1162 lines
629 KiB
Plaintext
1162 lines
629 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"attachments": {},
|
||
"cell_type": "markdown",
|
||
"id": "aed5a4ec-3fb1-46d3-85eb-65f2d80d8279",
|
||
"metadata": {},
|
||
"source": [
|
||
"{/* cspell:ignore fontsize */}\n",
|
||
"\n",
|
||
"# AI Transpiler Introduction\n",
|
||
"*Estimated QPU usage: None (NOTE: no execution was done in this notebook as notebook is focused on the transpilation process)*\n",
|
||
"\n",
|
||
"## Background\n",
|
||
"\n",
|
||
"The **Qiskit AI-powered transpiler service (QTS)** introduces machine learning-based optimizations in both **routing** and **synthesis** passes. These AI modes have been designed to tackle the limitations of traditional transpilation, particularly for **large-scale circuits** and **complex hardware topologies**.\n",
|
||
"\n",
|
||
"**Key Features of the AI-Powered Transpiler**:\n",
|
||
"- **Routing Passes**: AI-powered routing can dynamically adjust qubit paths based on the specific circuit and backend, reducing the need for excessive SWAP gates.\n",
|
||
" - `AIRouting`: Layout selection and circuit routing\n",
|
||
"\n",
|
||
"- **Synthesis Passes**: AI techniques optimize the decomposition of multi-qubit gates, minimizing the number of 2-qubit gates, which are typically more error-prone.\n",
|
||
" - `AICliffordSynthesis`: Clifford gate synthesis\n",
|
||
" - `AILinearFunctionSynthesis`: Linear function circuit synthesis\n",
|
||
" - `AIPermutationSynthesis`: Permutation circuit synthesis\n",
|
||
" - `AIPauliNetworkSynthesis`: Pauli Network circuit synthesis (only available in the Qiskit Transpiler Service, not in local environment)\n",
|
||
"\n",
|
||
"**Comparison with Traditional Transpilation**: The standard Qiskit transpiler is a robust tool that can handle a broad spectrum of quantum circuits effectively. However, when circuits grow larger in scale or hardware configurations become more complex, the **Qiskit AI-powered transpiler service (QTS)** can deliver additional optimization gains. By leveraging **learned models** for routing and synthesis, QTS further refines circuit layouts and reduces overhead for challenging or large-scale quantum tasks.\n",
|
||
"\n",
|
||
"\n",
|
||
"In this tutorial, we will evaluate the AI modes using **both routing and synthesis** passes, comparing the results to traditional transpilation to highlight where AI offers performance gains.\n",
|
||
"\n",
|
||
"For more information on the details of QTS, please refer to the [documentation](https://docs.quantum.ibm.com/guides/ai-transpiler-passes).\n",
|
||
"\n",
|
||
"\n",
|
||
"### Why Use AI for Quantum Circuit Transpilation?\n",
|
||
"\n",
|
||
"As quantum circuits grow in size and complexity, traditional transpilation methods struggle to optimize layouts and reduce gate counts efficiently. Larger circuits, particularly those involving hundreds of qubits, impose significant challenges on routing and synthesis due to device constraints, limited connectivity, and qubit error rates.\n",
|
||
"\n",
|
||
"This is where **AI-powered transpilation** offers a potential solution. By leveraging machine learning techniques, the AI-powered transpiler in Qiskit can make smarter decisions about **qubit routing** and **gate synthesis**, leading to better optimization of large-scale quantum circuits.\n",
|
||
"\n",
|
||
"### Brief Benchmarking Results\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"In benchmarking tests, the **Qiskit AI-powered transpiler service (QTS)** consistently produced **shallower, higher-quality circuits** compared to the standard Qiskit transpiler. For these tests, we used **Qiskit’s default pass manager strategy**—configured via the [`generate_preset_passmanager`](https://docs.quantum.ibm.com/api/qiskit/transpiler_preset). While this default strategy is often effective, it can struggle with larger or more complex circuits. By contrast, QTS’s AI-powered passes achieved an **average 24% reduction** in 2-qubit gate counts and a **36% reduction** in circuit depth for large circuits (100+ qubits) when transpiling to the **heavy hex topology** of IBM Quantum hardware. For more information on these benchmarks, please refer to the following blog post [\\[1\\]](#references).\n",
|
||
"\n",
|
||
"In this notebook, we will explore the **key benefits** of Qiskit AI-powered transpiler service and how it compares to traditional methods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "0d8375e2-081b-49a6-9147-b5bab1e90e13",
|
||
"metadata": {
|
||
"tags": [
|
||
"remove-cell"
|
||
]
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# This cell is hidden from users;\n",
|
||
"# it just disables a linting rule.\n",
|
||
"# ruff: noqa: F811"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "67893eb6-4260-4aef-b9af-cde3ad2440ed",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Requirements\n",
|
||
"\n",
|
||
"Before starting this tutorial, ensure that you have the following installed:\n",
|
||
"\n",
|
||
"* Qiskit SDK 1.0 or later, with visualization support (`pip install 'qiskit[visualization]'`)\n",
|
||
"* Qiskit Runtime (`pip install qiskit-ibm-runtime`) 0.22 or later\n",
|
||
"* Qiskit IBM Transpiler (`pip install qiskit-ibm-transpiler`)\n",
|
||
"* Qiskit IBM AI Local Transpiler (`pip install qiskit_ibm_ai_local_transpiler`)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3686c322-632a-4c27-949b-c192ba63c7ea",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Setup"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "229ddedf-d9d9-415e-b421-6d8160ae1c3e",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from qiskit import QuantumCircuit\n",
|
||
"from qiskit.circuit.library import EfficientSU2, QuantumVolume, QFT\n",
|
||
"from qiskit.transpiler import PassManager\n",
|
||
"from qiskit.circuit.random import random_circuit, random_clifford_circuit\n",
|
||
"from qiskit.transpiler import generate_preset_pass_manager, CouplingMap\n",
|
||
"from qiskit_ibm_transpiler.transpiler_service import TranspilerService\n",
|
||
"from qiskit_ibm_transpiler.ai.collection import CollectPermutations\n",
|
||
"from qiskit_ibm_transpiler.ai.synthesis import AIPermutationSynthesis\n",
|
||
"from qiskit.circuit.library import Permutation\n",
|
||
"from qiskit.synthesis.permutation import (\n",
|
||
" synth_permutation_acg,\n",
|
||
" synth_permutation_depth_lnn_kms,\n",
|
||
" synth_permutation_basic,\n",
|
||
")\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import pandas as pd\n",
|
||
"import numpy as np\n",
|
||
"import time\n",
|
||
"\n",
|
||
"\n",
|
||
"# Used for generating permutation circuits in part 2 for comparison\n",
|
||
"def generate_permutation_circuit(width, pattern):\n",
|
||
" circuit = QuantumCircuit(width)\n",
|
||
" circuit.append(\n",
|
||
" Permutation(num_qubits=width, pattern=pattern),\n",
|
||
" qargs=range(width),\n",
|
||
" )\n",
|
||
" return circuit\n",
|
||
"\n",
|
||
"\n",
|
||
"def analyze_transpilation(\n",
|
||
" results, circuit, pattern, pattern_id, coupling_map\n",
|
||
"):\n",
|
||
" # AI Pass Manager\n",
|
||
" pm_ai = PassManager(\n",
|
||
" [\n",
|
||
" CollectPermutations(\n",
|
||
" do_commutative_analysis=True, max_block_size=27\n",
|
||
" ),\n",
|
||
" AIPermutationSynthesis(coupling_map=coupling_map),\n",
|
||
" ]\n",
|
||
" )\n",
|
||
" start = time.time()\n",
|
||
" qc_ai = pm_ai.run(circuit).decompose(reps=3)\n",
|
||
" ai_time = time.time() - start\n",
|
||
" results.append(\n",
|
||
" {\n",
|
||
" \"Pattern\": pattern_id,\n",
|
||
" \"Method\": \"AI\",\n",
|
||
" \"Depth\": qc_ai.depth(),\n",
|
||
" \"Gates(2q)\": qc_ai.size(),\n",
|
||
" \"Time (s)\": ai_time,\n",
|
||
" }\n",
|
||
" )\n",
|
||
"\n",
|
||
" # Non-AI Pass Manager\n",
|
||
" pm_no_ai = generate_preset_pass_manager(\n",
|
||
" coupling_map=coupling_map, optimization_level=1\n",
|
||
" )\n",
|
||
"\n",
|
||
" # ACG Method\n",
|
||
" qc_acg = synth_permutation_acg(pattern)\n",
|
||
" start = time.time()\n",
|
||
" qc_acg = pm_no_ai.run(qc_acg).decompose(reps=3)\n",
|
||
" acg_time = time.time() - start\n",
