Adding variational Quantum Deflation Algorithm for computing higher energy states (#7747)

* initial commit

* initial commits

* changed init, get_enegery_value and compute_eigenvalue

* working kstatevqe

* bug fixing

* fixing overlap term

* fixed kstatevqe

* fixed bounds, gradient and aux_ops in kstatevqe.py

* changing kstatevqe to vqd

* changing filename and bug fixes

* adding tests for vqd

* mirroring changes in deprecated methods

* style check and linting

* modifying doc string

* adding release notes

* lint fixing releasenote and vqe.py

* lint fixes

* added warning and formatted

* test fix

* Update qiskit/algorithms/eigen_solvers/vqd.py

Co-authored-by: Julien Gacon <gaconju@gmail.com>

* Update qiskit/algorithms/eigen_solvers/vqd.py

Co-authored-by: Julien Gacon <gaconju@gmail.com>

* Update qiskit/algorithms/eigen_solvers/vqd.py

Co-authored-by: Julien Gacon <gaconju@gmail.com>

* Update qiskit/algorithms/eigen_solvers/vqd.py

Co-authored-by: dlasecki <dal@zurich.ibm.com>

* Update qiskit/algorithms/eigen_solvers/vqd.py

Co-authored-by: Julien Gacon <gaconju@gmail.com>

* docstring fixes

* modified to use eval_observables and allow the use of any optimiser

* lint fixes and fixing OPTIMIZER import

* Apply suggestions from code review: grammatical fixes in docs and docstrings

Co-authored-by: dlasecki <dal@zurich.ibm.com>

* fixing minimizer class

* fixed release note, pylint, tox and resolved comments

* fixing lint, minimizer and docstring ordering

* lint fix

* lint fixes and release note fix

* test, lint, releasenote fixes

* removed dprecated optimizer and related fixes

* modifying optimizer.minimize

* modifying get_energy_evaluate typehints and docstring

Co-authored-by: Pauline Ollitrault <pauline.ollitrault1@gmail.com>
Co-authored-by: Julien Gacon <gaconju@gmail.com>
Co-authored-by: dlasecki <dal@zurich.ibm.com>
This commit is contained in:
Vishnu Ajith 2022-06-23 22:55:54 +05:30 committed by GitHub
parent 5c51d3a1ce
commit a5b5f81fce
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 1377 additions and 2 deletions

View File

@ -91,6 +91,7 @@ knowledge to do this in that application domain.
:nosignatures:
NumPyEigensolver
VQD
Evolvers
@ -223,7 +224,7 @@ from .amplitude_estimators import (
MaximumLikelihoodAmplitudeEstimationResult,
EstimationProblem,
)
from .eigen_solvers import NumPyEigensolver, Eigensolver, EigensolverResult
from .eigen_solvers import NumPyEigensolver, Eigensolver, EigensolverResult, VQD, VQDResult
from .factorizers import Shor, ShorResult
from .linear_solvers import HHL, LinearSolver, NumPyLinearSolver, LinearSolverResult
from .minimum_eigen_solvers import (
@ -287,6 +288,7 @@ __all__ = [
"MinimumEigensolverResult",
"HamiltonianPhaseEstimation",
"HamiltonianPhaseEstimationResult",
"VQD",
"PhaseEstimationScale",
"PhaseEstimation",
"PhaseEstimationResult",

View File

@ -14,5 +14,6 @@
from .numpy_eigen_solver import NumPyEigensolver
from .eigen_solver import Eigensolver, EigensolverResult
from .vqd import VQD, VQDResult
__all__ = ["NumPyEigensolver", "Eigensolver", "EigensolverResult"]
__all__ = ["NumPyEigensolver", "Eigensolver", "EigensolverResult", "VQD", "VQDResult"]

