qiskit-documentation/docs/api/qiskit/qiskit.circuit.library.QFT.mdx

286 lines
11 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: QFT
description: API reference for qiskit.circuit.library.QFT
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.QFT
---
# QFT
<Class id="qiskit.circuit.library.QFT" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.1/qiskit/circuit/library/basis_change/qft.py#L24-L295" signature="qiskit.circuit.library.QFT(num_qubits=None, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name=None)" modifiers="class">
Bases: `BlueprintCircuit`
Quantum Fourier Transform Circuit.
The Quantum Fourier Transform (QFT) on $n$ qubits is the operation
$$
|j\rangle \mapsto \frac{1}{2^{n/2}} \sum_{k=0}^{2^n - 1} e^{2\pi ijk / 2^n} |k\rangle
$$
The circuit that implements this transformation can be implemented using Hadamard gates on each qubit, a series of controlled-U1 (or Z, depending on the phase) gates and a layer of Swap gates. The layer of Swap gates can in principle be dropped if the QFT appears at the end of the circuit, since then the re-ordering can be done classically. They can be turned off using the `do_swaps` attribute.
For 4 qubits, the circuit that implements this transformation is:
![../\_images/qiskit-circuit-library-QFT-1.png](/images/api/qiskit/qiskit-circuit-library-QFT-1.png)
The inverse QFT can be obtained by calling the `inverse` method on this class. The respective circuit diagram is:
![../\_images/qiskit-circuit-library-QFT-2.png](/images/api/qiskit/qiskit-circuit-library-QFT-2.png)
One method to reduce circuit depth is to implement the QFT approximately by ignoring controlled-phase rotations where the angle is beneath a threshold. This is discussed in more detail in [https://arxiv.org/abs/quant-ph/9601018](https://arxiv.org/abs/quant-ph/9601018) or [https://arxiv.org/abs/quant-ph/0403071](https://arxiv.org/abs/quant-ph/0403071).
Here, this can be adjusted using the `approximation_degree` attribute: the smallest `approximation_degree` rotation angles are dropped from the QFT. For instance, a QFT on 5 qubits with approximation degree 2 yields (the barriers are dropped in this example):
![../\_images/qiskit-circuit-library-QFT-3.png](/images/api/qiskit/qiskit-circuit-library-QFT-3.png)
Construct a new QFT circuit.
**Parameters**
* **num\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)") *| None*) The number of qubits on which the QFT acts.
* **approximation\_degree** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) The degree of approximation (0 for no approximation).
* **do\_swaps** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) Whether to include the final swaps in the QFT.
* **inverse** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) If True, the inverse Fourier transform is constructed.
* **insert\_barriers** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) If True, barriers are inserted as visualization improvement.
* **name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.12)") *| None*) The name of the circuit.
## Attributes
### ancillas
<Attribute id="qiskit.circuit.library.QFT.ancillas">
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
</Attribute>
### approximation\_degree
<Attribute id="qiskit.circuit.library.QFT.approximation_degree">
The approximation degree of the QFT.
**Returns**
The currently set approximation degree.
</Attribute>
### calibrations
<Attribute id="qiskit.circuit.library.QFT.calibrations">
Return calibration dictionary.
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
</Attribute>
### clbits
<Attribute id="qiskit.circuit.library.QFT.clbits">
A list of `Clbit`s in the order that they were added. You should not mutate this.
</Attribute>
### data
<Attribute id="qiskit.circuit.library.QFT.data" />
### do\_swaps
<Attribute id="qiskit.circuit.library.QFT.do_swaps">
Whether the final swaps of the QFT are applied or not.
**Returns**
True, if the final swaps are applied, False if not.
</Attribute>
### global\_phase
<Attribute id="qiskit.circuit.library.QFT.global_phase">
The global phase of the current circuit scope in radians.
</Attribute>
### insert\_barriers
<Attribute id="qiskit.circuit.library.QFT.insert_barriers">
Whether barriers are inserted for better visualization or not.
**Returns**
True, if barriers are inserted, False if not.
</Attribute>
### instances
<Attribute id="qiskit.circuit.library.QFT.instances" attributeValue="214" />
### layout
<Attribute id="qiskit.circuit.library.QFT.layout">
Return any associated layout information about the circuit
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
</Attribute>
### metadata
<Attribute id="qiskit.circuit.library.QFT.metadata">
Arbitrary user-defined metadata for the circuit.
