261 lines
12 KiB
Plaintext
261 lines
12 KiB
Plaintext
---
|
||
title: QuadraticForm
|
||
description: API reference for qiskit.circuit.library.QuadraticForm
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.circuit.library.QuadraticForm
|
||
---
|
||
|
||
# QuadraticForm
|
||
|
||
<Class id="qiskit.circuit.library.QuadraticForm" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.25/qiskit/circuit/library/arithmetic/quadratic_form.py" signature="qiskit.circuit.library.QuadraticForm(num_result_qubits=None, quadratic=None, linear=None, offset=None, little_endian=True)" modifiers="class">
|
||
Bases: [`QuantumCircuit`](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")
|
||
|
||
Implements a quadratic form on binary variables encoded in qubit registers.
|
||
|
||
A quadratic form on binary variables is a quadratic function $Q$ acting on a binary variable of $n$ bits, $x = x_0 ... x_{n-1}$. For an integer matrix $A$, an integer vector $b$ and an integer $c$ the function can be written as
|
||
|
||
$$
|
||
Q(x) = x^T A x + x^T b + c
|
||
$$
|
||
|
||
If $A$, $b$ or $c$ contain scalar values, this circuit computes only an approximation of the quadratic form.
|
||
|
||
Provided with $m$ qubits to encode the value, this circuit computes $Q(x) \mod 2^m$ in \[two’s complement]\([https://stackoverflow.com/questions/1049722/what-is-2s-complement](https://stackoverflow.com/questions/1049722/what-is-2s-complement)) representation.
|
||
|
||
$$
|
||
|x\rangle_n |0\rangle_m \mapsto |x\rangle_n |(Q(x) + 2^m) \mod 2^m \rangle_m
|
||
$$
|
||
|
||
Since we use two’s complement e.g. the value of $Q(x) = 3$ requires 2 bits to represent the value and 1 bit for the sign: 3 = ‘011’ where the first 0 indicates a positive value. On the other hand, $Q(x) = -3$ would be -3 = ‘101’, where the first 1 indicates a negative value and 01 is the two’s complement of 3.
|
||
|
||
If the value of $Q(x)$ is too large to be represented with m qubits, the resulting bitstring is $(Q(x) + 2^m) \mod 2^m)$.
|
||
|
||
The implementation of this circuit is discussed in \[1], Fig. 6.
|
||
|
||
**References**
|
||
|
||
**\[1]: Gilliam et al., Grover Adaptive Search for Constrained Polynomial Binary Optimization.**
|
||
|
||
[arXiv:1912.04088](https://arxiv.org/pdf/1912.04088.pdf)
|
||
|
||
**Parameters**
|
||
|
||
* **num\_result\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)") *| None*) – The number of qubits to encode the result. Called $m$ in the class documentation.
|
||
* **quadratic** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.26)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)") *|*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*]] | None*) – A matrix containing the quadratic coefficients, $A$.
|
||
* **linear** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.26)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)") *|*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*] | None*) – An array containing the linear coefficients, $b$.
|
||
* **offset** ([*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression") *|*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)") *| None*) – A constant offset, $c$.
|
||
* **little\_endian** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) – Encode the result in little endianness.
|
||
|
||
**Raises**
|
||
|
||
* [**ValueError**](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.12)") – If `linear` and `quadratic` have mismatching sizes.
|
||
* [**ValueError**](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.12)") – If `num_result_qubits` is unspecified but cannot be determined because some values of the quadratic form are parameterized.
|
||
|
||
## Attributes
|
||
|
||
### ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.ancillas">
|
||
Returns a list of ancilla bits in the order that the registers were added.
|
||
</Attribute>
|
||
|
||
### calibrations
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.calibrations">
|
||
Return calibration dictionary.
|
||
|
||
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
|
||
</Attribute>
|
||
|
||
### clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.clbits">
|
||
Returns a list of classical bits in the order that the registers were added.
|
||
</Attribute>
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.data">
|
||
Return the circuit data (instructions and context).
