qiskit-documentation/docs/api/qiskit/0.30/qiskit.quantum_info.Operato...

342 lines
11 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: Operator
description: API reference for qiskit.quantum_info.Operator
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.quantum_info.Operator
---
# Operator
<Class id="qiskit.quantum_info.Operator" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.18/qiskit/quantum_info/operators/operator.py" signature="Operator(data, input_dims=None, output_dims=None)" modifiers="class">
Bases: `qiskit.quantum_info.operators.linear_op.LinearOp`
Matrix operator class
This represents a matrix operator $M$ that will [`evolve()`](qiskit.quantum_info.Statevector#evolve "qiskit.quantum_info.Statevector.evolve") a [`Statevector`](qiskit.quantum_info.Statevector "qiskit.quantum_info.Statevector") $|\psi\rangle$ by matrix-vector multiplication
$$
|\psi\rangle \mapsto M|\psi\rangle,
$$
and will [`evolve()`](qiskit.quantum_info.DensityMatrix#evolve "qiskit.quantum_info.DensityMatrix.evolve") a [`DensityMatrix`](qiskit.quantum_info.DensityMatrix "qiskit.quantum_info.DensityMatrix") $\rho$ by left and right multiplication
$$
\rho \mapsto M \rho M^\dagger.
$$
Initialize an operator object.
**Parameters**
* \*\*(\*\***QuantumCircuit or** (*data*) Instruction or BaseOperator or matrix): data to initialize operator.
* **input\_dims** (*tuple*) the input subsystem dimensions. \[Default: None]
* **output\_dims** (*tuple*) the output subsystem dimensions. \[Default: None]
**Raises**
**QiskitError** if input data cannot be initialized as an operator.
**Additional Information:**
If the input or output dimensions are None, they will be automatically determined from the input data. If the input data is a Numpy array of shape (2\*\*N, 2\*\*N) qubit systems will be used. If the input operator is not an N-qubit operator, it will assign a single subsystem with dimension specified by the shape of the input.
## Methods
### adjoint
<Function id="qiskit.quantum_info.Operator.adjoint" signature="Operator.adjoint()">
Return the adjoint of the Operator.
</Function>
### compose
<Function id="qiskit.quantum_info.Operator.compose" signature="Operator.compose(other, qargs=None, front=False)">
Return the operator composition with another Operator.
**Parameters**
* **other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) a Operator object.
* **qargs** (*list or None*) Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
* **front** (*bool*) If True compose using right operator multiplication, instead of left multiplication \[default: False].
**Returns**
The composed Operator.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
**Raises**
**QiskitError** if other cannot be converted to an operator, or has incompatible dimensions for specified subsystems.
<Admonition title="Note" type="note">
Composition (`&`) by default is defined as left matrix multiplication for matrix operators, while [`dot()`](qiskit.quantum_info.Operator#dot "qiskit.quantum_info.Operator.dot") is defined as right matrix multiplication. That is that `A & B == A.compose(B)` is equivalent to `B.dot(A)` when `A` and `B` are of the same type.
Setting the `front=True` kwarg changes this to right matrix multiplication and is equivalent to the [`dot()`](qiskit.quantum_info.Operator#dot "qiskit.quantum_info.Operator.dot") method `A.dot(B) == A.compose(B, front=True)`.
</Admonition>
</Function>
### conjugate
<Function id="qiskit.quantum_info.Operator.conjugate" signature="Operator.conjugate()">
Return the conjugate of the Operator.
</Function>
### copy
<Function id="qiskit.quantum_info.Operator.copy" signature="Operator.copy()">
Make a deep copy of current operator.
</Function>
### dot
<Function id="qiskit.quantum_info.Operator.dot" signature="Operator.dot(other, qargs=None)">
Return the right multiplied operator self \* other.
**Parameters**
* **other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) an operator object.
* **qargs** (*list or None*) Optional, a list of subsystem positions to apply other on. If None apply on all subsystems (default: None).
**Returns**
The right matrix multiplied Operator.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
</Function>
### equiv
<Function id="qiskit.quantum_info.Operator.equiv" signature="Operator.equiv(other, rtol=None, atol=None)">
Return True if operators are equivalent up to global phase.
**Parameters**
* **other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) an operator object.
* **rtol** (*float*) relative tolerance value for comparison.
* **atol** (*float*) absolute tolerance value for comparison.
**Returns**
True if operators are equivalent up to global phase.
**Return type**
bool
</Function>
### expand
<Function id="qiskit.quantum_info.Operator.expand" signature="Operator.expand(other)">
Return the reverse-order tensor product with another Operator.
**Parameters**
**other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) a Operator object.
**Returns**
**the tensor product $b \otimes a$, where $a$**
is the current Operator, and $b$ is the other Operator.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
</Function>
### from\_label
<Function id="qiskit.quantum_info.Operator.from_label" signature="Operator.from_label(label)" modifiers="classmethod">
Return a tensor product of single-qubit operators.
**Parameters**
**label** (*string*) single-qubit operator string.
**Returns**
The N-qubit operator.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
**Raises**
**QiskitError** if the label contains invalid characters, or the length of the label is larger than an explicitly specified num\_qubits.
