mirror of https://github.com/Qiskit/qiskit.git
201 lines
8.5 KiB
Python
201 lines
8.5 KiB
Python
# This code is part of Qiskit.
|
|
#
|
|
# (C) Copyright IBM 2017, 2018.
|
|
#
|
|
# This code is licensed under the Apache License, Version 2.0. You may
|
|
# obtain a copy of this license in the LICENSE.txt file in the root directory
|
|
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
|
|
#
|
|
# Any modifications or derivative works of this code must retain this
|
|
# copyright notice, and modified files need to carry a notice indicating
|
|
# that they have been altered from the originals.
|
|
|
|
"""Tests for qiskit.quantum_info.analysis"""
|
|
|
|
import unittest
|
|
|
|
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, transpile
|
|
from qiskit.providers.basic_provider import BasicSimulator
|
|
from qiskit.quantum_info.analysis.average import average_data
|
|
from qiskit.quantum_info.analysis.make_observable import make_dict_observable
|
|
from qiskit.quantum_info.analysis import hellinger_fidelity
|
|
from test import QiskitTestCase # pylint: disable=wrong-import-order
|
|
|
|
|
|
class TestAnalyzation(QiskitTestCase):
|
|
"""Test qiskit.Result API"""
|
|
|
|
def test_average_data_dict_observable(self):
|
|
"""Test average_data for dictionary observable input"""
|
|
qr = QuantumRegister(2)
|
|
cr = ClassicalRegister(2)
|
|
qc = QuantumCircuit(qr, cr, name="qc")
|
|
qc.h(qr[0])
|
|
qc.cx(qr[0], qr[1])
|
|
qc.measure(qr[0], cr[0])
|
|
qc.measure(qr[1], cr[1])
|
|
shots = 10000
|
|
backend = BasicSimulator()
|
|
result = backend.run(qc, shots=shots).result()
|
|
counts = result.get_counts(qc)
|
|
observable = {"00": 1, "11": 1, "01": -1, "10": -1}
|
|
mean_zz = average_data(counts=counts, observable=observable)
|
|
observable = {"00": 1, "11": -1, "01": 1, "10": -1}
|
|
mean_zi = average_data(counts, observable)
|
|
observable = {"00": 1, "11": -1, "01": -1, "10": 1}
|
|
mean_iz = average_data(counts, observable)
|
|
self.assertAlmostEqual(mean_zz, 1, places=1)
|
|
self.assertAlmostEqual(mean_zi, 0, places=1)
|
|
self.assertAlmostEqual(mean_iz, 0, places=1)
|
|
|
|
def test_average_data_list_observable(self):
|
|
"""Test average_data for list observable input."""
|
|
qr = QuantumRegister(3)
|
|
cr = ClassicalRegister(3)
|
|
qc = QuantumCircuit(qr, cr, name="qc")
|
|
qc.h(qr[0])
|
|
qc.cx(qr[0], qr[1])
|
|
qc.cx(qr[0], qr[2])
|
|
qc.measure(qr[0], cr[0])
|
|
qc.measure(qr[1], cr[1])
|
|
qc.measure(qr[2], cr[2])
|
|
shots = 10000
|
|
backend = BasicSimulator()
|
|
result = backend.run(qc, shots=shots).result()
|
|
counts = result.get_counts(qc)
|
|
observable = [1, -1, -1, 1, -1, 1, 1, -1]
|
|
mean_zzz = average_data(counts=counts, observable=observable)
|
|
observable = [1, 1, 1, 1, -1, -1, -1, -1]
|
|
mean_zii = average_data(counts, observable)
|
|
observable = [1, 1, -1, -1, 1, 1, -1, -1]
|
|
mean_izi = average_data(counts, observable)
|
|
observable = [1, 1, -1, -1, -1, -1, 1, 1]
|
|
mean_zzi = average_data(counts, observable)
|
|
self.assertAlmostEqual(mean_zzz, 0, places=1)
|
|
self.assertAlmostEqual(mean_zii, 0, places=1)
|
|
self.assertAlmostEqual(mean_izi, 0, places=1)
|
|
self.assertAlmostEqual(mean_zzi, 1, places=1)
|
|
|
|
def test_average_data_matrix_observable(self):
|
|
"""Test average_data for matrix observable input."""
|
|
qr = QuantumRegister(2)
|
|
cr = ClassicalRegister(2)
|
|
qc = QuantumCircuit(qr, cr, name="qc")
|
|
qc.h(qr[0])
|
|
qc.cx(qr[0], qr[1])
|
|
qc.measure(qr[0], cr[0])
|
|
qc.measure(qr[1], cr[1])
|
|
shots = 10000
|
|
backend = BasicSimulator()
|
|
result = backend.run(qc, shots=shots).result()
|
|
counts = result.get_counts(qc)
|
|
observable = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
|
|
mean_zz = average_data(counts=counts, observable=observable)
|
|
observable = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]
|
|
mean_zi = average_data(counts, observable)
|
|
observable = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]
|
|
mean_iz = average_data(counts, observable)
|
|
self.assertAlmostEqual(mean_zz, 1, places=1)
|
|
self.assertAlmostEqual(mean_zi, 0, places=1)
|
|
self.assertAlmostEqual(mean_iz, 0, places=1)
|
|
|
|
def test_make_dict_observable(self):
|
|
"""Test make_dict_observable."""
