226 lines
8.2 KiB
Plaintext
226 lines
8.2 KiB
Plaintext
---
|
||
title: TNC
|
||
description: API reference for qiskit.algorithms.optimizers.TNC
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.algorithms.optimizers.TNC
|
||
---
|
||
|
||
# TNC
|
||
|
||
<Class id="qiskit.algorithms.optimizers.TNC" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.24/qiskit/algorithms/optimizers/tnc.py" signature="TNC(maxiter=100, disp=False, accuracy=0, ftol=-1, xtol=-1, gtol=-1, tol=None, eps=1e-08, options=None, max_evals_grouped=1, **kwargs)" modifiers="class">
|
||
Bases: [`SciPyOptimizer`](qiskit.algorithms.optimizers.SciPyOptimizer "qiskit.algorithms.optimizers.scipy_optimizer.SciPyOptimizer")
|
||
|
||
Truncated Newton (TNC) optimizer.
|
||
|
||
TNC uses a truncated Newton algorithm to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the [`CG`](qiskit.algorithms.optimizers.CG "qiskit.algorithms.optimizers.CG") method as it wraps a C implementation and allows each variable to be given upper and lower bounds.
|
||
|
||
Uses scipy.optimize.minimize TNC For further detail, please refer to See [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html)
|
||
|
||
**Parameters**
|
||
|
||
* **maxiter** (*int*) – Maximum number of function evaluation.
|
||
* **disp** (*bool*) – Set to True to print convergence messages.
|
||
* **accuracy** (*float*) – Relative precision for finite difference calculations. If \<= machine\_precision, set to sqrt(machine\_precision). Defaults to 0.
|
||
* **ftol** (*float*) – Precision goal for the value of f in the stopping criterion. If ftol \< 0.0, ftol is set to 0.0 defaults to -1.
|
||
* **xtol** (*float*) – Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol \< 0.0, xtol is set to sqrt(machine\_precision). Defaults to -1.
|
||
* **gtol** (*float*) – Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol \< 0.0, gtol is set to 1e-2 \* sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1.
|
||
* **tol** (*float | None*) – Tolerance for termination.
|
||
* **eps** (*float*) – Step size used for numerical approximation of the Jacobian.
|
||
* **options** (*dict | None*) – A dictionary of solver options.
|
||
* **max\_evals\_grouped** (*int*) – Max number of default gradient evaluations performed simultaneously.
|
||
* **kwargs** – additional kwargs for scipy.optimize.minimize.
|
||
|
||
## Methods
|
||
|
||
<span id="qiskit-algorithms-optimizers-tnc-get-support-level" />
|
||
|
||
### get\_support\_level
|
||
|
||
<Function id="qiskit.algorithms.optimizers.TNC.get_support_level" signature="TNC.get_support_level()">
|
||
Return support level dictionary
|
||
</Function>
|
||
|
||
<span id="qiskit-algorithms-optimizers-tnc-gradient-num-diff" />
|
||
|
||
### gradient\_num\_diff
|
||
|
||
<Function id="qiskit.algorithms.optimizers.TNC.gradient_num_diff" signature="TNC.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)" modifiers="static">
|
||
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
|
||
|
||
**Parameters**
|
||
|
||
* **x\_center** (*ndarray*) – point around which we compute the gradient
|
||
* **f** (*func*) – the function of which the gradient is to be computed.
|
||
* **epsilon** (*float*) – the epsilon used in the numeric differentiation.
|
||
* **max\_evals\_grouped** (*int*) – max evals grouped, defaults to 1 (i.e. no batching).
|
||
|
||
**Returns**
|
||
|
||
the gradient computed
|
||
|
||
**Return type**
|
||
|
||
grad
|
||
</Function>
|
||
|
||
<span id="qiskit-algorithms-optimizers-tnc-minimize" />
|
||
|
||
### minimize
|
||
|
||
<Function id="qiskit.algorithms.optimizers.TNC.minimize" signature="TNC.minimize(fun, x0, jac=None, bounds=None)">
|
||
Minimize the scalar function.
