qiskit/test/python/quantum_info/states/test_statevector.py

1398 lines
50 KiB
Python

# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Tests for Statevector quantum state class."""
import unittest
import logging
from itertools import permutations
from ddt import ddt, data
import numpy as np
from numpy.testing import assert_allclose
from qiskit import QiskitError
from qiskit import QuantumRegister, QuantumCircuit
from qiskit import transpile
from qiskit.circuit.library import HGate, QFTGate, GlobalPhaseGate
from qiskit.providers.basic_provider import BasicSimulator
from qiskit.utils import optionals
from qiskit.quantum_info.random import random_unitary, random_statevector, random_pauli
from qiskit.quantum_info.states import Statevector
from qiskit.quantum_info.operators.operator import Operator
from qiskit.quantum_info.operators.symplectic import Pauli, SparsePauliOp
from qiskit.quantum_info.operators.predicates import matrix_equal
from qiskit.visualization.state_visualization import state_to_latex
from test import QiskitTestCase # pylint: disable=wrong-import-order
logger = logging.getLogger(__name__)
@ddt
class TestStatevector(QiskitTestCase):
"""Tests for Statevector class."""
@classmethod
def rand_vec(cls, n, normalize=False):
"""Return complex vector or statevector"""
seed = np.random.randint(0, np.iinfo(np.int32).max)
logger.debug("rand_vec default_rng seeded with seed=%s", seed)
rng = np.random.default_rng(seed)
vec = rng.random(n) + 1j * rng.random(n)
if normalize:
vec /= np.sqrt(np.dot(vec, np.conj(vec)))
return vec
def test_init_array_qubit(self):
"""Test subsystem initialization from N-qubit array."""
# Test automatic inference of qubit subsystems
vec = self.rand_vec(8)
for dims in [None, 8]:
state = Statevector(vec, dims=dims)
assert_allclose(state.data, vec)
self.assertEqual(state.dim, 8)
self.assertEqual(state.dims(), (2, 2, 2))
self.assertEqual(state.num_qubits, 3)
def test_init_array(self):
"""Test initialization from array."""
vec = self.rand_vec(3)
state = Statevector(vec)
assert_allclose(state.data, vec)
self.assertEqual(state.dim, 3)
self.assertEqual(state.dims(), (3,))
self.assertIsNone(state.num_qubits)
vec = self.rand_vec(2 * 3 * 4)
state = Statevector(vec, dims=[2, 3, 4])
assert_allclose(state.data, vec)
self.assertEqual(state.dim, 2 * 3 * 4)
self.assertEqual(state.dims(), (2, 3, 4))
self.assertIsNone(state.num_qubits)
def test_init_circuit(self):
"""Test initialization from circuit."""
circuit = QuantumCircuit(3)
circuit.x(0)
state = Statevector(circuit)
self.assertEqual(state.dim, 8)
self.assertEqual(state.dims(), (2, 2, 2))
self.assertTrue(all(state.data == np.array([0, 1, 0, 0, 0, 0, 0, 0], dtype=complex)))
self.assertEqual(state.num_qubits, 3)
def test_init_array_except(self):
"""Test initialization exception from array."""
vec = self.rand_vec(4)
self.assertRaises(QiskitError, Statevector, vec, dims=[4, 2])
self.assertRaises(QiskitError, Statevector, vec, dims=[2, 4])
self.assertRaises(QiskitError, Statevector, vec, dims=5)
def test_init_statevector(self):
"""Test initialization from Statevector."""
vec1 = Statevector(self.rand_vec(4))
vec2 = Statevector(vec1)
self.assertEqual(vec1, vec2)
def test_from_circuit(self):
"""Test initialization from a circuit."""
# random unitaries
u0 = random_unitary(2).data
u1 = random_unitary(2).data
# add to circuit
qr = QuantumRegister(2)
circ = QuantumCircuit(qr)
circ.unitary(u0, [qr[0]])
circ.unitary(u1, [qr[1]])
target = Statevector(np.kron(u1, u0).dot([1, 0, 0, 0]))
vec = Statevector.from_instruction(circ)
self.assertEqual(vec, target)
# Test tensor product of 1-qubit gates
circuit = QuantumCircuit(3)
circuit.h(0)
circuit.x(1)
circuit.ry(np.pi / 2, 2)
target = Statevector.from_label("000").evolve(Operator(circuit))
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
# Test decomposition of Controlled-Phase gate
lam = np.pi / 4
circuit = QuantumCircuit(2)
circuit.h(0)
circuit.h(1)
circuit.cp(lam, 0, 1)
target = Statevector.from_label("00").evolve(Operator(circuit))
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
# Test decomposition of controlled-H gate
circuit = QuantumCircuit(2)
circ.x(0)
circuit.ch(0, 1)
target = Statevector.from_label("00").evolve(Operator(circuit))
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
# Test custom controlled gate
qc = QuantumCircuit(2)
qc.x(0)
qc.h(1)
gate = qc.to_gate()
gate_ctrl = gate.control()
circuit = QuantumCircuit(3)
circuit.x(0)
circuit.append(gate_ctrl, range(3))
target = Statevector.from_label("000").evolve(Operator(circuit))
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
# Test initialize instruction
target = Statevector([1, 0, 0, 1j]) / np.sqrt(2)
circuit = QuantumCircuit(2)
circuit.initialize(target.data, [0, 1])
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
target = Statevector([1, 0, 1, 0]) / np.sqrt(2)
circuit = QuantumCircuit(2)
circuit.initialize("+", [1])
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
target = Statevector([1, 0, 0, 0])
circuit = QuantumCircuit(2)
circuit.initialize(0, [0, 1]) # initialize from int
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
# Test reset instruction
target = Statevector([1, 0])
circuit = QuantumCircuit(1)
circuit.h(0)
circuit.reset(0)
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
# Test 0q instruction
target = Statevector([1j, 0])
circuit = QuantumCircuit(1)
circuit.append(GlobalPhaseGate(np.pi / 2), [], [])
psi = Statevector.from_instruction(circuit)
self.assertEqual(psi, target)
def test_from_instruction(self):
"""Test initialization from an instruction."""
