qiskit/test/python/circuit/test_uc.py

117 lines
3.8 KiB
Python

# This code is part of Qiskit.
#
# (C) Copyright IBM 2019, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Tests for uniformly controlled single-qubit unitaries.
"""
import unittest
from ddt import ddt
from test import combine # pylint: disable=wrong-import-order
import numpy as np
from scipy.linalg import block_diag
from qiskit.circuit.library.generalized_gates import UCGate
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.quantum_info.random import random_unitary
from qiskit.compiler import transpile
from qiskit.quantum_info.operators.predicates import matrix_equal
from qiskit.quantum_info import Operator
from test import QiskitTestCase # pylint: disable=wrong-import-order
_id = np.eye(2, 2)
_not = np.matrix([[0, 1], [1, 0]])
@ddt
class TestUCGate(QiskitTestCase):
"""Qiskit UCGate tests."""
@combine(
squs=[
[_not],
[_id],
[_id, _id],
[_id, 1j * _id],
[_id, _not, _id, _not],
[random_unitary(2, seed=541234).data for _ in range(2**2)],
[random_unitary(2, seed=975163).data for _ in range(2**3)],
[random_unitary(2, seed=629462).data for _ in range(2**4)],
],
up_to_diagonal=[True, False],
)
def test_ucg(self, squs, up_to_diagonal):
"""Test uniformly controlled gates."""
num_con = int(np.log2(len(squs)))
q = QuantumRegister(num_con + 1)
qc = QuantumCircuit(q)
uc = UCGate(squs, up_to_diagonal=up_to_diagonal)
qc.append(uc, q)
# Decompose the gate
qc = transpile(qc, basis_gates=["u1", "u3", "u2", "cx", "id"])
# Simulate the decomposed gate
unitary = Operator(qc).data
if up_to_diagonal:
ucg = UCGate(squs, up_to_diagonal=up_to_diagonal)
unitary = np.dot(np.diagflat(ucg._get_diagonal()), unitary)
unitary_desired = _get_ucg_matrix(squs)
self.assertTrue(matrix_equal(unitary_desired, unitary, ignore_phase=True))
def test_global_phase_ucg(self):
"""Test global phase of uniformly controlled gates"""
gates = [random_unitary(2).data for _ in range(2**2)]
num_con = int(np.log2(len(gates)))
q = QuantumRegister(num_con + 1)
qc = QuantumCircuit(q)
uc = UCGate(gates, up_to_diagonal=False)
qc.append(uc, q)
unitary = Operator(qc).data
unitary_desired = _get_ucg_matrix(gates)
self.assertTrue(np.allclose(unitary_desired, unitary))
def test_inverse_ucg(self):
"""Test inverse function of uniformly controlled gates"""
gates = [random_unitary(2, seed=42 + s).data for s in range(2**2)]
num_con = int(np.log2(len(gates)))
q = QuantumRegister(num_con + 1)
qc = QuantumCircuit(q)
uc = UCGate(gates, up_to_diagonal=False)
qc.append(uc, q)
qc.append(qc.inverse(), qc.qubits)
unitary = Operator(qc).data
unitary_desired = np.identity(2**qc.num_qubits)
self.assertTrue(np.allclose(unitary_desired, unitary))
def test_repeat(self):
"""test repeat operation"""
gates = [random_unitary(2, seed=seed).data for seed in [124435, 876345, 687462, 928365]]
uc = UCGate(gates, up_to_diagonal=False)
self.assertTrue(np.allclose(Operator(uc.repeat(2)), Operator(uc) @ Operator(uc)))
def _get_ucg_matrix(squs):
return block_diag(*squs)
if __name__ == "__main__":
unittest.main()