#### Additional Information:
The labels correspond to the single-qubit matrices: I: \[\[1, 0], \[0, 1]] X: \[\[0, 1], \[1, 0]] Y: \[\[0, -1j], \[1j, 0]] Z: \[\[1, 0], \[0, -1]] H: \[\[1, 1], \[1, -1]] / sqrt(2) S: \[\[1, 0], \[0 , 1j]] T: \[\[1, 0], \[0, (1+1j) / sqrt(2)]] 0: \[\[1, 0], \[0, 0]] 1: \[\[0, 0], \[0, 1]] +: \[\[0.5, 0.5], \[0.5 , 0.5]] -: \[\[0.5, -0.5], \[-0.5 , 0.5]] r: \[\[0.5, -0.5j], \[0.5j , 0.5]] l: \[\[0.5, 0.5j], \[-0.5j , 0.5]]
</Function>
### input\_dims
<Function id="qiskit.quantum_info.Operator.input_dims" signature="Operator.input_dims(qargs=None)">
Return tuple of input dimension for specified subsystems.
</Function>
### is\_unitary
<Function id="qiskit.quantum_info.Operator.is_unitary" signature="Operator.is_unitary(atol=None, rtol=None)">
Return True if operator is a unitary matrix.
</Function>
### output\_dims
<Function id="qiskit.quantum_info.Operator.output_dims" signature="Operator.output_dims(qargs=None)">
Return tuple of output dimension for specified subsystems.
</Function>
### power
<Function id="qiskit.quantum_info.Operator.power" signature="Operator.power(n)">
Return the matrix power of the operator.
**Parameters**
**n** (*float*) the power to raise the matrix to.
**Returns**
the resulting operator `O ** n`.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
**Raises**
**QiskitError** if the input and output dimensions of the operator are not equal.
</Function>
### reshape
<Function id="qiskit.quantum_info.Operator.reshape" signature="Operator.reshape(input_dims=None, output_dims=None, num_qubits=None)">
Return a shallow copy with reshaped input and output subsystem dimensions.
**Parameters**
* **input\_dims** (*None or tuple*) new subsystem input dimensions. If None the original input dims will be preserved \[Default: None].
* **output\_dims** (*None or tuple*) new subsystem output dimensions. If None the original output dims will be preserved \[Default: None].
* **num\_qubits** (*None or int*) reshape to an N-qubit operator \[Default: None].
**Returns**
returns self with reshaped input and output dimensions.
**Return type**
BaseOperator
**Raises**
**QiskitError** if combined size of all subsystem input dimension or subsystem output dimensions is not constant.
</Function>
### reverse\_qargs
<Function id="qiskit.quantum_info.Operator.reverse_qargs" signature="Operator.reverse_qargs()">
Return an Operator with reversed subsystem ordering.
For a tensor product operator this is equivalent to reversing the order of tensor product subsystems. For an operator $A = A_{n-1} \otimes ... \otimes A_0$ the returned operator will be $A_0 \otimes ... \otimes A_{n-1}$.
**Returns**
the operator with reversed subsystem order.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
</Function>
### tensor
<Function id="qiskit.quantum_info.Operator.tensor" signature="Operator.tensor(other)">
Return the tensor product with another Operator.
**Parameters**
**other** ([*Operator*](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")) a Operator object.
**Returns**
**the tensor product $a \otimes b$, where $a$**
is the current Operator, and $b$ is the other Operator.
**Return type**
[Operator](qiskit.quantum_info.Operator "qiskit.quantum_info.Operator")
<Admonition title="Note" type="note">
The tensor product can be obtained using the `^` binary operator. Hence `a.tensor(b)` is equivalent to `a ^ b`.
</Admonition>
</Function>
### to\_instruction
<Function id="qiskit.quantum_info.Operator.to_instruction" signature="Operator.to_instruction()">
Convert to a UnitaryGate instruction.
</Function>
### to\_operator
<Function id="qiskit.quantum_info.Operator.to_operator" signature="Operator.to_operator()">
Convert operator to matrix operator class
</Function>
### transpose
<Function id="qiskit.quantum_info.Operator.transpose" signature="Operator.transpose()">
Return the transpose of the Operator.
</Function>
## Attributes
### atol
<Attribute id="qiskit.quantum_info.Operator.atol" attributeValue="1e-08" />
### data
<Attribute id="qiskit.quantum_info.Operator.data">
Return data.
</Attribute>
### dim
<Attribute id="qiskit.quantum_info.Operator.dim">
Return tuple (input\_shape, output\_shape).
</Attribute>
### num\_qubits
<Attribute id="qiskit.quantum_info.Operator.num_qubits">
Return the number of qubits if a N-qubit operator or None otherwise.
</Attribute>
### qargs
<Attribute id="qiskit.quantum_info.Operator.qargs">
Return the qargs for the operator.
</Attribute>
### rtol
<Attribute id="qiskit.quantum_info.Operator.rtol" attributeValue="1e-05" />
### settings
<Attribute id="qiskit.quantum_info.Operator.settings">
Return operator settings.
</Attribute>
</Class>