target = np.dot(HGate().to_matrix(), [1, 0])
vec = Statevector.from_instruction(HGate()).data
global_phase_equivalent = matrix_equal(vec, target, ignore_phase=True)
self.assertTrue(global_phase_equivalent)
def test_from_label(self):
"""Test initialization from a label"""
x_p = Statevector(np.array([1, 1]) / np.sqrt(2))
x_m = Statevector(np.array([1, -1]) / np.sqrt(2))
y_p = Statevector(np.array([1, 1j]) / np.sqrt(2))
y_m = Statevector(np.array([1, -1j]) / np.sqrt(2))
z_p = Statevector(np.array([1, 0]))
z_m = Statevector(np.array([0, 1]))
label = "01"
target = z_p.tensor(z_m)
self.assertEqual(target, Statevector.from_label(label))
label = "+-"
target = x_p.tensor(x_m)
self.assertEqual(target, Statevector.from_label(label))
label = "rl"
target = y_p.tensor(y_m)
self.assertEqual(target, Statevector.from_label(label))
def test_equal(self):
"""Test __eq__ method"""
for _ in range(10):
vec = self.rand_vec(4)
self.assertEqual(Statevector(vec), Statevector(vec.tolist()))
def test_getitem(self):
"""Test __getitem__ method"""
for _ in range(10):
vec = self.rand_vec(4)
state = Statevector(vec)
for i in range(4):
self.assertEqual(state[i], vec[i])
self.assertEqual(state[format(i, "b")], vec[i])
def test_getitem_except(self):
"""Test __getitem__ method raises exceptions."""
for i in range(1, 4):
state = Statevector(self.rand_vec(2**i))
self.assertRaises(QiskitError, state.__getitem__, 2**i)
self.assertRaises(QiskitError, state.__getitem__, -1)
def test_copy(self):
"""Test Statevector copy method"""
for _ in range(5):
vec = self.rand_vec(4)
orig = Statevector(vec)
cpy = orig.copy()
cpy._data[0] += 1.0
self.assertFalse(cpy == orig)
def test_is_valid(self):
"""Test is_valid method."""
state = Statevector([1, 1])
self.assertFalse(state.is_valid())
for _ in range(10):
state = Statevector(self.rand_vec(4, normalize=True))
self.assertTrue(state.is_valid())
def test_to_operator(self):
"""Test to_operator method for returning projector."""
for _ in range(10):
vec = self.rand_vec(4)
target = Operator(np.outer(vec, np.conj(vec)))
op = Statevector(vec).to_operator()
self.assertEqual(op, target)
def test_evolve(self):
"""Test _evolve method."""
for _ in range(10):
op = random_unitary(4)
vec = self.rand_vec(4)
target = Statevector(np.dot(op.data, vec))
evolved = Statevector(vec).evolve(op)
self.assertEqual(target, evolved)
def test_evolve_subsystem(self):
"""Test subsystem _evolve method."""
# Test evolving single-qubit of 3-qubit system
for _ in range(5):
vec = self.rand_vec(8)
state = Statevector(vec)
op0 = random_unitary(2)
op1 = random_unitary(2)
op2 = random_unitary(2)
# Test evolve on 1-qubit
op = op0
op_full = Operator(np.eye(4)).tensor(op)
target = Statevector(np.dot(op_full.data, vec))
self.assertEqual(state.evolve(op, qargs=[0]), target)
# Evolve on qubit 1
op_full = Operator(np.eye(2)).tensor(op).tensor(np.eye(2))
target = Statevector(np.dot(op_full.data, vec))
self.assertEqual(state.evolve(op, qargs=[1]), target)
# Evolve on qubit 2
op_full = op.tensor(np.eye(4))
target = Statevector(np.dot(op_full.data, vec))
self.assertEqual(state.evolve(op, qargs=[2]), target)
# Test evolve on 2-qubits
op = op1.tensor(op0)
# Evolve on qubits [0, 2]
op_full = op1.tensor(np.eye(2)).tensor(op0)
target = Statevector(np.dot(op_full.data, vec))
self.assertEqual(state.evolve(op, qargs=[0, 2]), target)
# Evolve on qubits [2, 0]
op_full = op0.tensor(np.eye(2)).tensor(op1)
target = Statevector(np.dot(op_full.data, vec))
self.assertEqual(state.evolve(op, qargs=[2, 0]), target)
# Test evolve on 3-qubits
op = op2.tensor(op1).tensor(op0)
# Evolve on qubits [0, 1, 2]
op_full = op
target = Statevector(np.dot(op_full.data, vec))
self.assertEqual(state.evolve(op, qargs=[0, 1, 2]), target)
# Evolve on qubits [2, 1, 0]
op_full = op0.tensor(op1).tensor(op2)
target = Statevector(np.dot(op_full.data, vec))
self.assertEqual(state.evolve(op, qargs=[2, 1, 0]), target)
def test_evolve_qudit_subsystems(self):
"""Test nested evolve calls on qudit subsystems."""
dims = (3, 4, 5)
init = self.rand_vec(np.prod(dims))
ops = [random_unitary((dim,)) for dim in dims]
state = Statevector(init, dims)
for i, op in enumerate(ops):
state = state.evolve(op, [i])
target_op = np.eye(1)
for op in ops:
target_op = np.kron(op.data, target_op)
target = Statevector(np.dot(target_op, init), dims)
self.assertEqual(state, target)
def test_evolve_global_phase(self):
"""Test evolve circuit with global phase."""