View File

@ -0,0 +1,757 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""The Variational Quantum Deflation Algorithm for computing higher energy states.
See https://arxiv.org/abs/1805.08138.
"""
from typing import Optional, List, Callable, Union, Dict, Tuple
import logging
from time import time
import numpy as np
from qiskit.circuit import QuantumCircuit, Parameter
from qiskit.circuit.library import RealAmplitudes
from qiskit.opflow.primitive_ops.pauli_op import PauliOp
from qiskit.providers import Backend
from qiskit.opflow import (
OperatorBase,
ExpectationBase,
ExpectationFactory,
StateFn,
CircuitStateFn,
ListOp,
CircuitSampler,
PauliSumOp,
)
from qiskit.opflow.gradients import GradientBase
from qiskit.utils.validation import validate_min
from qiskit.utils.backend_utils import is_aer_provider
from qiskit.utils import QuantumInstance
from ..list_or_dict import ListOrDict
from ..optimizers import Optimizer, SLSQP, Minimizer
from ..variational_algorithm import VariationalAlgorithm, VariationalResult
from .eigen_solver import Eigensolver, EigensolverResult
from ..minimum_eigen_solvers.vqe import _validate_bounds, _validate_initial_point
from ..exceptions import AlgorithmError
from ..aux_ops_evaluator import eval_observables
logger = logging.getLogger(__name__)
class VQD(VariationalAlgorithm, Eigensolver):
r"""The Variational Quantum Deflation algorithm.
`VQD <https://arxiv.org/abs/1805.08138>`__ is a quantum algorithm that uses a
variational technique to find
the k eigenvalues of the Hamiltonian :math:`H` of a given system.
The algorithm computes excited state energies of generalised hamiltonians
by optimising over a modified cost function where each succesive eigen value
is calculated iteratively by introducing an overlap term with all
the previously computed eigenstaes that must be minimised, thus ensuring
higher energy eigen states are found.
An instance of VQD requires defining three algorithmic sub-components:
an integer k denoting the number of eigenstates to calculate, a trial
state (a.k.a. ansatz)which is a :class:`QuantumCircuit`,
and one of the classical :mod:`~qiskit.algorithms.optimizers`.
The ansatz is varied, via its set of parameters, by the optimizer,
such that it works towards a state, as determined by the parameters
applied to the ansatz, that will result in the minimum expectation values
being measured of the input operator (Hamiltonian). The algorithm does
this by iteratively refining each excited state to be orthogonal to all
the previous excited states.
An optional array of parameter values, via the *initial_point*, may be provided as the
starting point for the search of the minimum eigenvalue. This feature is particularly useful
such as when there are reasons to believe that the solution point is close to a particular
point.
The length of the *initial_point* list value must match the number of the parameters
expected by the ansatz being used. If the *initial_point* is left at the default
of ``None``, then VQD will look to the ansatz for a preferred value, based on its
given initial state. If the ansatz returns ``None``,
then a random point will be generated within the parameter bounds set, as per above.
If the ansatz provides ``None`` as the lower bound, then VQD
will default it to :math:`-2\pi`; similarly, if the ansatz returns ``None``
as the upper bound, the default value will be :math:`2\pi`.
"""
def __init__(
self,
ansatz: Optional[QuantumCircuit] = None,
k: int = 2,
betas: Optional[List[float]] = None,
optimizer: Optional[Union[Optimizer, Minimizer]] = None,
initial_point: Optional[np.ndarray] = None,
gradient: Optional[Union[GradientBase, Callable]] = None,
expectation: Optional[ExpectationBase] = None,
include_custom: bool = False,
max_evals_grouped: int = 1,
callback: Optional[Callable[[int, np.ndarray, float, float], None]] = None,
quantum_instance: Optional[Union[QuantumInstance, Backend]] = None,
) -> None:
"""
Args:
ansatz: A parameterized circuit used as ansatz for the wave function.
k: the number of eigenvalues to return. Returns the lowest k eigenvalues.
betas: beta parameter in the VQD paper. Should have size k -1, the number of excited states.
It is a hyperparameter that balances the contribution of the overlap
term to the cost function and has a default value computed as
mean square sum of coefficients of observable.
optimizer: A classical optimizer. Can either be a Qiskit optimizer or a callable
that takes an array as input and returns a Qiskit or SciPy optimization result.
initial_point: An optional initial point (i.e. initial parameter values)
for the optimizer. If ``None`` then VQD will look to the ansatz for a preferred
point and if not will simply compute a random one.
gradient: An optional gradient function or operator for optimizer.
Only used to compute the ground state at the moment.
expectation: The Expectation converter for taking the average value of the
Observable over the ansatz state function. When ``None`` (the default) an
:class:`~qiskit.opflow.expectations.ExpectationFactory` is used to select
an appropriate expectation based on the operator and backend. When using Aer
qasm_simulator backend, with paulis, it is however much faster to leverage custom
Aer function for the computation but, although VQD performs much faster
with it, the outcome is ideal, with no shot noise, like using a state vector
simulator. If you are just looking for the quickest performance when choosing Aer
qasm_simulator and the lack of shot noise is not an issue then set `include_custom`
parameter here to ``True`` (defaults to ``False``).
include_custom: When `expectation` parameter here is None setting this to ``True`` will
allow the factory to include the custom Aer pauli expectation.
max_evals_grouped: Max number of evaluations performed simultaneously. Signals the
given optimizer that more than one set of parameters can be supplied so that
multiple points to compute the gradient can be passed and if computed in parallel
potentially the expectation values can be computed in parallel. Typically this is
possible when a finite difference gradient is used by the optimizer such that
improve overall execution time. Deprecated if a gradient operator or function is
