qiskit-documentation/docs/api/qiskit/0.43/qiskit.algorithms.optimizer...

341 lines
13 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: GSLS
description: API reference for qiskit.algorithms.optimizers.GSLS
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.algorithms.optimizers.GSLS
---
# GSLS
<Class id="qiskit.algorithms.optimizers.GSLS" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.24/qiskit/algorithms/optimizers/gsls.py" signature="GSLS(maxiter=10000, max_eval=10000, disp=False, sampling_radius=1e-06, sample_size_factor=1, initial_step_size=0.01, min_step_size=1e-10, step_size_multiplier=0.4, armijo_parameter=0.1, min_gradient_norm=1e-08, max_failed_rejection_sampling=50)" modifiers="class">
Bases: [`Optimizer`](qiskit.algorithms.optimizers.Optimizer "qiskit.algorithms.optimizers.optimizer.Optimizer")
Gaussian-smoothed Line Search.
An implementation of the line search algorithm described in [https://arxiv.org/pdf/1905.01332.pdf](https://arxiv.org/pdf/1905.01332.pdf), using gradient approximation based on Gaussian-smoothed samples on a sphere.
<Admonition title="Note" type="note">
This component has some function that is normally random. If you want to reproduce behavior then you should set the random number generator seed in the algorithm\_globals (`qiskit.utils.algorithm_globals.random_seed = seed`).
</Admonition>
**Parameters**
* **maxiter** (*int*) Maximum number of iterations.
* **max\_eval** (*int*) Maximum number of evaluations.
* **disp** (*bool*) Set to True to display convergence messages.
* **sampling\_radius** (*float*) Sampling radius to determine gradient estimate.
* **sample\_size\_factor** (*int*) The size of the sample set at each iteration is this number multiplied by the dimension of the problem, rounded to the nearest integer.
* **initial\_step\_size** (*float*) Initial step size for the descent algorithm.
* **min\_step\_size** (*float*) Minimum step size for the descent algorithm.
* **step\_size\_multiplier** (*float*) Step size reduction after unsuccessful steps, in the interval (0, 1).
* **armijo\_parameter** (*float*) Armijo parameter for sufficient decrease criterion, in the interval (0, 1).
* **min\_gradient\_norm** (*float*) If the gradient norm is below this threshold, the algorithm stops.
* **max\_failed\_rejection\_sampling** (*int*) Maximum number of attempts to sample points within bounds.
## Methods
<span id="qiskit-algorithms-optimizers-gsls-get-support-level" />
### get\_support\_level
<Function id="qiskit.algorithms.optimizers.GSLS.get_support_level" signature="GSLS.get_support_level()">
Return support level dictionary.
**Returns**
A dictionary containing the support levels for different options.
**Return type**
dict\[str, int]
</Function>
<span id="qiskit-algorithms-optimizers-gsls-gradient-approximation" />
### gradient\_approximation
<Function id="qiskit.algorithms.optimizers.GSLS.gradient_approximation" signature="GSLS.gradient_approximation(n, x, x_value, directions, sample_set_x, sample_set_y)">
Construct gradient approximation from given sample.
**Parameters**
* **n** (*int*) Dimension of the problem.
* **x** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.25)")) Point around which the sample set was constructed.
* **x\_value** (*float*) Objective function value at x.
* **directions** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.25)")) Directions of the sample points wrt the central point x, as a 2D array.
* **sample\_set\_x** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.25)")) x-coordinates of the sample set, one point per row, as a 2D array.
* **sample\_set\_y** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.25)")) Objective function values of the points in sample\_set\_x, as a 1D array.
**Returns**
Gradient approximation at x, as a 1D array.
**Return type**
[*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v1.25)")
</Function>
<span id="qiskit-algorithms-optimizers-gsls-gradient-num-diff" />
### gradient\_num\_diff
<Function id="qiskit.algorithms.optimizers.GSLS.gradient_num_diff" signature="GSLS.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=None)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** (*float*) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** (*int*) max evals grouped, defaults to 1 (i.e. no batching).
**Returns**
the gradient computed
**Return type**
grad
</Function>
<span id="qiskit-algorithms-optimizers-gsls-ls-optimize" />
### ls\_optimize
<Function id="qiskit.algorithms.optimizers.GSLS.ls_optimize" signature="GSLS.ls_optimize(n, obj_fun, initial_point, var_lb, var_ub)">
Run the line search optimization.
**Parameters**
* **n** (*int*) Dimension of the problem.
* **obj\_fun** (*Callable\[\[POINT], float]*) Objective function.