state_i = Statevector([1, 0])
qr = QuantumRegister(2)
phase = np.pi / 4
circ = QuantumCircuit(qr, global_phase=phase)
circ.x(0)
state_f = state_i.evolve(circ, qargs=[0])
target = Statevector([0, 1]) * np.exp(1j * phase)
self.assertEqual(state_f, target)
def test_conjugate(self):
"""Test conjugate method."""
for _ in range(10):
vec = self.rand_vec(4)
target = Statevector(np.conj(vec))
state = Statevector(vec).conjugate()
self.assertEqual(state, target)
def test_expand(self):
"""Test expand method."""
for _ in range(10):
vec0 = self.rand_vec(2)
vec1 = self.rand_vec(3)
target = np.kron(vec1, vec0)
state = Statevector(vec0).expand(Statevector(vec1))
self.assertEqual(state.dim, 6)
self.assertEqual(state.dims(), (2, 3))
assert_allclose(state.data, target)
def test_tensor(self):
"""Test tensor method."""
for _ in range(10):
vec0 = self.rand_vec(2)
vec1 = self.rand_vec(3)
target = np.kron(vec0, vec1)
state = Statevector(vec0).tensor(Statevector(vec1))
self.assertEqual(state.dim, 6)
self.assertEqual(state.dims(), (3, 2))
assert_allclose(state.data, target)
def test_inner(self):
"""Test inner method."""
for _ in range(10):
vec0 = Statevector(self.rand_vec(4))
vec1 = Statevector(self.rand_vec(4))
target = np.vdot(vec0.data, vec1.data)
result = vec0.inner(vec1)
self.assertAlmostEqual(result, target)
vec0 = Statevector(self.rand_vec(6), dims=(2, 3))
vec1 = Statevector(self.rand_vec(6), dims=(2, 3))
target = np.vdot(vec0.data, vec1.data)
result = vec0.inner(vec1)
self.assertAlmostEqual(result, target)
def test_inner_except(self):
"""Test inner method raises exceptions."""
vec0 = Statevector(self.rand_vec(4))
vec1 = Statevector(self.rand_vec(3))
self.assertRaises(QiskitError, vec0.inner, vec1)
vec0 = Statevector(self.rand_vec(6), dims=(2, 3))
vec1 = Statevector(self.rand_vec(6), dims=(3, 2))
self.assertRaises(QiskitError, vec0.inner, vec1)
def test_add(self):
"""Test add method."""
for _ in range(10):
vec0 = self.rand_vec(4)
vec1 = self.rand_vec(4)
state0 = Statevector(vec0)
state1 = Statevector(vec1)
self.assertEqual(state0 + state1, Statevector(vec0 + vec1))
def test_add_except(self):
"""Test add method raises exceptions."""
state1 = Statevector(self.rand_vec(2))
state2 = Statevector(self.rand_vec(3))
self.assertRaises(QiskitError, state1.__add__, state2)
def test_subtract(self):
"""Test subtract method."""
for _ in range(10):
vec0 = self.rand_vec(4)
vec1 = self.rand_vec(4)
state0 = Statevector(vec0)
state1 = Statevector(vec1)
self.assertEqual(state0 - state1, Statevector(vec0 - vec1))
def test_multiply(self):
"""Test multiply method."""
for _ in range(10):
vec = self.rand_vec(4)
state = Statevector(vec)
val = np.random.rand() + 1j * np.random.rand()
self.assertEqual(val * state, Statevector(val * state))
def test_negate(self):
"""Test negate method"""
for _ in range(10):
vec = self.rand_vec(4)
state = Statevector(vec)
self.assertEqual(-state, Statevector(-1 * vec))
def test_equiv(self):
"""Test equiv method"""
vec = np.array([1, 0, 0, -1j]) / np.sqrt(2)
phase = np.exp(-1j * np.pi / 4)
statevec = Statevector(vec)
self.assertTrue(statevec.equiv(phase * vec))
self.assertTrue(statevec.equiv(Statevector(phase * vec)))
self.assertFalse(statevec.equiv(2 * vec))
def test_equiv_on_circuit(self):
"""Test the equiv method on different types of input."""