|
||
|
||
**Returns**
|
||
|
||
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
|
||
|
||
**Return type**
|
||
|
||
QuantumCircuitData
|
||
</Attribute>
|
||
|
||
### extension\_lib
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.extension_lib" attributeValue="'include "qelib1.inc";'" />
|
||
|
||
### global\_phase
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.global_phase">
|
||
Return the global phase of the circuit in radians.
|
||
</Attribute>
|
||
|
||
### header
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.header" attributeValue="'OPENQASM 2.0;'" />
|
||
|
||
### instances
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.instances" attributeValue="422" />
|
||
|
||
### layout
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.layout">
|
||
Return any associated layout information about the circuit
|
||
|
||
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
|
||
|
||
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
|
||
</Attribute>
|
||
|
||
### metadata
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.metadata">
|
||
The user provided metadata associated with the circuit.
|
||
|
||
The metadata for the circuit is a user provided `dict` of metadata for the circuit. It will not be used to influence the execution or operation of the circuit, but it is expected to be passed between all transforms of the circuit (ie transpilation) and that providers will associate any circuit metadata with the results it returns from execution of that circuit.
|
||
</Attribute>
|
||
|
||
### num\_ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_ancillas">
|
||
Return the number of ancilla qubits.
|
||
</Attribute>
|
||
|
||
### num\_clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_clbits">
|
||
Return number of classical bits.
|
||
</Attribute>
|
||
|
||
### num\_parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_parameters">
|
||
The number of parameter objects in the circuit.
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_qubits">
|
||
Return number of qubits.
|
||
</Attribute>
|
||
|
||
### op\_start\_times
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.op_start_times">
|
||
Return a list of operation start times.
|
||
|
||
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
|
||
|
||
**Returns**
|
||
|
||
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
|
||
|
||
**Raises**
|
||
|
||
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.12)") – When circuit is not scheduled.
|
||
</Attribute>
|
||
|
||
### parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.parameters">
|
||
The parameters defined in the circuit.
|
||
|
||
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
|
||
|
||
**Examples**
|
||
|
||
The snippet below shows that insertion order of parameters does not matter.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.rx(b, 0)
|
||
>>> circuit.rz(elephant, 0)
|
||
>>> circuit.ry(a, 0)
|
||
>>> circuit.parameters # sorted alphabetically!
|
||
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
|
||
```
|
||
|
||
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.u(*angles, 0)
|
||
>>> circuit.draw()
|
||
┌─────────────────────────────┐
|
||
q: ┤ U(angle_1,angle_2,angle_10) ├
|
||
└─────────────────────────────┘
|
||
>>> circuit.parameters
|
||
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
|
||
```
|
||
|
||
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
|
||
|
||
```python
|
||
```
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
|
||
>>> x = ParameterVector("x", 12)
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> for x_i in x:
|
||
... circuit.rx(x_i, 0)
|
||
>>> circuit.parameters
|
||
ParameterView([
|
||
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
|
||
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
|
||
..., ParameterVectorElement(x[11])
|
||
])
|
||
```
|
||
|
||
**Returns**
|
||
|
||
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
|
||
</Attribute>
|
||
|
||
### prefix
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.prefix" attributeValue="'circuit'" />
|
||
|
||
### qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.qubits">
|
||
Returns a list of quantum bits in the order that the registers were added.
|
||
</Attribute>
|
||
|
||
## Methods
|
||
|
||
### required\_result\_qubits
|
||
|
||
<Function id="qiskit.circuit.library.QuadraticForm.required_result_qubits" signature="required_result_qubits(quadratic, linear, offset)" modifiers="static">
|
||
Get the number of required result qubits.
|
||
|
||
**Parameters**
|
||
|
||
* **quadratic** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.26)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]]*) – A matrix containing the quadratic coefficients.
|
||
* **linear** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.26)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.12)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]*) – An array containing the linear coefficients.
|
||
* **offset** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")) – A constant offset.
|
||
|
||
**Returns**
|
||
|
||
The number of qubits needed to represent the value of the quadratic form in twos complement.
|
||
|
||
**Return type**
|
||
|
||
[int](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")
|
||
</Function>
|
||
</Class>
|
||
|