qiskit-documentation/docs/api/qiskit/0.44/qiskit.extensions.UCRZGate.mdx

351 lines
12 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: UCRZGate
description: API reference for qiskit.extensions.UCRZGate
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.extensions.UCRZGate
---
# UCRZGate
<Class id="qiskit.extensions.UCRZGate" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.25/qiskit/extensions/quantum_initializer/ucrz.py" signature="qiskit.extensions.UCRZGate(angle_list)" modifiers="class">
Bases: [`UCPauliRotGate`](qiskit.extensions.UCPauliRotGate "qiskit.extensions.quantum_initializer.uc_pauli_rot.UCPauliRotGate")
Uniformly controlled rotations (also called multiplexed rotations). The decomposition is based on Synthesis of Quantum Logic Circuits by V. Shende et al. ([https://arxiv.org/pdf/quant-ph/0406176.pdf](https://arxiv.org/pdf/quant-ph/0406176.pdf))
Create a new gate.
**Parameters**
* **name** The Qobj name of the gate.
* **num\_qubits** The number of qubits the gate acts on.
* **params** A list of parameters.
* **label** An optional label for the gate.
## Attributes
### condition\_bits
<Attribute id="qiskit.extensions.UCRZGate.condition_bits">
Get Clbits in condition.
</Attribute>
### decompositions
<Attribute id="qiskit.extensions.UCRZGate.decompositions">
Get the decompositions of the instruction from the SessionEquivalenceLibrary.
</Attribute>
### definition
<Attribute id="qiskit.extensions.UCRZGate.definition">
Return definition in terms of other basic gates.
</Attribute>
### duration
<Attribute id="qiskit.extensions.UCRZGate.duration">
Get the duration.
</Attribute>
### label
<Attribute id="qiskit.extensions.UCRZGate.label">
Return instruction label
</Attribute>
### name
<Attribute id="qiskit.extensions.UCRZGate.name">
Return the name.
</Attribute>
### num\_clbits
<Attribute id="qiskit.extensions.UCRZGate.num_clbits">
Return the number of clbits.
</Attribute>
### num\_qubits
<Attribute id="qiskit.extensions.UCRZGate.num_qubits">
Return the number of qubits.
</Attribute>
### params
<Attribute id="qiskit.extensions.UCRZGate.params">
return instruction params.
</Attribute>
### unit
<Attribute id="qiskit.extensions.UCRZGate.unit">
Get the time unit of duration.
</Attribute>
## Methods
### add\_decomposition
<Function id="qiskit.extensions.UCRZGate.add_decomposition" signature="add_decomposition(decomposition)">
Add a decomposition of the instruction to the SessionEquivalenceLibrary.
</Function>
### assemble
<Function id="qiskit.extensions.UCRZGate.assemble" signature="assemble()">
Assemble a QasmQobjInstruction
</Function>
### broadcast\_arguments
<Function id="qiskit.extensions.UCRZGate.broadcast_arguments" signature="broadcast_arguments(qargs, cargs)">
Validation and handling of the arguments and its relationship.
For example, `cx([q[0],q[1]], q[2])` means `cx(q[0], q[2]); cx(q[1], q[2])`. This method yields the arguments in the right grouping. In the given example:
```python
in: [[q[0],q[1]], q[2]],[]
outs: [q[0], q[2]], []
[q[1], q[2]], []
```
The general broadcasting rules are:
> * If len(qargs) == 1:
>
> ```python
> [q[0], q[1]] -> [q[0]],[q[1]]
> ```
>
> * If len(qargs) == 2:
>
> ```python
> [[q[0], q[1]], [r[0], r[1]]] -> [q[0], r[0]], [q[1], r[1]]
> [[q[0]], [r[0], r[1]]] -> [q[0], r[0]], [q[0], r[1]]
> [[q[0], q[1]], [r[0]]] -> [q[0], r[0]], [q[1], r[0]]
> ```
>
> * If len(qargs) >= 3:
>
> ```python
> [q[0], q[1]], [r[0], r[1]], ...] -> [q[0], r[0], ...], [q[1], r[1], ...]
> ```
**Parameters**
* **qargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.12)")) List of quantum bit arguments.
* **cargs** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.12)")) List of classical bit arguments.
**Returns**
A tuple with single arguments.
**Raises**
[**CircuitError**](circuit#qiskit.circuit.CircuitError "qiskit.circuit.CircuitError") If the input is not valid. For example, the number of arguments does not match the gate expectation.
**Return type**
[*Iterable*](https://docs.python.org/3/library/typing.html#typing.Iterable "(in Python v3.12)")\[[tuple](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.12)")\[[list](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.12)"), [list](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.12)")]]
</Function>
### c\_if
<Function id="qiskit.extensions.UCRZGate.c_if" signature="c_if(classical, val)">
Set a classical equality condition on this instruction between the register or cbit `classical` and value `val`.
<Admonition title="Note" type="note">
This is a setter method, not an additive one. Calling this multiple times will silently override any previously set condition; it does not stack.
</Admonition>
</Function>
### control
<Function id="qiskit.extensions.UCRZGate.control" signature="control(num_ctrl_qubits=1, label=None, ctrl_state=None)">
Return controlled version of gate. See [`ControlledGate`](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate") for usage.
