157 lines
8.2 KiB
Plaintext
157 lines
8.2 KiB
Plaintext
---
|
||
title: Gradient
|
||
description: API reference for qiskit.opflow.gradients.Gradient
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.opflow.gradients.Gradient
|
||
---
|
||
|
||
# qiskit.opflow\.gradients.Gradient
|
||
|
||
<Class id="qiskit.opflow.gradients.Gradient" isDedicatedPage={true} github="https://github.com/qiskit/qiskit/tree/stable/0.17/qiskit/opflow/gradients/gradient.py" signature="Gradient(grad_method='param_shift', **kwargs)" modifiers="class">
|
||
Convert an operator expression to the first-order gradient.
|
||
|
||
**Parameters**
|
||
|
||
* **grad\_method** (`Union`\[`str`, `CircuitGradient`]) – The method used to compute the state/probability gradient. Can be either `'param_shift'` or `'lin_comb'` or `'fin_diff'`. Ignored for gradients w\.r.t observable parameters.
|
||
* **kwargs** (*dict*) – Optional parameters for a CircuitGradient
|
||
|
||
**Raises**
|
||
|
||
**ValueError** – If method != `fin_diff` and `epsilon` is not None.
|
||
|
||
### \_\_init\_\_
|
||
|
||
<Function id="qiskit.opflow.gradients.Gradient.__init__" signature="__init__(grad_method='param_shift', **kwargs)">
|
||
**Parameters**
|
||
|
||
* **grad\_method** (`Union`\[`str`, `CircuitGradient`]) – The method used to compute the state/probability gradient. Can be either `'param_shift'` or `'lin_comb'` or `'fin_diff'`. Ignored for gradients w\.r.t observable parameters.
|
||
* **kwargs** (*dict*) – Optional parameters for a CircuitGradient
|
||
|
||
**Raises**
|
||
|
||
**ValueError** – If method != `fin_diff` and `epsilon` is not None.
|
||
</Function>
|
||
|
||
## Methods
|
||
|
||
| | |
|
||
| --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------- |
|
||
| [`__init__`](#qiskit.opflow.gradients.Gradient.__init__ "qiskit.opflow.gradients.Gradient.__init__")(\[grad\_method]) | **type grad\_method**`Union`\[`str`, `CircuitGradient`] |
|
||
| [`convert`](#qiskit.opflow.gradients.Gradient.convert "qiskit.opflow.gradients.Gradient.convert")(operator\[, params]) | **type operator**`OperatorBase` |
|
||
| [`get_gradient`](#qiskit.opflow.gradients.Gradient.get_gradient "qiskit.opflow.gradients.Gradient.get_gradient")(operator, params) | Get the gradient for the given operator w\.r.t. |
|
||
| [`gradient_wrapper`](#qiskit.opflow.gradients.Gradient.gradient_wrapper "qiskit.opflow.gradients.Gradient.gradient_wrapper")(operator, bind\_params\[, …]) | Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. |
|
||
| [`parameter_expression_grad`](#qiskit.opflow.gradients.Gradient.parameter_expression_grad "qiskit.opflow.gradients.Gradient.parameter_expression_grad")(param\_expr, param) | Get the derivative of a parameter expression w\.r.t. |
|
||
|
||
## Attributes
|
||
|
||
| | |
|
||
| ------------------------------------------------------------------------------------------------------------- | -------------------------- |
|
||
| [`grad_method`](#qiskit.opflow.gradients.Gradient.grad_method "qiskit.opflow.gradients.Gradient.grad_method") | Returns `CircuitGradient`. |
|
||
|
||
### convert
|
||
|
||
<Function id="qiskit.opflow.gradients.Gradient.convert" signature="convert(operator, params=None)">
|
||
**Parameters**
|
||
|
||
* **operator** (`OperatorBase`) – The operator we are taking the gradient of.
|
||
* **params** (`Union`\[`ParameterVector`, `ParameterExpression`, `List`\[`ParameterExpression`], `None`]) – The parameters we are taking the gradient with respect to. If not explicitly passed, they are inferred from the operator and sorted by name.
|
||
|
||
**Return type**
|
||
|
||
`OperatorBase`
|
||
|
||
**Returns**
|
||
|
||
An operator whose evaluation yields the Gradient.
|
||
|
||
**Raises**
|
||
|
||
* **ValueError** – If `params` contains a parameter not present in `operator`.
|
||
* **ValueError** – If `operator` is not parameterized.