|
|
list_in = [1, 1, -1, -1]
|
|
list_out = make_dict_observable(list_in)
|
|
list_expected = {"00": 1, "01": 1, "10": -1, "11": -1}
|
|
matrix_in = [[4, 0, 0, 0], [0, -3, 0, 0], [0, 0, 2, 0], [0, 0, 0, -1]]
|
|
matrix_out = make_dict_observable(matrix_in)
|
|
matrix_expected = {"00": 4, "01": -3, "10": 2, "11": -1}
|
|
long_list_in = [1, 1, -1, -1, -1, -1, 1, 1]
|
|
long_list_out = make_dict_observable(long_list_in)
|
|
long_list_expected = {
|
|
"000": 1,
|
|
"001": 1,
|
|
"010": -1,
|
|
"011": -1,
|
|
"100": -1,
|
|
"101": -1,
|
|
"110": 1,
|
|
"111": 1,
|
|
}
|
|
self.assertEqual(list_out, list_expected)
|
|
self.assertEqual(matrix_out, matrix_expected)
|
|
self.assertEqual(long_list_out, long_list_expected)
|
|
|
|
def test_hellinger_fidelity_same(self):
|
|
"""Test hellinger fidelity is one for same dist."""
|
|
qc = QuantumCircuit(5, 5)
|
|
qc.h(2)
|
|
qc.cx(2, 1)
|
|
qc.cx(2, 3)
|
|
qc.cx(3, 4)
|
|
qc.cx(1, 0)
|
|
qc.measure(range(5), range(5))
|
|
|
|
sim = BasicSimulator()
|
|
|
|
res = sim.run(qc).result()
|
|
|
|
ans = hellinger_fidelity(res.get_counts(), res.get_counts())
|
|
|
|
self.assertEqual(ans, 1.0)
|
|
|
|
def test_hellinger_fidelity_no_overlap(self):
|
|
"""Test hellinger fidelity is zero for no overlap."""
|
|
|
|
# ┌───┐ ┌─┐
|
|
# q_0: ──────────┤ X ├─────┤M├────────────
|
|
# ┌───┐└─┬─┘ └╥┘┌─┐
|
|
# q_1: ─────┤ X ├──■────────╫─┤M├─────────
|
|
# ┌───┐└─┬─┘ ║ └╥┘┌─┐
|
|
# q_2: ┤ H ├──■────■────────╫──╫─┤M├──────
|
|
# └───┘ ┌─┴─┐ ║ ║ └╥┘┌─┐
|
|
# q_3: ──────────┤ X ├──■───╫──╫──╫─┤M├───
|
|
# └───┘┌─┴─┐ ║ ║ ║ └╥┘┌─┐
|
|
# q_4: ───────────────┤ X ├─╫──╫──╫──╫─┤M├
|
|
# └───┘ ║ ║ ║ ║ └╥┘
|
|
# c: 5/═════════════════════╩══╩══╩══╩══╩═
|
|
# 0 1 2 3 4
|
|
qc = QuantumCircuit(5, 5)
|
|
qc.h(2)
|
|
qc.cx(2, 1)
|
|
qc.cx(2, 3)
|
|
qc.cx(3, 4)
|
|
qc.cx(1, 0)
|
|
qc.measure(range(5), range(5))
|
|
|
|
# ┌───┐ ┌─┐
|
|
# q_0: ──────────┤ X ├─────┤M├─────────
|
|
# ┌───┐└─┬─┘ └╥┘┌─┐
|
|
# q_1: ─────┤ X ├──■────────╫─┤M├──────
|
|
# ┌───┐└─┬─┘┌───┐ ║ └╥┘┌─┐
|
|
# q_2: ┤ H ├──■──┤ Y ├──■───╫──╫─┤M├───
|
|
# └───┘ └───┘┌─┴─┐ ║ ║ └╥┘┌─┐
|
|
# q_3: ───────────────┤ X ├─╫──╫──╫─┤M├
|
|
# ┌─┐ └───┘ ║ ║ ║ └╥┘
|
|
# q_4: ─┤M├─────────────────╫──╫──╫──╫─
|
|
# └╥┘ ║ ║ ║ ║
|
|
# c: 5/══╩══════════════════╩══╩══╩══╩═
|
|
# 4 0 1 2 3
|
|
qc2 = QuantumCircuit(5, 5)
|
|
qc2.h(2)
|
|
qc2.cx(2, 1)
|
|
qc2.y(2)
|
|
qc2.cx(2, 3)
|
|
qc2.cx(1, 0)
|
|
qc2.measure(range(5), range(5))
|
|
|
|
sim = BasicSimulator()
|
|
|
|
res1 = sim.run(qc).result()
|
|
res2 = sim.run(transpile(qc2, sim)).result()
|
|
|
|
ans = hellinger_fidelity(res1.get_counts(), res2.get_counts())
|
|
|
|
self.assertEqual(ans, 0.0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main(verbosity=2)
|