qiskit-documentation/docs/api/qiskit/0.31/qiskit.algorithms.optimizer...

226 lines
8.3 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: GradientDescent
description: API reference for qiskit.algorithms.optimizers.GradientDescent
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.algorithms.optimizers.GradientDescent
---
# GradientDescent
<Class id="qiskit.algorithms.optimizers.GradientDescent" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.18/qiskit/algorithms/optimizers/gradient_descent.py" signature="GradientDescent(maxiter=100, learning_rate=0.01, tol=1e-07, callback=None, perturbation=None)" modifiers="class">
Bases: `qiskit.algorithms.optimizers.optimizer.Optimizer`
The gradient descent minimization routine.
For a function $f$ and an initial point $\vec\theta_0$, the standard (or “vanilla”) gradient descent method is an iterative scheme to find the minimum $\vec\theta^*$ of $f$ by updating the parameters in the direction of the negative gradient of $f$
$$
\vec\theta_{n+1} = \vec\theta_{n} - \vec\eta\nabla f(\vec\theta_{n}),
$$
for a small learning rate $\eta > 0$.
You can either provide the analytic gradient $\vec\nabla f$ as `gradient_function` in the `optimize` method, or, if you do not provide it, use a finite difference approximation of the gradient. To adapt the size of the perturbation in the finite difference gradients, set the `perturbation` property in the initializer.
This optimizer supports a callback function. If provided in the initializer, the optimizer will call the callback in each iteration with the following information in this order: current number of function values, current parameters, current function value, norm of current gradient.
**Examples**
A minimum example that will use finite difference gradients with a default perturbation of 0.01 and a default learning rate of 0.01.
An example where the learning rate is an iterator and we supply the analytic gradient. Note how much faster this convergences (i.e. less `nfevs`) compared to the previous example.
**Parameters**
* **maxiter** (`int`) The maximum number of iterations.
* **learning\_rate** (`Union`\[`float`, `Callable`\[\[], `Iterator`]]) A constant or generator yielding learning rates for the parameter updates. See the docstring for an example.
* **tol** (`float`) If the norm of the parameter update is smaller than this threshold, the optimizer is converged.
* **perturbation** (`Optional`\[`float`]) If no gradient is passed to `GradientDescent.optimize` the gradient is approximated with a symmetric finite difference scheme with `perturbation` perturbation in both directions (defaults to 1e-2 if required). Ignored if a gradient callable is passed to `GradientDescent.optimize`.
## Methods
### get\_support\_level
<Function id="qiskit.algorithms.optimizers.GradientDescent.get_support_level" signature="GradientDescent.get_support_level()">
Get the support level dictionary.
</Function>
### gradient\_num\_diff
<Function id="qiskit.algorithms.optimizers.GradientDescent.gradient_num_diff" signature="GradientDescent.gradient_num_diff(x_center, f, epsilon, max_evals_grouped=1)" modifiers="static">
We compute the gradient with the numeric differentiation in the parallel way, around the point x\_center.
**Parameters**
* **x\_center** (*ndarray*) point around which we compute the gradient
* **f** (*func*) the function of which the gradient is to be computed.
* **epsilon** (*float*) the epsilon used in the numeric differentiation.
* **max\_evals\_grouped** (*int*) max evals grouped
**Returns**
the gradient computed
**Return type**
grad
</Function>
### optimize
<Function id="qiskit.algorithms.optimizers.GradientDescent.optimize" signature="GradientDescent.optimize(num_vars, objective_function, gradient_function=None, variable_bounds=None, initial_point=None)">
Perform optimization.
**Parameters**
* **num\_vars** (*int*) Number of parameters to be optimized.
* **objective\_function** (*callable*) A function that computes the objective function.
* **gradient\_function** (*callable*) A function that computes the gradient of the objective function, or None if not available.
* **variable\_bounds** (*list\[(float, float)]*) List of variable bounds, given as pairs (lower, upper). None means unbounded.
* **initial\_point** (*numpy.ndarray\[float]*) Initial point.
**Returns**
**point, value, nfev**
point: is a 1D numpy.ndarray\[float] containing the solution value: is a float with the objective function value nfev: number of objective function calls made if available or None
**Raises**
**ValueError** invalid input
</Function>
### print\_options
<Function id="qiskit.algorithms.optimizers.GradientDescent.print_options" signature="GradientDescent.print_options()">
Print algorithm-specific options.
</Function>
### set\_max\_evals\_grouped
<Function id="qiskit.algorithms.optimizers.GradientDescent.set_max_evals_grouped" signature="GradientDescent.set_max_evals_grouped(limit)">
Set max evals grouped
</Function>
### set\_options
<Function id="qiskit.algorithms.optimizers.GradientDescent.set_options" signature="GradientDescent.set_options(**kwargs)">
Sets or updates values in the options dictionary.
The options dictionary may be used internally by a given optimizer to pass additional optional values for the underlying optimizer/optimization function used. The options dictionary may be initially populated with a set of key/values when the given optimizer is constructed.
**Parameters**
**kwargs** (*dict*) options, given as name=value.
</Function>
### wrap\_function
<Function id="qiskit.algorithms.optimizers.GradientDescent.wrap_function" signature="GradientDescent.wrap_function(function, args)" modifiers="static">
Wrap the function to implicitly inject the args at the call of the function.
**Parameters**
* **function** (*func*) the target function
* **args** (*tuple*) the args to be injected
**Returns**
wrapper
**Return type**
function\_wrapper
</Function>
## Attributes
### bounds\_support\_level
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.bounds_support_level">
Returns bounds support level
</Attribute>
### gradient\_support\_level
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.gradient_support_level">
Returns gradient support level
</Attribute>
### initial\_point\_support\_level
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.initial_point_support_level">
Returns initial point support level
</Attribute>
### is\_bounds\_ignored
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_bounds_ignored">
Returns is bounds ignored
</Attribute>
### is\_bounds\_required
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_bounds_required">
Returns is bounds required
</Attribute>
### is\_bounds\_supported
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_bounds_supported">
Returns is bounds supported
</Attribute>
### is\_gradient\_ignored
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_gradient_ignored">
Returns is gradient ignored
</Attribute>
### is\_gradient\_required
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_gradient_required">
Returns is gradient required
</Attribute>
### is\_gradient\_supported
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_gradient_supported">
Returns is gradient supported
</Attribute>
### is\_initial\_point\_ignored
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_initial_point_ignored">
Returns is initial point ignored
</Attribute>
### is\_initial\_point\_required
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_initial_point_required">
Returns is initial point required
</Attribute>
### is\_initial\_point\_supported
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.is_initial_point_supported">
Returns is initial point supported
</Attribute>
### setting
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.setting">
Return setting
</Attribute>
### settings
<Attribute id="qiskit.algorithms.optimizers.GradientDescent.settings">
**Return type**
`Dict`\[`str`, `Any`]
</Attribute>
</Class>