|
||
|
||
**Parameters**
|
||
|
||
* **fun** (*Callable\[\[POINT], float]*) – The scalar function to minimize.
|
||
* **x0** (*POINT*) – The initial point for the minimization.
|
||
* **jac** (*Callable\[\[POINT], POINT] | None*) – The gradient of the scalar function `fun`.
|
||
* **bounds** (*list\[tuple\[float, float]] | None*) – Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
|
||
|
||
**Returns**
|
||
|
||
The result of the optimization, containing e.g. the result as attribute `x`.
|
||
|
||
**Return type**
|
||
|
||
[OptimizerResult](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.OptimizerResult")
|
||
</Function>
|
||
|
||
<span id="qiskit-algorithms-optimizers-tnc-print-options" />
|
||
|
||
### print\_options
|
||
|
||
<Function id="qiskit.algorithms.optimizers.TNC.print_options" signature="TNC.print_options()">
|
||
Print algorithm-specific options.
|
||
</Function>
|
||
|
||
<span id="qiskit-algorithms-optimizers-tnc-set-max-evals-grouped" />
|
||
|
||
### set\_max\_evals\_grouped
|
||
|
||
<Function id="qiskit.algorithms.optimizers.TNC.set_max_evals_grouped" signature="TNC.set_max_evals_grouped(limit)">
|
||
Set max evals grouped
|
||
</Function>
|
||
|
||
<span id="qiskit-algorithms-optimizers-tnc-set-options" />
|
||
|
||
### set\_options
|
||
|
||
<Function id="qiskit.algorithms.optimizers.TNC.set_options" signature="TNC.set_options(**kwargs)">
|
||
Sets or updates values in the options dictionary.
|
||
|
||
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
|
||
|
||
**Parameters**
|
||
|
||
**kwargs** (*dict*) – options, given as name=value.
|
||
</Function>
|
||
|
||
<span id="qiskit-algorithms-optimizers-tnc-wrap-function" />
|
||
|
||
### wrap\_function
|
||
|
||
<Function id="qiskit.algorithms.optimizers.TNC.wrap_function" signature="TNC.wrap_function(function, args)" modifiers="static">
|
||
Wrap the function to implicitly inject the args at the call of the function.
|
||
|
||
**Parameters**
|
||
|
||
* **function** (*func*) – the target function
|
||
* **args** (*tuple*) – the args to be injected
|
||
|
||
**Returns**
|
||
|
||
wrapper
|
||
|
||
**Return type**
|
||
|
||
function\_wrapper
|
||
</Function>
|
||
|
||
## Attributes
|
||
|
||
### bounds\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.bounds_support_level">
|
||
Returns bounds support level
|
||
</Attribute>
|
||
|
||
### gradient\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.gradient_support_level">
|
||
Returns gradient support level
|
||
</Attribute>
|
||
|
||
### initial\_point\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.initial_point_support_level">
|
||
Returns initial point support level
|
||
</Attribute>
|
||
|
||
### is\_bounds\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_bounds_ignored">
|
||
Returns is bounds ignored
|
||
</Attribute>
|
||
|
||
### is\_bounds\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_bounds_required">
|
||
Returns is bounds required
|
||
</Attribute>
|
||
|
||
### is\_bounds\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_bounds_supported">
|
||
Returns is bounds supported
|
||
</Attribute>
|
||
|
||
### is\_gradient\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_gradient_ignored">
|
||
Returns is gradient ignored
|
||
</Attribute>
|
||
|
||
### is\_gradient\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_gradient_required">
|
||
Returns is gradient required
|
||
</Attribute>
|
||
|
||
### is\_gradient\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_gradient_supported">
|
||
Returns is gradient supported
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_initial_point_ignored">
|
||
Returns is initial point ignored
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_initial_point_required">
|
||
Returns is initial point required
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.is_initial_point_supported">
|
||
Returns is initial point supported
|
||
</Attribute>
|
||
|
||
### setting
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.setting">
|
||
Return setting
|
||
</Attribute>
|
||
|
||
### settings
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.TNC.settings" />
|
||
</Class>
|
||
|