370 lines
12 KiB
Plaintext
370 lines
12 KiB
Plaintext
---
|
||
title: Chi
|
||
description: API reference for qiskit.quantum_info.Chi
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.quantum_info.Chi
|
||
---
|
||
|
||
# Chi
|
||
|
||
<Class id="qiskit.quantum_info.Chi" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.24/qiskit/quantum_info/operators/channel/chi.py" signature="Chi(data, input_dims=None, output_dims=None)" modifiers="class">
|
||
Bases: `QuantumChannel`
|
||
|
||
Pauli basis Chi-matrix representation of a quantum channel.
|
||
|
||
The Chi-matrix representation of an $n$-qubit quantum channel $\mathcal{E}$ is a matrix $\chi$ such that the evolution of a [`DensityMatrix`](qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix") $\rho$ is given by
|
||
|
||
$$
|
||
\mathcal{E}(ρ) = \sum_{i, j} \chi_{i,j} P_i ρ P_j
|
||
$$
|
||
|
||
where $[P_0, P_1, ..., P_{4^{n}-1}]$ is the $n$-qubit Pauli basis in lexicographic order. It is related to the [`Choi`](qiskit.quantum_info.Choi "qiskit.quantum_info.Choi") representation by a change of basis of the Choi-matrix into the Pauli basis.
|
||
|
||
See reference \[1] for further details.
|
||
|
||
**References**
|
||
|
||
1. C.J. Wood, J.D. Biamonte, D.G. Cory, *Tensor networks and graphical calculus for open quantum systems*, Quant. Inf. Comp. 15, 0579-0811 (2015). [arXiv:1111.6950 \[quant-ph\]](https://arxiv.org/abs/1111.6950)
|
||
|
||
Initialize a quantum channel Chi-matrix operator.
|
||
|
||
**Parameters**
|
||
|
||
* **or** (*data (*[*QuantumCircuit*](qiskit.circuit.QuantumCircuit "qiskit.circuit.QuantumCircuit")) – Instruction or BaseOperator or matrix): data to initialize superoperator.
|
||
* **input\_dims** (*tuple*) – the input subsystem dimensions. \[Default: None]
|
||
* **output\_dims** (*tuple*) – the output subsystem dimensions. \[Default: None]
|
||
|
||
**Raises**
|
||
|
||
**QiskitError** – if input data is not an N-qubit channel or cannot be initialized as a Chi-matrix.
|
||
|
||
**Additional Information:**
|
||
|
||
If the input or output dimensions are None, they will be automatically determined from the input data. The Chi matrix representation is only valid for N-qubit channels.
|
||
|
||
## Methods
|
||
|
||
<span id="qiskit-quantum-info-chi-adjoint" />
|
||
|
||
### adjoint
|
||
|
||
<Function id="qiskit.quantum_info.Chi.adjoint" signature="Chi.adjoint()">
|
||
Return the adjoint quantum channel.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This is equivalent to the matrix Hermitian conjugate in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{E}$, the SuperOp of the adjoint channel $\mathcal{{E}}^\dagger$ is $S_{\mathcal{E}^\dagger} = S_{\mathcal{E}}^\dagger$.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-compose" />
|
||
|
||
### compose
|
||
|
||
<Function id="qiskit.quantum_info.Chi.compose" signature="Chi.compose(other, qargs=None, front=False)">
|
||
Return the operator composition with another Chi.
|
||
|
||
**Parameters**
|
||
|
||
* **other** ([*Chi*](qiskit.quantum_info.Chi "qiskit.quantum_info.Chi")) – a Chi object.
|
||
* **qargs** (*list or None*) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
|
||
* **front** (*bool*) – If True compose using right operator multiplication, instead of left multiplication \[default: False].
|
||
|
||
**Returns**
|
||
|
||
The composed Chi.
|
||
|
||
**Return type**
|
||
|
||
[Chi](qiskit.quantum_info.Chi "qiskit.quantum_info.Chi")
|
||
|
||
**Raises**
|
||
|
||
**QiskitError** – if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
|
||
|
||
<Admonition title="Note" type="note">
|
||
Composition (`&`) by default is defined as left matrix multiplication for matrix operators, while `@` (equivalent to [`dot()`](qiskit.quantum_info.Chi#dot "qiskit.quantum_info.Chi.dot")) is defined as right matrix multiplication. That is that `A & B == A.compose(B)` is equivalent to `B @ A == B.dot(A)` when `A` and `B` are of the same type.
|
||
|
||
Setting the `front=True` kwarg changes this to right matrix multiplication and is equivalent to the [`dot()`](qiskit.quantum_info.Chi#dot "qiskit.quantum_info.Chi.dot") method `A.dot(B) == A.compose(B, front=True)`.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-conjugate" />
|
||
|
||
### conjugate
|
||
|
||
<Function id="qiskit.quantum_info.Chi.conjugate" signature="Chi.conjugate()">
|
||
Return the conjugate quantum channel.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This is equivalent to the matrix complex conjugate in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{E}$, the SuperOp of the conjugate channel $\overline{{\mathcal{{E}}}}$ is $S_{\overline{\mathcal{E}^\dagger}} = \overline{S_{\mathcal{E}}}$.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-copy" />
|
||
|
||
### copy
|
||
|
||
<Function id="qiskit.quantum_info.Chi.copy" signature="Chi.copy()">
|
||
Make a deep copy of current operator.