|
||
" results.append(\n",
|
||
" {\n",
|
||
" \"Pattern\": pattern_id,\n",
|
||
" \"Method\": \"ACG\",\n",
|
||
" \"Depth\": qc_acg.depth(),\n",
|
||
" \"Gates(2q)\": qc_acg.size(),\n",
|
||
" \"Time (s)\": acg_time,\n",
|
||
" }\n",
|
||
" )\n",
|
||
"\n",
|
||
" # Depth-LNN-KMS Method\n",
|
||
" qc_depth_lnn_kms = synth_permutation_depth_lnn_kms(pattern)\n",
|
||
" start = time.time()\n",
|
||
" qc_depth_lnn_kms = pm_no_ai.run(qc_depth_lnn_kms).decompose(reps=3)\n",
|
||
" depth_lnn_time = time.time() - start\n",
|
||
" results.append(\n",
|
||
" {\n",
|
||
" \"Pattern\": pattern_id,\n",
|
||
" \"Method\": \"Depth-LNN-KMS\",\n",
|
||
" \"Depth\": qc_depth_lnn_kms.depth(),\n",
|
||
" \"Gates(2q)\": qc_depth_lnn_kms.size(),\n",
|
||
" \"Time (s)\": depth_lnn_time,\n",
|
||
" }\n",
|
||
" )\n",
|
||
"\n",
|
||
" # Basic Method\n",
|
||
" qc_basic = synth_permutation_basic(pattern)\n",
|
||
" start = time.time()\n",
|
||
" qc_basic = pm_no_ai.run(qc_basic).decompose(reps=3)\n",
|
||
" basic_time = time.time() - start\n",
|
||
" results.append(\n",
|
||
" {\n",
|
||
" \"Pattern\": pattern_id,\n",
|
||
" \"Method\": \"Basic\",\n",
|
||
" \"Depth\": qc_basic.depth(),\n",
|
||
" \"Gates(2q)\": qc_basic.size(),\n",
|
||
" \"Time (s)\": basic_time,\n",
|
||
" }\n",
|
||
" )\n",
|
||
"\n",
|
||
"\n",
|
||
"# Used for benchmarking the circuits in part 3 for comparison\n",
|
||
"def run_transpilation(qc, no_ai_service, ai_service):\n",
|
||
" # Standard transpilation\n",
|
||
" time_start = time.time()\n",
|
||
" qc_tr_no_ai = no_ai_service.run(qc)\n",
|
||
" time_end = time.time()\n",
|
||
"\n",
|
||
" time_no_ai = time_end - time_start\n",
|
||
" depth_no_ai = qc_tr_no_ai.depth(lambda x: x.operation.num_qubits == 2)\n",
|
||
" gate_count_no_ai = qc_tr_no_ai.size()\n",
|
||
"\n",
|
||
" # AI transpilation\n",
|
||
" time_start = time.time()\n",
|
||
" qc_tr_ai = ai_service.run(qc)\n",
|
||
" time_end = time.time()\n",
|
||
"\n",
|
||
" time_ai = time_end - time_start\n",
|
||
" depth_ai = qc_tr_ai.depth(lambda x: x.operation.num_qubits == 2)\n",
|
||
" gate_count_ai = qc_tr_ai.size()\n",
|
||
"\n",
|
||
" return {\n",
|
||
" \"depth_no_ai\": depth_no_ai,\n",
|
||
" \"gate_count_no_ai\": gate_count_no_ai,\n",
|
||
" \"time_no_ai\": time_no_ai,\n",
|
||
" \"depth_ai\": depth_ai,\n",
|
||
" \"gate_count_ai\": gate_count_ai,\n",
|
||
" \"time_ai\": time_ai,\n",
|
||
" }\n",
|
||
"\n",
|
||
"\n",
|
||
"# Creates a Bernstein-Vazirani circuit given the number of qubits\n",
|
||
"def create_bv_circuit(num_qubits):\n",
|
||
" qc = QuantumCircuit(num_qubits, num_qubits - 1)\n",
|
||
" qc.x(num_qubits - 1)\n",
|
||
" qc.h(qc.qubits)\n",
|
||
" for i in range(num_qubits - 1):\n",
|
||
" qc.cx(i, num_qubits - 1)\n",
|
||
" qc.h(qc.qubits[:-1])\n",
|
||
" return qc"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b4ec9de1-5b6c-4f32-ad12-41dc674075e1",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Part I. Qiskit Patterns\n",
|
||
"\n",
|
||
"Let's now see how to use the **AI transpiler service** with a simple quantum circuit and using Qiskit patterns. The key is creating a **TranspilerService instance** and specifying the use of AI modes during transpilation."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "72976be5-bc85-47bf-a3f4-c7a453350f9f",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 1: Map classical inputs to a quantum problem\n",
|
||
"\n",
|
||
"In this section, we will test the AI transpiler on the `EfficientSU2` circuit, a widely used hardware-efficient ansatz. This circuit is particularly relevant for variational quantum algorithms (e.g., VQE) and quantum machine learning tasks, making it an ideal test case for assessing transpilation performance.\n",
|
||
"\n",
|
||
"The `EfficientSU2` circuit consists of alternating layers of single-qubit rotations and entangling gates like CNOTs. These layers enable flexible exploration of the quantum state space while keeping the gate depth manageable, which is crucial for NISQ devices. By optimizing this circuit, we aim to reduce gate count, improve fidelity, and minimize noise. This makes it a strong candidate for testing the AI transpiler’s efficiency."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "e6daecfb-1cd9-4489-99b6-91fddbbe90c1",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArQAAAFvCAYAAAC7L1irAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABk2ElEQVR4nO3dd3wU1fo/8M+WlN0USC8ESEIChFCCdKQKKEUQuSJBQOBeBQXEgsQuole6UgWxoF8EIwgo1QIEJAIiIZSQBAIpwCZZyKaQXrb8/uBnNDch7Ibdnczm8369eHl35syZZ3Oz53kye+aMxGAwGEBEREREJFJSoQMgIiIiIrofLGiJiIiISNRY0BIRERGRqLGgJSIiIiJRY0FLRERERKLGgpaIiIiIRI0FLRERERGJGgtaIiIiIhI1FrREREREJGosaImIiIhI1FjQEhEREZGosaAlIiIiIlFjQUtEREREosaCloiIiIhEjQUtEREREYkaC1oiIiIiEjUWtEREREQkaixoiYiIiEjUWNASERERkaixoCUiIiIiUWNBS0RERESixoKWiIiIiESNBS0RERERiRoLWiIiIiISNRa0RERERCRqLGiJiIiISNRY0BIRERGRqLGgJSIiIiJRY0FLRERERKLGgpaIiIiIRI0FLRERERGJGgtaIiIiIhI1FrREREREJGosaImIiIhI1FjQEhEREZGosaAlIiIiIlFjQUtEREREoiYXOgCqm8FggLasQugwjCZXOEAikZitP4MBKNeZrTurcJQBZvwRUBMntjEAMO84wDGAiEzBgraR0pZVYGubyUKHYbRJqVtgp3Q0W3/lOqD/AbN1ZxWxIwEFP1FkJmIbAwDzjgMcA4jIFJxyQERERESixoKWiIiIiESNBS0RERERiRoLWiIiIiISNU5fJ2oCDAYD1Joy5BdWQKszwNFehlZ+TnB04BBARETix2xGZKPUmlJ8vfsKYuPVOJOUi5u5ZTX2y+USdAxxQ7cwT4wbGohH+raATMYvbYiISHxY0BLZmDNJGiz76gJ2Hc6AVmu4azut1oBzl/Jw7lIevvwhBUEtXPD8k+0xZ2IHKBw5NBARkXgwa9kQ3z7hGL5rYY1tVSVlKEzLRuqOY0j+8gAMOr1A0VleUcJRpLw9uMY2qaMTHPzbwmPQFHg/+gIkMtv9lS+v0OK9DWex/OsE6PV3L2TvJj2zCFErT+PLH1Lw1Qf90aeLjwWiJEvjONC0xwGipoqfahuUtisWqph4QCKBwqs5QsYPRM+F09AstAVOzt8odHgW5zZgIpp1GwkYDKjKVyP36GaoNr2CclUyWs/+TOjwLCL1RiHGzD2IpNSC++7rcsZt9Ju6H+/MiMCC57ua9QlwZD0cB5reOEDUlLGgtUG5CelI2xlb/fry17/g8djVaPvUEMQviUZFbqGA0VmeMvgBeAz6+wlLXiNnIXFWe2gOfgH/yR/CrpmXgNGZ36X0Ajz0zE/Izik1W596vQELPz2L3NsVWPN6bxa1IsRxoGmNA0RNHe8AaQK0ZRXIib8CiVQK19ZN72tkmaMTnNr1BgwGVKhThQ7HrFTqEgyb8bNZi9l/WhedhHfWnbFI32RdHAdsdxwgIha0TYZL4J0EVlFQLHAkwvgrgcmd3QWOxHwMBgP+814sVDdLjD7mdPQY3DgYidPRY4w+5sPPz+Po6eyGhEiNDMcB2xsHiOgOTjmwQXKFPRzcXarnzrV7+mF4dApGTvwVFKbZfmGiryiFtlADg8EAbb4aOT9/irK0s1CG9oRji7ZCh2c2X+5Kwa8nMk06xtdTiQAfJ5PP9e93Y3Fh5+NwVtqZfCwJg+NA0xgHiOiOJlHQajQaLFu2DLt27YJKpYKXlxfGjRuHRYsWYe7cudi0aRPWrl2LOXPmCB2qWXSNikTXqMga2zL2/4FTb3whUETWlR29ANnRC2psa95nHFrN/ESgiMyvsLgS8z46ZbXzpWcWYemmC/hgTjerndPcrmcX45fjKhQUVUKpkKN7B0/07ORls/ODOQ7Y/jhARH+z+YL23LlzGDFiBNRqNZycnNChQwdkZWVhzZo1SE1NRV5eHgAgIiJC2EDN6PI3vyJj70lI7eRwa98KHWePhZOfB3QVldVtBm54GZBK8NvMj6u32Td3xtijKxH3/mak7Yqtq2tR8HxkBtz6jodBV4WyawlQ71qKSo0KEjvH6jZFibG4+v6IWscatJUw6HXo9oPOmiGb7Jt9V1FYXGXVc278/hLenhEBB3uZVc97v/44fwtLNp3H3t9u1FrOrGt7D7w4KRxPjwmxucKW44DtjwNE9DebnkOr0WgwevRoqNVqzJs3D9nZ2YiPj4darcbSpUuxf/9+nD59GhKJBJ07dxY6XLMpTFMjOzYBmTFncXH9bhyeugSeEW3QZ+nM6jYn3/gc3j3aIWjsg9Xbei96Brf+vCTqJAYADn6hcI0YimbdRsB3XBRC3tqL0quncX3Dc9VtXML7o+u24hr/wtenQO7iCf+nPhAw+nszGAxYvy3Z6ufNyS/HzoMZVj/v/fh2fyr6T9uH3Ueu17k279lLuZj2zjHMWPh7g9bubcw4Dtj2OEBENdl0QTt37lyoVCrMmTMHK1asgIuLS/W+qKgodOnSBVqtFoGBgXB1dRUwUsvKibuM1B3HEDT2QXh1bwcAqCwoxol5G9Drw2eg8HFD61G94ds3HCdfs731KZ3D+sJ90BTk/74Nxckn6myjr6pA2pJxcO7QD37j37RyhKa5eCXfLOvNNsR3P6cJct6GOHgyE0+//Ru0unsXql/sSsEbq09bISrhcBywrXGAiGqy2YI2OTkZ27Ztg6enJxYvXlxnm27d7swH7NKlS43t6enpGDNmDFxcXODm5oann34aubm5Fo/Zks6v3AG9Voeu8ydUb8s8cg4Ze09gwLq56L3kWZyYtwEV+bZ597PfhHcAqQxZ375b5/7r65+DvqocgS9+bd3AGiAuSdMkz20Kg8GAqJV/QmdEMfuXjzZfhEpt/IoRYsRxwHbGASKqyWYL2ujoaOj1ekyaNAnOzs51tlEoFABqFrRFRUUYPHgwVCoVoqOj8dlnnyE2NhaPPvoo9HrxPi6yKEON9N3H4T+gM7x7hVVvj1u4GS5BvsiMOQvV4XgBI7QsR78QuPePRNGFwyhKrPlV6q29a3A7bh/avPEjpA5KgSI03hkBi8rsnFKLrXlrTn9cuIVzl/JMOkanM+DznZctFFHjwHHAdsYBIqrJZgvamJgYAMDgwYPv2kalUgGoWdB+9tlnyMzMxI8//ohHH30U48ePx7fffos//vgDe/bssWzQFnZh9U7odTWvzmjLKlB87Rbyk68LGJl1+I5/C5BKa1ydKbpwBKrNryE46ns4+AQKF5wJLmfcbtLnN0b0Tw2bGhH9s+0vuM9xwDbGASKqSWIwGGzrToj/r2XLllCpVDh79mydKxhotVr4+flBo9EgNTUVwcHBAP4ugI8cOVKjfZs2bTBo0CB8+eWXJsfSvXt3qNVqk46xM0ixQN/T5HM1xPCdC3Hj4Bkkftrwgn2h9E9UScx3BVtir4DPqitm668uFTczcOnVHvCLXADvUfe/ZNvNl0JhqCwzQ2T1y3H5NyrtWte573T0GPh63v3qkq+nAnKZFFqdHmpN/bGqNaXoMbH274RH0TdwrLpqWtBWluf0BMocOpl8nERfDv+CuqcoWZs1xwCg8Y0D1hgDAPOOA9YaA4hsla+vL+Li4hp0rM0u21VScmcuXFlZ3YPLtm3boNFo4OLigqCgoOrtSUlJGD9+fK324eHhSEpKalAsarUamZmmLYBvL5EBIno6ZVZ2FioN5lviRuqgtOjb11eUInXxWDTrOcYsxSwAZGVlQV9hha/jg8qBuzzfwNgHJ8hl0gY9YAEAcjU5QLFpv89WF1ACOJh+mEFfZfJn1VLENgYA5h0HLD0GAOYfB6w2BhBRLTZb0Pr6+iI/Px/x8fHo06dPjX3Z2dmYP38+AKBz58411p/Mz89H8+bNa/Xn7u6Oy5cbNr/O19fX5GPsDFJARFN2/f38zX6F1pLyT+xEWfp5lGemIP/3bbX2h69Lgr1XK5P69Pf3t8rVmVx7oPwu+9Sa+pOpqVdo6+Lp4QKHZi2MCVUwhQ5lKGrAcfaGfHi1aBzvTWxjAGDeccDSYwBg/nHAWmMAka1qSL30F5staIcOHYrk5GQsXboUw4YNQ9u2dx51ePr0aUyZMgUazZ0ba6zxQIWGXD6vKi3H1jaTLRBNbT//a8G9G91DypUU2Ckd793QSGVaoP8Bs3VXi8fgKfAYPMWsfaakXIHCCp+ot9bEYdEX5+vcV9cUgX+6cTASAT5OUGvK0HLYdyafWyIB0pNiG/0jcG+oixE4fLvJa8t+ungSpo9daKGoTGPNMQBofOOApccAwPzjgLXGACKqzWZvCouKioKHhwdu3LiB8PBwdOrUCaGhoejZsyeCg4Px0EMPAai9ZJebmxsKCgpq9ZeXlwd3d3drhE5Ur+7hnoKdu31Q80ZfzAJAS19njBlk2hV2N1d7THgk2EIRERGRJdlsQRsQEIDY2FiMGjUKjo6OyMjIgLu7OzZu3Ij9+/cjJSUFQO2CNiwsrM65sklJSQgLC6u1ncjaenXyglBPae3TxVuYEzfA2tf7oIW3ccsvSaUSbP5wIJS8vEZEJEo2W9ACd4rTffv2oaioCEVFRTh16hRmzJiBkpISZGRkQCqVomPHjjWOefTRR/H7779XL+kFAKdOnUJqaipGjx5t7bdAVIu/txNG9AsQ5Nz/ebytIOdtiABfJxzdNAohrep/CqCjgww7PnoIjw407YouERE1HjZd0N5NYmIiDAYDQkNDoVTWvIIzY8YM+Pn54bHHHsO+ffuwY8cOTJw4ET179sRjjz0mUMRENc2aYP1vC7q0cxfVFVoACGnlivPfP44vF/bHA2EeNfZJpRIseK4rru4bj8eHBAoTIBERmUWTLGgTEhIA1J5uAACurq6IiYmBn58fIiMj8cwzz6Bv377Yt28fpNIm+eOiRmj4gwEIb9PcquecP61TjRVBxEKpkOPfj7dF3HePQX3kKXi737lpydfDEe/NegAtGrh8GRERNR5NcsJYfQUtcOchCvv27bNmSEQmkcmk+OqDAegzZS90Oss/G2Vk/wA8NbKNxc9jSRKJBD4eCtjJpdWviYjINrCgtSFuHVqj74rnYOesQIkqB8deWAu3ti0xdOubKEzNwq+RH6A8txAyhT0e/GgWPCPawKA3IH7xt7i2/w8AQPd3piDwsb7IS0hHzPRlAr8j05Smn8e1T56FvqwI9l6tEfjyNyi/nogr74+AY4t2CH3vV9g190bG6mkoPHcQ8mZeAADXLsMQMH05AED11Xzk/b4NyjYPIOTNHwV8N/fWo6MXoqZ1xuIv617Cqy5/rS17r/Vq/6mZiz0+e7cfC8BGytjPfUjkQwifMQrNQgMQ9/5mJH2+v7oPMY8Jxn7uNYc24eaelSi/kYyA6SvgM+al6j5sZUwgasqaZEEbExMjdAgW0W/VHBx/+RPkJWYgJPIh9Hj3aVz97ggKU7OwZ9j86nYdnxsDfWUVdvV9Ac4tvTHqwGKoT1xERX4x4j74BgWXb6DVCOs9ctNcMlZPQ+Dcr6AMjoDm0CaovnoVnkOmw7FFO3RYda5GW5/H59dIaH8JmL4cjq3CUXDqR6vEfL8WznoAF67kYf+xG0a1v9c6tf/L3k6K7csH82v5RszYz33uhVQcnfkxOr0wrlYfYh4TjP3cK9t0Q/D87VDvqPvRxrYyJhA1VZwUaiPcOwZBW1qOvMQMAEDq9qNo+XB3SO1r/80S+NiDuLz5VwBA8Y1bUJ9IRKsRvawZrtmVpp2FTOEMZXAEAMBj8FTc/nMPDNpKYQOzMDs7Kb5f8ZBFVj1wsJdhx0dD8HBfYVZUoHsz5XOfn3QNt69kAvraT/IS65hgyudeGdQFipZhkPBeCCKb1CSv0Noi51becGvfCmMOLq/eJlc4QOlb+2EQzi08UazKqX5dfOMWnFoIt1i/OVTcTEfZtQQkvRRRvU1fUYrK3Mw629/auxq5hzbB3qsV/Cf9tzohipHCUY4fVw/F66tOY9WWRBjMMKU2OMAF3ywaiL4RPvffGVmMKZ/7evsR6Zhg6ue+PrY0JhA1RSxobUjO2Ss4OPG/1a8jL34pYDTW5xTaC6ELf6l+fX6KV53t/Cd/CDs3P0ikUuSf/AFX3h+BjhuuQKZwtlaoZmdvJ8PH83tj3JBATH83FlevFza4rxee6oDFc7vDSQRPBCN+7o393NfHFscEoqaG373YiOJrN2tcUbFzVkCudESpOq9220wNnAP+HvSdW3qjJFNjlTgtxcEnGJWa69WvdaWF0JWXwN6jRa229h4tqr92dOvzOGQKV5RnXrZarJbU7wFfXNw1DlsWD0TfCOPXjHV1tsMLT3VA4g/jsOb1PixmRcKUz329/Yh0TDDlc18fWx4TiJoKFrQ2Ii8xA/oqHfwGdAYAtJ/2CNJ3H4e+Ulur7bW9J9Hu6YcB3Elcvn3Dcf3nP60ar7kpgyMgkdmh8NxBAEDOgfVw7zcBErl9rbaVmr+fAld8+Q9oi3Lh6BditVgtzcFehkmjQnB882hc3DUOn77zIJ79Vzt0D/eETHZnpQK5TIKR/QPw7syu2L16KDIPTcSa1/ugQxs3gaMnU5jyua+PWMcEUz739bH1MYGoKeCUAxtybPZq9Fs1G/ZLnkVRhhrH5qyBW7vaj/O8uH43Hlw5C+NOroNBp8epN79ARV6RABGbV9ArW5GxZjqub3geDn4hCHplC8quXazVLmP1NFTdvgmJVAapvQJtor6HzKmZABFbXniIG8JD/i5SA4ZGI/NWKXw8FNj/ySMCRkbmYuznPuTJQej62kTYN3dCq+E9Ef7cGByeugR5F9NFPSYY+7nXHP4aWVvfhq44HwWnfsTNH1cg5O29UAZ3bVJjApGtYkFrQwouXce+4a/ds522rAK/PbfSChFZlyKwE8I+jrtnu7YfHLJCNETWYezn/ur2o7i6/Wid+8Q8Jhj7ufccMg2eQ6bVuY9jApH4ccqBjdNVaeHg5oIxB5fD0cP1nu27vzMFnV54HBUFxVaIzvIkcntoC3OR9FIEqgpu3bO96qv5UO9YDLkTv3on8TL1c18fMY4Jpn7u68MxgUgcJAaDORb5IXOrKi3H1jaThQ7DaJNSt8BO6Wi2/sq0QP8DZuvOKmJHAopG/p3HX1MOWngroTo0UehwBCGWn4HYxgDAvOMAxwAiMgWv0BIRERGRqLGgJSIiIiJR45cjjZRc4YBJqVuEDsNocoWDWftzlN35+k5MHGVCR0C2RGxjAGDecYBjABGZggVtIyWRSMw6J1VsJBLORaOmjWMAxwAiMh6nHBARERGRqLGgJSIiIiJRY0FLRERERKLGgpaIiIiIRI0FLRERERGJGgtaIiIiIhI1FrREREREJGosaImIiIhI1FjQEhEREZGosaAlIiIiIlFjQUtEREREosaCloiIiIhEjQUtEREREYkaC1oiIiIiEjUWtEREREQkaixoiYiIiEjUWNASERERkajJhQ6A6mYwGKAtqxA6DKPJFQ6QSCRm689gAMp1ZuvOKhxlgBl/BERNmtjGQIDjIMBxkITDgraR0pZVYGubyUKHYbRJqVtgp3Q0W3/lOqD/AbN1ZxWxIwEFP1FEZiG2MRDgOAhwHCThcMoBEREREYkaC1oiIiIiEjUWtEREREQkaixoiYiIiEjUWNASERERkajxXkQislnlFVr8cSEHZ5I0iEvU4Lq6GLfyygAAmoJyvPvJGXTr4Im+Xbzh5a4QOFoiImooFrREZHPSVUX49PtkfPlDCnIL6l7LtKJSjw82ngMA2Mml+NfQQMyODMODXX3MupYoERFZHgtaIrIZpWVavLU2Dqu3JsJgMP64Kq0e3/2chu9+TsPgHn74cmF/BAW4WC5QIiIyKxa0NsS3TziG71pYY1tVSRkK07KRuuMYkr88AINOL1B0lleUcBQpbw+usU3q6AQH/7bwGDQF3o++AImMv/K26sS5m5j69jFcvV54X/0cOZ2NTv/aheWv9MRzT7bn1VqR4TjIcZCaJv5W26C0XbFQxcQDEgkUXs0RMn4gei6chmahLXBy/kahw7M4twET0azbSMBgQFW+GrlHN0O16RWUq5LRevZnQodHFvBjTAYmzD+CyirzFColZVrM+vAEUq7dxsfze7GoFSGOgxwHqWlhQWuDchPSkbYztvr15a9/weOxq9H2qSGIXxKNitz7u4LV2CmDH4DHoL8fmek1chYSZ7WH5uAX8J/8IeyaeQkYHZnb/mPXMf7VGGi1JswxMNKqLYmQSICPXmVRKzYcBzkOUtPCZbuaAG1ZBXLir0AilcK1tY/Q4VidzNEJTu16AwYDKtSpQodDZpR6oxBPvnrEIsXsX1Z+k4jNe65arH+yDo6DHAfJtrGgbSJcAu8M4BUFxQJHIoy/BnC5s7vAkZC56PUG/PvdWJSWa0067nT0GNw4GInT0WOMPubFZX8g82aJqSFSI8NxkOMg2a4mUdBqNBpERUUhJCQEjo6OaNmyJV588UWUlJTgP//5DyQSCdatWyd0mGYjV9jDwd0FDh6uaN6+FXotegYenYKRE38FhWnZQodncfqKUmgLNai6nYOyjARc/3Q2ytLOQhnaE44t2godHpnJxu8v4dgZtcnH+XoqEeDjBF9PpdHH3C6qxPP/PWHyuRobvd6A20WVKCisgF5vuavajQHHQY6D1LTY/Bzac+fOYcSIEVCr1XByckKHDh2QlZWFNWvWIDU1FXl5eQCAiIgIYQM1o65RkegaFVljW8b+P3DqjS8Eisi6sqMXIDt6QY1tzfuMQ6uZnwgUEZmbTqfHsq8uWPWce3+7jqTUfHRo42bV85rD5fQCbNh+CV/vuYLbRZUAABcnO0x5NASzJoQhPER87+leOA5yHKSmxaYLWo1Gg9GjR0OtVmPevHlYsGABXFzurC25bNkyvPbaa5DL5ZBIJOjcubPA0ZrP5W9+Rcbek5DayeHWvhU6zh4LJz8P6Coqq9sM3PAyIJXgt5kfV2+zb+6MsUdXIu79zUjbFVtX16Lg+cgMuPUdD4OuCmXXEqDetRSVGhUkdo7VbYoSY3H1/RG1jjVoK2HQ69DtB501QyYT/XxchYws639tvGH7Jax9o4/Vz9tQBoMBb689g0VfnK+1r6ikCuu3JWP9tmS8PCUcK+b1glRqOze+cRzkOEhNi01POZg7dy5UKhXmzJmDFStWVBezABAVFYUuXbpAq9UiMDAQrq6uAkZqXoVpamTHJiAz5iwurt+Nw1OXwDOiDfosnVnd5uQbn8O7RzsEjX2welvvRc/g1p+XRD2IA4CDXyhcI4aiWbcR8B0XhZC39qL06mlc3/BcdRuX8P7ouq24xr/w9SmQu3jC/6kPBIyejPH5zsuCnHfz3iuoqBRPkp//0Z91FrP/a+U3iZj94QkYTHkaRSPHcZDjIDUtNlvQJicnY9u2bfD09MTixYvrbNOtWzcAQJcuXaq3/VUA9+zZEw4ODjaxVE9O3GWk7jiGoLEPwqt7OwBAZUExTszbgF4fPgOFjxtaj+oN377hOPma7a3P6BzWF+6DpiD/920oTq57HqS+qgJpS8bBuUM/+I1/08oRkikMBgN+P3tTkHMXFlfh4tV8Qc5tqkN/ZOKjzReNbv/p95ew5+h1C0YkLI6DHAfJttlsQRsdHQ29Xo9JkybB2dm5zjYKhQJAzYL26tWr2LlzJ3x9fdGjRw+rxGoN51fugF6rQ9f5E6q3ZR45h4y9JzBg3Vz0XvIsTszbgIp827z712/CO4BUhqxv361z//X1z0FfVY7AF7+2bmBksuvZxcgtqBDs/GeSNIKd2xSffJfcgGOSLBBJ48FxkOMg2S6bLWhjYmIAAIMHD75rG5VKBaBmQTtgwABkZ2djz549GDp0qGWDtKKiDDXSdx+H/4DO8O4VVr09buFmuAT5IjPmLFSH4wWM0LIc/ULg3j8SRRcOoyix5leJt/auwe24fWjzxo+QOhh/5zsJ49zlPEHPfzY5V9DzGyPrVkmDrrYePJmF1Bu2+8ABjoMcB8l22exNYdeuXQMAtG7dus79Wq0Wx48fB1CzoJVKzV/jd+/eHWq1acsL2RmkWICeZo3jwuqdCBr7ILrOn4BfnngPwJ3Fxouv3UJ+8v191dg2tC2qJOZ7PrrEXgGfVVfM1h8A+I5/C3mx0cj69l20+/AIAKDowhGoNr+G0Hd/goNP4H3137ZtKAyVZWaI1HKym78CSJshW52NgIAAocNpkBL7LoDzuDr3nY4ec8/luHw9FdX/vXEw8q7t1JpS9Ji4p9b2/9vyPfZunFDHEY1HhTwQetfpDTq254CxUFSlmDki01liDAQ4DnIcpMbM19cXcXFxDTrWZgvakpI7i6CXldX9wdq2bRs0Gg1cXFwQFBRk0VjUajUyMzNNOsZeIgNMfJiN+mQivvZ74q77b1/JxOYAyyTirOwsVBrMd7OM1EFp6tuHS6dB6Lb77je1KFqG1bhrt+JmBtKWP4mAacvh0mlQwwL9h6ysLOgrSu+7H4ty0QFSQK/Tmfw72Wi4BQF1zyKqXmPWGHKZ1Oi2/1RWXtH4f3bOzYEG3ueal3cbKBT+/TVkDAQ4DnIcpKbKZgtaX19f5OfnIz4+Hn361FxmJzs7G/PnzwcAdO7c2eI3fvn6+pp8jJ1BCpjvD32L8/fzN/uVCUvSV5QidfFYNOs5Bt6j5pilT39//0Z/ZSJbJoMegFQmg1+LFkKH0yCl9s64221Zas29E6mvpwJymRRanR5qzd3//7pbXwpHO7g38p9dpUyJnAYe6+nmCAcX4d+f2MZAgOMgII5xkBqvhtRLf7HZgnbo0KFITk7G0qVLMWzYMLRte+fJKKdPn8aUKVOg0dy5scMaD1RoyOXzqtJybG0z2QLRWEbKlRTYKR3v3dBIZVqg/wGzdVdL/omdKEs/j/LMFOT/vq3W/vB1SbD3amVSnykpV6Bo5J+ogKHRyLxVCj9fP6guqoQOp0FOXbiF3pP31rmvrikC/+vGwUgE+DhBrSlDy2HfmXz+11+ejnefW2Pycdak0+kR+ugOpGcWmXScr6cC18/Ews5O+NsrxDYGAhwHAXGMg2SbbPbXLioqCt9++y1u3LiB8PBwtG/fHuXl5bh69SpGjBiBwMBA/PLLLzXmzzZVP/9rwb0b2RiPwVPgMXiK0GFQA3Ru6w6ZTAKdTpg1U7t18BDkvKaQyaR4bnx7vLbqtEnHzfhX+0ZRzAqB4yCRuNnsyBUQEIDY2FiMGjUKjo6OyMjIgLu7OzZu3Ij9+/cjJeXOTQ8saInEReEoR0cBH9XarYOnYOc2xbNPtENwgMu9G/5/AT5OmB0Zdu+GRESNkM1eoQWAsLAw7Nu3r9b24uJiZGRkQCqVomPHjgJERkT344lhgTgvwPJd/br63HMVhcbCzdUBP61/BENn/IQb6pJ62/p6KvDT+ofh7WHZOZtERJZis1do65OYmAiDwYDQ0FAolbWT044dO7Bjxw4kJSXVeN3QpSSIyLyeGdcOcrn1n+I3a4K4rmC2DWyGP7aMxjPj2kLhKKu138FehmmPheLU1jHoGOouQIREROZh01do7yYhIQHA3acbjB8/vs7XU6dOxddff23R2Ijo3nw9lXhiaBC++znNauf08VBg3NBAq53PXPy9nfD5e/2x/JWe2P5rOl5dcQpFpVo0c7ZD6oEn4dHcfDcxEREJpUleob1XQWswGOr8x2KWqPFY+nIPuDjZWe18q6J6wcG+9lVOsWju6oAZT7SHq7M9AMBZacdilohsBgtaG+LWoTVGHViMscdWYdi3b8HBwxW+fcIxOW0rxhxcDkePOyuth