qiskit-documentation/docs/api/qiskit/0.32/qiskit.aqua.components.mult...

83 lines
2.7 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: AllPairs
description: API reference for qiskit.aqua.components.multiclass_extensions.AllPairs
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.aqua.components.multiclass_extensions.AllPairs
---
# AllPairs
<Class id="qiskit.aqua.components.multiclass_extensions.AllPairs" isDedicatedPage={true} github="https://github.com/qiskit-community/qiskit-aqua/tree/stable/0.9/qiskit/aqua/components/multiclass_extensions/all_pairs.py" signature="AllPairs" modifiers="class">
Bases: `qiskit.aqua.components.multiclass_extensions.multiclass_extension.MulticlassExtension`
The All-Pairs multiclass extension.
In the **all-pairs** reduction, one trains $k(k1)/2$ binary classifiers for a $k$-way multiclass problem; each receives the samples of a pair of classes from the original training set, and must learn to distinguish these two classes. At prediction time, a **weighted voting scheme** is used: all $k(k1)/2$ classifiers are applied to an unseen sample, and each class gets assigned the sum of all the scores obtained by the various classifiers. The combined classifier returns as a result the class getting the highest value.
## Methods
### predict
<Function id="qiskit.aqua.components.multiclass_extensions.AllPairs.predict" signature="AllPairs.predict(x)">
Applying multiple estimators for prediction.
**Parameters**
**x** (*numpy.ndarray*) NxD array
**Returns**
predicted labels, Nx1 array
**Return type**
numpy.ndarray
</Function>
### set\_estimator
<Function id="qiskit.aqua.components.multiclass_extensions.AllPairs.set_estimator" signature="AllPairs.set_estimator(estimator_cls, params=None)">
Called internally to set `Estimator` and parameters :type estimator\_cls: `Callable`\[\[`List`], `Estimator`] :param estimator\_cls: An `Estimator` class :type params: `Optional`\[`List`] :param params: Parameters for the estimator
**Return type**
`None`
</Function>
### test
<Function id="qiskit.aqua.components.multiclass_extensions.AllPairs.test" signature="AllPairs.test(x, y)">
Testing multiple estimators each for distinguishing a pair of classes.
**Parameters**
* **x** (*numpy.ndarray*) input points
* **y** (*numpy.ndarray*) input labels
**Returns**
accuracy
**Return type**
float
</Function>
### train
<Function id="qiskit.aqua.components.multiclass_extensions.AllPairs.train" signature="AllPairs.train(x, y)">
Training multiple estimators each for distinguishing a pair of classes.
**Parameters**
* **x** (*numpy.ndarray*) input points
* **y** (*numpy.ndarray*) input labels
**Raises**
**ValueError** can not be fit when only one class is present.
</Function>
</Class>