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-dot" />
|
||
|
||
### dot
|
||
|
||
<Function id="qiskit.quantum_info.Chi.dot" signature="Chi.dot(other, qargs=None)">
|
||
Return the right multiplied operator self \* other.
|
||
|
||
**Parameters**
|
||
|
||
* **other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) – an operator object.
|
||
* **qargs** (*list or None*) – Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
|
||
|
||
**Returns**
|
||
|
||
The right matrix multiplied Operator.
|
||
|
||
**Return type**
|
||
|
||
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
|
||
|
||
<Admonition title="Note" type="note">
|
||
The dot product can be obtained using the `@` binary operator. Hence `a.dot(b)` is equivalent to `a @ b`.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-expand" />
|
||
|
||
### expand
|
||
|
||
<Function id="qiskit.quantum_info.Chi.expand" signature="Chi.expand(other)">
|
||
Return the reverse-order tensor product with another Chi.
|
||
|
||
**Parameters**
|
||
|
||
**other** ([*Chi*](qiskit.quantum_info.Chi "qiskit.quantum_info.Chi")) – a Chi object.
|
||
|
||
**Returns**
|
||
|
||
**the tensor product $b \otimes a$, where $a$**
|
||
|
||
is the current Chi, and $b$ is the other Chi.
|
||
|
||
**Return type**
|
||
|
||
[Chi](qiskit.quantum_info.Chi "qiskit.quantum_info.Chi")
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-input-dims" />
|
||
|
||
### input\_dims
|
||
|
||
<Function id="qiskit.quantum_info.Chi.input_dims" signature="Chi.input_dims(qargs=None)">
|
||
Return tuple of input dimension for specified subsystems.
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-is-cp" />
|
||
|
||
### is\_cp
|
||
|
||
<Function id="qiskit.quantum_info.Chi.is_cp" signature="Chi.is_cp(atol=None, rtol=None)">
|
||
Test if Choi-matrix is completely-positive (CP)
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-is-cptp" />
|
||
|
||
### is\_cptp
|
||
|
||
<Function id="qiskit.quantum_info.Chi.is_cptp" signature="Chi.is_cptp(atol=None, rtol=None)">
|
||
Return True if completely-positive trace-preserving (CPTP).
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-is-tp" />
|
||
|
||
### is\_tp
|
||
|
||
<Function id="qiskit.quantum_info.Chi.is_tp" signature="Chi.is_tp(atol=None, rtol=None)">
|
||
Test if a channel is trace-preserving (TP)
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-is-unitary" />
|
||
|
||
### is\_unitary
|
||
|
||
<Function id="qiskit.quantum_info.Chi.is_unitary" signature="Chi.is_unitary(atol=None, rtol=None)">
|
||
Return True if QuantumChannel is a unitary channel.
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-output-dims" />
|
||
|
||
### output\_dims
|
||
|
||
<Function id="qiskit.quantum_info.Chi.output_dims" signature="Chi.output_dims(qargs=None)">
|
||
Return tuple of output dimension for specified subsystems.
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-power" />
|
||
|
||
### power
|
||
|
||
<Function id="qiskit.quantum_info.Chi.power" signature="Chi.power(n)">
|
||
Return the power of the quantum channel.
|
||
|
||
**Parameters**
|
||
|
||
**n** (*float*) – the power exponent.
|
||
|
||
**Returns**
|
||
|
||
the channel $\mathcal{{E}} ^n$.
|
||
|
||
**Return type**
|
||
|
||
[SuperOp](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp")
|
||
|
||
**Raises**
|
||
|
||
**QiskitError** – if the input and output dimensions of the SuperOp are not equal.
|
||
|
||
<Admonition title="Note" type="note">
|
||
For non-positive or non-integer exponents the power is defined as the matrix power of the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation ie. for a channel $\mathcal{{E}}$, the SuperOp of the powered channel $\mathcal{{E}}^\n$ is $S_{{\mathcal{{E}}^n}} = S_{{\mathcal{{E}}}}^n$.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-reshape" />
|
||
|
||
### reshape
|
||
|
||
<Function id="qiskit.quantum_info.Chi.reshape" signature="Chi.reshape(input_dims=None, output_dims=None, num_qubits=None)">
|
||
Return a shallow copy with reshaped input and output subsystem dimensions.
