47 lines
1.6 KiB
Plaintext
47 lines
1.6 KiB
Plaintext
---
|
||
title: depolarizing_error
|
||
description: API reference for qiskit.providers.aer.noise.depolarizing_error
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: function
|
||
python_api_name: qiskit.providers.aer.noise.depolarizing_error
|
||
---
|
||
|
||
# qiskit.providers.aer.noise.depolarizing\_error
|
||
|
||
<Function id="qiskit.providers.aer.noise.depolarizing_error" isDedicatedPage={true} github="https://github.com/qiskit/qiskit-aer/tree/stable/0.10/qiskit/providers/aer/noise/errors/standard_errors.py" signature="depolarizing_error(param, num_qubits, standard_gates=None)">
|
||
Return a depolarizing quantum error channel.
|
||
|
||
The depolarizing channel is defined as:
|
||
|
||
$$
|
||
E(ρ) = (1 - λ) ρ + λ \text{Tr}[ρ] \frac{I}{2^n}
|
||
$$
|
||
|
||
with $0 \le λ \le 4^n / (4^n - 1)$
|
||
|
||
where $λ$ is the depolarizing error param and :math\`n\` is the number of qubits.
|
||
|
||
* If $λ = 0$ this is the identity channel $E(ρ) = ρ$
|
||
* If $λ = 1$ this is a completely depolarizing channel $E(ρ) = I / 2^n$
|
||
* If $λ = 4^n / (4^n - 1)$ this is a uniform Pauli error channel: $E(ρ) = \sum_j P_j ρ P_j / (4^n - 1)$ for all $P_j != I$.
|
||
|
||
**Parameters**
|
||
|
||
* **param** (*double*) – depolarizing error parameter.
|
||
* **num\_qubits** (*int*) – the number of qubits for the error channel.
|
||
* **standard\_gates** (*bool*) – DEPRECATED, if True return the operators as Pauli gates. If false return as unitary gates. (Default: None)
|
||
|
||
**Returns**
|
||
|
||
The quantum error object.
|
||
|
||
**Return type**
|
||
|
||
[QuantumError](qiskit.providers.aer.noise.QuantumError "qiskit.providers.aer.noise.QuantumError")
|
||
|
||
**Raises**
|
||
|
||
**NoiseError** – If noise parameters are invalid.
|
||
</Function>
|
||
|