10), name="seed_{seed}")
def test_approx_supercontrolled_decompose_phase_3_use_random(self, seed, delta=0.01):
"""Approximate decomposition supercontrolled basis, random tgt (3 basis uses) (seed={seed})"""
state = np.random.default_rng(seed)
basis_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
basis_phase = state.random() * 2 * np.pi
basis_b = state.random() * np.pi / 4
basis_unitary = np.exp(1j * basis_phase) * basis_k1 @ Ud(np.pi / 4, basis_b, 0) @ basis_k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary), basis_fidelity=0.99)
tgt_k1 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_k2 = np.kron(random_unitary(2, seed=state).data, random_unitary(2, seed=state).data)
tgt_phase = state.random() * 2 * np.pi
tgt_a, tgt_b, tgt_c = 0.5, 0.4, 0.3
d1, d2, d3 = state.random(size=3) * delta
tgt_unitary = (
np.exp(1j * tgt_phase) * tgt_k1 @ Ud(tgt_a + d1, tgt_b + d2, tgt_c + d3) @ tgt_k2
)
self.check_approx_decomposition(tgt_unitary, decomposer, num_basis_uses=3)
@ddt
class TestTwoQubitControlledUDecompose(CheckDecompositions):
"""Test TwoQubitControlledUDecomposer() for exact decompositions and raised exceptions"""
@combine(
seed=range(5),
gate=[RXXGate, RYYGate, RZZGate, RZXGate, CPhaseGate, CRZGate, CRXGate, CRYGate],
euler_basis=[
"ZYZ",
"ZXZ",
"XYX",
"XZX",
"RR",
"U",
"U3",
"U321",
"PSX",
"ZSX",
"ZSXX",
"U1X",
],
name="seed_{seed}",
)
def test_correct_unitary(self, seed, gate, euler_basis):
"""Verify unitary for different gates in the decomposition"""
unitary = random_unitary(4, seed=seed)
decomposer = TwoQubitControlledUDecomposer(gate, euler_basis)
circ = decomposer(unitary)
self.assertEqual(Operator(unitary), Operator(circ))
def test_not_rxx_equivalent(self):
"""Test that an exception is raised if the gate is not equivalent to an RXXGate"""
gate = SwapGate
with self.assertRaises(QiskitError) as exc:
TwoQubitControlledUDecomposer(gate)
self.assertIn(
"Equivalent gate needs to take exactly 1 angle parameter.", exc.exception.message
)
@combine(seed=range(10), name="seed_{seed}")
def test_correct_unitary_custom_gate(self, seed):
"""Test synthesis with a custom controlled u equivalent gate."""
unitary = random_unitary(4, seed=seed)
class CustomXXGate(RXXGate):
"""Custom RXXGate subclass that's not a standard gate"""
_standard_gate = None
def __init__(self, theta, label=None):
super().__init__(theta, label)
self.name = "MyCustomXXGate"
decomposer = TwoQubitControlledUDecomposer(CustomXXGate)
circ = decomposer(unitary)
self.assertEqual(Operator(unitary), Operator(circ))
def test_unitary_custom_gate_raises(self):
"""Test that a custom gate raises an exception, as it's not equivalent to an RXX gate"""
class CustomXYGate(Gate):
"""Custom Gate subclass that's not a standard gate and not RXX equivalent"""
_standard_gate = None
def __init__(self, theta: ParameterValueType, label=None):
"""Create new custom rotstion XY gate."""
super().__init__("MyCustomXYGate", 2, [theta])
def __array__(self, dtype=None):
"""Return a Numpy.array for the custom gate."""
theta = self.params[0]
cos = math.cos(theta)
isin = 1j * math.sin(theta)
return np.array(
[[1, 0, 0, 0], [0, cos, -isin, 0], [0, -isin, cos, 0], [0, 0, 0, 1]],
dtype=dtype,
)
def inverse(self, annotated: bool = False):
return CustomXYGate(-self.params[0])
with self.assertRaisesRegex(QiskitError, "ControlledEquiv calculated fidelity"):
TwoQubitControlledUDecomposer(CustomXYGate)
@combine(seed=range(10), name="seed_{seed}")
def test_correct_unitary_custom_rxx_equiv_gate(self, seed):
"""Test synthesis with a custom controlled u equivalent gate."""
class CustomRZZeqGate(Gate):
"""Custom Gate subclass that's not a standard gate"""
_standard_gate = None
def __init__(self, theta: ParameterValueType, invert=False, label=None):
"""Create new custom rotstion XY gate."""