0Q+hMdiPsLTN7ahw7OjavTR/Z0peCJuAx76KkqIt3BfStPPI/nVnkicHYYr7w1H1e0cFCUcRfx4BZJeikBVwa3qtrcOrEfi7DAkzu2EpBe7QF9ZDgBQfTUfF/7TClcXjRXmTZDRWvk5Y8U88z9Jqi7jhgRiwvBgq5yLTGOOcU/sY6KxY5/m0CYkzu2EM4/LcXPPqlr9cFwkMWuSUw5iYmKEDsEi+q2ag+Mvf4K8xAyERD6EHu8+javfHUFhahb2DJtf3S73QiqOzvwYnV6o/fjQuA++QcHlG2g1wjqFgjllrJ6GwLlfQRkcAc2hTVB99So8h0yHY4t26LDqXHW7glO7kffbVrRf9gdkTs1QdTsHEtmdK30B05fDsVU4Ck79KMybIJM8+692+OV4JnYdzjD6mL8emGDMQxgAoLW/Mza83dfiD2ChhjHHuCf2MdHYsU/ZphuC52+HesfiWn1wXCSxa5JXaG2Re8cgaEvLkZeYAQBI3X4ULR/uDql97b9Z8pOu4faVTEAvssfw1KM07SxkCmcogyMAAB6Dp+L2n3tg0FbWaqv+YTn8IxdA5tQMAGDXzAsSmXi/Sm7KJBIJti4ZiIf7Gv9kqx4T96DlsO+MegiDv7cShz4bwbv/GylzjXtiHhNNGfuUQV2gaBkGibR26ue4SGLXJK/Q2iLnVt5wa98KYw4ur94mVzhA6ds07lyuuJmOsmsJSHoponqbvqIUlbm1n0lffiMJJVfjkPXdQhiqKuAx+Gl4j55rxWjJnBwd5NizZhimvv0btv2cbrZ+2wc1w4FPHkGQCWu5knU19XEPMG3sqw/HRRI7FrQ2JOfsFRyc+N/q15EXvxQwGutzCu2F0IW/VL8+P8WrznYGnRaVN9PRbtEx6ErycfnNgbD3DUbzHo9aK1QyMwd7GaKXDsaYga3xwpKTyLtd0eC+pFIJ5j3dEQtnPQCFI4fIxq6pj3uA8WNffTgukthxyoGNKL52E04t/n6CkZ2zAnKlI0rV1l98XggOPsGo1Fyvfq0rLYSuvAT2HrW/irb3agW3ARMhkckgd/VEs24jUXL5D2uGSxYgkUjw1Kg2SPxhHGZHhpm8AoJEAowe2AonNj+KZa/0ZDErAk193ANMG/vqw3GRxI4FrY3IS8yAvkoHvwGdAQDtpz2C9N3Hoa/UChyZdSiDIyCR2aHw3EEAQM6B9XDvNwESuX2ttu4DnkJh/M8AAH1FGYouHoUyyLZWvGjKfD2VWPdmX2QeisT6t/piZP8A+NxlDqyTQo4Hu/rgrWe7IO3Ak9izdhh6dfa2csTUUE193ANMG/vqw3GRxI6XIGzIsdmr0W/VbNgveRZFGWocm7MGbu1a1WoX8uQgdH1tIuybO6HV8J4If24MDk9dgryL5pt/KISgV7YiY810XN/wPBz8QhD0yhaUXbtYq53PY6/g2vqZSJzdAZBI4NbnX3B7cHwdPZKYuTjZ4/kJYXh+QhgMBgOybpXiWnYxyit0sLeTwtPNEaGtXCGT8e96MTPHuCf2MdHYsU9z+GtkbX0buuJ8FJz6ETd/XIGQt/dCGdyV4yKJHgtaG1Jw6Tr2DX/tnu2ubj+Kq9uPWj4gK1MEdkLYx/d+PLHU3hFBL/2fFSKixkIikaCFjxNa+DgJHQqZmTnGPbGPicaOfZ5DpsFzyLQ693FcJLHjpQkbp6vSwsHNpcYC4/Xp/s4UdHrhcVQUFFshOsuTyO2hLcyt9WCFu1F9NR/qHYshd3KzQnREZAmmjnv1EeuYaOrYVx+OiyQGEoPBYBA6CKqtqrQcW9tMFjoMo01K3QI7pfkeo1mmBfofMFt3VhE7ElA08u88AoZGI/NWKVp4K6E6NFHocEgAYvkdENsYCHAcBMQxDpJt4hVaIiIiIhI1FrREREREJGr8YqCRkiscMCl1i9BhGE2ucDBrf46yO19diYkjnxJJZDZiGwMBjoMAx0ESDgvaRkoikZh1LpbYSCSch0XUlDX1MRDgOEhkCk45ICIiIiJRY0FLRERERKLGgpaIiIiIRI0FLRERERGJGgtaIiIiIhI1FrREREREJGosaImIiIhI1FjQEhEREZGosaAlIiIiIlFjQUtEREREosaCloiIiIhEjQUtEREREYkaC1oiIiIiEjUWtEREREQkaixoiYiIiEjUWNASERERkaixoCUiIiIiUWNBS0RERESiJhc6AKqbwWCAtqxC6DCMJlc4QCKRmK0/gwEo15mtO6twlAFm/BEQURMntjwAmDcXMA+QKVjQNlLasgpsbTNZ6DCMNil1C+yUjmbrr1wH9D9gtu6sInYkoOAniojMRGx5ADBvLmAeIFNwygERERERiRoLWiIiIiISNRa0RERERCRqLGiJiIiISNQ4dZmIyMZVVulw8Uo+ElPzUVxaBQAoLdMiLjEHnULd4WAvEzhCIqL7w4KWiMgGFZVUYsu+VPzfnis4eykXlVX6GvvziyrRY+Ie2Mml6NLOHVMeDcHTo0PQ3NVBoIiJiBqOBS0RkQ0pLK7EgvXx+GJXSvXV2PpUafWIS9QgLlGDN1bHYfrYUPx3TjcWtkQkKixobYhvn3AM37WwxraqkjIUpmUjdccxJH95AAad/i5Hi19RwlGkvD24xjapoxMc/NvCY9AUeD/6AiQy/sqT7Tr0Ryb+syAW17NLGnR8abkWn3yXjB9iruHzBf0wsn9LM0dI1sBcwFzQFPH/URuUtisWqph4QCKBwqs5QsYPRM+F09AstAVOzt8odHgW5zZgIpp1GwkYDKjKVyP36GaoNr2CclUyWs/+TOjwiMzOYDDg/U/P4r0NZ83SX9atUoya/SuipnfCkpd6mPUpgGQ9zAXMBU0JC1oblJuQjrSdsdWvL3/9Cx6PXY22Tw1B/JJoVOQWChid5SmDH4DHoL+fruM1chYSZ7WH5uAX8J/8IeyaeQkYHZH5vbE6Dks3XTB7v8u+SkBpuQ5rXu/NolaEmAuYC5oSLtvVBGjLKpATfwUSqRSurX2EDsfqZI5OcGrXGzAYUKFOFTocIrNa+22iRYrZv6yLTsKSLy3XP1kPcwFzgS1jQdtEuATeGbwqCooFjkQYfw1ecmd3gSMhMp9L6QWY//Fpk445HT0GNw5G4nT0GKOPeXf9GZy7lGtqeNQIMRcwF9gqTjmwQXKFPRzcXarnTbV7+mF4dApGTvwVFKZlCx2exekrSqEt1MBgMECbr0bOz5+iLO0slKE94diirdDhEZmFTqfH9HeOoaJSZ9Jxvp5KBPg4mXSMVmvAtHeO4c9vx8DejmvWigVzAXNBU9IkClqNRoNly5Zh165dUKlU8PLywrhx47Bo0SLMnTsXmzZtwtq1azFnzhyhQzWLrlGR6BoVWWNbxv4/cOqNLwSKyLqyoxcgO3pBjW3N+4xDq5mfCBQRkfntOJiBPy7kWO185y/nYcu+VPz7cXEWAvmFFfh69xWcSriF0jIdmrnY4ZG+AXhiWCAcHWwzFTIXMBc0Jbb5Kf6Hc+fOYcSIEVCr1XByckKHDh2QlZWFNWvWIDU1FXl5eQCAiIgIYQM1o8vf/IqMvSchtZPDrX0rdJw9Fk5+HtBVVFa3GbjhZUAqwW8zP67eZt/cGWOPrkTc+5uRtiu2rq5FwfORGXDrOx4GXRXKriVAvWspKjUqSOwcq9sUJcbi6vsjah1r0FbCoNeh2w+mXfUisrb125Ktfs5PvkvC9LGhorpBrKxci1c/+hNf7U5BWXnNz/WWfal4efkpvDq1I6KmdxbV+zIGcwFzQVNi03NoNRoNRo8eDbVajXnz5iE7Oxvx8fFQq9VYunQp9u/fj9OnT0MikaBz585Ch2s2hWlqZMcmIDPmLC6u343DU5fAM6IN+iydWd3m5Bufw7tHOwSNfbB6W+9Fz+DWn5dEPYABgINfKFwjhqJZtxHwHReFkLf2ovTqaVzf8Fx1G5fw/ui6rbjGv/D1KZC7eML/qQ8EjJ7o3i5eycOxM2qrnzc+ORd/JljvqvD9KimtwtAZP2H9tuRaxexfNPnleH1VHJ5973cYDAYrR2hZzAXMBU2JTRe0c+fOhUqlwpw5c7BixQq4uLhU74uKikKXLl2g1WoRGBgIV1dXASO1rJy4y0jdcQxBYx+EV/d2AIDKgmKcmLcBvT58BgofN7Qe1Ru+fcNx8jXbW5vQOawv3AdNQf7v21CcfKLONvqqCqQtGQfnDv3gN/5NK0dIZJr9sTea5LlN9e8FsThx7pZRbb/8IcWiq0U0BswFzAW2zGYL2uTkZGzbtg2enp5YvHhxnW26desGAOjSpUv1th07duBf//oXWrduDaVSifbt2+Ott95CcbG47wg9v3IH9Fodus6fUL0t88g5ZOw9gQHr5qL3kmdxYt4GVOSL+33ejd+EdwCpDFnfvlvn/uvrn4O+qhyBL35t3cCIGuBMknArDpxJ0gh2blNcTi/A9l/STTpmxf8loLxCa6GIGgfmAuYCW2WzBW10dDT0ej0mTZoEZ2fnOtsoFAoANQvaFStWQCaTYdGiRfjpp5/w/PPPY8OGDRg+fDj0evE+KrAoQ4303cfhP6AzvHuFVW+PW7gZLkG+yIw5C9XheAEjtCxHvxC4949E0YXDKEqs+TXarb1rcDtuH9q88SOkDkqBIiQynpBF5ZmkXFF8Nb9h+yWTj8ktqMD3v5pWBIsNcwFzga2y2YI2JiYGADB48OC7tlGpVABqFrR79+7F9u3bMWnSJAwcOBAvvvgi1q1bh+PHj+P333+3bNAWdmH1Tuh1Nf8y15ZVoPjaLeQnXxcwMuvwHf8WIJXW+Mu86MIRqDa/huCo7+HgEyhccEQmuK4W7urZzdwyaLWNv6D9+biqQcf99HvDjhMT5gLmAlskMYjhT+0GaNmyJVQqFc6ePVvnCgZarRZ+fn7QaDRITU1FcHDwXftKSUlBu3bt8O2332LixIkmx9K9e3eo1abdwGFnkGKBvqfJ52qI4TsX4sbBM0j8dE+D+1go/RNVEvNdwZbYK+Cz6orZ+qtLxc0MXHq1B/wiF8B71P0v2XbzpVAYKsvMEJnlZDd/BXppM0j1t+FX8PG9D6BGxwAJstzfu+v+09Fj4Ot596tLvp4KyGVSaHV6qDV3/31Va0rRY2LdY4Jf3oeQorLOfY1FdvNXoZe63Lvh/3CoTIFn8VYLRGQ6a+YBoPHlAmvkAcC8uUAMeaAx8/X1RVxcXIOOtdllu0pKSgAAZWV1/2Jt27YNGo0GLi4uCAoKqrevI0eOAADCwsLqbXc3arUamZmZJh1jL5EBInoyYVZ2FioN5lveROqgtOjb11eUInXxWDTrOcYsxSwAZGVlQV9Rapa+LMZFB0gBvU5n8u8kNSJuOkBS9wMOjH1wglwmNfkBC3/JzroBGBr5XFOnMsDB9IK2ovR2o/lsiC0PAObNBZbOA4D5c4Eo8oCNstmC1tfXF/n5+YiPj0efPn1q7MvOzsb8+fMBAJ0717/2YGZmJt555x0MHz68wWvV+vr6mnyMnUEKiGjKrr+fv9mv0FpS/omdKEs/j/LMFOT/vq3W/vB1SbD3amVSn/7+/o3+L/NsmQx6AFKZDH4tWggdDjVQtqEUekndxZpaU38yNeUKbV0khnL4+fugsa/YmoebKIO3yce52ufBpZF8NsSWBwDz5gJL5wHA/LlADHmgMWtIvfQXm51yMHfuXKxduxYtW7bEoUOH0LbtnafbnD59GlOmTEFaWhqqqqowe/ZsrFu3rs4+iouLMWjQIKjVapw+fRp+fn5Wi7+qtBxb20y22vnu16TULbBTOt67oZHKtED/A2brzipiRwKKRv4nYsDQaGTeKkULbyVUh0yfPkONw6jZv+BAbMPmet44GIkAHyeobpag5bDvTD5+YHdfHN00qkHntqbYM2oMmL7fpGMc7GXIPBQJj+bmG8vuh9jyAGDeXMA8QKaw2ZvCoqKi4OHhgRs3biA8PBydOnVCaGgoevbsieDgYDz00EMAat4Q9k9lZWUYPXo00tPT8euvv1q1mCUiqk+3Dp5N8tym6PeAj8mxTnm0TaMpZonINDZb0AYEBCA2NhajRo2Co6MjMjIy4O7ujo0bN2L//v1ISUkBUHdBW1VVhSeeeAJxcXH46aef0KFDB2uHT0R0V4N7CPcHtpDnNoVEIsGOjx6Cn5dxyy/17OiFVVG9LRwVEVmKTV8YDwsLw759+2ptLy4uRkZGBqRSKTp27Fhj319r1x4+fBgHDhxAz57Wu8OUiMgYg3r4oV1gM1zOuG3V87byc8KIfgFWPef9CGzhghObH8W4lw/j7KW7P4xi7EOtsfnDAXBS2lkxOiIyJ5u9QlufxMREGAwGhIaGQqms+df77Nmz8f333+Pll1+GUqnEH3/8Uf0vJ0c8zzAnItslkUgwa0LDVl25H8+ND4NMJq60EdjCBWe2PYbfNo3EhOFBkEnv3M4mk0kwZ2IHXNw1Dj+sGgoXJ3uBIyWi+yGukclMEhISANQ93eCnn34CACxZsgR9+vSp8W//ftNuMCAispTpY0PR0rdhy241hI+HAjPHt7fa+cxJIpFgQHc/fLfsIfh63rlz3tdDgbVv9EF4iJvA0RGROdj0lIO7qa+gzcjIsHI0RESmc3Gyxxfv9cMjz/1ilfN9+k5fuDdzsMq5iIhMxYLWhrh1aI2+K56DnbMCJaocHHthLdzatsTQrW+iMDULv0Z+gPLcQjzwxlNoPbIXdBVV0Gt1iF/yLbKOngcAdJjxKNpPewTaknLsGTZf4HdkmtL087j2ybPQlxXB3qs1Al/+BuXXE3Hl/RFwbNEOoe/9Crvm3khd9Dgqbv39vPayjAto88aPaN5rDG7uXomcA59AqnBGh1XnhHszREZ4uG8AZo5vj43fXzL6mL/Wl73XerX/NGlUG4x9KNDU8MhKjB37QyIfQviMUWgWGoC49zcj6fO/v3UUc14wduzXHNqEm3tWovxGMgKmr4DPmJeq+2BeEL8mWdDGxMQIHYJF9Fs1B8df/gR5iRkIiXwIPd59Gle/O4LC1Kwag9DNU8k4v3IHdOWVcOvQGiN+eB/bI2ZAW1aBpM/2IS8hHT3fnybcG2mgjNXTEDj3KyiDI6A5tAmqr16F55DpcGzRrsYg1ObNH6r/d8mVOFxZOByuDwwHAPg89jKUwV1x48uXrBw9UcOseb03rmUV4+fjxq1Le7fH2d7NwO6++HxBv4aERlZi7NifeyEVR2d+jE4vjKvVh5jzgrFjv7JNNwTP3w71jsW1+mBeEL8mOYfWFrl3DIK2tBx5iRkAgNTtR9Hy4e6Q2tf+myUz5ix05Xeew56ffB2QSODo4WrNcM2uNO0sZApnKIMjAAAeg6fi9p97YNDW/7x5zaEv4TFoMqR2vCGExMneToZdK4fg0QEtzd73sD7+2LfuYSgcm+S1D1EwZezPT7qG21cyAX3tJ3mJNS+YMvYrg7pA0TIMEmn9pQ/zgjhxlLIRzq284da+FcYcXF69Ta5wgNLXvd7jQiMHo/jaTRSrxL2CQ8XNdJRdS0DSSxHV2/QVpajMvfsz2fUVZciPjUa7RbFWiJDIchSOcvywaiiWbrqAhZ+eRZX2/h49KpNJ8OYzXfD2jAjY28nMFCVZQkPH/vqIKS80ZOyvD/OCeLGgtSE5Z6/g4MT/Vr+OvPhlve39+nVCl3nj8euEDywdmlU4hfZC6MK/b5A5P8Wr3vb5J3bAwb8tFIGdLB0akcXJ5VK8NSMCYwa1woz3f8cfFxpWjDwQ5oHPF/TDAyJ5IhiZPvbXR4x5wdSxvz7MC+LFgtZGFF+7CacWfycgO2cF5EpHlKrz6mzv06cDHlw1C4efXoLC1CxrhWkxDj7BqNRcr36tKy2ErrwE9h4t7nqM5tCX8Bz6H2uER2Q1ndq648Q3o/FnQg7Wb0vGtl/SUVGpq/cYO7kU4x8OwqwJYegb4Q2JRGKlaOl+mTr210eMeaEhY399mBfEiwWtjchLzIC+Sge/AZ2RfewC2k97BOm7j0Nfqa3V1qd3GPqvfQEx05YhP+maANGanzI4AhKZHQrPHYRrxDDkHFgP934TIJHXPQeqPPsqSq/GIeQt026QIRIDiUSCXp290auzNza