given.
callback: a callback that can access the intermediate data during the optimization.
Four parameter values are passed to the callback as follows during each evaluation
by the optimizer for its current set of parameters as it works towards the minimum.
These are: the evaluation count, the optimizer parameters for the
ansatz, the evaluated mean and the evaluated standard deviation.`
quantum_instance: Quantum Instance or Backend
"""
validate_min("max_evals_grouped", max_evals_grouped, 1)
super().__init__()
self._max_evals_grouped = max_evals_grouped
self._circuit_sampler = None # type: Optional[CircuitSampler]
self._expectation = None
self.expectation = expectation
self._include_custom = include_custom
# set ansatz -- still supporting pre 0.18.0 sorting
self._ansatz = None
self.ansatz = ansatz
self.k = k
self.betas = betas
self._optimizer = None
self.optimizer = optimizer
self._initial_point = None
self.initial_point = initial_point
self._gradient = None
self.gradient = gradient
self._quantum_instance = None
if quantum_instance is not None:
self.quantum_instance = quantum_instance
self._eval_time = None
self._eval_count = 0
self._callback = None
self.callback = callback
logger.info(self.print_settings())
@property
def ansatz(self) -> QuantumCircuit:
"""Returns the ansatz."""
return self._ansatz
@ansatz.setter
def ansatz(self, ansatz: Optional[QuantumCircuit]):
"""Sets the ansatz.
Args:
ansatz: The parameterized circuit used as an ansatz.
If None is passed, RealAmplitudes is used by default.
"""
if ansatz is None:
ansatz = RealAmplitudes()
self._ansatz = ansatz
@property
def gradient(self) -> Optional[Union[GradientBase, Callable]]:
"""Returns the gradient."""
return self._gradient
@gradient.setter
def gradient(self, gradient: Optional[Union[GradientBase, Callable]]):
"""Sets the gradient."""
self._gradient = gradient
@property
def quantum_instance(self) -> Optional[QuantumInstance]:
"""Returns quantum instance."""
return self._quantum_instance
@quantum_instance.setter
def quantum_instance(self, quantum_instance: Union[QuantumInstance, Backend]) -> None:
"""Sets a quantum_instance."""
if not isinstance(quantum_instance, QuantumInstance):
quantum_instance = QuantumInstance(quantum_instance)
self._quantum_instance = quantum_instance
self._circuit_sampler = CircuitSampler(
quantum_instance, param_qobj=is_aer_provider(quantum_instance.backend)
)
@property
def initial_point(self) -> Optional[np.ndarray]:
"""Returns initial point."""
return self._initial_point
@initial_point.setter
def initial_point(self, initial_point: np.ndarray):
"""Sets initial point"""
self._initial_point = initial_point
@property
def max_evals_grouped(self) -> int:
"""Returns max_evals_grouped"""
return self._max_evals_grouped
@max_evals_grouped.setter
def max_evals_grouped(self, max_evals_grouped: int):
"""Sets max_evals_grouped"""
self._max_evals_grouped = max_evals_grouped
self.optimizer.set_max_evals_grouped(max_evals_grouped)
@property
def include_custom(self) -> bool:
"""Returns include_custom"""
return self._include_custom
@include_custom.setter
def include_custom(self, include_custom: bool):
"""Sets include_custom. If set to another value than the one that was previsously set,
the expectation attribute is reset to None.
"""
if include_custom != self._include_custom:
self._include_custom = include_custom
self.expectation = None
@property
def callback(self) -> Optional[Callable[[int, np.ndarray, float, float], None]]:
"""Returns callback"""
return self._callback
@callback.setter
def callback(self, callback: Optional[Callable[[int, np.ndarray, float, float], None]]):
"""Sets callback"""
self._callback = callback
@property
def expectation(self) -> Optional[ExpectationBase]:
"""The expectation value algorithm used to construct the expectation measurement from
the observable."""
return self._expectation
@expectation.setter
def expectation(self, exp: Optional[ExpectationBase]) -> None:
self._expectation = exp
def _check_operator_ansatz(self, operator: OperatorBase):
"""Check that the number of qubits of operator and ansatz match."""
if operator is not None and self.ansatz is not None:
if operator.num_qubits != self.ansatz.num_qubits:
# try to set the number of qubits on the ansatz, if possible
try:
self.ansatz.num_qubits = operator.num_qubits
except AttributeError as ex:
raise AlgorithmError(
"The number of qubits of the ansatz does not match the "
"operator, and the ansatz does not allow setting the "
"number of qubits using `num_qubits`."
) from ex
@property
def optimizer(self) -> Optimizer:
"""Returns optimizer"""
return self._optimizer
@optimizer.setter
def optimizer(self, optimizer: Optional[Optimizer]):
"""Sets the optimizer attribute.
Args:
optimizer: The optimizer to be used. If None is passed, SLSQP is used by default.
"""
if optimizer is None:
optimizer = SLSQP()
if isinstance(optimizer, Optimizer):
optimizer.set_max_evals_grouped(self.max_evals_grouped)
self._optimizer = optimizer
@property
def setting(self):
"""Prepare the setting of VQD as a string."""
ret = f"Algorithm: {self.__class__.__name__}\n"
params = ""
for key, value in self.__dict__.items():
if key[0] == "_":
if "initial_point" in key and value is None:
params += "-- {}: {}\n".format(key[1:], "Random seed")
else:
params += f"-- {key[1:]}: {value}\n"
ret += f"{params}"
return ret
def print_settings(self):
"""Preparing the setting of VQD into a string.
Returns:
str: the formatted setting of VQD.
"""
ret = "\n"
ret += "==================== Setting of {} ============================\n".format(
self.__class__.__name__
)
ret += f"{self.setting}"
ret += "===============================================================\n"
if self.ansatz is not None:
ret += "{}".format(self.ansatz.draw(output="text"))
else:
ret += "ansatz has not been set"
ret += "===============================================================\n"
ret += f"{self._optimizer.setting}"
ret += "===============================================================\n"
return ret
def construct_expectation(
self,
parameter: Union[List[float], List[Parameter], np.ndarray],
operator: OperatorBase,
return_expectation: bool = False,
