qiskit-documentation/docs/api/qiskit/0.31/qiskit.aqua.components.neur...

121 lines
3.8 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: NumPyDiscriminator
description: API reference for qiskit.aqua.components.neural_networks.NumPyDiscriminator
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.aqua.components.neural_networks.NumPyDiscriminator
---
# NumPyDiscriminator
<Class id="qiskit.aqua.components.neural_networks.NumPyDiscriminator" isDedicatedPage={true} github="https://github.com/qiskit-community/qiskit-aqua/tree/stable/0.9/qiskit/aqua/components/neural_networks/numpy_discriminator.py" signature="NumPyDiscriminator(n_features=1, n_out=1)" modifiers="class">
Bases: `qiskit.aqua.components.neural_networks.discriminative_network.DiscriminativeNetwork`
Discriminator based on NumPy
**Parameters**
* **n\_features** (`int`) Dimension of input data vector.
* **n\_out** (`int`) Dimension of the discriminators output vector.
## Methods
### get\_label
<Function id="qiskit.aqua.components.neural_networks.NumPyDiscriminator.get_label" signature="NumPyDiscriminator.get_label(x, detach=False)">
Get data sample labels, i.e. true or fake.
**Parameters**
* **x** (*numpy.ndarray*) Discriminator input, i.e. data sample.
* **detach** (*bool*) depreciated for numpy network
**Returns**
Discriminator output, i.e. data label
**Return type**
numpy.ndarray
</Function>
### load\_model
<Function id="qiskit.aqua.components.neural_networks.NumPyDiscriminator.load_model" signature="NumPyDiscriminator.load_model(load_dir)">
Load discriminator model
**Parameters**
**load\_dir** (*str*) file with stored pytorch discriminator model to be loaded
</Function>
### loss
<Function id="qiskit.aqua.components.neural_networks.NumPyDiscriminator.loss" signature="NumPyDiscriminator.loss(x, y, weights=None)">
Loss function :param x: sample label (equivalent to discriminator output) :type x: numpy.ndarray :param y: target label :type y: numpy.ndarray :param weights: customized scaling for each sample (optional) :type weights: numpy.ndarray
**Returns**
loss function
**Return type**
float
</Function>
### save\_model
<Function id="qiskit.aqua.components.neural_networks.NumPyDiscriminator.save_model" signature="NumPyDiscriminator.save_model(snapshot_dir)">
Save discriminator model
**Parameters**
**snapshot\_dir** (*str*) directory path for saving the model
</Function>
### set\_seed
<Function id="qiskit.aqua.components.neural_networks.NumPyDiscriminator.set_seed" signature="NumPyDiscriminator.set_seed(seed)">
Set seed. :param seed: seed :type seed: int
</Function>
### train
<Function id="qiskit.aqua.components.neural_networks.NumPyDiscriminator.train" signature="NumPyDiscriminator.train(data, weights, penalty=False, quantum_instance=None, shots=None)">
Perform one training step w\.r.t to the discriminators parameters
**Parameters**
* **data** (*tuple(numpy.ndarray, numpy.ndarray)*) real\_batch: array, Training data batch. generated\_batch: array, Generated data batch.
* **weights** (*tuple*) real problem, generated problem
* **penalty** (*bool*) Depreciated for classical networks.
* **quantum\_instance** ([*QuantumInstance*](qiskit.aqua.QuantumInstance "qiskit.aqua.QuantumInstance")) Depreciated for classical networks.
* **shots** (*int*) Number of shots for hardware or qasm execution. Ignored for classical networks.
**Returns**
with Discriminator loss and updated parameters.
**Return type**
dict
</Function>
## Attributes
### discriminator\_net
<Attribute id="qiskit.aqua.components.neural_networks.NumPyDiscriminator.discriminator_net">
Get discriminator
**Returns**
discriminator object
**Return type**
DiscriminatorNet
</Attribute>
</Class>