qiskit-documentation/docs/api/qiskit/0.36/qiskit.algorithms.optimizer...

219 lines
7.1 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: SNOBFIT
description: API reference for qiskit.algorithms.optimizers.SNOBFIT
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.algorithms.optimizers.SNOBFIT
---
# SNOBFIT
<Class id="qiskit.algorithms.optimizers.SNOBFIT" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.20/qiskit/algorithms/optimizers/snobfit.py" signature="SNOBFIT(maxiter=1000, maxfail=10, maxmp=None, verbose=False)" modifiers="class">
Bases: `qiskit.algorithms.optimizers.optimizer.Optimizer`
Stable Noisy Optimization by Branch and FIT algorithm.
SnobFit is used for the optimization of derivative-free, noisy objective functions providing robust and fast solutions of problems with continuous variables varying within bound.
Uses skquant.opt installed with pip install scikit-quant. For further detail, please refer to [https://github.com/scikit-quant/scikit-quant](https://github.com/scikit-quant/scikit-quant) and [https://qat4chem.lbl.gov/software](https://qat4chem.lbl.gov/software).
**Parameters**
* **maxiter** (`int`) Maximum number of function evaluations.
* **maxmp** (`Optional`\[`int`]) Maximum number of model points requested for the local fit. Default = 2 \* number of parameters + 6 set to this value when None.
* **maxfail** (`int`) Maximum number of failures to improve the solution. Stops the algorithm after maxfail is reached.
* **verbose** (`bool`) Provide verbose (debugging) output.
**Raises**
**MissingOptionalLibraryError** scikit-quant or SQSnobFit not installed
## Methods
### get\_support\_level
<Function id="qiskit.algorithms.optimizers.SNOBFIT.get_support_level" signature="SNOBFIT.get_support_level()">
Returns support level dictionary.
</Function>
### gradient\_num\_diff
<Function id="qiskit.algorithms.optimizers.SNOBFIT.gradient_num_diff" signature="SNOBFIT.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** (*float*) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** (*int*) max evals grouped
**Returns**
the gradient computed
**Return type**
grad
</Function>
### minimize
<Function id="qiskit.algorithms.optimizers.SNOBFIT.minimize" signature="SNOBFIT.minimize(fun, x0, jac=None, bounds=None)">
Minimize the scalar function.
**Parameters**
* **fun** (`Callable`\[\[`Union`\[`float`, `ndarray`]], `float`]) The scalar function to minimize.
* **x0** (`Union`\[`float`, `ndarray`]) The initial point for the minimization.
* **jac** (`Optional`\[`Callable`\[\[`Union`\[`float`, `ndarray`]], `Union`\[`float`, `ndarray`]]]) The gradient of the scalar function `fun`.
* **bounds** (`Optional`\[`List`\[`Tuple`\[`float`, `float`]]]) Bounds for the variables of `fun`. This argument might be ignored if the optimizer does not support bounds.
**Return type**
`OptimizerResult`
**Returns**
The result of the optimization, containing e.g. the result as attribute `x`.
</Function>
### optimize
<Function id="qiskit.algorithms.optimizers.SNOBFIT.optimize" signature="SNOBFIT.optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)">
Runs the optimization.
</Function>
### print\_options
<Function id="qiskit.algorithms.optimizers.SNOBFIT.print_options" signature="SNOBFIT.print_options()">
Print algorithm-specific options.
</Function>
### set\_max\_evals\_grouped
<Function id="qiskit.algorithms.optimizers.SNOBFIT.set_max_evals_grouped" signature="SNOBFIT.set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
### set\_options
<Function id="qiskit.algorithms.optimizers.SNOBFIT.set_options" signature="SNOBFIT.set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** (*dict*) options, given as name=value.
</Function>
### wrap\_function
<Function id="qiskit.algorithms.optimizers.SNOBFIT.wrap_function" signature="SNOBFIT.wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** (*tuple*) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
## Attributes
### bounds\_support\_level
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.bounds_support_level">
Returns bounds support level
</Attribute>
### gradient\_support\_level
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### setting
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.setting">
Return setting
</Attribute>
### settings
<Attribute id="qiskit.algorithms.optimizers.SNOBFIT.settings">
**Return type**
`Dict`\[`str`, `Any`]
</Attribute>
</Class>