) -> Union[OperatorBase, Tuple[OperatorBase, ExpectationBase]]:
r"""
Generate the ansatz circuit and expectation value measurement, and return their
runnable composition.
Args:
parameter: Parameters for the ansatz circuit.
operator: Qubit operator of the Observable
return_expectation: If True, return the ``ExpectationBase`` expectation converter used
in the construction of the expectation value. Useful e.g. to compute the standard
deviation of the expectation value.
Returns:
The Operator equalling the measurement of the ansatz :class:`StateFn` by the
Observable's expectation :class:`StateFn`, and, optionally, the expectation converter.
Raises:
AlgorithmError: If no operator has been provided.
AlgorithmError: If no expectation is passed and None could be inferred via the
ExpectationFactory.
"""
if operator is None:
raise AlgorithmError("The operator was never provided.")
self._check_operator_ansatz(operator)
# if expectation was never created, try to create one
if self.expectation is None:
expectation = ExpectationFactory.build(
operator=operator,
backend=self.quantum_instance,
include_custom=self._include_custom,
)
else:
expectation = self.expectation
wave_function = self.ansatz.assign_parameters(parameter)
observable_meas = expectation.convert(StateFn(operator, is_measurement=True))
ansatz_circuit_op = CircuitStateFn(wave_function)
expect_op = observable_meas.compose(ansatz_circuit_op).reduce()
if return_expectation:
return expect_op, expectation
return expect_op
def construct_circuit(
self,
parameter: Union[List[float], List[Parameter], np.ndarray],
operator: OperatorBase,
) -> List[QuantumCircuit]:
"""Return the circuits used to compute the expectation value.
Args:
parameter: Parameters for the ansatz circuit.
operator: Qubit operator of the Observable
Returns:
A list of the circuits used to compute the expectation value.
"""
expect_op = self.construct_expectation(parameter, operator).to_circuit_op()
circuits = []
# recursively extract circuits
def extract_circuits(op):
if isinstance(op, CircuitStateFn):
circuits.append(op.primitive)
elif isinstance(op, ListOp):
for op_i in op.oplist:
extract_circuits(op_i)
extract_circuits(expect_op)
return circuits
@classmethod
def supports_aux_operators(cls) -> bool:
return True
def _eval_aux_ops(
self,
parameters: np.ndarray,
aux_operators: ListOrDict[OperatorBase],
expectation: ExpectationBase,
threshold: float = 1e-12,
) -> ListOrDict[Tuple[complex, complex]]:
# Create new CircuitSampler to avoid breaking existing one's caches.
sampler = CircuitSampler(self.quantum_instance)
if isinstance(aux_operators, dict):
list_op = ListOp(list(aux_operators.values()))
else:
list_op = ListOp(aux_operators)
aux_op_meas = expectation.convert(StateFn(list_op, is_measurement=True))
aux_op_expect = aux_op_meas.compose(CircuitStateFn(self.ansatz.bind_parameters(parameters)))
aux_op_expect_sampled = sampler.convert(aux_op_expect)
# compute means
values = np.real(aux_op_expect_sampled.eval())
# compute standard deviations
variances = np.real(expectation.compute_variance(aux_op_expect_sampled))
if not isinstance(variances, np.ndarray) and variances == 0.0:
# when `variances` is a single value equal to 0., our expectation value is exact and we
# manually ensure the variances to be a list of the correct length
variances = np.zeros(len(aux_operators), dtype=float)
std_devs = np.sqrt(variances / self.quantum_instance.run_config.shots)
# Discard values below threshold
aux_op_means = values * (np.abs(values) > threshold)
# zip means and standard deviations into tuples
aux_op_results = zip(aux_op_means, std_devs)
# Return None eigenvalues for None operators if aux_operators is a list.
# None operators are already dropped in compute_minimum_eigenvalue if aux_operators is a dict.
if isinstance(aux_operators, list):
aux_operator_eigenvalues = [None] * len(aux_operators)
key_value_iterator = enumerate(aux_op_results)
else:
aux_operator_eigenvalues = {}
key_value_iterator = zip(aux_operators.keys(), aux_op_results)
for key, value in key_value_iterator:
if aux_operators[key] is not None:
aux_operator_eigenvalues[key] = value
return aux_operator_eigenvalues
def compute_eigenvalues(
self, operator: OperatorBase, aux_operators: Optional[ListOrDict[OperatorBase]] = None
) -> EigensolverResult:
super().compute_eigenvalues(operator, aux_operators)
if self.quantum_instance is None:
raise AlgorithmError(
"A QuantumInstance or Backend must be supplied to run the quantum algorithm."
)
self.quantum_instance.circuit_summary = True
# this sets the size of the ansatz, so it must be called before the initial point
# validation
self._check_operator_ansatz(operator)
# set an expectation for this algorithm run (will be reset to None at the end)
initial_point = _validate_initial_point(self.initial_point, self.ansatz)
bounds = _validate_bounds(self.ansatz)
# We need to handle the array entries being zero or Optional i.e. having value None
if aux_operators:
zero_op = PauliSumOp.from_list([("I" * self.ansatz.num_qubits, 0)])
# Convert the None and zero values when aux_operators is a list.
# Drop None and convert zero values when aux_operators is a dict.
if isinstance(aux_operators, list):
key_op_iterator = enumerate(aux_operators)
converted = [zero_op] * len(aux_operators)
else:
key_op_iterator = aux_operators.items()
converted = {}
for key, op in key_op_iterator:
if op is not None:
converted[key] = zero_op if op == 0 else op
aux_operators = converted
else:
aux_operators = None
if self.betas is None:
upper_bound = (
abs(operator.coeff)
if isinstance(operator, PauliOp)
else abs(operator.coeff) * sum(abs(operation.coeff) for operation in operator)
)
self.betas = [upper_bound * 10] * (self.k)
logger.info("beta autoevaluated to %s", self.betas[0])
result = VQDResult()
result.optimal_point = []
result.optimal_parameters = []
result.optimal_value = []
result.cost_function_evals = []
result.optimizer_time = []
result.eigenvalues = []
result.eigenstates = []
if aux_operators is not None:
aux_values = []
for step in range(1, self.k + 1):
self._eval_count = 0
energy_evaluation, expectation = self.get_energy_evaluation(
step, operator, return_expectation=True, prev_states=result.optimal_parameters
)