statevec = Statevector([1, 0])
qc = QuantumCircuit(1)
self.assertTrue(statevec.equiv(qc))
qc.x(0)
self.assertFalse(statevec.equiv(qc))
def test_to_dict(self):
"""Test to_dict method"""
with self.subTest(msg="dims = (2, 3)"):
vec = Statevector(np.arange(1, 7), dims=(2, 3))
target = {"00": 1, "01": 2, "10": 3, "11": 4, "20": 5, "21": 6}
self.assertDictAlmostEqual(target, vec.to_dict())
with self.subTest(msg="dims = (11, )"):
vec = Statevector(np.arange(1, 12), dims=(11,))
target = {str(i): i + 1 for i in range(11)}
self.assertDictAlmostEqual(target, vec.to_dict())
with self.subTest(msg="dims = (2, 11)"):
vec = Statevector(np.arange(1, 23), dims=(2, 11))
target = {}
for i in range(11):
for j in range(2):
key = f"{i},{j}"
target[key] = 2 * i + j + 1
self.assertDictAlmostEqual(target, vec.to_dict())
def test_probabilities_product(self):
"""Test probabilities method for product state"""
state = Statevector.from_label("+0")
# 2-qubit qargs
with self.subTest(msg="P(None)"):
probs = state.probabilities()
target = np.array([0.5, 0, 0.5, 0])
self.assertTrue(np.allclose(probs, target))
with self.subTest(msg="P([0, 1])"):
probs = state.probabilities([0, 1])
target = np.array([0.5, 0, 0.5, 0])
self.assertTrue(np.allclose(probs, target))
with self.subTest(msg="P([1, 0]"):
probs = state.probabilities([1, 0])
target = np.array([0.5, 0.5, 0, 0])
self.assertTrue(np.allclose(probs, target))
# 1-qubit qargs
with self.subTest(msg="P([0])"):
probs = state.probabilities([0])
target = np.array([1, 0])
self.assertTrue(np.allclose(probs, target))
with self.subTest(msg="P([1])"):
probs = state.probabilities([1])
target = np.array([0.5, 0.5])
self.assertTrue(np.allclose(probs, target))
def test_probabilities_ghz(self):
"""Test probabilities method for GHZ state"""
state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2)
# 3-qubit qargs
target = np.array([0.5, 0, 0, 0, 0, 0, 0, 0.5])
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities(qargs)
self.assertTrue(np.allclose(probs, target))
# 2-qubit qargs
target = np.array([0.5, 0, 0, 0.5])
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities(qargs)
self.assertTrue(np.allclose(probs, target))
# 1-qubit qargs
target = np.array([0.5, 0.5])
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities(qargs)
self.assertTrue(np.allclose(probs, target))
def test_probabilities_w(self):
"""Test probabilities method with W state"""
state = (
Statevector.from_label("001")
+ Statevector.from_label("010")
+ Statevector.from_label("100")
) / np.sqrt(3)
# 3-qubit qargs
target = np.array([0, 1 / 3, 1 / 3, 0, 1 / 3, 0, 0, 0])
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities(qargs)
self.assertTrue(np.allclose(probs, target))
# 2-qubit qargs
target = np.array([1 / 3, 1 / 3, 1 / 3, 0])
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities(qargs)
self.assertTrue(np.allclose(probs, target))
# 1-qubit qargs
target = np.array([2 / 3, 1 / 3])
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities(qargs)
self.assertTrue(np.allclose(probs, target))
def test_probabilities_dict_product(self):
"""Test probabilities_dict method for product state"""
state = Statevector.from_label("+0")
# 2-qubit qargs
with self.subTest(msg="P(None)"):
probs = state.probabilities_dict()
target = {"00": 0.5, "10": 0.5}
self.assertDictAlmostEqual(probs, target)
with self.subTest(msg="P([0, 1])"):
probs = state.probabilities_dict([0, 1])
target = {"00": 0.5, "10": 0.5}
self.assertDictAlmostEqual(probs, target)
with self.subTest(msg="P([1, 0]"):
probs = state.probabilities_dict([1, 0])
target = {"00": 0.5, "01": 0.5}
self.assertDictAlmostEqual(probs, target)
# 1-qubit qargs
with self.subTest(msg="P([0])"):
probs = state.probabilities_dict([0])
target = {"0": 1}
self.assertDictAlmostEqual(probs, target)
with self.subTest(msg="P([1])"):
probs = state.probabilities_dict([1])
target = {"0": 0.5, "1": 0.5}
self.assertDictAlmostEqual(probs, target)
def test_probabilities_dict_ghz(self):
"""Test probabilities_dict method for GHZ state"""
state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2)
# 3-qubit qargs
target = {"000": 0.5, "111": 0.5}
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities_dict(qargs)
self.assertDictAlmostEqual(probs, target)
# 2-qubit qargs
target = {"00": 0.5, "11": 0.5}
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities_dict(qargs)
self.assertDictAlmostEqual(probs, target)
# 1-qubit qargs
target = {"0": 0.5, "1": 0.5}
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities_dict(qargs)
self.assertDictAlmostEqual(probs, target)
def test_probabilities_dict_w(self):
"""Test probabilities_dict method with W state"""
state = (
Statevector.from_label("001")
+ Statevector.from_label("010")
+ Statevector.from_label("100")
) / np.sqrt(3)
# 3-qubit qargs
target = np.array([0, 1 / 3, 1 / 3, 0, 1 / 3, 0, 0, 0])
target = {"001": 1 / 3, "010": 1 / 3, "100": 1 / 3}
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities_dict(qargs)
self.assertDictAlmostEqual(probs, target)
# 2-qubit qargs
target = {"00": 1 / 3, "01": 1 / 3, "10": 1 / 3}
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities_dict(qargs)
self.assertDictAlmostEqual(probs, target)
# 1-qubit qargs
target = {"0": 2 / 3, "1": 1 / 3}
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"P({qargs})"):
probs = state.probabilities_dict(qargs)
self.assertDictAlmostEqual(probs, target)
def test_sample_counts_ghz(self):
"""Test sample_counts method for GHZ state"""
shots = 2000
threshold = 0.02 * shots
state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2)
state.seed(100)
# 3-qubit qargs
target = {"000": shots / 2, "111": shots / 2}
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"counts (qargs={qargs})"):
counts = state.sample_counts(shots, qargs=qargs)
self.assertDictAlmostEqual(counts, target, threshold)
# 2-qubit qargs
target = {"00": shots / 2, "11": shots / 2}
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"counts (qargs={qargs})"):
counts = state.sample_counts(shots, qargs=qargs)
self.assertDictAlmostEqual(counts, target, threshold)
# 1-qubit qargs
target = {"0": shots / 2, "1": shots / 2}
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"counts (qargs={qargs})"):
counts = state.sample_counts(shots, qargs=qargs)
self.assertDictAlmostEqual(counts, target, threshold)
def test_sample_counts_w(self):
"""Test sample_counts method for W state"""
shots = 3000
threshold = 0.02 * shots
state = (
Statevector.from_label("001")
+ Statevector.from_label("010")
+ Statevector.from_label("100")
) / np.sqrt(3)
state.seed(100)
target = {"001": shots / 3, "010": shots / 3, "100": shots / 3}
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"P({qargs})"):
counts = state.sample_counts(shots, qargs=qargs)
self.assertDictAlmostEqual(counts, target, threshold)
# 2-qubit qargs
target = {"00": shots / 3, "01": shots / 3, "10": shots / 3}
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"P({qargs})"):
counts = state.sample_counts(shots, qargs=qargs)
self.assertDictAlmostEqual(counts, target, threshold)
# 1-qubit qargs
target = {"0": 2 * shots / 3, "1": shots / 3}
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"P({qargs})"):
counts = state.sample_counts(shots, qargs=qargs)
self.assertDictAlmostEqual(counts, target, threshold)
def test_probabilities_dict_unequal_dims(self):
"""Test probabilities_dict for a state with unequal subsystem dimensions."""
