qiskit-documentation/docs/api/qiskit/0.44/qiskit.algorithms.optimizer...

213 lines
9.0 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: NELDER_MEAD
description: API reference for qiskit.algorithms.optimizers.NELDER_MEAD
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.algorithms.optimizers.NELDER_MEAD
---
<span id="nelder-mead" />
# NELDER\_MEAD
<Class id="qiskit.algorithms.optimizers.NELDER_MEAD" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.25/qiskit/algorithms/optimizers/nelder_mead.py" signature="qiskit.algorithms.optimizers.NELDER_MEAD(maxiter=None, maxfev=1000, disp=False, xatol=0.0001, tol=None, adaptive=False, options=None, **kwargs)" modifiers="class">
Bases: [`SciPyOptimizer`](qiskit.algorithms.optimizers.SciPyOptimizer "qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer")
Nelder-Mead optimizer.
The Nelder-Mead algorithm performs unconstrained optimization; it ignores bounds or constraints. It is used to find the minimum or maximum of an objective function in a multidimensional space. It is based on the Simplex algorithm. Nelder-Mead is robust in many applications, especially when the first and second derivatives of the objective function are not known.
However, if the numerical computation of the derivatives can be trusted to be accurate, other algorithms using the first and/or second derivatives information might be preferred to Nelder-Mead for their better performance in the general case, especially in consideration of the fact that the NelderMead technique is a heuristic search method that can converge to non-stationary points.
Uses scipy.optimize.minimize Nelder-Mead. For further detail, please refer to See [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html)
**Parameters**
* **maxiter** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)") *| None*) Maximum allowed number of iterations. If both maxiter and maxfev are set, minimization will stop at the first reached.
* **maxfev** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) Maximum allowed number of function evaluations. If both maxiter and maxfev are set, minimization will stop at the first reached.
* **disp** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) Set to True to print convergence messages.
* **xatol** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")) Absolute error in xopt between iterations that is acceptable for convergence.
* **tol** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)") *| None*) Tolerance for termination.
* **adaptive** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.12)")) Adapt algorithm parameters to dimensionality of problem.
* **options** ([*dict*](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.12)") *| None*) A dictionary of solver options.
* **kwargs** additional kwargs for scipy.optimize.minimize.
## Attributes
### bounds\_support\_level
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.bounds_support_level">
Returns bounds support level
</Attribute>
### gradient\_support\_level
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### setting
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.setting">
Return setting
</Attribute>
### settings
<Attribute id="qiskit.algorithms.optimizers.NELDER_MEAD.settings" />
## Methods
### get\_support\_level
<Function id="qiskit.algorithms.optimizers.NELDER_MEAD.get_support_level" signature="get_support_level()">
Return support level dictionary
</Function>
### gradient\_num\_diff
<Function id="qiskit.algorithms.optimizers.NELDER_MEAD.gradient_num_diff" signature="gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.12)")) max evals grouped, defaults to 1 (i.e. no batching).
**Returns**
the gradient computed
**Return type**
grad
</Function>
### minimize
<Function id="qiskit.algorithms.optimizers.NELDER_MEAD.minimize" signature="minimize(fun, x0, jac=None, bounds=None)">
Minimize the scalar function.
**Parameters**
* **fun** (*Callable\[\[POINT],* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]*) The scalar function to minimize.
* **x0** (*POINT*) The initial point for the minimization.
* **jac** (*Callable\[\[POINT], POINT] | None*) The gradient of the scalar function `fun`.
* **bounds** ([*list*](https://docs.python.org/3/library/stdtypes.html#list "(in Python v3.12)")*\[*[*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.12)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*,* [*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.12)")*]] | None*) Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
**Returns**
The result of the optimization, containing e.g. the result as attribute `x`.
**Return type**
[OptimizerResult](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.OptimizerResult")
</Function>
### print\_options
<Function id="qiskit.algorithms.optimizers.NELDER_MEAD.print_options" signature="print_options()">
Print algorithm-specific options.
</Function>
### set\_max\_evals\_grouped
<Function id="qiskit.algorithms.optimizers.NELDER_MEAD.set_max_evals_grouped" signature="set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
### set\_options
<Function id="qiskit.algorithms.optimizers.NELDER_MEAD.set_options" signature="set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** ([*dict*](https://docs.python.org/3/library/stdtypes.html#dict "(in Python v3.12)")) options, given as name=value.
</Function>
### wrap\_function
<Function id="qiskit.algorithms.optimizers.NELDER_MEAD.wrap_function" signature="wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** ([*tuple*](https://docs.python.org/3/library/stdtypes.html#tuple "(in Python v3.12)")) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
</Class>