# Convert the gradient operator into a callable function that is compatible with the
# optimization routine. Only used for the ground state currently as Gradient() doesnt
# support SumOps yet
if isinstance(self._gradient, GradientBase):
gradient = self._gradient.gradient_wrapper(
StateFn(operator, is_measurement=True) @ StateFn(self.ansatz),
bind_params=list(self.ansatz.parameters),
backend=self._quantum_instance,
)
else:
gradient = self._gradient
start_time = time()
if callable(self.optimizer):
opt_result = self.optimizer( # pylint: disable=not-callable
fun=energy_evaluation, x0=initial_point, jac=gradient, bounds=bounds
)
else:
opt_result = self.optimizer.minimize(
fun=energy_evaluation, x0=initial_point, jac=gradient, bounds=bounds
)
eval_time = time() - start_time
result.optimal_point.append(opt_result.x)
result.optimal_parameters.append(dict(zip(self.ansatz.parameters, opt_result.x)))
result.optimal_value.append(opt_result.fun)
result.cost_function_evals.append(opt_result.nfev)
result.optimizer_time.append(eval_time)
eigenvalue = (
StateFn(operator, is_measurement=True)
.compose(CircuitStateFn(self.ansatz.bind_parameters(result.optimal_parameters[-1])))
.reduce()
.eval()
)
result.eigenvalues.append(eigenvalue)
result.eigenstates.append(self._get_eigenstate(result.optimal_parameters[-1]))
if aux_operators is not None:
bound_ansatz = self.ansatz.bind_parameters(result.optimal_point[-1])
aux_value = eval_observables(
self.quantum_instance, bound_ansatz, aux_operators, expectation=expectation
)
aux_values.append(aux_value)
if step == 1:
logger.info(
"Ground state optimization complete in %s seconds.\nFound opt_params %s in %s evals",
eval_time,
result.optimal_point,
self._eval_count,
)
else:
logger.info(
(
"%s excited state optimization complete in %s s.\nFound opt_parms %s in %s evals"
),
str(step - 1),
eval_time,
result.optimal_point,
self._eval_count,
)
# To match the siignature of NumpyEigenSolver Result
result.eigenstates = ListOp([StateFn(vec) for vec in result.eigenstates])
result.eigenvalues = np.array(result.eigenvalues)
result.optimal_point = np.array(result.optimal_point)
result.optimal_value = np.array(result.optimal_value)
result.cost_function_evals = np.array(result.cost_function_evals)
result.optimizer_time = np.array(result.optimizer_time)
if aux_operators is not None:
result.aux_operator_eigenvalues = aux_values
return result
def get_energy_evaluation(
self,
step: int,
operator: OperatorBase,
return_expectation: bool = False,
prev_states: Optional[List[np.ndarray]] = None,
) -> Callable[[np.ndarray], Union[float, List[float]]]:
"""Returns a function handle to evaluates the energy at given parameters for the ansatz.
This return value is the objective function to be passed to the optimizer for evaluation.
Args:
step: level of enegy being calculated. 0 for ground, 1 for first excited state and so on.
operator: The operator whose energy to evaluate.
return_expectation: If True, return the ``ExpectationBase`` expectation converter used
in the construction of the expectation value. Useful e.g. to evaluate other
operators with the same expectation value converter.
prev_states: List of parameters from previous rounds of optimization.
Returns:
A callable that computes and returns the energy of the hamiltonian
of each parameter, and, optionally, the expectation
Raises:
RuntimeError: If the circuit is not parameterized (i.e. has 0 free parameters).
AlgorithmError: If operator was not provided.
"""
num_parameters = self.ansatz.num_parameters
if num_parameters == 0:
raise RuntimeError("The ansatz must be parameterized, but has 0 free parameters.")
if operator is None:
raise AlgorithmError("The operator was never provided.")
if step > 1 and (len(prev_states) + 1) != step:
raise RuntimeError(
f"Passed previous states of the wrong size."
f"Passed array has length {str(len(prev_states))}"
)
self._check_operator_ansatz(operator)
overlap_op = []
ansatz_params = self.ansatz.parameters
expect_op, expectation = self.construct_expectation(
ansatz_params, operator, return_expectation=True
)
for state in range(step - 1):
prev_circ = self.ansatz.bind_parameters(prev_states[state])
overlap_op.append(~CircuitStateFn(prev_circ) @ CircuitStateFn(self.ansatz))
def energy_evaluation(parameters):
parameter_sets = np.reshape(parameters, (-1, num_parameters))
# Create dict associating each parameter with the lists of parameterization values for it
param_bindings = dict(zip(ansatz_params, parameter_sets.transpose().tolist()))
sampled_expect_op = self._circuit_sampler.convert(expect_op, params=param_bindings)
mean = np.real(sampled_expect_op.eval())
for state in range(step - 1):
sampled_final_op = self._circuit_sampler.convert(
overlap_op[state], params=param_bindings
)
cost = sampled_final_op.eval()
mean += np.real(self.betas[state] * np.conj(cost) * cost)
self._eval_count += len(mean)
return mean if len(mean) > 1 else mean[0]
if return_expectation:
return energy_evaluation, expectation
return energy_evaluation
def _get_eigenstate(self, optimal_parameters) -> Union[List[float], Dict[str, int]]:
"""Get the simulation outcome of the ansatz, provided with parameters."""
optimal_circuit = self.ansatz.bind_parameters(optimal_parameters)
state_fn = self._circuit_sampler.convert(StateFn(optimal_circuit)).eval()
if self.quantum_instance.is_statevector:
state = state_fn.primitive.data # VectorStateFn -> Statevector -> np.array
else:
state = state_fn.to_dict_fn().primitive # SparseVectorStateFn -> DictStateFn -> dict
return state
class VQDResult(VariationalResult, EigensolverResult):
"""VQD Result."""
def __init__(self) -> None:
super().__init__()
self._cost_function_evals = None
@property
def cost_function_evals(self) -> Optional[int]:
"""Returns number of cost optimizer evaluations"""
return self._cost_function_evals
@cost_function_evals.setter
def cost_function_evals(self, value: int) -> None:
"""Sets number of cost function evaluations"""
self._cost_function_evals = value
@property
def eigenstates(self) -> Optional[np.ndarray]:
"""return eigen state"""
return self._eigenstates
@eigenstates.setter
def eigenstates(self, value: np.ndarray) -> None:
"""set eigen state"""
self._eigenstates = value