vec = np.zeros(60, dtype=float)
vec[15:20] = np.ones(5)
vec[40:46] = np.ones(6)
state = Statevector(vec / np.sqrt(11.0), dims=[3, 4, 5])
p = 1.0 / 11.0
self.assertDictEqual(
state.probabilities_dict(),
{
s: p
for s in [
"110",
"111",
"112",
"120",
"121",
"311",
"312",
"320",
"321",
"322",
"330",
]
},
)
# differences due to rounding
self.assertDictAlmostEqual(
state.probabilities_dict(qargs=[0]), {"0": 4 * p, "1": 4 * p, "2": 3 * p}, delta=1e-10
)
self.assertDictAlmostEqual(
state.probabilities_dict(qargs=[1]), {"1": 5 * p, "2": 5 * p, "3": p}, delta=1e-10
)
self.assertDictAlmostEqual(
state.probabilities_dict(qargs=[2]), {"1": 5 * p, "3": 6 * p}, delta=1e-10
)
self.assertDictAlmostEqual(
state.probabilities_dict(qargs=[0, 1]),
{"10": p, "11": 2 * p, "12": 2 * p, "20": 2 * p, "21": 2 * p, "22": p, "30": p},
delta=1e-10,
)
self.assertDictAlmostEqual(
state.probabilities_dict(qargs=[1, 0]),
{"01": p, "11": 2 * p, "21": 2 * p, "02": 2 * p, "12": 2 * p, "22": p, "03": p},
delta=1e-10,
)
self.assertDictAlmostEqual(
state.probabilities_dict(qargs=[0, 2]),
{"10": 2 * p, "11": 2 * p, "12": p, "31": 2 * p, "32": 2 * p, "30": 2 * p},
delta=1e-10,
)
def test_sample_counts_qutrit(self):
"""Test sample_counts method for qutrit state"""
p = 0.3
shots = 1000
threshold = 0.03 * shots
state = Statevector([np.sqrt(p), 0, np.sqrt(1 - p)])
state.seed(100)
with self.subTest(msg="counts"):
target = {"0": shots * p, "2": shots * (1 - p)}
counts = state.sample_counts(shots=shots)
self.assertDictAlmostEqual(counts, target, threshold)
def test_sample_memory_ghz(self):
"""Test sample_memory method for GHZ state"""
shots = 2000
state = (Statevector.from_label("000") + Statevector.from_label("111")) / np.sqrt(2)
state.seed(100)
# 3-qubit qargs
target = {"000": shots / 2, "111": shots / 2}
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"memory (qargs={qargs})"):
memory = state.sample_memory(shots, qargs=qargs)
self.assertEqual(len(memory), shots)
self.assertEqual(set(memory), set(target))
# 2-qubit qargs
target = {"00": shots / 2, "11": shots / 2}
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"memory (qargs={qargs})"):
memory = state.sample_memory(shots, qargs=qargs)
self.assertEqual(len(memory), shots)
self.assertEqual(set(memory), set(target))
# 1-qubit qargs
target = {"0": shots / 2, "1": shots / 2}
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"memory (qargs={qargs})"):
memory = state.sample_memory(shots, qargs=qargs)
self.assertEqual(len(memory), shots)
self.assertEqual(set(memory), set(target))
def test_sample_memory_w(self):
"""Test sample_memory method for W state"""
shots = 3000
state = (
Statevector.from_label("001")
+ Statevector.from_label("010")
+ Statevector.from_label("100")
) / np.sqrt(3)
state.seed(100)
target = {"001": shots / 3, "010": shots / 3, "100": shots / 3}
for qargs in [[0, 1, 2], [2, 1, 0], [1, 2, 0], [1, 0, 2]]:
with self.subTest(msg=f"memory (qargs={qargs})"):
memory = state.sample_memory(shots, qargs=qargs)
self.assertEqual(len(memory), shots)
self.assertEqual(set(memory), set(target))
# 2-qubit qargs
target = {"00": shots / 3, "01": shots / 3, "10": shots / 3}
for qargs in [[0, 1], [2, 1], [1, 2], [1, 2]]:
with self.subTest(msg=f"memory (qargs={qargs})"):
memory = state.sample_memory(shots, qargs=qargs)
self.assertEqual(len(memory), shots)
self.assertEqual(set(memory), set(target))
# 1-qubit qargs
target = {"0": 2 * shots / 3, "1": shots / 3}
for qargs in [[0], [1], [2]]:
with self.subTest(msg=f"memory (qargs={qargs})"):
memory = state.sample_memory(shots, qargs=qargs)
self.assertEqual(len(memory), shots)
self.assertEqual(set(memory), set(target))
def test_sample_memory_qutrit(self):
"""Test sample_memory method for qutrit state"""
p = 0.3
shots = 1000
state = Statevector([np.sqrt(p), 0, np.sqrt(1 - p)])
state.seed(100)
with self.subTest(msg="memory"):
memory = state.sample_memory(shots)