|
||
|
||
**Parameters**
|
||
|
||
* **input\_dims** (*None or tuple*) – new subsystem input dimensions. If None the original input dims will be preserved \[Default: None].
|
||
* **output\_dims** (*None or tuple*) – new subsystem output dimensions. If None the original output dims will be preserved \[Default: None].
|
||
* **num\_qubits** (*None or int*) – reshape to an N-qubit operator \[Default: None].
|
||
|
||
**Returns**
|
||
|
||
returns self with reshaped input and output dimensions.
|
||
|
||
**Return type**
|
||
|
||
BaseOperator
|
||
|
||
**Raises**
|
||
|
||
**QiskitError** – if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-tensor" />
|
||
|
||
### tensor
|
||
|
||
<Function id="qiskit.quantum_info.Chi.tensor" signature="Chi.tensor(other)">
|
||
Return the tensor product with another Chi.
|
||
|
||
**Parameters**
|
||
|
||
**other** ([*Chi*](qiskit.quantum_info.Chi "qiskit.quantum_info.Chi")) – a Chi object.
|
||
|
||
**Returns**
|
||
|
||
**the tensor product $a \otimes b$, where $a$**
|
||
|
||
is the current Chi, and $b$ is the other Chi.
|
||
|
||
**Return type**
|
||
|
||
[Chi](qiskit.quantum_info.Chi "qiskit.quantum_info.Chi")
|
||
|
||
<Admonition title="Note" type="note">
|
||
The tensor product can be obtained using the `^` binary operator. Hence `a.tensor(b)` is equivalent to `a ^ b`.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-to-instruction" />
|
||
|
||
### to\_instruction
|
||
|
||
<Function id="qiskit.quantum_info.Chi.to_instruction" signature="Chi.to_instruction()">
|
||
Convert to a Kraus or UnitaryGate circuit instruction.
|
||
|
||
If the channel is unitary it will be added as a unitary gate, otherwise it will be added as a kraus simulator instruction.
|
||
|
||
**Returns**
|
||
|
||
A kraus instruction for the channel.
|
||
|
||
**Return type**
|
||
|
||
[qiskit.circuit.Instruction](qiskit.circuit.Instruction "qiskit.circuit.Instruction")
|
||
|
||
**Raises**
|
||
|
||
**QiskitError** – if input data is not an N-qubit CPTP quantum channel.
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-to-operator" />
|
||
|
||
### to\_operator
|
||
|
||
<Function id="qiskit.quantum_info.Chi.to_operator" signature="Chi.to_operator()">
|
||
Try to convert channel to a unitary representation Operator.
|
||
</Function>
|
||
|
||
<span id="qiskit-quantum-info-chi-transpose" />
|
||
|
||
### transpose
|
||
|
||
<Function id="qiskit.quantum_info.Chi.transpose" signature="Chi.transpose()">
|
||
Return the transpose quantum channel.
|
||
|
||
<Admonition title="Note" type="note">
|
||
This is equivalent to the matrix transpose in the [`SuperOp`](qiskit.quantum_info.SuperOp "qiskit.quantum_info.SuperOp") representation, ie. for a channel $\mathcal{E}$, the SuperOp of the transpose channel $\mathcal{{E}}^T$ is $S_{mathcal{E}^T} = S_{\mathcal{E}}^T$.
|
||
</Admonition>
|
||
</Function>
|
||
|
||
## Attributes
|
||
|
||
### atol
|
||
|
||
<Attribute id="qiskit.quantum_info.Chi.atol" attributeValue="1e-08" />
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.quantum_info.Chi.data">
|
||
Return data.
|
||
</Attribute>
|
||
|
||
### dim
|
||
|
||
<Attribute id="qiskit.quantum_info.Chi.dim">
|
||
Return tuple (input\_shape, output\_shape).
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.quantum_info.Chi.num_qubits">
|
||
Return the number of qubits if a N-qubit operator or None otherwise.
|
||
</Attribute>
|
||
|
||
### qargs
|
||
|
||
<Attribute id="qiskit.quantum_info.Chi.qargs">
|
||
Return the qargs for the operator.
|
||
</Attribute>
|
||
|
||
### rtol
|
||
|
||
<Attribute id="qiskit.quantum_info.Chi.rtol" attributeValue="1e-05" />
|
||
|
||
### settings
|
||
|
||
<Attribute id="qiskit.quantum_info.Chi.settings">
|
||
Return settings.
|
||
</Attribute>
|
||
</Class>
|
||
|