View File

@ -0,0 +1,33 @@
---
features:
- |
The algorithm iteratively computes each eigenstate by starting from the ground
state (which is computed as in VQE) and then optimising a modified cost function
that tries to compute eigen states that are orthogonal to the states computed in
the previous iterations and have the lowest energy when computed over the ansatz.
The interface implemented is very similar to that of VQE and is of the form:
.. code-block:: python
from qiskit.algorithms import VQD
from qiskit.utils import QuantumInstance
from qiskit.circuit.library import TwoLocal
from qiskit.algorithms.optimizers import COBYLA
from qiskit import BasicAer
from qiskit.opflow import I,Z,X
h2_op = (
-1.052373245772859 * (I ^ I)
+ 0.39793742484318045 * (I ^ Z)
- 0.39793742484318045 * (Z ^ I)
- 0.01128010425623538 * (Z ^ Z)
+ 0.18093119978423156 * (X ^ X)
)
vqd = VQD(k =2, ansatz = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz"),optimizer = COBYLA(maxiter = 0), quantum_instance = QuantumInstance(
BasicAer.get_backend("qasm_simulator"), shots = 2048)
)
vqd_res = vqd.compute_eigenvalues(op)
This particular code snippet generates 2 eigenvalues (ground and 1st excited state)
Tests have also been implemented.