* **initial\_point** (*np.ndarray*) Initial point.
* **var\_lb** (*np.ndarray*) Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
* **var\_ub** (*np.ndarray*) Vector of upper bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from below.
**Returns**
Final iterate as a vector, corresponding objective function value, number of evaluations, and norm of the gradient estimate.
**Raises**
**ValueError** If the number of dimensions mismatches the size of the initial point or the length of the lower or upper bound.
**Return type**
tuple\[np.ndarray, float, int, float]
</Function>
<span id="qiskit-algorithms-optimizers-gsls-minimize" />
### minimize
<Function id="qiskit.algorithms.optimizers.GSLS.minimize" signature="GSLS.minimize(fun, x0, jac=None, bounds=None)">
Minimize the scalar function.
**Parameters**
* **fun** (*Callable\[\[POINT], float]*) The scalar function to minimize.
* **x0** (*POINT*) The initial point for the minimization.
* **jac** (*Callable\[\[POINT], POINT] | None*) The gradient of the scalar function `fun`.
* **bounds** (*list\[tuple\[float, float]] | None*) Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
**Returns**
The result of the optimization, containing e.g. the result as attribute `x`.
**Return type**
[OptimizerResult](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.OptimizerResult")
</Function>
<span id="qiskit-algorithms-optimizers-gsls-print-options" />
### print\_options
<Function id="qiskit.algorithms.optimizers.GSLS.print_options" signature="GSLS.print_options()">
Print algorithm-specific options.
</Function>
<span id="qiskit-algorithms-optimizers-gsls-sample-points" />
### sample\_points
<Function id="qiskit.algorithms.optimizers.GSLS.sample_points" signature="GSLS.sample_points(n, x, num_points)">
Sample `num_points` points around `x` on the `n`-sphere of specified radius.
The radius of the sphere is `self._options['sampling_radius']`.
**Parameters**
* **n** (*int*) Dimension of the problem.
* **x** (*np.ndarray*) Point around which the sample set is constructed.
* **num\_points** (*int*) Number of points in the sample set.
**Returns**
A tuple containing the sampling points and the directions.
**Return type**
tuple\[np.ndarray, np.ndarray]
</Function>
<span id="qiskit-algorithms-optimizers-gsls-sample-set" />
### sample\_set
<Function id="qiskit.algorithms.optimizers.GSLS.sample_set" signature="GSLS.sample_set(n, x, var_lb, var_ub, num_points)">
Construct sample set of given size.
**Parameters**
* **n** (*int*) Dimension of the problem.
* **x** (*np.ndarray*) Point around which the sample set is constructed.
* **var\_lb** (*np.ndarray*) Vector of lower bounds on the decision variables. Vector elements can be -np.inf if the corresponding variable is unbounded from below.
* **var\_ub** (*np.ndarray*) Vector of lower bounds on the decision variables. Vector elements can be np.inf if the corresponding variable is unbounded from above.
* **num\_points** (*int*) Number of points in the sample set.
**Returns**
Matrices of (unit-norm) sample directions and sample points, one per row. Both matrices are 2D arrays of floats.
**Raises**
**RuntimeError** If not enough samples could be generated within the bounds.
**Return type**
tuple\[np.ndarray, np.ndarray]
</Function>
<span id="qiskit-algorithms-optimizers-gsls-set-max-evals-grouped" />
### set\_max\_evals\_grouped
<Function id="qiskit.algorithms.optimizers.GSLS.set_max_evals_grouped" signature="GSLS.set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
<span id="qiskit-algorithms-optimizers-gsls-set-options" />
### set\_options
<Function id="qiskit.algorithms.optimizers.GSLS.set_options" signature="GSLS.set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** (*dict*) options, given as name=value.
</Function>
<span id="qiskit-algorithms-optimizers-gsls-wrap-function" />
### wrap\_function
<Function id="qiskit.algorithms.optimizers.GSLS.wrap_function" signature="GSLS.wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** (*tuple*) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
## Attributes
### bounds\_support\_level
<Attribute id="qiskit.algorithms.optimizers.GSLS.bounds_support_level">
Returns bounds support level
</Attribute>
### gradient\_support\_level
<Attribute id="qiskit.algorithms.optimizers.GSLS.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.algorithms.optimizers.GSLS.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.algorithms.optimizers.GSLS.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### setting
<Attribute id="qiskit.algorithms.optimizers.GSLS.setting">
Return setting
</Attribute>
### settings
<Attribute id="qiskit.algorithms.optimizers.GSLS.settings" />
</Class>