super().__init__("MyCustomRZZeqGate", 2, [theta, invert], label)
def __array__(self, dtype=None):
"""Return a Numpy.array for the custom gate: h(0) rzz(0,1) h(1)"""
theta = self.params[0]
a = np.exp(-1j * theta / 2.0) / 2.0
b = np.exp(1j * theta / 2.0) / 2.0
c = -np.exp(-1j * theta / 2.0) / 2.0
d = -np.exp(1j * theta / 2.0) / 2.0
if self.params[1]:
mat = [[b, a, b, a], [b, c, b, c], [a, b, c, d], [a, d, c, b]]
else:
mat = [[a, a, b, b], [b, d, a, c], [a, a, d, d], [b, d, c, a]]
return np.array(mat, dtype=dtype)
def inverse(self, annotated: bool = False):
return CustomRZZeqGate(self.params[0], not self.params[1])
unitary = random_unitary(4, seed=seed)
decomposer = TwoQubitControlledUDecomposer(CustomRZZeqGate)
circ = decomposer(unitary)
self.assertEqual(Operator(unitary), Operator(circ))
class TestDecomposeProductRaises(QiskitTestCase):
"""Check that exceptions are raised when 2q matrix is not a product of 1q unitaries"""
def test_decompose_two_qubit_product_gate_detr_too_small(self):
"""Check that exception raised for too-small right component"""
kl = np.eye(2)
kr = 0.05 * np.eye(2)
klkr = np.kron(kl, kr)
with self.assertRaises(QiskitError) as exc:
decompose_two_qubit_product_gate(klkr)
self.assertIn("detR <", exc.exception.message)
def test_decompose_two_qubit_product_gate_detl_too_small(self):
"""Check that exception raised for too-small left component"""
kl = np.array([[1, 0], [0, 0]])
kr = np.eye(2)
klkr = np.kron(kl, kr)
with self.assertRaises(QiskitError) as exc:
decompose_two_qubit_product_gate(klkr)
self.assertIn("detL <", exc.exception.message)
def test_decompose_two_qubit_product_gate_not_product(self):
"""Check that exception raised for non-product unitary"""
klkr = Ud(1.0e-6, 0, 0)
with self.assertRaises(QiskitError) as exc:
decompose_two_qubit_product_gate(klkr)
self.assertIn("decomposition failed", exc.exception.message)
@ddt
class TestQuantumShannonDecomposer(QiskitTestCase):
"""
Test Quantum Shannon Decomposition.
"""
def setUp(self):
super().setUp()
np.random.seed(657) # this seed should work for calls to scipy.stats.<method>.rvs()
self.qsd = qsd.qs_decomposition
def _get_lower_cx_bound(self, n):
return 1 / 4 * (4**n - 3 * n - 1)
def _qsd_l2_cx_count(self, n):
"""expected unoptimized cnot count for down to 2q"""
return 9 / 16 * 4**n - 3 / 2 * 2**n
def _qsd_l2_a1_mod(self, n):
return (4 ** (n - 2) - 1) // 3
def _qsd_l2_a2_mod(self, n):
return 4 ** (n - 1) - 1
@data(*list(range(1, 5)))
def test_random_decomposition_l2_no_opt(self, nqubits):
"""test decomposition of random SU(n) down to 2 qubits without optimizations."""
dim = 2**nqubits
mat = scipy.stats.unitary_group.rvs(dim, random_state=1559)
circ = self.qsd(mat, opt_a1=False, opt_a2=False)
ccirc = transpile(circ, basis_gates=["u", "cx"], optimization_level=0)
self.assertTrue(np.allclose(mat, Operator(ccirc).data))
if nqubits > 1:
self.assertLessEqual(ccirc.count_ops().get("cx"), self._qsd_l2_cx_count(nqubits))
else:
self.assertEqual(sum(ccirc.count_ops().values()), 1)
@data(*list(range(1, 5)))
def test_random_decomposition_l2_a1_opt(self, nqubits):
"""test decomposition of random SU(n) down to 2 qubits with 'a1' optimization."""
dim = 2**nqubits
mat = scipy.stats.unitary_group.rvs(dim, random_state=789)
circ = self.qsd(mat, opt_a1=True, opt_a2=False)
ccirc = transpile(circ, basis_gates=["u", "cx"], optimization_level=0)
self.assertTrue(np.allclose(mat, Operator(ccirc).data))
if nqubits > 1:
expected_cx = self._qsd_l2_cx_count(nqubits) - self._qsd_l2_a1_mod(nqubits)
self.assertLessEqual(ccirc.count_ops().get("cx"), expected_cx)
def test_SO3_decomposition_l2_a1_opt(self):
"""test decomposition of random So(3) down to 2 qubits with 'a1' optimization."""