self.assertEqual(len(memory), shots)
self.assertEqual(set(memory), {"0", "2"})
def test_reset_2qubit(self):
"""Test reset method for 2-qubit state"""
state = Statevector(np.array([1, 0, 0, 1]) / np.sqrt(2))
state.seed(100)
with self.subTest(msg="reset"):
psi = state.copy()
value = psi.reset()
target = Statevector(np.array([1, 0, 0, 0]))
self.assertEqual(value, target)
with self.subTest(msg="reset"):
psi = state.copy()
value = psi.reset([0, 1])
target = Statevector(np.array([1, 0, 0, 0]))
self.assertEqual(value, target)
with self.subTest(msg="reset [0]"):
psi = state.copy()
value = psi.reset([0])
targets = [Statevector(np.array([1, 0, 0, 0])), Statevector(np.array([0, 0, 1, 0]))]
self.assertIn(value, targets)
with self.subTest(msg="reset [0]"):
psi = state.copy()
value = psi.reset([1])
targets = [Statevector(np.array([1, 0, 0, 0])), Statevector(np.array([0, 1, 0, 0]))]
self.assertIn(value, targets)
def test_reset_qutrit(self):
"""Test reset method for qutrit"""
state = Statevector(np.array([1, 1, 1]) / np.sqrt(3))
state.seed(200)
value = state.reset()
target = Statevector(np.array([1, 0, 0]))
self.assertEqual(value, target)
def test_measure_2qubit(self):
"""Test measure method for 2-qubit state"""
state = Statevector.from_label("+0")
seed = 200
shots = 100
with self.subTest(msg="measure"):
for i in range(shots):
psi = state.copy()
psi.seed(seed + i)
outcome, value = psi.measure()
self.assertIn(outcome, ["00", "10"])
if outcome == "00":
target = Statevector.from_label("00")
self.assertEqual(value, target)
else:
target = Statevector.from_label("10")
self.assertEqual(value, target)
with self.subTest(msg="measure [0, 1]"):
for i in range(shots):
psi = state.copy()
outcome, value = psi.measure([0, 1])
self.assertIn(outcome, ["00", "10"])
if outcome == "00":
target = Statevector.from_label("00")
self.assertEqual(value, target)
else:
target = Statevector.from_label("10")
self.assertEqual(value, target)
with self.subTest(msg="measure [1, 0]"):
for i in range(shots):
psi = state.copy()
outcome, value = psi.measure([1, 0])
self.assertIn(outcome, ["00", "01"])
if outcome == "00":
target = Statevector.from_label("00")
self.assertEqual(value, target)
else:
target = Statevector.from_label("10")
self.assertEqual(value, target)
with self.subTest(msg="measure [0]"):
for i in range(shots):
psi = state.copy()
outcome, value = psi.measure([0])
self.assertEqual(outcome, "0")
target = Statevector(np.array([1, 0, 1, 0]) / np.sqrt(2))
self.assertEqual(value, target)
with self.subTest(msg="measure [1]"):
for i in range(shots):
psi = state.copy()
outcome, value = psi.measure([1])
self.assertIn(outcome, ["0", "1"])
if outcome == "0":
target = Statevector.from_label("00")
self.assertEqual(value, target)
else:
target = Statevector.from_label("10")
self.assertEqual(value, target)
def test_measure_qutrit(self):
"""Test measure method for qutrit"""
state = Statevector(np.array([1, 1, 1]) / np.sqrt(3))
seed = 200
shots = 100
for i in range(shots):
psi = state.copy()
psi.seed(seed + i)
outcome, value = psi.measure()
self.assertIn(outcome, ["0", "1", "2"])
if outcome == "0":
target = Statevector([1, 0, 0])
self.assertEqual(value, target)
elif outcome == "1":
target = Statevector([0, 1, 0])
self.assertEqual(value, target)
else:
target = Statevector([0, 0, 1])
self.assertEqual(value, target)
def test_from_int(self):
"""Test from_int method"""
with self.subTest(msg="from_int(0, 4)"):
target = Statevector([1, 0, 0, 0])
value = Statevector.from_int(0, 4)
self.assertEqual(target, value)
with self.subTest(msg="from_int(3, 4)"):
target = Statevector([0, 0, 0, 1])
value = Statevector.from_int(3, 4)
self.assertEqual(target, value)
with self.subTest(msg="from_int(8, (3, 3))"):
target = Statevector([0, 0, 0, 0, 0, 0, 0, 0, 1], dims=(3, 3))
value = Statevector.from_int(8, (3, 3))
self.assertEqual(target, value)
def test_expval(self):
"""Test expectation_value method"""