++yAupOTjTJIGF6/mo7i0CgYD4KSQo2OoG7qFeaJLO3fOkxUpU8b++og1L5g69teHeUHcOILZkGOzV6PfqtmwX/IsijLUODZnDdzatarV7sGPZkFmb4d+K2f9fewLa1Fw6XqttmIS9MpWZKyZjusbnoeDXwiCXtmCsmsX62ybe2gTmvf5F2TKxn/TA9H9cHSQo2cnL/Ts1PCvYalxM3bsD3lyELq+NhH2zZ3QanhPhD83BoenLkHexXRR5wVjx37N4a+RtfVt6IrzUXDqR9z8cQVC3t4LZXBXAMwLYseC1oYUXLqOfcNfu2e7XQ++YIVorE8R2AlhH8cZ1bbFlEUWjoaIyDqMHfuvbj+Kq9uP1rlPzHnB2LHfc8g0eA6Zdtf9zAvixmW7bJyuSgsHNxeMObjcqCVYOsx4FL2XPIPyvCIrRGd5Erk9tIW5SHopAlUFt+7Z/ubulbj+6SzIXXhDDBGJl6ljf33EmBdMHfvrw7wgDhKDwWAQOgiqraq0HFvbTBY6DKNNSt0CO6Wj2for0wL9D5itO6uIHQkoGvl3HgFDo5F5qxQtvJVQHZoodDhEViemz4DY8gBg3lzAPECm4BVaIiIiIhI1FrREREREJGq8MN5IyRUOmJS6RegwjCZXOJi1P0fZna9uxMSRD1QiIjMSWx4AzJsLmAfIFCxoGymJRGLWOaliI5FwHhIRNW3MA8wDZDxOOSAiIiIiUWNBS0RERESixoKWiIiIiESNBS0RERERiRoLWiIiIiISNRa0RERERCRqLGiJiIiISNRY0BIRERGRqLGgJSIiIiJRY0FLRERERKLGgpaIiIiIRI0FLRERERGJGgtaIiIiIhI1FrREREREJGosaImIiIhI1FjQEhEREZGosaAlIiIiIlGTCx0A1c1gMEBbViF0GEaTKxwgkUjM1p/BAJTrzNadVTjKADP+CIiImjSx5UGAuVDIPMiCtpHSllVga5vJQodhtEmpW2CndDRbf+U6oP8Bs3VnFbEjAQU/UUREZiG2PAgwFwqZBznlgIiIiIhEjQUtEREREYkaC1oiIiIiEjUWtEREREQkaixoiYioyTAYDDX+S0S2gfdkExGRTdLrDTh4MhMxf2YhLlGD+ORcFBRVAgCycsrgPyQa3cI80D3cE6MGtET3cC+BIyaihmJBS0RENqWgsAKf77yMDdsvIT2z6K7tsnNKsS+nFPuO3cB7G86ie7gnZk0Iw6RRbWBvJ7NixER0v1jQ2hDfPuEYvmthjW1VJWUoTMtG6o5jSP7yAAw6vUDRWV5RwlGkvD24xjapoxMc/NvCY9AUeD/6AiQy/soT2bL9x65jxvvHkXWr1ORj4xI1+Pe7sVi9NRH/998B6NLOwwIRkqUxFzbNXGh774iQtisWqph4QCKBwqs5QsYPRM+F09AstAVOzt8odHgW5zZgIpp1GwkYDKjKVyP36GaoNr2CclUyWs/+TOjwiMgCyiu0mPXhCXz145X77uv85Tx0n7gbH8zuhtf+3dmsT34i62EubFq5kAWtDcpNSEfaztjq15e//gWPx65G26eGIH5JNCpyCwWMzvKUwQ/AY9DfT5fxGjkLibPaQ3PwC/hP/hB2zThPjsiWlJZpMWbuQRw+lWW2PrVaA95YHYesnFKsfq03i1oRYi5sWrmQqxw0AdqyCuTEX4FEKoVrax+hw7E6maMTnNr1BgwGVKhThQ6HiMyoqkqPf71y2KzF7D+t/TYJr686bZG+ybqYC207F7KgbSJcAu98eCsKigWORBh/fXjlzu4CR0JE5rRk03n8fFxl0XMs+yoB+49dt+g5yDqYC203F3LKgQ2SK+zh4O5SPW+o3dMPw6NTMHLir6AwLVvo8CxOX1EKbaEGBoMB2nw1cn7+FGVpZ6EM7QnHFm2FDo+IzORCSh4+2HjOpGNOR4+Br6cSak0pekzcY/Rxzy48jsQffODm6mBilCQU5sKmlQubREGr0WiwbNky7Nq1CyqVCl5eXhg3bhwWLVqEuXPnYtOmTVi7di3mzJkjdKhm0TUqEl2jImtsy9j/B0698YVAEVlXdvQCZEcvqLGteZ9xaDXzE4EiIiJzMxgMmLHwd1RpTbtb3ddTiQAfJ5PPl51TirfWxGH92w+afGxjodXqcSohB5qCctjLpWgf1BxBAS5Ch2UxzIVNKxfafEF77tw5jBgxAmq1Gk5OTujQoQOysrKwZs0apKamIi8vDwAQEREhbKBmdPmbX5Gx9ySkdnK4tW+FjrPHwsnPA7qKyuo2Aze8DEgl+G3mx9Xb7Js7Y+zRlYh7fzPSdsXW1bUoeD4yA259x8Ogq0LZtQSody1FpUYFiZ1jdZuixFhcfX9ErWMN2koY9Dp0+0FnzZCJyER/JuTgVEKOVc/59Z4rWDS3O5qL7CqtJr8cG7Yn47Mdl6G6WVJj38N9W2D2hDCMHtTK5m58Yy5sWrnQpufQajQajB49Gmq1GvPmzUN2djbi4+OhVquxdOlS7N+/H6dPn4ZEIkHnzp2FDtdsCtPUyI5NQGbMWVxcvxuHpy6BZ0Qb9Fk6s7rNyTc+h3ePdgga+/fVht6LnsGtPy+J+gMMAA5+oXCNGIpm3UbAd1wUQt7ai9Krp3F9w3PVbVzC+6PrtuIa/8LXp0Du4gn/pz4QMHoiMsYn3yVb/Zxl5Tr83577XxbMmpLTCtAt8ke8+0l8rWIWAH49kYnHXjyEWf89AZ2Nrc3KXNi0cqFNF7Rz586FSqXCnDlzsGLFCri4/P3VSlRUFLp06QKtVovAwEC4uroKGKll5cRdRuqOYwga+yC8urcDAFQWFOPEvA3o9eEzUPi4ofWo3vDtG46Tr9ne2nzOYX3hPmgK8n/fhuLkE3W20VdVIG3JODh36Ae/8W9aOUIiMkV5hRbbf00X5Nyb914V5LwNoVKXYNiMn3A9u3Yh+78+/f4S5q340wpRCYe50LZzoc0WtMnJydi2bRs8PT2xePHiOtt069YNANClS5fqbbGxsRg6dCj8/Pzg4OCAgIAATJgwAcnJ1r8aYE7nV+6AXqtD1/kTqrdlHjmHjL0nMGDdXPRe8ixOzNuAinzbvPPTb8I7gFSGrG/frXP/9fXPQV9VjsAXv7ZuYERksoQr+aioFOar0AtX8lBeoRXk3KZ6b0M8Mk14YtrqrYlISMmzYETCYy603VxoswVtdHQ09Ho9Jk2aBGdn5zrbKBQKADUL2vz8fHTq1Alr1qzBr7/+iqVLlyIxMRF9+vSBSmXZpWEsqShDjfTdx+E/oDO8e4VVb49buBkuQb7IjDkL1eF4ASO0LEe/ELj3j0TRhcMoSqz5NdKtvWtwO24f2rzxI6QOSoEiJCJjnUnSCHZurdaACyn5gp3fWPmFFfj2J9PXGt2wXdwXb+6FudB2c6HNFrQxMTEAgMGDB9+1zV8F6j8L2jFjxmDlypUYP348Bg4ciEmTJmHXrl24ffs2du7cadmgLezC6p3Q62r+Zaotq0DxtVvIT7b9NRZ9x78FSKU1/jItunAEqs2vITjqezj4BAoXHBEZLTG1QODzN/6Cdsev6SgrN/0q9jf7Um1uLu3/Yi60zVwoMRgMBqGDsISWLVtCpVLh7Nmzda5goNVq4efnB41Gg9TUVAQHB9+1r9zcXHh6emLdunWYPXu2ybF0794darXapGPsDFIs0Pc0+VwNMXznQtw4eAaJnxq/JuP/Wij9E1US8w2CEnsFfFZZ9uaLipsZuPRqD/hFLoD3qPtfsu3mS6EwVJaZITLLyW7+CvTSZpDqb8Ov4ON7H0DUCOU7jUWpQ9c69/21zuzd+HoqIJdJodXpodbU/3m921q1zUoOwLnilGlBW1mhYjCKFIMadKxv/hLIDMKPZdbMgwBzoTly4f3mQV9fX8TFxTXoWJtdtquk5M4k+LKyun+w27Ztg0ajgYuLC4KCgmrt1+l00Ov1uHbtGt544w34+vriySefbFAsarUamZmZJh1jL5EBInoyX1Z2FioN5pvTJnVQWvTt6ytKkbp4LJr1HGOWYhYAsrKyoK8wfr6aIFx0gBTQ63Qm/04SNRotSoC7rJxl7Dqzcpm0QevRAsDt2/m4ndvIPz/eRYCiYYeqs7MB3b1vJLM0seVBgLlQyDxoswWtr68v8vPzER8fjz59+tTYl52djfnz5wMAOnfuXOfaewMHDsTx48cBACEhIYiJiYGXl1eDYzGVnUEKiOhbH38/f7P/VWpJ+Sd2oiz9PMozU5D/+7Za+8PXJcHeq5VJffr7+zf+K7QyGfQApDIZ/Fq0EDocogYpUMpxt3JLrak/mZp6hbYuzV2VcHJs3J+fEgc9ChpwnMRQDj9fN0jQ3MwRmU5seRBgLrzfPNiQeukvNjvlYO7cuVi7di1atmyJQ4cOoW3bO495O336NKZMmYK0tDRUVVVh9uzZWLduXa3jL1++jIKCAqSnp2P58uW4desWjh8/jlatTCtyGqqqtBxb20y2yrnMYVLqFtgpHe/d0EhlWqD/AbN1ZxWxIwFFI/8TMWBoNDJvlaKFtxKqQxOFDoeoQTZ+fwnPfXC8QcfeOBiJAB8nqG6WoOWw7xrUx5/fjkGPjg27wGEtBYUVaDH0O5SWm7Yiw+zIMKx7s6+FojKN2PIgwFwoZB602ZvCoqKi4OHhgRs3biA8PBydOnVCaGgoevbsieDgYDz00EMAat4Q9k/t2rVDr169EBkZicOHD6OoqAjLli2z5lsgIqI6dOvgIdi55XIJOoW6CXZ+YzV3dcCkUW1MPu75J8Pu3YioEbLZgjYgIACxsbEYNWoUHB0dkZGRAXd3d2zcuBH79+9HSkoKgLsXtP/UvHlzhISE4OpV8SyoTURkqzqFusPRQSbIubu09YCjQyP/Kub/e+/5rmjpa/w84XlPd0R4SOMv1onqIo5PZQOFhYVh3759tbYXFxcjIyMDUqkUHTt2vGc/t27dwuXLl9GrVy9LhElERCZwsJdhwiPBgjyGduqYEKufs6H8vZ1w6LMRGP78L0jPLKq37QtPdcCyV6y3ogCRudl0QXs3iYmJMBgMaNu2LZTKmsu7TJ48GSEhIYiIiEDz5s1x5coVrFy5EnK5HC+//LJAERMR0T/NmhBm9YJW6SjH06NDrXrO+9U2sBnivnsMn++8hA3bL+FaVs0nYD06oCVmR3bAIw+2qPMGaSKxsNkpB/VJSEgAUPd0g969e+PAgQOYPn06RowYgeXLl6N///44d+4cQkLE85c5EZEt69nJC30jvK16zn8/3hbNXOytek5zcG/mgNf+3QWp+8fj1NYx8Gh2Z80zHw9H7F33MIb3C2AxS6LXJK/Q1lfQzpkzB3PmmGddUiIispyN7zyIbpG7UVll+bWdAnyc8N853Sx+HkuSyaTo2cmrev6xXNYkr2mRjWJBa0PcOrRG3xXPwc5ZgRJVDo69sBZubVti6NY3UZiahV8jP0B5biG6vj4RrR7uDsP/f7xhwrofkb77zhI43d+ZgsDH+iIvIR0x08W1qkNp+nlc++RZ6MuKYO/VGoEvf4Py64m48v4IOLZoh9D3foVdc2+UZ13BtU9mQFeSD31lOZp1H4WAacshkUpxc/dK5Bz4BFKFMzqsOif0WyKienQMdceC57rirbVnjD7mr7Vl77Ve7f/6fEE/UV6dbQqMzX0hkQ8hfMYoNAsNQNz7m5H0+f7qPsScF43NfZpDm3Bzz0qU30hGwPQV8BnzUnUftpAXm2RBGxMTI3QIFtFv1Rwcf/kT5CVmICTyIfR492lc/e4IClOzsGfY/Op2iet34+ySaACA0tcdY4+tQlbsBVTkFSHug29QcPkGWo0Q380BGaunIXDuV1AGR0BzaBNUX70KzyHT4diiXY0Poerr+XDr/Ti8R8+FvrIcya/2QGH8EDTrPhI+j70MZXBX3PjyJcHeBxEZL2p6Z5w8fwv7jt0wqn1dj7K9l7ee7YLh/QJMPo6sw9jcl3shFUdnfoxOL4yr1YeY86KxuU/ZphuC52+HesfiWn3YQl7k9w02wr1jELSl5chLzAAApG4/ipYPd4fUvvbfLJWFf1+ZkDs5QiKRiH7+VGnaWcgUzlAGRwAAPAZPxe0/98CgrazVVgIJdKW3AQD6yjIYtFWwc/ezZrhEZCZyuRTbVzyER/pa5sldL08Jxwcin2pgy0zJfflJ13D7Siagrz1FRax50ZTcpwzqAkXLMEiktUs/W8iLTfIKrS1ybuUNt/atMObg8uptcoUDlL7udbYP+89ItJ/2CJT+HjgxbwPKcwutFapFVNxMR9m1BCS9FFG9TV9Riso6nrce8MwqpP53NHJ+2gBtST78nnwHyuCuVoyWiMxJ4SjHnrXD8MLik/hsx2Wz9Gknl2LR3O6YN7WjKAqbpsrU3FcfMeZFU3JffWwhL7KgtSE5Z6/g4MT/Vr+OvPjlXdsmf3kAyV8egFuH1hiwbi6yfjuPivziu7YXA6fQXghd+Ev16/NT6n40Zc5P6+E2YCL8nngDVQW3kPL2YDiF9oBrxDBrhUpEZmZvJ8PGd/th3JBAPPPe71DdLGlwX906eOLrD/qjY6jpRRFZnym5rz5izYvG5r762EJe5JQDG1F87SacWnhWv7ZzVkCudESpOq/e4/KTrqFUnQffvuGWDtGiHHyCUam5Xv1aV1oIXXkJ7D1qfw2Zc+ATeAyeCgCwa+6NZt1GoijhqJUiJSJLeuTBACT+MA4r5/dCaGtXk47tG+GNbxYNxB9bRrOYFYmG5r76iCkvmpL76mMLeZEFrY3IS8yAvkoHvwGdAQDtpz2C9N3Hoa/U1mrbrO3fNze4tPaBe8cgFKSorBarJSiDIyCR2aHw3EEAQM6B9XDvNwESee27kh18glF49mcAgK68BEUJR6Bofe8nxhGROLg62+OlKR1xafcTOPTZiDs3dT0YAG93x+o2EgnQ2t8Z44YE4sMXuuHs9rE4vnk0Jj8aArmcqVEsTMl99RFrXjQl99XHFvIipxzYkGOzV6PfqtmwX/IsijLUODZnDdzatarVrvvbU+DcyhuGKi30Oj3+ePPLOxPlRS7ola3IWDMd1zc8Dwe/EAS9sgVl1y7Wahf40v/h+sY5uLV3NQzaSjTrOQZu/SMFiJiILEkqlWBIb38M6e1fvc1gMECrNUAuF8dNP3Rvxua+kCcHoetrE2Hf3AmthvdE+HNjcHjqEuRdTBd1XjQ292kOf42srW9DV5yPglM/4uaPKxDy9l4og7vaRF5kQWtDCi5dx77hr92z3eGnay/ZYQsUgZ0Q9nHcPdspg7ui/dLjVoiIiBobiUQCOzsWsrbE2Nx3dftRXN1+tM59Ys6LxuY+zyHT4DlkWp37bCEv8nsVG6er0sLBzQVjDi6Ho8e955N1f2cKOr3wOCoKGv9EeGNI5PbQFuYi6aUIVBXcumf7m7tX4vqnsyB38bxnWyIiapxMzX31EWNeNDX31UcseVFiMBgMQgdBtVWVlmNrm8lCh2G0SalbYKd0vHdDI5Vpgf4HzNadVcSOBBSN/DuPgKHRyLxVihbeSqgOTRQ6HCISgFjGAbHlQYC5UMg8yCu0RERERCRqLGiJiIiISNQa+RekTZdc4YBJqVuEDsNocoWDWftzlN356kJMHGVCR0BEZDvElgcB5kIh8yAL2kZKIpGYdR6O2EgkjX8+KhERWU5Tz4MAc6EpOOWAiIiIiESNBS0RERERiRoLWiIiIiISNRa0RERERCRqLGiJiIiISNRY0BIRERGRqLGgJSIiIiJRY0FLRERERKLGgpaIiIiIRI0FLRERERGJGgtaIiIiIhI1FrREREREJGosaImIiIhI1FjQEhEREZGosaAlIiIiIlFjQUtEREREosaCloiIiIhETS50AFQ3g8EAbVmF0GEYTa5wgEQiMVt/BgNQrjNbd1bhKAPM+CMgImrSxJYHAeZCIfMgC9pGSltWga1tJgsdhtEmpW6BndLRbP2V64D+B8zWnVXEjgQU/EQREZmF2PIgwFwoZB7klAMiIiIiEjUWtEREREQkaixoiYiIiEjUWNASERERkaixoCUiIiIiUeM92URERDYsJ68MZ5JycSZJg6s3CpF3+85SWAVFlfh8xyV06+CJjqFusLeTCRwpUcOxoCUiIrIxlVU6/BhzDeu3JeO3OHWdbUrKtJjx/nEAgKuzHaaOCcXzT4YhLLi5FSMlMg8WtERERDZk58F0zF36B7JulRp9TGFxFdZ+m4S13ybhscGtsP6tvvD3drJglETmxYLWhvj2CcfwXQtrbKsqKUNhWjZSdxxD8pcHYNDpBYrO8ooSjiLl7cE1tkkdneDg3xYeg6bA+9EXIJHxV56IbJMmvxyzF53A9l/S76uf3Ueu47c4NVa/1htTRoeY9clX1sBc2DRzoe29I0LarlioYuIBiQQKr+YIGT8QPRdOQ7PQFjg5f6PQ4Vmc24CJaNZtJGAwoCpfjdyjm6Ha9ArKVcloPfszocMjIjK7dFURhs74CWmqIrP0V1BUialvH8O5y7n46NVeoitqAebCppYLWdDaoNyEdKTtjK1+ffnrX/B47Gq0fWoI4pdEoyK3UMDoLE8Z/AA8Bv39uESvkbOQOKs9NAe/gP/kD2HXzEvA6IiIzOt6djEG/ns/bqhLzN73ym8SodcDK6PEV9QyFzatXMhlu5oAbVkFcuKvQCKVwrW1j9DhWJ3M0QlO7XoDBgMq1KlCh0NEZDYVlTo8OudXixSzf1m9NREbtiVbrH9rYS607VzIgraJcAm88+GtKCgWOBJh/PXhlTu7CxwJEZH5vP/pWSRcyTfpmNPRY3DjYCROR48x+pj5H59Gmkr8VzSZC203F3LKgQ2SK+zh4O5SPW+o3dMPw6NTMHLir6AwLVvo8CxOX1EKbaEGBoMB2nw1cn7+FGVpZ6EM7QnHFm2FDo+IyCzOJGmw9KsLJh/n66lEgI9pKxiUlmvxnwW/I+aLEaKZesBc2LRyoc0XtBqNBsuWLcOuXbugUqng5eWFcePGYdGiRZg7dy42bdqEtWvXYs6cOUKHajZdoyLRNSqyxraM/X/g1BtfCBSRdWVHL0B29IIa25r3GYdWMz8RKCJhVVXpsefoNXz6/SVka+4s46POLUPUx3/iuSfbIzjAVeAIiaghPvz8HHQ6g9XOd/R0NmLPqDGgu5/Vznk/mAubVi606YL23LlzGDFiBNRqNZycnNChQwdkZWVhzZo1SE1NRV5eHgAgIiJC2EDN7PI3vyJj70lI7eRwa98KHWePhZOfB3QVldVtBm54GZBK8NvMj6u32Td3xtijKxH3/mak7Yqtq2tR8HxkBtz6jodBV4WyawlQ71qKSo0KEjvH6jZFibG4+v6IWscatJUw6HXo9oPOmiFbzJ8JOXhi3uFa8+t0OgOWf52AFf+XgGfGtcO6N/vwKUFEIqJSl2D3ketWP+/67cmiKWiZC5tWLrTZObQajQajR4+GWq3GvHnzkJ2djfj4eKjVaixduhT79+/H6dOnIZFI0LlzZ6HDNavCNDWyYxOQGXMWF9fvxuGpS+AZ0QZ9ls6sbnPyjc/h3aMdgsY+WL2t96JncOvPS6L+AAOAg18oXCOGolm3EfAdF4WQt/ai9OppXN/wXHUbl/D+6LqtuMa/8PUpkLt4wv+pDwSM3nxOnr+JQfe489lgAD7feRnj58VAZ8PrMhLZmi9/uAy93npXZ/+y81AGbuWWWf28DcFc2LRyoc0WtHPnzoVKpcKcOXOwYsUKuLi4VO+LiopCly5doNVqERgYCFdX2/7KNSfuMlJ3HEPQ2Afh1b0dAKCyoBgn5m1Arw+fgcLHDa1H9YZv33CcfM321uZzDusL90FTkP/7NhQnn6izjb6qAmlLxsG5Qz/4jX/TyhGaX2mZFmNfPISyCuP+ut5z9DqWfZVg4aiIyFyOnBZmDqhWa8DxczcFOff9Yi607VxokwVtcnIytm3bBk9PTyxevLjONt26dQMAdOnS5a79jBhxZ/L7e++9Z4kwrer8yh3Qa3XoOn9C9bbMI+eQsfcEBqybi95LnsWJeRtQkW+bd376TXgHkMqQ9e27de6/vv456KvKEfji19YNzEKif0rFrbxyk45Z910Sqqp4lZaosdPrDYhPzhXs/GeSNIKd+34xF9puLrTJgjY6Ohp6vR6TJk2Cs7NznW0UCgWAuxe027dvx7lz5ywVotUVZaiRvvs4/Ad0hnevsOrtcQs3wyXIF5kxZ6E6HC9ghJbl6BcC9/6RKLpwGEWJNb9GurV3DW7H7UObN36E1EEpUITmtb4Ba0Zm3SrF3t+sPyePiEyTeqMQRSVVgp1fyGL6fjEX2m4utMmbwmJiYgAAgwcPvmsblUoFoO6CtrCwEC+99BJWrFiByZMn19pvqu7du0OtVpt0jJ1BigXoed/n/qcLq3ciaOyD6Dp/An554j0AdxaaLr52C/nJ91fItA1tiyqJ+a7uSewV8Fl1xWz9AYDv+LeQFxuNrG/fRbsPjwAAii4cgWrzawh99yc4+ATeV/9t24bCUCn83DIDJMhyf69Bx059fgHmlh02azxEZF4V8paA6zN17jsdPQa+nvUXI76eiur/3jgYedd2ak0pekzcU2v7oaN/ICDgPyZE3DCWyIMAc6Elc+H95kFfX1/ExcU16FibLGivXbsGAGjdunWd+7VaLY4fPw6g7oL2rbfeQtu2bTFp0iSzFLRqtRqZmZkmHWMvkQEmPshEfTIRX/s9cdf9t69kYnPAhLvuvx9Z2VmoNJjvbkipg9LUtw+XToPQbffdb5JQtAyrccdmxc0MpC1/EgHTlsOl06CGBfoPWVlZ0FeU3nc/901iDzRwzezikkoUZ5v2u0pEVubkBNzl1g9T1piVy6Qmr0cL3FkK0NSc1hANyYMAc6GQuVDIPGiTBW1JyZ27usvK6v4rYdu2bdBoNHBxcUFQUFCNfXFxcfj8889x5swZs8Xj6+tr8jF2BikgoumM/n7+Zv+r1JL0FaVIXTwWzXqOgfco86xB7O/v30iu0AJZBh0gMX0ZLhcnOVxbtDB/UERkNpUyN+TcZZ9ac+9iwtdTAblMCq1OD7Xm7mPW3fqys5PA2wrjhNjyIMBceL95sCH10l9ssqD19fVFfn4+4uPj0adPnxr7srOzMX/+fABA586dazzxRKfTYebMmZgzZw7Cw8PNFk9DLp9XlZZja5v7vzpsLSlXUmCndLx3QyOVaYH+B8zWXS35J3aiLP08yjNTkP/7tlr7w9clwd6rlUl9pqRcgaKRfKLGvHCwQfNhD+78CL06e1sgIiIyl6xbJWgx9Ls699U1ReB/3TgYiQAfJ6g1ZWg5rO5+6jN25ABsX/GeyceZSmx5EGAuFDIPNpL0a15Dhw5FcnIyli5dimHDhqFt2zuPeDt9+jSmTJkCjebOHZr/+0CFdevW4ebNmzaxqoEpfv7Xgns3sjEeg6fAY/AUocOwmFkTwkwuaB8I80DPTl4WioiIzMXf2wl+Xkpk5wjz1W63Dh6CnNfSmAvFzSZXOYiKioKHhwdu3LiB8PBwdOrUCaGhoejZsyeCg4Px0EMPAag5f1aj0eCdd97Bu+++C61Wi4KCAhQUFAAAysvLUVBQAL1eZN99UJP1cN8W6NnRtOL07RkRonlGO1FT1y1MuKKyWwdPwc5NdDc2WdAGBAQgNjYWo0aNgqOjIzIyMuDu7o6NGzdi//79SElJAVCzoFWpVCgqKsLMmTPh5uZW/Q8Ali5dCjc3N1y/ziWNSBykUgn2rB2GdoHNjGq//JWeeHxIoGWDIiKzGT3ItClR5uLmao++XRpwpxaRhdnklAMACAsLw759+2ptLy4uRkZGBqRSKTp27Fi9PSQkBEeOHKnVfvDgwZg6dSqmTZt2X5OViazNx0OBE9+MxtwlJ7H9l3RUaWt/w9CmpQs+mN0NE0e2ESBCImqop0a2wasf/Wn19Winj20LZWO5WYDoH5rcb2ViYiIMBgPatm0LpfLvtfqcnZ0xaNCgOo8JDAy86z6ixsy9mQO2LB6Ej17tha9+TMHFq/kor9DBo7kDxg0JxLA+LSCVcpoBkdg4K+0wdUwo1kUnWfW8z41vb9XzERmryRW0CQl3nldf3yNviWyNj4cCr/+Hv/NEtuStZ7vg2wOpyLtdYZXzzZoQhtDWxk1jIrI2m5xDWx9TC1qDwSCaVQ/cOrTGqAOLMfbYKgz79i04eLjCt084JqdtxZiDy+HoUXMl7mahLTA5bSt6vj+teluHGY9i3Im1GHNwuZWjv3+l6eeR/GpPJM4Ow5X3hqPqdg6KEo4ifrwCSS9FoKrgFgCgPOsKUt4dhqQXuyBxTjjyYv9equTm7pW4ODMESS9FCPMmiIiM5OupxNrX+9y7oRkE+jtj6cs9rHIuUxmb+0IiH8JjMR/h6Rvb0OHZUXX2Jca8aGzu0xzahMS5nXDmcTlu7llVow9byIssaG1Iv1VzcHL+Rvw44CWk7zmJHu8+DQAoTM3CnmHzUZ5bWN1WIpeh7/LncO2nP2v0kfTZPpyY96lV4zaXjNXT0HrWZwj/JBlu/Z6E6qtXAQCOLdqhw6pzsGvuXd3Ovd8EdFh9Hm0/PIrM/4tCZe6dp974PPYyWs/5QrD3QERkiokjgxE5PNikY9SaUqhulhj1EAYAsJNL8fV/B8BZadeQEC3O2NyXeyEVR2d+jLQffq+zH7HmRWNzn7JNNwTP3w73AU/V2YfY82KTK2hjYmJgMBgwalTdf52JlXvHIGhLy5GXmAEASN1+FC0f7g6pfd2zSiJeGY+MvSdRlJZtxSgtpzTtLGQKZyiDIwAAHoOn4vafe2DQVtZqW5ZxHq7dRgIA7Jp5QRHYpc4FpYmIGjuJRIKv/zsAD/c1/sldPSbuQcth3xn1EAaZTIKtSwZhYHe/+wnTYkzJfflJ13D7SiZwlyU4xZgXTcl9yqAuULQMg0Rau/SzhbzY5ObQ2irnVt5wa9+qxlcicoUDlL7utdp6dg2FV7e2+HXC+4iY96Q1w7SYipvpKLuWUOMrEX1FafVfmP+kbNMNeb9tge+4KFSo01B86QTsvQOtFywRkRk52Muwe/VQPPX6Ufxw+JrZ+nV0kOG7ZYPx2ODWZuvT3EzJffURa140JffVxxbyIgtaG5Jz9goOTvxv9evIi1/WaiNT2KP3kmdw9JmPrBmaVTiF9kLowl+qX5+fUveDBQJf/D+ovpqHpJciYO/VGq6dh0Ai40eBiMTL0UGOnR8Pwec7L2Peij9RXHp/y3k92NUHX73fXxQ3gRmT++oj9rxobO6rjy3kRXFFS3dVfO0mnFr8/fQWO2cF5EpHlKrzarRzae0L5xaeGL7zPQCAvasTIJXAvpkzfn9xnTVDNisHn2BUav5+8IWutBC68hLYe9T+Gs7BJxBtXt9Z/frKe8Ph2vVhq8RJRGQpEokEM55oj0f6tsDrq+Kw41A6tFqDSX209HXC/GmdMGtCGGSyxj8r0djcVx8x50VTcl/9/Yg/L7KgtRF5iRnQV+ngN6Azso9dQPtpjyB993HoK7U12hVcuo7vOv6n+nXEvCdh30yJP9/92soRm5cyOAISmR0Kzx2Ea8Qw5BxYD/d+EyCR29dqW1VwE3JXL0ikUtyO/wVlN5LQpo5J8kREYtTa3wXRywbj45xe+GLXZXz/azqS0gqg09Vd3DZ3sceDXX3w7L/aYVT/lpDLG38h+xdjc199xJwXTcl99bGFvMiC1oYcm70a/VbNhv2SZ1GUocaxOWvg1k6YxyMKIeiVrchYMx3XNzwPB78QBL2yBWXXLtZqd/vPvVDvXAJIZbBz90fouwcgdVAIEDERkeX4eSnxzsyueGdmV5SWaXE+JRdXrxeirEIHuUyK5i72iGjvjqAWLpBIxPuAFWNzX8iTg9D1tYmwb+6EVsN7Ivy5MTg8dQnyLqYLELX5GJv7NIe/RtbWt6ErzkfBqR9x88cVCHl7L5TBXW0iL7KgtSEFl65j3/DXTDrm3EfbLRSN9SkCOyHs47h7tvN8+Bl4PvyMFSIiImoclAo5+nTxQZ8uPkKHYnbG5r6r24/i6vaj92wntrxodO4bMg2eQ6bVvc8G8qJ4vlegBtFVaeHg5lLngxXq0mHGo+i95BmU5xVZITrLk8jtoS3MrbG4dH1u7l6J65/OgtzF855tiYiocTI199VHjHnR1NxXH7HkRYnBYDBtxjhZRVVpOba2mSx0GEablLoFdkpHs/VXpgX6HzBbd1YROxJQ8DsPIiKzEFseBJgLhcyDvEJLRERERKLGgpaIiIiIRI1TDhopg8EAbVmF0GEYTa5wMOtdsgYDUK4zW3dW4SgDRHyjMBFRoyK2PAgwFwqZB1nQEhEREZGoccoBEREREYkaC1oiIiIiEjUWtEREREQkaixoiYiIiEjUWNASERERkaixoCUiIiIiUWNBS0RERESixoKWiIiIiESNBS0RERERiRoLWiIiIiISNRa0RERERCRqLGiJiIiISNRY0BIRERGRqLGgJSIiIiJRY0FLRERERKLGgpaIiIiIRI0FLRERERGJGgtaIiIiIhI1FrREREREJGosaImIiIhI1FjQEhEREZGosaAlIiIiIlFjQUtEREREosaCloiIiIhEjQUtEREREYna/wN4EFofKFkj0AAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 872.774x451.5 with 1 Axes>"
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# For our transpilation, we will use a large circuit of 101 qubits\n",
|
||
"qc = EfficientSU2(101, entanglement=\"circular\", reps=1).decompose()\n",
|
||
"\n",
|
||
"# Draw a smaller version of the circuit to get a visual representation\n",
|
||
"qc_small = EfficientSU2(5, entanglement=\"circular\", reps=1).decompose()\n",
|
||
"qc_small.draw(output=\"mpl\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "9b4f574a-eaa8-41e4-8f41-addb02e6cc86",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 2: Optimize problem for quantum hardware execution\n",
|
||
"\n",
|
||
"**Choose a backend**\n",
|
||
"\n",
|
||
"For this example, we will use the `ibm_brisbane` backend. This backend features a heavy hexagonal topology with 127 qubits, making it a suitable target for large-scale circuit demonstrations, especially when assessing performance on modern quantum hardware.\n",
|
||
"\n",
|
||
"**Create TranspilerService Instances**\n",
|
||
"\n",
|
||
"To evaluate the effectiveness of the AI transpiler, we will perform two transpilation runs. First, we will transpile the circuit using the AI transpiler. Then, we will run a comparison by transpiling the same circuit without the AI transpiler, using traditional methods. Both transpilation processes will use the following configuration:\n",
|
||
"\n",
|
||
"`backend_name=\"ibm_brisbane\"`\n",
|
||
"\n",
|
||
"`optimization_level=3`\n",
|
||
"\n",
|
||