View File

@ -0,0 +1,582 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
""" Test VQD """
import unittest
from test.python.algorithms import QiskitAlgorithmsTestCase
import numpy as np
from ddt import data, ddt, unpack
from qiskit import BasicAer, QuantumCircuit
from qiskit.algorithms import VQD, AlgorithmError
from qiskit.algorithms.optimizers import (
COBYLA,
L_BFGS_B,
SLSQP,
)
from qiskit.circuit.library import EfficientSU2, RealAmplitudes, TwoLocal
from qiskit.exceptions import MissingOptionalLibraryError
from qiskit.opflow import (
AerPauliExpectation,
I,
MatrixExpectation,
MatrixOp,
PauliExpectation,
PauliSumOp,
PrimitiveOp,
X,
Z,
)
from qiskit.utils import QuantumInstance, algorithm_globals, has_aer
if has_aer():
from qiskit import Aer
@ddt
class TestVQD(QiskitAlgorithmsTestCase):
"""Test VQD"""
def setUp(self):
super().setUp()
self.seed = 50
algorithm_globals.random_seed = self.seed
self.h2_op = (
-1.052373245772859 * (I ^ I)
+ 0.39793742484318045 * (I ^ Z)
- 0.39793742484318045 * (Z ^ I)
- 0.01128010425623538 * (Z ^ Z)
+ 0.18093119978423156 * (X ^ X)
)
self.h2_energy = -1.85727503
self.h2_energy_excited = [-1.85727503, -1.24458455]
self.test_op = MatrixOp(np.diagflat([3, 5, -1, 0.8, 0.2, 2, 1, -3])).to_pauli_op()
self.test_results = [-3, -1]
self.ryrz_wavefunction = TwoLocal(
rotation_blocks=["ry", "rz"], entanglement_blocks="cz", reps=1
)
self.ry_wavefunction = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz")
self.qasm_simulator = QuantumInstance(
BasicAer.get_backend("qasm_simulator"),
shots=2048,
seed_simulator=self.seed,
seed_transpiler=self.seed,
)
self.statevector_simulator = QuantumInstance(
BasicAer.get_backend("statevector_simulator"),
shots=1,
seed_simulator=self.seed,
seed_transpiler=self.seed,
)
def test_basic_aer_statevector(self):
"""Test the VQD on BasicAer's statevector simulator."""
wavefunction = self.ryrz_wavefunction
vqd = VQD(
k=2,
ansatz=wavefunction,
optimizer=COBYLA(),
quantum_instance=QuantumInstance(
BasicAer.get_backend("statevector_simulator"),
basis_gates=["u1", "u2", "u3", "cx", "id"],
coupling_map=[[0, 1]],
seed_simulator=algorithm_globals.random_seed,
seed_transpiler=algorithm_globals.random_seed,
),
)
result = vqd.compute_eigenvalues(operator=self.h2_op)
with self.subTest(msg="test eigenvalue"):
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=1
)
with self.subTest(msg="test dimension of optimal point"):
self.assertEqual(len(result.optimal_point[-1]), 8)
with self.subTest(msg="assert cost_function_evals is set"):
self.assertIsNotNone(result.cost_function_evals)
with self.subTest(msg="assert optimizer_time is set"):
self.assertIsNotNone(result.optimizer_time)
def test_mismatching_num_qubits(self):
"""Ensuring circuit and operator mismatch is caught"""
wavefunction = QuantumCircuit(1)
optimizer = SLSQP(maxiter=50)
vqd = VQD(
k=1,
ansatz=wavefunction,
optimizer=optimizer,
quantum_instance=self.statevector_simulator,
)
with self.assertRaises(AlgorithmError):
_ = vqd.compute_eigenvalues(operator=self.h2_op)
@data(
(MatrixExpectation(), 1),
(AerPauliExpectation(), 1),
(PauliExpectation(), 2),
)
@unpack
def test_construct_circuit(self, expectation, num_circuits):
"""Test construct circuits returns QuantumCircuits and the right number of them."""
try:
wavefunction = EfficientSU2(2, reps=1)
vqd = VQD(k=2, ansatz=wavefunction, expectation=expectation)
params = [0] * wavefunction.num_parameters
circuits = vqd.construct_circuit(parameter=params, operator=self.h2_op)
self.assertEqual(len(circuits), num_circuits)
for circuit in circuits:
self.assertIsInstance(circuit, QuantumCircuit)
except MissingOptionalLibraryError as ex:
self.skipTest(str(ex))
return
def test_missing_varform_params(self):
"""Test specifying a variational form with no parameters raises an error."""
circuit = QuantumCircuit(self.h2_op.num_qubits)
vqd = VQD(
k=1, ansatz=circuit, quantum_instance=BasicAer.get_backend("statevector_simulator")
)
with self.assertRaises(RuntimeError):
vqd.compute_eigenvalues(operator=self.h2_op)
def test_basic_aer_qasm(self):
"""Test the VQD on BasicAer's QASM simulator."""
optimizer = COBYLA(maxiter=1000)
wavefunction = self.ry_wavefunction
vqd = VQD(
ansatz=wavefunction,
optimizer=optimizer,
max_evals_grouped=1,
quantum_instance=self.qasm_simulator,
)
# TODO benchmark this later.
result = vqd.compute_eigenvalues(operator=self.h2_op)
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=1
)
@unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.")
def test_with_aer_statevector(self):
"""Test VQD with Aer's statevector_simulator."""
backend = Aer.get_backend("aer_simulator_statevector")
wavefunction = self.ry_wavefunction
optimizer = L_BFGS_B()
quantum_instance = QuantumInstance(
backend,
seed_simulator=algorithm_globals.random_seed,
seed_transpiler=algorithm_globals.random_seed,
)
vqd = VQD(
k=2,
ansatz=wavefunction,
optimizer=optimizer,
max_evals_grouped=1,
quantum_instance=quantum_instance,
)
result = vqd.compute_eigenvalues(operator=self.h2_op)
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=2
)
@unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.")
def test_with_aer_qasm(self):
"""Test VQD with Aer's qasm_simulator."""
backend = Aer.get_backend("aer_simulator")
optimizer = COBYLA(maxiter=1000)
wavefunction = self.ry_wavefunction
quantum_instance = QuantumInstance(
backend,
seed_simulator=algorithm_globals.random_seed,
seed_transpiler=algorithm_globals.random_seed,
)
vqd = VQD(
k=2,
ansatz=wavefunction,
optimizer=optimizer,
expectation=PauliExpectation(),
quantum_instance=quantum_instance,
)
result = vqd.compute_eigenvalues(operator=self.h2_op)
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=1
)
@unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.")
def test_with_aer_qasm_snapshot_mode(self):
"""Test the VQD using Aer's qasm_simulator snapshot mode."""
backend = Aer.get_backend("aer_simulator")
optimizer = COBYLA(maxiter=400)
wavefunction = self.ryrz_wavefunction
quantum_instance = QuantumInstance(
backend,
shots=100,
seed_simulator=algorithm_globals.random_seed,
seed_transpiler=algorithm_globals.random_seed,
)
vqd = VQD(
k=2,
ansatz=wavefunction,
optimizer=optimizer,
expectation=AerPauliExpectation(),
quantum_instance=quantum_instance,
)
result = vqd.compute_eigenvalues(operator=self.test_op)
np.testing.assert_array_almost_equal(result.eigenvalues.real, self.test_results, decimal=1)
def test_callback(self):
"""Test the callback on VQD."""
history = {"eval_count": [], "parameters": [], "mean": [], "std": []}
def store_intermediate_result(eval_count, parameters, mean, std):
history["eval_count"].append(eval_count)
history["parameters"].append(parameters)
history["mean"].append(mean)
history["std"].append(std)
optimizer = COBYLA(maxiter=3)
wavefunction = self.ry_wavefunction
vqd = VQD(
ansatz=wavefunction,
optimizer=optimizer,
callback=store_intermediate_result,
quantum_instance=self.qasm_simulator,
)
vqd.compute_eigenvalues(operator=self.h2_op)
self.assertTrue(all(isinstance(count, int) for count in history["eval_count"]))
self.assertTrue(all(isinstance(mean, float) for mean in history["mean"]))
self.assertTrue(all(isinstance(std, float) for std in history["std"]))
for params in history["parameters"]:
self.assertTrue(all(isinstance(param, float) for param in params))
def test_reuse(self):
"""Test re-using a VQD algorithm instance."""
vqd = VQD(k=1)
with self.subTest(msg="assert running empty raises AlgorithmError"):
with self.assertRaises(AlgorithmError):
_ = vqd.compute_eigenvalues(operator=self.h2_op)
ansatz = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz")
vqd.ansatz = ansatz
with self.subTest(msg="assert missing operator raises AlgorithmError"):
with self.assertRaises(AlgorithmError):
_ = vqd.compute_eigenvalues(operator=self.h2_op)
vqd.expectation = MatrixExpectation()
vqd.quantum_instance = self.statevector_simulator
with self.subTest(msg="assert VQE works once all info is available"):
result = vqd.compute_eigenvalues(operator=self.h2_op)
np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy, decimal=2)
operator = PrimitiveOp(np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]]))
with self.subTest(msg="assert minimum eigensolver interface works"):
result = vqd.compute_eigenvalues(operator=operator)
self.assertAlmostEqual(result.eigenvalues.real[0], -1.0, places=5)
def test_vqd_optimizer(self):
"""Test running same VQD twice to re-use optimizer, then switch optimizer"""
vqd = VQD(
k=2,
optimizer=SLSQP(),
quantum_instance=QuantumInstance(BasicAer.get_backend("statevector_simulator")),
)
def run_check():
result = vqd.compute_eigenvalues(operator=self.h2_op)
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=3
)
run_check()
with self.subTest("Optimizer re-use"):
run_check()
with self.subTest("Optimizer replace"):
vqd.optimizer = L_BFGS_B()
run_check()
@data(MatrixExpectation(), None)
def test_backend_change(self, user_expectation):
"""Test that VQE works when backend changes."""