**Parameters**
* **num\_ctrl\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) number of controls to add to gate (default: `1`)
* **label** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.12)") *| None*) optional gate label
* **ctrl\_state** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)") *|*[*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.12)") *| None*) The control state in decimal or as a bitstring (e.g. `'111'`). If `None`, use `2**num_ctrl_qubits-1`.
**Returns**
Controlled version of gate. This default algorithm uses `num_ctrl_qubits-1` ancilla qubits so returns a gate of size `num_qubits + 2*num_ctrl_qubits - 1`.
**Return type**
[qiskit.circuit.ControlledGate](qiskit.circuit.ControlledGate "qiskit.circuit.ControlledGate")
**Raises**
[**QiskitError**](exceptions#qiskit.exceptions.QiskitError "qiskit.exceptions.QiskitError") unrecognized mode or invalid ctrl\_state
</Function>
### copy
<Function id="qiskit.extensions.UCRZGate.copy" signature="copy(name=None)">
Copy of the instruction.
**Parameters**
**name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.12)")) name to be given to the copied circuit, if `None` then the name stays the same.
**Returns**
a copy of the current instruction, with the name updated if it was provided
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
### inverse
<Function id="qiskit.extensions.UCRZGate.inverse" signature="inverse()">
Invert this instruction.
If the instruction is composite (i.e. has a definition), then its definition will be recursively inverted.
Special instructions inheriting from Instruction can implement their own inverse (e.g. T and Tdg, Barrier, etc.)
**Returns**
a fresh instruction for the inverse
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
**Raises**
[**CircuitError**](circuit#qiskit.circuit.CircuitError "qiskit.circuit.CircuitError") if the instruction is not composite and an inverse has not been implemented for it.
</Function>
### is\_parameterized
<Function id="qiskit.extensions.UCRZGate.is_parameterized" signature="is_parameterized()">
Return True .IFF. instruction is parameterized else False
</Function>
### power
<Function id="qiskit.extensions.UCRZGate.power" signature="power(exponent)">
Creates a unitary gate as gate^exponent.
**Parameters**
**exponent** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")) Gate^exponent
**Returns**
To which to\_matrix is self.to\_matrix^exponent.
**Return type**
[qiskit.extensions.UnitaryGate](qiskit.extensions.UnitaryGate "qiskit.extensions.UnitaryGate")
**Raises**
[**CircuitError**](circuit#qiskit.circuit.CircuitError "qiskit.circuit.CircuitError") If Gate is not unitary
</Function>
### qasm
<Function id="qiskit.extensions.UCRZGate.qasm" signature="qasm()">
Return a default OpenQASM string for the instruction.
Derived instructions may override this to print in a different format (e.g. `measure q[0] -> c[0];`).
<Admonition title="Deprecated since version 0.25.0" type="danger">
The method `qiskit.circuit.instruction.Instruction.qasm()` is deprecated as of qiskit-terra 0.25.0. It will be removed no earlier than 3 months after the release date. Correct exporting to OpenQASM 2 is the responsibility of a larger exporter; it cannot safely be done on an object-by-object basis without context. No replacement will be provided, because the premise is wrong.
</Admonition>
</Function>
### repeat
<Function id="qiskit.extensions.UCRZGate.repeat" signature="repeat(n)">
Creates an instruction with gate repeated n amount of times.
**Parameters**
**n** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) Number of times to repeat the instruction
**Returns**
Containing the definition.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
**Raises**
[**CircuitError**](circuit#qiskit.circuit.CircuitError "qiskit.circuit.CircuitError") If n \< 1.
</Function>
### reverse\_ops
<Function id="qiskit.extensions.UCRZGate.reverse_ops" signature="reverse_ops()">
For a composite instruction, reverse the order of sub-instructions.
This is done by recursively reversing all sub-instructions. It does not invert any gate.
**Returns**
**a new instruction with**
sub-instructions reversed.
**Return type**
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
</Function>
### soft\_compare
<Function id="qiskit.extensions.UCRZGate.soft_compare" signature="soft_compare(other)">
Soft comparison between gates. Their names, number of qubits, and classical bit numbers must match. The number of parameters must match. Each parameter is compared. If one is a ParameterExpression then it is not taken into account.
**Parameters**
**other** (*instruction*) other instruction.
**Returns**
are self and other equal up to parameter expressions.
**Return type**
[bool](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")
</Function>
### to\_matrix
<Function id="qiskit.extensions.UCRZGate.to_matrix" signature="to_matrix()">
Return a Numpy.array for the gate unitary matrix.
**Returns**
if the Gate subclass has a matrix definition.
**Return type**
np.ndarray
**Raises**
[**CircuitError**](circuit#qiskit.circuit.CircuitError "qiskit.circuit.CircuitError") If a Gate subclass does not implement this method an exception will be raised when this base class method is called.
</Function>
### validate\_parameter
<Function id="qiskit.extensions.UCRZGate.validate_parameter" signature="validate_parameter(parameter)">
Gate parameters should be int, float, or ParameterExpression
</Function>
</Class>