216 lines
7.2 KiB
Plaintext
216 lines
7.2 KiB
Plaintext
---
|
||
title: ISRES
|
||
description: API reference for qiskit.algorithms.optimizers.ISRES
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.algorithms.optimizers.ISRES
|
||
---
|
||
|
||
# ISRES
|
||
|
||
<Class id="qiskit.algorithms.optimizers.ISRES" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.21/qiskit/algorithms/optimizers/nlopts/isres.py" signature="ISRES(max_evals=1000)" modifiers="class">
|
||
Bases: `qiskit.algorithms.optimizers.nlopts.nloptimizer.NLoptOptimizer`
|
||
|
||
Improved Stochastic Ranking Evolution Strategy optimizer.
|
||
|
||
Improved Stochastic Ranking Evolution Strategy (ISRES) is an algorithm for non-linearly constrained global optimization. It has heuristics to escape local optima, even though convergence to a global optima is not guaranteed. The evolution strategy is based on a combination of a mutation rule and differential variation. The fitness ranking is simply via the objective function for problems without nonlinear constraints. When nonlinear constraints are included, the [stochastic ranking proposed by Runarsson and Yao](https://notendur.hi.is/tpr/software/sres/Tec311r.pdf) is employed. This method supports arbitrary nonlinear inequality and equality constraints, in addition to the bound constraints.
|
||
|
||
NLopt global optimizer, derivative-free. For further detail, please refer to [http://nlopt.readthedocs.io/en/latest/NLopt\_Algorithms/#isres-improved-stochastic-ranking-evolution-strategy](http://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/#isres-improved-stochastic-ranking-evolution-strategy)
|
||
|
||
**Parameters**
|
||
|
||
**max\_evals** (`int`) – Maximum allowed number of function evaluations.
|
||
|
||
**Raises**
|
||
|
||
**MissingOptionalLibraryError** – NLopt library not installed.
|
||
|
||
## Methods
|
||
|
||
### get\_nlopt\_optimizer
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.get_nlopt_optimizer" signature="ISRES.get_nlopt_optimizer()">
|
||
Return NLopt optimizer type
|
||
|
||
**Return type**
|
||
|
||
`NLoptOptimizerType`
|
||
</Function>
|
||
|
||
### get\_support\_level
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.get_support_level" signature="ISRES.get_support_level()">
|
||
return support level dictionary
|
||
</Function>
|
||
|
||
### gradient\_num\_diff
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.gradient_num_diff" signature="ISRES.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)" modifiers="static">
|
||
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
|
||
|
||
**Parameters**
|
||
|
||
* **x\_center** (*ndarray*) – point around which we compute the gradient
|
||
* **f** (*func*) – the function of which the gradient is to be computed.
|
||
* **epsilon** (*float*) – the epsilon used in the numeric differentiation.
|
||
* **max\_evals\_grouped** (*int*) – max evals grouped
|
||
|
||
**Returns**
|
||
|
||
the gradient computed
|
||
|
||
**Return type**
|
||
|
||
grad
|
||
</Function>
|
||
|
||
### minimize
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.minimize" signature="ISRES.minimize(fun, x0, jac=None, bounds=None)">
|
||
Minimize the scalar function.
|
||
|
||
**Parameters**
|
||
|
||
* **fun** (`Callable`\[\[`Union`\[`float`, `ndarray`]], `float`]) – The scalar function to minimize.
|
||
* **x0** (`Union`\[`float`, `ndarray`]) – The initial point for the minimization.
|
||
* **jac** (`Optional`\[`Callable`\[\[`Union`\[`float`, `ndarray`]], `Union`\[`float`, `ndarray`]]]) – The gradient of the scalar function `fun`.
|
||
* **bounds** (`Optional`\[`List`\[`Tuple`\[`float`, `float`]]]) – Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
|
||
|
||
**Return type**
|
||
|
||
[`OptimizerResult`](qiskit.algorithms.optimizers.OptimizerResult "qiskit.algorithms.optimizers.optimizer.OptimizerResult")
|
||
|
||
**Returns**
|
||
|
||
The result of the optimization, containing e.g. the result as attribute `x`.
|
||
</Function>
|
||
|
||
### print\_options
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.print_options" signature="ISRES.print_options()">
|
||
Print algorithm-specific options.
|
||
</Function>
|
||
|
||
### set\_max\_evals\_grouped
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.set_max_evals_grouped" signature="ISRES.set_max_evals_grouped(limit)">
|
||
Set max evals grouped
|
||
</Function>
|
||
|
||
### set\_options
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.set_options" signature="ISRES.set_options(**kwargs)">
|
||
Sets or updates values in the options dictionary.
|
||
|
||
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
|
||
|
||
**Parameters**
|
||
|
||
**kwargs** (*dict*) – options, given as name=value.
|
||
</Function>
|
||
|
||
### wrap\_function
|
||
|
||
<Function id="qiskit.algorithms.optimizers.ISRES.wrap_function" signature="ISRES.wrap_function(function, args)" modifiers="static">
|
||
Wrap the function to implicitly inject the args at the call of the function.
|
||
|
||
**Parameters**
|
||
|
||
* **function** (*func*) – the target function
|
||
* **args** (*tuple*) – the args to be injected
|
||
|
||
**Returns**
|
||
|
||
wrapper
|
||
|
||
**Return type**
|
||
|
||
function\_wrapper
|
||
</Function>
|
||
|
||
## Attributes
|
||
|
||
### bounds\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.bounds_support_level">
|
||
Returns bounds support level
|
||
</Attribute>
|
||
|
||
### gradient\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.gradient_support_level">
|
||
Returns gradient support level
|
||
</Attribute>
|
||
|
||
### initial\_point\_support\_level
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.initial_point_support_level">
|
||
Returns initial point support level
|
||
</Attribute>
|
||
|
||
### is\_bounds\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_bounds_ignored">
|
||
Returns is bounds ignored
|
||
</Attribute>
|
||
|
||
### is\_bounds\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_bounds_required">
|
||
Returns is bounds required
|
||
</Attribute>
|
||
|
||
### is\_bounds\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_bounds_supported">
|
||
Returns is bounds supported
|
||
</Attribute>
|
||
|
||
### is\_gradient\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_gradient_ignored">
|
||
Returns is gradient ignored
|
||
</Attribute>
|
||
|
||
### is\_gradient\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_gradient_required">
|
||
Returns is gradient required
|
||
</Attribute>
|
||
|
||
### is\_gradient\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_gradient_supported">
|
||
Returns is gradient supported
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_ignored
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_initial_point_ignored">
|
||
Returns is initial point ignored
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_required
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_initial_point_required">
|
||
Returns is initial point required
|
||
</Attribute>
|
||
|
||
### is\_initial\_point\_supported
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.is_initial_point_supported">
|
||
Returns is initial point supported
|
||
</Attribute>
|
||
|
||
### setting
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.setting">
|
||
Return setting
|
||
</Attribute>
|
||
|
||
### settings
|
||
|
||
<Attribute id="qiskit.algorithms.optimizers.ISRES.settings" />
|
||
</Class>
|
||
|