vqd = VQD(
k=1,
ansatz=TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz"),
optimizer=SLSQP(maxiter=2),
expectation=user_expectation,
quantum_instance=BasicAer.get_backend("statevector_simulator"),
)
result0 = vqd.compute_eigenvalues(operator=self.h2_op)
if user_expectation is not None:
with self.subTest("User expectation kept."):
self.assertEqual(vqd.expectation, user_expectation)
vqd.quantum_instance = BasicAer.get_backend("qasm_simulator")
# works also if no expectation is set, since it will be determined automatically
result1 = vqd.compute_eigenvalues(operator=self.h2_op)
if user_expectation is not None:
with self.subTest("Change backend with user expectation, it is kept."):
self.assertEqual(vqd.expectation, user_expectation)
with self.subTest("Check results."):
self.assertEqual(len(result0.optimal_point), len(result1.optimal_point))
def test_set_ansatz_to_none(self):
"""Tests that setting the ansatz to None results in the default behavior"""
vqd = VQD(
k=1,
ansatz=self.ryrz_wavefunction,
optimizer=L_BFGS_B(),
quantum_instance=self.statevector_simulator,
)
vqd.ansatz = None
self.assertIsInstance(vqd.ansatz, RealAmplitudes)
def test_set_optimizer_to_none(self):
"""Tests that setting the optimizer to None results in the default behavior"""
vqd = VQD(
k=1,
ansatz=self.ryrz_wavefunction,
optimizer=L_BFGS_B(),
quantum_instance=self.statevector_simulator,
)
vqd.optimizer = None
self.assertIsInstance(vqd.optimizer, SLSQP)
def test_aux_operators_list(self):
"""Test list-based aux_operators."""
wavefunction = self.ry_wavefunction
vqd = VQD(k=2, ansatz=wavefunction, quantum_instance=self.statevector_simulator)
# Start with an empty list
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=[])
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=2
)
self.assertIsNone(result.aux_operator_eigenvalues)
# Go again with two auxiliary operators
aux_op1 = PauliSumOp.from_list([("II", 2.0)])
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_ops = [aux_op1, aux_op2]
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops)
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=2
)
self.assertEqual(len(result.aux_operator_eigenvalues), 2)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2, places=2)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0, places=2)
# standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0)
# Go again with additional None and zero operators
extra_ops = [*aux_ops, None, 0]
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=extra_ops)
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=2
)
self.assertEqual(len(result.aux_operator_eigenvalues), 2)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2, places=2)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0, places=2)
self.assertEqual(result.aux_operator_eigenvalues[0][2][0], 0.0)
self.assertEqual(result.aux_operator_eigenvalues[0][3][0], 0.0)
# standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0)
self.assertEqual(result.aux_operator_eigenvalues[0][3][1], 0.0)
def test_aux_operators_dict(self):
"""Test dictionary compatibility of aux_operators"""
wavefunction = self.ry_wavefunction
vqd = VQD(ansatz=wavefunction, quantum_instance=self.statevector_simulator)
# Start with an empty dictionary
result = vqd.compute_eigenvalues(self.h2_op, aux_operators={})
np.testing.assert_array_almost_equal(
result.eigenvalues.real, self.h2_energy_excited, decimal=2
)
self.assertIsNone(result.aux_operator_eigenvalues)
# Go again with two auxiliary operators
aux_op1 = PauliSumOp.from_list([("II", 2.0)])
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_ops = {"aux_op1": aux_op1, "aux_op2": aux_op2}
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops)
self.assertEqual(len(result.eigenvalues), 2)
self.assertEqual(len(result.eigenstates), 2)
self.assertEqual(result.eigenvalues.dtype, np.complex128)
self.assertAlmostEqual(result.eigenvalues[0], -1.85727503)
self.assertEqual(len(result.aux_operator_eigenvalues), 2)
self.assertEqual(len(result.aux_operator_eigenvalues[0]), 2)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op1"][0], 2, places=6)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op2"][0], 0, places=1)
# standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op1"][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op2"][1], 0.0)
# Go again with additional None and zero operators
extra_ops = {**aux_ops, "None_operator": None, "zero_operator": 0}
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=extra_ops)
self.assertEqual(len(result.eigenvalues), 2)
self.assertEqual(len(result.eigenstates), 2)
self.assertEqual(result.eigenvalues.dtype, np.complex128)
self.assertAlmostEqual(result.eigenvalues[0], -1.85727503)
self.assertEqual(len(result.aux_operator_eigenvalues), 2)
self.assertEqual(len(result.aux_operator_eigenvalues[0]), 3)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op1"][0], 2, places=6)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op2"][0], 0, places=6)
self.assertEqual(result.aux_operator_eigenvalues[0]["zero_operator"][0], 0.0)
self.assertTrue("None_operator" not in result.aux_operator_eigenvalues[0].keys())
# standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op1"][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["aux_op2"][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0]["zero_operator"][1], 0.0)
def test_aux_operator_std_dev_pauli(self):
"""Test non-zero standard deviations of aux operators with PauliExpectation."""
wavefunction = self.ry_wavefunction
vqd = VQD(
ansatz=wavefunction,
expectation=PauliExpectation(),
initial_point=[
1.70256666,
-5.34843975,
-0.39542903,
5.99477786,
-2.74374986,
-4.85284669,
0.2442925,
-1.51638917,
],
optimizer=COBYLA(maxiter=0),
quantum_instance=self.qasm_simulator,
)
# Go again with two auxiliary operators
aux_op1 = PauliSumOp.from_list([("II", 2.0)])
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_ops = [aux_op1, aux_op2]
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops)
self.assertEqual(len(result.aux_operator_eigenvalues), 2)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=1)
self.assertAlmostEqual(
result.aux_operator_eigenvalues[0][1][0], 0.0019531249999999445, places=1
)
# standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0)
self.assertAlmostEqual(
result.aux_operator_eigenvalues[0][1][1], 0.015183867579396111, places=1
)
# Go again with additional None and zero operators
aux_ops = [*aux_ops, None, 0]
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops)
self.assertEqual(len(result.aux_operator_eigenvalues[0]), 4)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=1)
self.assertAlmostEqual(
result.aux_operator_eigenvalues[0][1][0], 0.0019531249999999445, places=1
)
self.assertEqual(result.aux_operator_eigenvalues[0][2][0], 0.0)
self.assertEqual(result.aux_operator_eigenvalues[0][3][0], 0.0)
# # standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0)
self.assertAlmostEqual(
result.aux_operator_eigenvalues[0][1][1], 0.01548658094658011, places=1
)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][2][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][3][1], 0.0)
@unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.")
def test_aux_operator_std_dev_aer_pauli(self):
"""Test non-zero standard deviations of aux operators with AerPauliExpectation."""
wavefunction = self.ry_wavefunction
vqd = VQD(
ansatz=wavefunction,
expectation=AerPauliExpectation(),
optimizer=COBYLA(maxiter=0),
quantum_instance=QuantumInstance(
backend=Aer.get_backend("qasm_simulator"),
shots=1,
seed_simulator=algorithm_globals.random_seed,
seed_transpiler=algorithm_globals.random_seed,
),
)
# Go again with two auxiliary operators
aux_op1 = PauliSumOp.from_list([("II", 2.0)])
aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)])
aux_ops = [aux_op1, aux_op2]
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops)
self.assertEqual(len(result.aux_operator_eigenvalues), 2)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=1)
self.assertAlmostEqual(
result.aux_operator_eigenvalues[0][1][0], 0.6698863565455391, places=1
)
# standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0, places=6)
# Go again with additional None and zero operators
aux_ops = [*aux_ops, None, 0]
result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops)
self.assertEqual(len(result.aux_operator_eigenvalues[-1]), 4)
# expectation values
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=6)
self.assertAlmostEqual(
result.aux_operator_eigenvalues[0][1][0], 0.6036400943063891, places=6
)
self.assertEqual(result.aux_operator_eigenvalues[0][2][0], 0.0)
self.assertEqual(result.aux_operator_eigenvalues[0][3][0], 0.0)
# standard deviations
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0, places=6)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][2][1], 0.0)
self.assertAlmostEqual(result.aux_operator_eigenvalues[0][3][1], 0.0)
if __name__ == "__main__":
unittest.main()