|
||
</Function>
|
||
|
||
### get\_gradient
|
||
|
||
<Function id="qiskit.opflow.gradients.Gradient.get_gradient" signature="get_gradient(operator, params)">
|
||
Get the gradient for the given operator w\.r.t. the given parameters
|
||
|
||
**Parameters**
|
||
|
||
* **operator** (`OperatorBase`) – Operator w\.r.t. which we take the gradient.
|
||
* **params** (`Union`\[`ParameterExpression`, `ParameterVector`, `List`\[`ParameterExpression`]]) – Parameters w\.r.t. which we compute the gradient.
|
||
|
||
**Return type**
|
||
|
||
`OperatorBase`
|
||
|
||
**Returns**
|
||
|
||
Operator which represents the gradient w\.r.t. the given params.
|
||
|
||
**Raises**
|
||
|
||
* **ValueError** – If `params` contains a parameter not present in `operator`.
|
||
* [**OpflowError**](qiskit.opflow.OpflowError "qiskit.opflow.OpflowError") – If the coefficient of the operator could not be reduced to 1.
|
||
* [**OpflowError**](qiskit.opflow.OpflowError "qiskit.opflow.OpflowError") – If the differentiation of a combo\_fn requires JAX but the package is not installed.
|
||
* **TypeError** – If the operator does not include a StateFn given by a quantum circuit
|
||
* **Exception** – Unintended code is reached
|
||
* [**MissingOptionalLibraryError**](qiskit.aqua.MissingOptionalLibraryError "qiskit.aqua.MissingOptionalLibraryError") – jax not installed
|
||
</Function>
|
||
|
||
### grad\_method
|
||
|
||
<Attribute id="qiskit.opflow.gradients.Gradient.grad_method">
|
||
Returns `CircuitGradient`.
|
||
|
||
**Return type**
|
||
|
||
`CircuitGradient`
|
||
|
||
**Returns**
|
||
|
||
`CircuitGradient`.
|
||
</Attribute>
|
||
|
||
### gradient\_wrapper
|
||
|
||
<Function id="qiskit.opflow.gradients.Gradient.gradient_wrapper" signature="gradient_wrapper(operator, bind_params, grad_params=None, backend=None)">
|
||
Get a callable function which provides the respective gradient, Hessian or QFI for given parameter values. This callable can be used as gradient function for optimizers.
|
||
|
||
**Parameters**
|
||
|
||
* **operator** (`OperatorBase`) – The operator for which we want to get the gradient, Hessian or QFI.
|
||
* **bind\_params** (`Union`\[`ParameterExpression`, `ParameterVector`, `List`\[`ParameterExpression`]]) – The operator parameters to which the parameter values are assigned.
|
||
* **grad\_params** (`Union`\[`ParameterExpression`, `ParameterVector`, `List`\[`ParameterExpression`], `Tuple`\[`ParameterExpression`, `ParameterExpression`], `List`\[`Tuple`\[`ParameterExpression`, `ParameterExpression`]], `None`]) – The parameters with respect to which we are taking the gradient, Hessian or QFI. If grad\_params = None, then grad\_params = bind\_params
|
||
* **backend** (`Union`\[`BaseBackend`, `QuantumInstance`, `None`]) – The quantum backend or QuantumInstance to use to evaluate the gradient, Hessian or QFI.
|
||
|
||
**Returns**
|
||
|
||
Function to compute a gradient, Hessian or QFI. The function takes an iterable as argument which holds the parameter values.
|
||
|
||
**Return type**
|
||
|
||
callable(param\_values)
|
||
</Function>
|
||
|
||
### parameter\_expression\_grad
|
||
|
||
<Function id="qiskit.opflow.gradients.Gradient.parameter_expression_grad" signature="parameter_expression_grad(param_expr, param)" modifiers="static">
|
||
Get the derivative of a parameter expression w\.r.t. the given parameter.
|
||
|
||
**Parameters**
|
||
|
||
* **param\_expr** (`ParameterExpression`) – The Parameter Expression for which we compute the derivative
|
||
* **param** (`ParameterExpression`) – Parameter w\.r.t. which we want to take the derivative
|
||
|
||
**Return type**
|
||
|
||
`Union`\[`ParameterExpression`, `float`]
|
||
|
||
**Returns**
|
||
|
||
ParameterExpression representing the gradient of param\_expr w\.r.t. param
|
||
</Function>
|
||
</Class>
|
||
|