nqubits = 3
dim = 2**nqubits
mat = scipy.stats.ortho_group.rvs(dim)
circ = self.qsd(mat, opt_a1=True, opt_a2=False)
ccirc = transpile(circ, basis_gates=["u", "cx"], optimization_level=0)
self.assertTrue(np.allclose(mat, Operator(ccirc).data))
expected_cx = self._qsd_l2_cx_count(nqubits) - self._qsd_l2_a1_mod(nqubits)
self.assertLessEqual(ccirc.count_ops().get("cx"), expected_cx)
def test_identity_decomposition(self):
"""Test decomposition on identity matrix"""
nqubits = 3
dim = 2**nqubits
mat = np.identity(dim)
circ = self.qsd(mat, opt_a1=True, opt_a2=False)
self.assertTrue(np.allclose(mat, Operator(circ).data))
self.assertEqual(sum(circ.count_ops().values()), 0)
@data(*list(range(1, 4)))
def test_diagonal(self, nqubits):
"""Test decomposition on diagonal -- qsd is not optimal"""
dim = 2**nqubits
mat = np.diag(np.exp(1j * np.random.normal(size=dim)))
circ = self.qsd(mat, opt_a1=True, opt_a2=False)
ccirc = transpile(circ, basis_gates=["u", "cx"], optimization_level=0)
self.assertTrue(np.allclose(mat, Operator(ccirc).data))
if nqubits > 1:
expected_cx = self._qsd_l2_cx_count(nqubits) - self._qsd_l2_a1_mod(nqubits)
self.assertLessEqual(ccirc.count_ops().get("cx"), expected_cx)
@data(*list(range(2, 4)))
def test_hermitian(self, nqubits):
"""Test decomposition on hermitian -- qsd is not optimal"""
# better might be (arXiv:1405.6741)
dim = 2**nqubits
umat = scipy.stats.unitary_group.rvs(dim, random_state=750)
dmat = np.diag(np.exp(1j * np.random.normal(size=dim)))
mat = umat.T.conjugate() @ dmat @ umat
circ = self.qsd(mat, opt_a1=True, opt_a2=False)
ccirc = transpile(circ, basis_gates=["u", "cx"], optimization_level=0)
self.assertTrue(np.allclose(mat, Operator(ccirc).data))
if nqubits > 1:
expected_cx = self._qsd_l2_cx_count(nqubits) - self._qsd_l2_a1_mod(nqubits)
self.assertLessEqual(ccirc.count_ops().get("cx"), expected_cx)
@data(*list(range(1, 6)))
def test_opt_a1a2(self, nqubits):
"""Test decomposition with both optimization a1 and a2 from shende2006"""
dim = 2**nqubits
umat = scipy.stats.unitary_group.rvs(dim, random_state=1224)
circ = self.qsd(umat, opt_a1=True, opt_a2=True)
ccirc = transpile(circ, basis_gates=["u", "cx"], optimization_level=0)
self.assertTrue(Operator(umat) == Operator(ccirc))
if nqubits > 2:
self.assertEqual(
ccirc.count_ops().get("cx"),
(23 / 48) * 4**nqubits - (3 / 2) * 2**nqubits + 4 / 3,
)
elif nqubits == 1:
self.assertEqual(ccirc.count_ops().get("cx", 0), 0)
elif nqubits == 2:
self.assertLessEqual(ccirc.count_ops().get("cx", 0), 3)
def test_a2_opt_single_2q(self):
"""
Test a2_opt when a unitary causes a single final 2-qubit unitary for which this optimization
won't help. This came up in issue 10787.
"""
# this somewhat unique signed permutation matrix seems to cause the issue
mat = np.array(
[
[
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
1.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
],
[
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
1.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
],
[
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
-1.0 + 0.0j,
0.0 + 0.0j,
],
[
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
-1.0 + 0.0j,
],
[
1.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
],
[
0.0 + 0.0j,
1.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
],
[
0.0 + 0.0j,
0.0 + 0.0j,
-1.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
],
[
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
-1.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
],
]
)
gate = UnitaryGate(mat)
qc = QuantumCircuit(3)
qc.append(gate, range(3))
try:
qc.to_gate().control(1)
except UnboundLocalError as uerr:
self.fail(str(uerr))
class TestTwoQubitDecomposeUpToDiagonal(QiskitTestCase):
"""test TwoQubitDecomposeUpToDiagonal class"""
def test_call_decompose(self):
"""
test __call__ method to decompose
"""
dec = two_qubit_decompose_up_to_diagonal
u4 = scipy.stats.unitary_group.rvs(4, random_state=47)
dmat, circ2cx_data = dec(u4)
circ2cx = QuantumCircuit._from_circuit_data(circ2cx_data)
dec_diag = dmat @ Operator(circ2cx).data
self.assertTrue(Operator(u4) == Operator(dec_diag))
def test_circuit_decompose(self):
"""test applying decomposed gates as circuit elements"""
dec = two_qubit_decompose_up_to_diagonal
u4 = scipy.stats.unitary_group.rvs(4, random_state=47)
dmat, circ2cx_data = dec(u4)
circ2cx = QuantumCircuit._from_circuit_data(circ2cx_data)
qc1 = QuantumCircuit(2)
qc1.append(UnitaryGate(u4), range(2))
qc2 = QuantumCircuit(2)
qc2.compose(circ2cx, range(2), front=False, inplace=True)
qc2.append(UnitaryGate(dmat), range(2))
self.assertEqual(Operator(u4), Operator(qc1))
self.assertEqual(Operator(qc1), Operator(qc2))
if __name__ == "__main__":
unittest.main()