psi = Statevector([1, 0, 0, 1]) / np.sqrt(2)
for label, target in [
("II", 1),
("XX", 1),
("YY", -1),
("ZZ", 1),
("IX", 0),
("YZ", 0),
("ZX", 0),
("YI", 0),
]:
with self.subTest(msg=f"<{label}>"):
op = Pauli(label)
expval = psi.expectation_value(op)
self.assertAlmostEqual(expval, target)
psi = Statevector([np.sqrt(2), 0, 0, 0, 0, 0, 0, 1 + 1j]) / 2
for label, target in [
("XXX", np.sqrt(2) / 2),
("YYY", -np.sqrt(2) / 2),
("ZZZ", 0),
("XYZ", 0),
("YIY", 0),
]:
with self.subTest(msg=f"<{label}>"):
op = Pauli(label)
expval = psi.expectation_value(op)
self.assertAlmostEqual(expval, target)
labels = ["XXX", "IXI", "YYY", "III"]
coeffs = [3.0, 5.5, -1j, 23]
spp_op = SparsePauliOp.from_list(list(zip(labels, coeffs)))
expval = psi.expectation_value(spp_op)
target = 25.121320343559642 + 0.7071067811865476j
self.assertAlmostEqual(expval, target)
@data(
"II",
"IX",
"IY",
"IZ",
"XI",
"XX",
"XY",
"XZ",
"YI",
"YX",
"YY",
"YZ",
"ZI",
"ZX",
"ZY",
"ZZ",
"-II",
"-IX",
"-IY",
"-IZ",
"-XI",
"-XX",
"-XY",
"-XZ",
"-YI",
"-YX",
"-YY",
"-YZ",
"-ZI",
"-ZX",
"-ZY",
"-ZZ",
"iII",
"iIX",
"iIY",
"iIZ",
"iXI",
"iXX",
"iXY",
"iXZ",
"iYI",
"iYX",
"iYY",
"iYZ",
"iZI",
"iZX",
"iZY",
"iZZ",
"-iII",
"-iIX",
"-iIY",
"-iIZ",
"-iXI",
"-iXX",
"-iXY",
"-iXZ",
"-iYI",
"-iYX",
"-iYY",
"-iYZ",
"-iZI",
"-iZX",
"-iZY",
"-iZZ",
)
def test_expval_pauli(self, pauli):
"""Test expectation_value method for Pauli op"""
seed = 1020
op = Pauli(pauli)
state = random_statevector(2**op.num_qubits, seed=seed)
target = state.expectation_value(op.to_matrix())
expval = state.expectation_value(op)
self.assertAlmostEqual(expval, target)
@data([0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1])
def test_expval_pauli_qargs(self, qubits):
"""Test expectation_value method for Pauli op"""
seed = 1020
op = random_pauli(2, seed=seed)
state = random_statevector(2**3, seed=seed)
target = state.expectation_value(op.to_matrix(), qubits)
expval = state.expectation_value(op, qubits)
self.assertAlmostEqual(expval, target)
def test_expval_identity(self):
"""Test whether the calculation for identity operator has been fixed"""
# 1 qubit case test
state_1 = Statevector.from_label("0")
state_1_n1 = 2 * state_1 # test the same state with different norms
state_1_n2 = (1 + 2j) * state_1
identity_op_1 = SparsePauliOp.from_list([("I", 1)])
expval_state_1 = state_1.expectation_value(identity_op_1)
expval_state_1_n1 = state_1_n1.expectation_value(identity_op_1)
expval_state_1_n2 = state_1_n2.expectation_value(identity_op_1)
self.assertAlmostEqual(expval_state_1, 1.0 + 0j)
self.assertAlmostEqual(expval_state_1_n1, 4 + 0j)
self.assertAlmostEqual(expval_state_1_n2, 5 + 0j)
# Let's try a multi-qubit case
n_qubits = 3
state_coeff = 3 - 4j
op_coeff = 2 - 2j
state_test = state_coeff * Statevector.from_label("0" * n_qubits)
op_test = SparsePauliOp.from_list([("I" * n_qubits, op_coeff)])
expval = state_test.expectation_value(op_test)
target = op_coeff * np.abs(state_coeff) ** 2
self.assertAlmostEqual(expval, target)
@data(*(qargs for i in range(4) for qargs in permutations(range(4), r=i + 1)))
def test_probabilities_qargs(self, qargs):
"""Test probabilities method with qargs"""
# Get initial state
nq = 4
nc = len(qargs)
state_circ = QuantumCircuit(nq, nc)
for i in range(nq):
state_circ.ry((i + 1) * np.pi / (nq + 1), i)
# Get probabilities
state = Statevector(state_circ)
probs = state.probabilities(qargs)
# Estimate target probs from simulator measurement
sim = BasicSimulator()
shots = 5000
seed = 100
circ = transpile(state_circ, sim)
circ.measure(qargs, range(nc))
result = sim.run(circ, shots=shots, seed_simulator=seed).result()
target = np.zeros(2**nc, dtype=float)
for i, p in result.get_counts(0).int_outcomes().items():
target[i] = p / shots
# Compare
delta = np.linalg.norm(probs - target)
self.assertLess(delta, 0.05)
def test_global_phase(self):
"""Test global phase is handled correctly when evolving statevector."""