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
</Attribute>
### num\_ancillas
<Attribute id="qiskit.circuit.library.QFT.num_ancillas">
Return the number of ancilla qubits.
</Attribute>
### num\_captured\_vars
<Attribute id="qiskit.circuit.library.QFT.num_captured_vars">
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.QFT.num_input_vars "qiskit.circuit.library.QFT.num_input_vars") must be zero.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.QFT.num_clbits">
Return number of classical bits.
</Attribute>
### num\_declared\_vars
<Attribute id="qiskit.circuit.library.QFT.num_declared_vars">
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
This is the length of the `iter_declared_vars()` iterable.
</Attribute>
### num\_input\_vars
<Attribute id="qiskit.circuit.library.QFT.num_input_vars">
The number of real-time classical variables in the circuit marked as circuit inputs.
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.QFT.num_captured_vars "qiskit.circuit.library.QFT.num_captured_vars") must be zero.
</Attribute>
### num\_parameters
<Attribute id="qiskit.circuit.library.QFT.num_parameters" />
### num\_qubits
<Attribute id="qiskit.circuit.library.QFT.num_qubits">
The number of qubits in the QFT circuit.
**Returns**
The number of qubits in the circuit.
</Attribute>
### num\_vars
<Attribute id="qiskit.circuit.library.QFT.num_vars">
The number of real-time classical variables in the circuit.
This is the length of the `iter_vars()` iterable.
</Attribute>
### op\_start\_times
<Attribute id="qiskit.circuit.library.QFT.op_start_times">
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
**Returns**
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
**Raises**
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.12)") When circuit is not scheduled.
</Attribute>
### parameters
<Attribute id="qiskit.circuit.library.QFT.parameters" />
### prefix
<Attribute id="qiskit.circuit.library.QFT.prefix" attributeValue="'circuit'" />
### qregs
<Attribute id="qiskit.circuit.library.QFT.qregs" attributeTypeHint="list[QuantumRegister]">
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
</Attribute>
### qubits
<Attribute id="qiskit.circuit.library.QFT.qubits">
A list of `Qubit`s in the order that they were added. You should not mutate this.
</Attribute>
### name
<Attribute id="qiskit.circuit.library.QFT.name" attributeTypeHint="str">
A human-readable name for the circuit.
</Attribute>
### cregs
<Attribute id="qiskit.circuit.library.QFT.cregs" attributeTypeHint="list[ClassicalRegister]">
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
</Attribute>
### duration
<Attribute id="qiskit.circuit.library.QFT.duration" attributeTypeHint="int | float | None">
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.QFT.unit "qiskit.circuit.library.QFT.unit").
</Attribute>
### unit
<Attribute id="qiskit.circuit.library.QFT.unit">
The unit that [`duration`](#qiskit.circuit.library.QFT.duration "qiskit.circuit.library.QFT.duration") is specified in.
</Attribute>
## Methods
### inverse
<Function id="qiskit.circuit.library.QFT.inverse" github="https://github.com/Qiskit/qiskit/tree/stable/1.1/qiskit/circuit/library/basis_change/qft.py#L206-L234" signature="inverse(annotated=False)">
Invert this circuit.
**Parameters**
**annotated** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) indicates whether the inverse gate can be implemented as an annotated gate. The value of this argument is ignored as the inverse of a QFT is an IQFT which is just another instance of [`QFT`](#qiskit.circuit.library.QFT "qiskit.circuit.library.QFT").
**Returns**
The inverted circuit.
**Return type**
[*QFT*](#qiskit.circuit.library.QFT "qiskit.circuit.library.basis_change.qft.QFT")
</Function>
### is\_inverse
<Function id="qiskit.circuit.library.QFT.is_inverse" github="https://github.com/Qiskit/qiskit/tree/stable/1.1/qiskit/circuit/library/basis_change/qft.py#L198-L204" signature="is_inverse()">
Whether the inverse Fourier transform is implemented.
**Returns**
True, if the inverse Fourier transform is implemented, False otherwise.
**Return type**
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")
</Function>
</Class>