"By comparing the results from these two runs, we will be able to assess how much optimization is gained by using the AI transpiler in terms of circuit depth, gate count, and runtime efficiency.\n",
|
||
"\n",
|
||
"Notes:\n",
|
||
"- For best results, user can use `ai=auto` as it will run both the standard Qiskit heuristic passes and the AI-powered passes and return the best result. For our example, we will run the AI-powered passes explicitly to show the difference in results.\n",
|
||
"\n",
|
||
"- Similar to `generate_preset_passmanager`, the `generate_ai_passmanager` function can be used for a hybrid AI-powered transpilation, example usage shown below.\n",
|
||
"\n",
|
||
"```python\n",
|
||
" from qiskit.circuit.library import EfficientSU2\n",
|
||
" from qiskit_ibm_transpiler import generate_ai_pass_manager\n",
|
||
"\n",
|
||
" su2_circuit = EfficientSU2(101, entanglement=\"circular\", reps=1).decompose()\n",
|
||
"\n",
|
||
" ai_transpiler_pass_manager = generate_ai_pass_manager(\n",
|
||
" coupling_map=coupling_map,\n",
|
||
" ai_optimization_level=ai_optimization_level,\n",
|
||
" include_ai_synthesis=include_ai_synthesis,\n",
|
||
" optimization_level=optimization_level,\n",
|
||
" ai_layout_mode=ai_layout_mode,\n",
|
||
" qiskit_transpile_options=qiskit_transpile_options,\n",
|
||
" )\n",
|
||
" transpiled_circuit = ai_transpiler_pass_manager.run(su2_circuit)\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "d6989a85-96e0-4453-a28b-a504ca69750d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"ai_service = TranspilerService(\n",
|
||
" backend_name=\"ibm_brisbane\",\n",
|
||
" ai=\"true\",\n",
|
||
" optimization_level=3,\n",
|
||
")\n",
|
||
"\n",
|
||
"no_ai_service = TranspilerService(\n",
|
||
" backend_name=\"ibm_brisbane\",\n",
|
||
" ai=\"false\",\n",
|
||
" optimization_level=3,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "32cfb7eb-6209-4ec6-b8bc-d00b6559a237",
|
||
"metadata": {},
|
||
"source": [
|
||
"Transpile the circuits and record the times."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "f60cfd26-bbcc-4519-98a9-8d4123f3150e",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/Users/henryzou/.venvs/ibm-learning-sabre/lib/python3.11/site-packages/qiskit/qpy/interface.py:305: UserWarning: The qiskit version used to generate the provided QPY file, 1.2.4, is newer than the current qiskit version 1.2.0. This may result in an error if the QPY file uses instructions not present in this current qiskit version\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Standard transpilation: 43.817320108413696 seconds\n",
|
||
"AI transpilation : 21.043448209762573 seconds\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"time_start = time.time()\n",
|
||
"qc_tr_no_ai = no_ai_service.run(qc)\n",
|
||
"time_end = time.time()\n",
|
||
"time_no_ai = time_end - time_start\n",
|
||
"print(f\"Standard transpilation: {time_no_ai} seconds\")\n",
|
||
"\n",
|
||
"time_start = time.time()\n",
|
||
"qc_tr_ai = ai_service.run(qc)\n",
|
||
"time_end = time.time()\n",
|
||
"time_ai = time_end - time_start\n",
|
||
"print(f\"AI transpilation : {time_ai} seconds\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "d96b9e88-bfe1-4426-b9c1-1b00cbd784d3",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Standard transpilation: Depth 482, Gate count 4467, Time 43.817320108413696\n",
|
||
"AI transpilation : Depth 131, Gate count 2358, Time 21.043448209762573\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"depth_no_ai = qc_tr_no_ai.depth(lambda x: x.operation.num_qubits == 2)\n",
|
||
"depth_ai = qc_tr_ai.depth(lambda x: x.operation.num_qubits == 2)\n",
|
||
"\n",
|
||
"gate_count_no_ai = qc_tr_no_ai.size()\n",
|
||
"gate_count_ai = qc_tr_ai.size()\n",
|
||
"\n",
|
||
"print(\n",
|
||
" f\"Standard transpilation: Depth {depth_no_ai}, Gate count {gate_count_no_ai}, Time {time_no_ai}\"\n",
|
||
")\n",
|
||
"print(\n",
|
||
" f\"AI transpilation : Depth {depth_ai}, Gate count {gate_count_ai}, Time {time_ai}\"\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e3b05b65-7583-4514-83bc-4d99ba4864db",
|
||
"metadata": {},
|
||
"source": [
|
||
"In this test, we compare the performance of the AI transpiler and the standard transpilation method on the EfficientSU2 circuit using the `ibm_brisbane` backend. The results show a significant improvement in the circuit's depth, gate count, and transpilation time when using the AI transpiler:\n",
|
||
"\n",
|
||
"- **Circuit Depth**: This reduction in depth is substantial (over 50%), as it means the AI transpiler has found a more efficient arrangement of qubit interactions, which can directly impact the overall fidelity of the circuit on quantum hardware. A shallower circuit helps mitigate qubit decoherence and reduces the likelihood of noise affecting the outcome.\n",
|
||
"\n",
|
||
"- **Gate Count**: The AI transpiler also reduced the gate count by nearly 50%. Since each gate has an associated error rate, fewer gates directly lower the overall chance of error, which is critical for maintaining coherence and improving the reliability of results in practical quantum computing tasks.\n",
|
||
"\n",
|
||
"\n",
|
||
"- **Transpilation Time Efficiency**: While the time varies for the device, the time it took to transpile the circuit was drastically reduced, over a 50% improvement. This shows that the AI-powered transpiler not only optimizes the resulting circuit but also improves the efficiency of the transpilation process itself, making it faster to generate optimized circuits.\n",
|
||
"\n",
|
||
"It is important to note that these results are based on just one circuit. To obtain a comprehensive understanding of how the AI transpiler compares to traditional methods, it is necessary to test a variety of circuits. The performance of QTS can vary greatly depending on the type of circuit being optimized. For a broader comparison, refer to the benchmarks above or visit the following IBM Blog Post[\\[1\\]](#references)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "36556b22-258b-4c6f-b14a-33ef759f54ed",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 3: Execute using Qiskit primitives\n",
|
||
"As this tutorial focuses on transpilation, no experiments will be executed on the quantum device. The goal is to leverage the optimizations from Step 2 to obtain a transpiled circuit with reduced depth and/or gate count."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "86398ce2-beb4-4944-8961-57cadf03096a",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 4: Post-process and return result in desired classical format\n",
|
||
"Since there is no execution for this notebook, there are no results to post-process."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c546005f-1a73-4906-8804-f925846fe380",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Part II. Analyzing and benchmarking the transpiled circuits\n",
|
||
"\n",
|
||
"In this section, we will demonstrate how to analyze the transpiled circuit and benchmark it against the original version in more detail. We will focus on metrics such as circuit depth, gate count, and transpilation time to assess the effectiveness of the optimization. Additionally, we will discuss how the results may differ across various circuit types, offering insights into the broader performance of the transpiler across different scenarios."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "11499cdb-b2f4-4ca3-8546-9c354f772088",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/Users/henryzou/.venvs/ibm-learning-sabre/lib/python3.11/site-packages/qiskit/qpy/interface.py:305: UserWarning: The qiskit version used to generate the provided QPY file, 1.2.4, is newer than the current qiskit version 1.2.0. This may result in an error if the QPY file uses instructions not present in this current qiskit version\n",
|
||
" warnings.warn(\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Completed transpilation for Random\n",
|
||
"Completed transpilation for Clifford\n",
|
||
"Completed transpilation for QFT\n",
|
||
"Completed transpilation for BV\n",