qc = QuantumCircuit(1)
qc.rz(0.5, 0)
qc2 = transpile(qc, basis_gates=["p"])
sv = Statevector.from_instruction(qc2)
expected = np.array([0.96891242 - 0.24740396j, 0])
self.assertEqual(float(qc2.global_phase), 2 * np.pi - 0.25)
self.assertEqual(sv, Statevector(expected))
def test_reverse_qargs(self):
"""Test reverse_qargs method"""
circ1 = QFTGate(5).definition
circ2 = circ1.reverse_bits()
state1 = Statevector.from_instruction(circ1)
state2 = Statevector.from_instruction(circ2)
self.assertEqual(state1.reverse_qargs(), state2)
@unittest.skipUnless(optionals.HAS_MATPLOTLIB, "requires matplotlib")
@unittest.skipUnless(optionals.HAS_PYLATEX, "requires pylatexenc")
def test_drawings(self):
"""Test draw method"""
qc1 = QFTGate(5).definition
sv = Statevector.from_instruction(qc1)
with self.subTest(msg="str(statevector)"):
str(sv)
for drawtype in ["repr", "text", "latex", "latex_source", "qsphere", "hinton", "bloch"]:
with self.subTest(msg=f"draw('{drawtype}')"):
sv.draw(drawtype)
with self.subTest(msg=" draw('latex', convention='vector')"):
sv.draw("latex", convention="vector")
def test_state_to_latex_for_none(self):
"""
Test for `\rangleNone` output in latex representation
See https://github.com/Qiskit/qiskit-terra/issues/8169
"""
sv = Statevector(
[
7.07106781e-01 - 8.65956056e-17j,
-5.55111512e-17 - 8.65956056e-17j,
7.85046229e-17 + 8.65956056e-17j,
-7.07106781e-01 + 8.65956056e-17j,
0.00000000e00 + 0.00000000e00j,
-0.00000000e00 + 0.00000000e00j,
-0.00000000e00 + 0.00000000e00j,
0.00000000e00 - 0.00000000e00j,
],
dims=(2, 2, 2),
)
latex_representation = state_to_latex(sv)
self.assertEqual(
latex_representation,
"\\frac{\\sqrt{2}}{2} |000\\rangle- \\frac{\\sqrt{2}}{2} |011\\rangle",
)
def test_state_to_latex_for_large_statevector(self):
"""Test conversion of large dense state vector"""
sv = Statevector(np.ones((2**15, 1)))
latex_representation = state_to_latex(sv)
self.assertEqual(
latex_representation,
" |000000000000000\\rangle+ |000000000000001\\rangle+ |000000000000010\\rangle+"
" |000000000000011\\rangle+ |000000000000100\\rangle+ |000000000000101\\rangle +"
" \\ldots + |111111111111011\\rangle+ |111111111111100\\rangle+"
" |111111111111101\\rangle+ |111111111111110\\rangle+ |111111111111111\\rangle",
)
def test_state_to_latex_with_prefix(self):
"""Test adding prefix to state vector latex output"""
psi = Statevector(np.array([np.sqrt(1 / 2), 0, 0, np.sqrt(1 / 2)]))
prefix = "|\\psi_{AB}\\rangle = "
latex_sv = state_to_latex(psi)
latex_expected = prefix + latex_sv
latex_representation = state_to_latex(psi, prefix=prefix)
self.assertEqual(latex_representation, latex_expected)
def test_state_to_latex_for_large_sparse_statevector(self):
"""Test conversion of large sparse state vector"""
sv = Statevector(np.eye(2**15, 1))
latex_representation = state_to_latex(sv)
self.assertEqual(latex_representation, " |000000000000000\\rangle")
def test_state_to_latex_with_max_size_limit(self):
"""Test limit the maximum number of non-zero terms in the expression"""
sv = Statevector(
[
0.35355339 + 0.0j,
0.35355339 + 0.0j,
0.35355339 + 0.0j,
0.35355339 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 - 0.35355339j,
0.0 + 0.35355339j,
0.0 + 0.35355339j,
0.0 - 0.35355339j,
],
dims=(2, 2, 2, 2),
)
latex_representation = state_to_latex(sv, max_size=5)
self.assertEqual(
latex_representation,
"\\frac{\\sqrt{2}}{4} |0000\\rangle+"
"\\frac{\\sqrt{2}}{4} |0001\\rangle + "
"\\ldots +"
"\\frac{\\sqrt{2} i}{4} |1110\\rangle- "
"\\frac{\\sqrt{2} i}{4} |1111\\rangle",
)
def test_state_to_latex_with_decimals_round(self):
"""Test rounding of decimal places in the expression"""
sv = Statevector(
[
0.35355339 + 0.0j,
0.35355339 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 + 0.0j,
0.0 - 0.35355339j,
0.0 + 0.35355339j,
],
dims=(2, 2, 2),
)
latex_representation = state_to_latex(sv, decimals=3)
self.assertEqual(
latex_representation,
"0.354 |000\\rangle+0.354 |001\\rangle- 0.354 i |110\\rangle+0.354 i |111\\rangle",
)
def test_statevector_draw_latex_regression(self):
"""Test numerical rounding errors are not printed"""
sv = Statevector(np.array([1 - 8e-17, 8.32667268e-17j]))
latex_string = sv.draw(output="latex_source")
self.assertTrue(latex_string.startswith(" |0\\rangle"))
self.assertNotIn("|1\\rangle", latex_string)
def test_statevctor_iter(self):
"""Test iteration over a state vector"""
empty_vector = []
dummy_vector = [1, 2, 3]
empty_sv = Statevector([])
sv = Statevector(dummy_vector)
# Assert that successive iterations behave as expected, i.e., the
# iterator is reset upon each exhaustion of the corresponding
# collection of elements.
for _ in range(2):
self.assertEqual(empty_vector, list(empty_sv))
self.assertEqual(dummy_vector, list(sv))
def test_statevector_len(self):
"""Test state vector length"""
empty_vector = []
dummy_vector = [1, 2, 3]
empty_sv = Statevector([])
sv = Statevector(dummy_vector)
self.assertEqual(len(empty_vector), len(empty_sv))
self.assertEqual(len(dummy_vector), len(sv))
def test_clip_probabilities(self):
"""Test probabilities are clipped to [0, 1]."""
sv = Statevector([1.1, 0])
self.assertEqual(list(sv.probabilities()), [1.0, 0.0])
# The "1" key should be zero and therefore omitted.
self.assertEqual(sv.probabilities_dict(), {"0": 1.0})
def test_round_probabilities(self):
"""Test probabilities are correctly rounded.
This is good to test to ensure clipping, renormalizing and rounding work together.
"""
p = np.sqrt(1 / 3)
sv = Statevector([p, p, p, 0])
expected = [0.33, 0.33, 0.33, 0]
self.assertEqual(list(sv.probabilities(decimals=2)), expected)
if __name__ == "__main__":
unittest.main()