qiskit-documentation/docs/api/qiskit/0.32/qiskit.chemistry.algorithms...

197 lines
6.5 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: VQEAdapt
description: API reference for qiskit.chemistry.algorithms.VQEAdapt
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.chemistry.algorithms.VQEAdapt
---
# VQEAdapt
<Class id="qiskit.chemistry.algorithms.VQEAdapt" isDedicatedPage={true} github="https://github.com/qiskit-community/qiskit-aqua/tree/stable/0.9/qiskit/chemistry/algorithms/minimum_eigen_solvers/vqe_adapt.py" signature="VQEAdapt(operator, var_form_base, optimizer, initial_point=None, excitation_pool=None, threshold=1e-05, delta=1, max_iterations=None, max_evals_grouped=1, aux_operators=None, quantum_instance=None)" modifiers="class">
Bases: `qiskit.aqua.algorithms.vq_algorithm.VQAlgorithm`
DEPRECATED. The Adaptive VQE algorithm.
See [https://arxiv.org/abs/1812.11173](https://arxiv.org/abs/1812.11173)
**Parameters**
* **operator** (`LegacyBaseOperator`) Qubit operator
* **var\_form\_base** (`VariationalForm`) base parameterized variational form
* **optimizer** (`Optimizer`) the classical optimizer algorithm
* **initial\_point** (`Optional`\[`ndarray`]) optimizer initial point
* **excitation\_pool** (`Optional`\[`List`\[`WeightedPauliOperator`]]) list of excitation operators
* **threshold** (`float`) absolute threshold value for gradients, has a min. value of 1e-15.
* **delta** (`float`) finite difference step size for gradient computation, has a min. value of 1e-5.
* **max\_iterations** (`Optional`\[`int`]) maximum number of macro iterations of the VQEAdapt algorithm.
* **max\_evals\_grouped** (`int`) max number of evaluations performed simultaneously
* **aux\_operators** (`Optional`\[`List`\[`LegacyBaseOperator`]]) Auxiliary operators to be evaluated at each eigenvalue
* **quantum\_instance** (`Union`\[`QuantumInstance`, `Backend`, `BaseBackend`, `None`]) Quantum Instance or Backend
**Raises**
* **ValueError** if var\_form\_base is not an instance of UCCSD.
* **See also** qiskit/chemistry/components/variational\_forms/uccsd\_adapt.py
## Methods
### cleanup\_parameterized\_circuits
<Function id="qiskit.chemistry.algorithms.VQEAdapt.cleanup_parameterized_circuits" signature="VQEAdapt.cleanup_parameterized_circuits()">
set parameterized circuits to None
</Function>
### find\_minimum
<Function id="qiskit.chemistry.algorithms.VQEAdapt.find_minimum" signature="VQEAdapt.find_minimum(initial_point=None, var_form=None, cost_fn=None, optimizer=None, gradient_fn=None)">
Optimize to find the minimum cost value.
**Parameters**
* **initial\_point** (`Optional`\[`ndarray`]) If not None will be used instead of any initial point supplied via constructor. If None and None was supplied to constructor then a random point will be used if the optimizer requires an initial point.
* **var\_form** (`Union`\[`QuantumCircuit`, `VariationalForm`, `None`]) If not None will be used instead of any variational form supplied via constructor.
* **cost\_fn** (`Optional`\[`Callable`]) If not None will be used instead of any cost\_fn supplied via constructor.
* **optimizer** (`Optional`\[`Optimizer`]) If not None will be used instead of any optimizer supplied via constructor.
* **gradient\_fn** (`Optional`\[`Callable`]) Optional gradient function for optimizer
**Returns**
Optimized variational parameters, and corresponding minimum cost value.
**Return type**
dict
**Raises**
**ValueError** invalid input
</Function>
### get\_optimal\_circuit
<Function id="qiskit.chemistry.algorithms.VQEAdapt.get_optimal_circuit" signature="VQEAdapt.get_optimal_circuit()">
get optimal circuit
</Function>
### get\_optimal\_cost
<Function id="qiskit.chemistry.algorithms.VQEAdapt.get_optimal_cost" signature="VQEAdapt.get_optimal_cost()">
get optimal cost
</Function>
### get\_optimal\_vector
<Function id="qiskit.chemistry.algorithms.VQEAdapt.get_optimal_vector" signature="VQEAdapt.get_optimal_vector()">
get optimal vector
</Function>
### get\_prob\_vector\_for\_params
<Function id="qiskit.chemistry.algorithms.VQEAdapt.get_prob_vector_for_params" signature="VQEAdapt.get_prob_vector_for_params(construct_circuit_fn, params_s, quantum_instance, construct_circuit_args=None)">
Helper function to get probability vectors for a set of params
</Function>
### get\_probabilities\_for\_counts
<Function id="qiskit.chemistry.algorithms.VQEAdapt.get_probabilities_for_counts" signature="VQEAdapt.get_probabilities_for_counts(counts)">
get probabilities for counts
</Function>
### run
<Function id="qiskit.chemistry.algorithms.VQEAdapt.run" signature="VQEAdapt.run(quantum_instance=None, **kwargs)">
Execute the algorithm with selected backend.
**Parameters**
* **quantum\_instance** (`Union`\[`QuantumInstance`, `Backend`, `BaseBackend`, `None`]) the experimental setting.
* **kwargs** (*dict*) kwargs
**Returns**
results of an algorithm.
**Return type**
dict
**Raises**
[**AquaError**](qiskit.aqua.AquaError "qiskit.aqua.AquaError") If a quantum instance or backend has not been provided
</Function>
### set\_backend
<Function id="qiskit.chemistry.algorithms.VQEAdapt.set_backend" signature="VQEAdapt.set_backend(backend, **kwargs)">
Sets backend with configuration.
**Return type**
`None`
</Function>
## Attributes
### backend
<Attribute id="qiskit.chemistry.algorithms.VQEAdapt.backend">
Returns backend.
**Return type**
`Union`\[`Backend`, `BaseBackend`]
</Attribute>
### initial\_point
<Attribute id="qiskit.chemistry.algorithms.VQEAdapt.initial_point">
Returns initial point
**Return type**
`Optional`\[`ndarray`]
</Attribute>
### optimal\_params
<Attribute id="qiskit.chemistry.algorithms.VQEAdapt.optimal_params" />
### optimizer
<Attribute id="qiskit.chemistry.algorithms.VQEAdapt.optimizer">
Returns optimizer
**Return type**
`Optional`\[`Optimizer`]
</Attribute>
### quantum\_instance
<Attribute id="qiskit.chemistry.algorithms.VQEAdapt.quantum_instance">
Returns quantum instance.
**Return type**
`Optional`\[`QuantumInstance`]
</Attribute>
### random
<Attribute id="qiskit.chemistry.algorithms.VQEAdapt.random">
Return a numpy random.
</Attribute>
### var\_form
<Attribute id="qiskit.chemistry.algorithms.VQEAdapt.var_form">
Returns variational form
**Return type**
`Union`\[`QuantumCircuit`, `VariationalForm`, `None`]
</Attribute>
</Class>