|
||
"Completed transpilation for QV\n",
|
||
" Circuit Depth (No AI) Gate Count (No AI) Time (No AI) Depth (AI) \\\n",
|
||
"0 Random 345 7842 3.944334 298 \n",
|
||
"1 Clifford 84 2284 2.354044 67 \n",
|
||
"2 QFT 328 4847 3.657239 217 \n",
|
||
"3 BV 135 1116 2.536958 103 \n",
|
||
"4 QV 198 5075 2.670678 174 \n",
|
||
"\n",
|
||
" Gate Count (AI) Time (AI) \n",
|
||
"0 8738 34.042681 \n",
|
||
"1 2173 18.066975 \n",
|
||
"2 4602 25.296369 \n",
|
||
"3 791 21.240081 \n",
|
||
"4 5613 26.749141 \n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Circuits to benchmark\n",
|
||
"seed = 42\n",
|
||
"circuits = [\n",
|
||
" {\n",
|
||
" \"name\": \"Random\",\n",
|
||
" \"qc\": random_circuit(num_qubits=30, depth=10, seed=seed),\n",
|
||
" },\n",
|
||
" {\n",
|
||
" \"name\": \"Clifford\",\n",
|
||
" \"qc\": random_clifford_circuit(\n",
|
||
" num_qubits=40, num_gates=200, seed=seed\n",
|
||
" ),\n",
|
||
" },\n",
|
||
" {\"name\": \"QFT\", \"qc\": QFT(20, do_swaps=False).decompose()},\n",
|
||
" {\n",
|
||
" \"name\": \"BV\",\n",
|
||
" \"qc\": create_bv_circuit(40),\n",
|
||
" }, # Using the BV circuit function\n",
|
||
" {\"name\": \"QV\", \"qc\": QuantumVolume(num_qubits=20, depth=10, seed=seed)},\n",
|
||
"]\n",
|
||
"\n",
|
||
"results = []\n",
|
||
"\n",
|
||
"# Run the transpilation for each circuit and store the results\n",
|
||
"for circuit in circuits:\n",
|
||
" data = run_transpilation(circuit[\"qc\"], no_ai_service, ai_service)\n",
|
||
" print(\"Completed transpilation for\", circuit[\"name\"])\n",
|
||
" results.append(\n",
|
||
" {\n",
|
||
" \"Circuit\": circuit[\"name\"],\n",
|
||
" \"Depth (No AI)\": data[\"depth_no_ai\"],\n",
|
||
" \"Gate Count (No AI)\": data[\"gate_count_no_ai\"],\n",
|
||
" \"Time (No AI)\": data[\"time_no_ai\"],\n",
|
||
" \"Depth (AI)\": data[\"depth_ai\"],\n",
|
||
" \"Gate Count (AI)\": data[\"gate_count_ai\"],\n",
|
||
" \"Time (AI)\": data[\"time_ai\"],\n",
|
||
" }\n",
|
||
" )\n",
|
||
"df = pd.DataFrame(results)\n",
|
||
"print(df)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f4aae7f9-3a73-4798-992a-55f2bea3dcc2",
|
||
"metadata": {},
|
||
"source": [
|
||
"Average percentage reduction for each metric. Positive are improvements, negative are degradations."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "5d3aad52-a63d-458e-b048-afd546f40a1e",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Average reduction in depth: 21.19%\n",
|
||
"Average reduction in gate count: -3.56%\n",
|
||
"Average reduction in transpilation time: -726.97%\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Average reduction from non-AI to AI transpilation as a percentage\n",
|
||
"avg_reduction_depth = (\n",
|
||
" (df[\"Depth (No AI)\"] - df[\"Depth (AI)\"]).mean()\n",
|
||
" / df[\"Depth (No AI)\"].mean()\n",
|
||
" * 100\n",
|
||
")\n",
|
||
"avg_reduction_gates = (\n",
|
||
" (df[\"Gate Count (No AI)\"] - df[\"Gate Count (AI)\"]).mean()\n",
|
||
" / df[\"Gate Count (No AI)\"].mean()\n",
|
||
" * 100\n",
|
||
")\n",
|
||
"avg_reduction_time = (\n",
|
||
" (df[\"Time (No AI)\"] - df[\"Time (AI)\"]).mean()\n",
|
||
" / df[\"Time (No AI)\"].mean()\n",
|
||
" * 100\n",
|
||
")\n",
|
||
"\n",
|
||
"print(f\"Average reduction in depth: {avg_reduction_depth:.2f}%\")\n",
|
||
"print(f\"Average reduction in gate count: {avg_reduction_gates:.2f}%\")\n",
|
||
"print(f\"Average reduction in transpilation time: {avg_reduction_time:.2f}%\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "541960d9-4c2a-4149-bd44-6077553c699b",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAACCoAAAJRCAYAAACJesQ1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsmElEQVR4nOzdd1gUV9sG8HvpZelFVBBQih1jxwZiQUVjR7BQ7D1q0IiaCDbU2BsxUREFK2os2BN7iRV7RbArogJBBATm+8Nv52VZQFBkNd6/6+KKe+bMmefMDsuT2TPnSARBEEBERERERERERERERERERERUClSUHQARERERERERERERERERERF9OzhQgYiIiIiIiIiIiIiIiIiIiEoNByoQERERERERERERERERERFRqeFABSIiIiIiIiIiIiIiIiIiIio1HKhAREREREREREREREREREREpYYDFYiIiIiIiIiIiIiIiIiIiKjUcKACERERERERERERERERERERlRoOVCAiIiIiIiIiIiIiIiIiIqJSw4EKREREREREREREREREREREVGo4UIGIiIiIiIrl8OHDkEgkiIqKUnYoRRIUFASJRILExMRC6/n5+cHGxqZ0gqKPJpFIEBQUJL5evXo1JBIJ4uPjS+wY8fHxkEgkWL16dYm1SVRS8rvmXV1d4erqWqLHkX12KkNqair69+8PCwsLSCQSjBo1SilxfA55P8O+Nsr8W2ljYwM/Pz+lHJuIiIiIiEoeByoQEREREX1BZF9A5f4xNzdH8+bNsWfPHmWHR6Wgfv36kEgkCA0NzXe77Bo5d+5coe1cv34dQUFBJfoF/n/NunXrsGDBAmWHUapcXV0hkUjQoUMHhW2yARpz5sxRQmT/c+PGDUgkEmhpaSEpKSnfOq6urqhevfoH2/oW3+PiSEtLQ1BQEA4fPqzsUOTMmDEDq1evxpAhQ7B27Vr06dNH2SHRF4h/54iIiIiIvm5qyg6AiIiIiIgUTZkyBba2thAEAc+fP8fq1avRrl077Ny5E+3bt1d2eP9Jf/zxB3JycpQaw507d3D27FnY2NggMjISQ4YM+ei2rl+/juDgYLi6uv6nZop4+/Yt1NRK5n9l161bh6tXryo8rW1tbY23b99CXV29RI7zJdq1axfOnz+POnXqKDsUBREREbCwsMDr168RFRWF/v37f3RbBb3HX7M+ffrAy8sLmpqan9xWWloagoODAUBhRoZJkyZh/Pjxn3yMj/H333+jYcOGmDx5slKO/zmV5GeYMijzb+WtW7egovK/Z67+q3/niIiIiIi+FZxRgYiIiIjoC9S2bVv07t0bffr0QUBAAI4dOwZ1dXWsX79e2aF9Nd68eVOs+urq6iXyxd+niIiIgLm5OebOnYuTJ0+W2lOigiDg7du3pXKsT6WlpfXZv+STPc2vqqr6WY+jLBUqVICRkZH4BfWXRBAErFu3Dj179kS7du0QGRlZasdOT09X+mClolBVVYWWltZnX5ZBTU0NWlpan/UYBUlISIChoWGJtZeVlYXMzMwSa6+4cnJykJ6eDqB0PsM+p6L8rfxc51tTU/M/PYCMiIiIiOhbw4EKRERERERfAUNDQ2hrayt8uZGTk4MFCxagWrVq0NLSQpkyZTBo0CC8fv1arp6NjQ3at2+P48ePo379+tDS0kLFihWxZs0ahWMlJSVh9OjRsLGxgaamJiwtLeHj44PExESFY0+fPh2WlpbQ0tJCixYtcPfuXbk6sunZL1++DBcXF+jo6MDOzg5RUVEAgCNHjqBBgwbQ1taGo6MjDh48KLf//fv3MXToUDg6OkJbWxsmJibo3r27whf4suUQjhw5gqFDh8Lc3ByWlpYFns/79+/Dzs4O1atXx/PnzwEorrudexr833//HZUqVYKmpibq1auHs2fPKrS5efNmVK1aFVpaWqhevTq2bdtW7LW8161bh27duqF9+/YwMDDAunXrirxvbqtXr0b37t0BAM2bNxeXEZFN7y67Hvbt24e6detCW1sby5cvBwCEhYXBzc0N5ubm0NTURNWqVfNdhqKo19S7d+8QHBwMe3t7aGlpwcTEBE2aNMGBAwfEOn5+fpBKpbh37x7c3d2hq6uLcuXKYcqUKRAEQa69oqzvvn37dnh4eKBcuXLQ1NREpUqVMHXqVGRnZ4t1XF1dER0djfv374vnR/Zeyd771atXy7X7999/o2nTptDV1YWhoSE6duyIGzduyNUJCgqCRCLB3bt34efnB0NDQxgYGMDf3x9paWmFxj18+HBIpdJ863l7e8PCwkLsw7lz5+Du7g5TU1Noa2vD1tYWffv2LbR9GT09PYwePRo7d+7EhQsXPlj/3r176N69O4yNjaGjo4OGDRsiOjpars7hw4chkUiwadOmD34uFObEiROIj4+Hl5cXvLy8cPToUTx69KjI++dW2Hssi3fDhg2YNGkSypcvDx0dHaSkpODVq1cICAhAjRo1IJVKoa+vj7Zt2+LSpUsf3ec7d+6ga9eusLCwgJaWFiwtLeHl5YXk5GSxjkQiwfDhwxEZGQlHR0doaWmhTp06OHr0qFxbss+7wgYyZWZm4pdffkGdOnVgYGAAXV1dNG3aFIcOHRLrxMfHw8zMDAAQHBwsniPZ75fsWs4tKysLU6dOFT8PbWxsMGHCBGRkZMjVK87fnPzOaVxcHKKjo8WYZH1NSEhAv379UKZMGWhpacHJyQnh4eFybeT+7F6wYIEY6/Xr1/M9ZvXq1dG8eXOF8pycHJQvXx7dunUTy+bMmYNGjRrBxMQE2traqFOnjvj3LLfc72W1atWgqamJvXv3itvyfoZdvHgRbdu2hb6+PqRSKVq0aIHTp0/L1cnv/QDyvx4+5fNhz549cHFxgZ6eHvT19VGvXj25v0WF/a3M73zfvHkTnp6eMDMzE//WT5w4scD2CuuvjY0N/Pz8xH4X9nfuU84BERERERGVjq93CDcRERER0X9YcnIyEhMTIQgCEhISsHjxYqSmpqJ3795y9QYNGoTVq1fD398fI0eORFxcHJYsWYKLFy/ixIkTck8e3r17F926dUO/fv3g6+uLVatWwc/PD3Xq1EG1atUAAKmpqWjatClu3LiBvn37onbt2khMTMSOHTvw6NEjmJqaiu3NnDkTKioqCAgIQHJyMmbPno1evXrhn3/+kYvx9evXaN++Pby8vNC9e3eEhobCy8sLkZGRGDVqFAYPHoyePXvi119/Rbdu3fDw4UPo6ekBAM6ePYuTJ0/Cy8sLlpaWiI+PR2hoKFxdXXH9+nXo6OjIHWvo0KEwMzPDL7/8UuCMCrGxsXBzc4OxsTEOHDgg16f8rFu3Dv/++y8GDRoEiUSC2bNno0uXLrh37554fqOjo9GjRw/UqFEDISEheP36Nfr164fy5csX2nZu//zzD+7evYuwsDBoaGigS5cuiIyMxIQJE4rchkyzZs0wcuRILFq0CBMmTECVKlUAQPwv8H4KbW9vbwwaNAgDBgyAo6MjACA0NBTVqlXD999/DzU1NezcuRNDhw5FTk4Ohg0bJnecolxTQUFBCAkJQf/+/VG/fn2kpKTg3LlzuHDhAlq1aiW2lZ2djTZt2qBhw4aYPXs29u7di8mTJyMrKwtTpkwpVv9Xr14NqVSKMWPGQCqV4u+//8Yvv/yClJQU/PrrrwCAiRMnIjk5GY8ePcL8+fMBAFKptMA2Dx48iLZt26JixYoICgrC27dvsXjxYjRu3BgXLlxQ+KLN09MTtra2CAkJwYULF7BixQqYm5tj1qxZBR6jR48eWLp0KaKjo8Uv4ID30/Pv3LkTfn5+UFVVRUJCAlq3bg0zMzOMHz8ehoaGiI+Px9atW4t8jn744QfMnz8fQUFB2LFjR4H1nj9/jkaNGiEtLQ0jR46EiYkJwsPD8f333yMqKgqdO3eWq1/Uz4WCREZGolKlSqhXrx6qV68OHR0drF+/HmPHji1y32SK8h5PnToVGhoaCAgIQEZGBjQ0NHD9+nX8+eef6N69O2xtbfH8+XMsX74cLi4uuH79OsqVK1esPmdmZsLd3R0ZGRkYMWIELCws8PjxY+zatQtJSUkwMDAQ2zpy5Ag2btyIkSNHQlNTE8uWLUObNm1w5swZVK9evch9T0lJwYoVK+Dt7Y0BAwbg33//xcqVK+Hu7o4zZ86gVq1aMDMzQ2hoKIYMGYLOnTujS5cuAICaNWsW2G7//v0RHh6Obt264ccff8Q///yDkJAQ3LhxA9u2bZOrW5TPh7yqVKmCtWvXYvTo0bC0tMSPP/4IADAzM8Pbt2/h6uqKu3fvYvjw4bC1tcXmzZvh5+eHpKQk/PDDD3JthYWFIT09HQMHDoSmpiaMjY3zPWaPHj0QFBSEZ8+ewcLCQiw/fvw4njx5Ai8vL7Fs4cKF+P7779GrVy9kZmZiw4YN6N69O3bt2gUPDw+5dv/++29s2rQJw4cPh6mpaYGD1q5du4amTZtCX18f48aNg7q6OpYvXw5XV1dxMF9xfMrnw+rVq9G3b19Uq1YNgYGBMDQ0xMWLF7F371707Nmz0H3zO9+XL19G06ZNoa6ujoEDB8LGxgaxsbHYuXMnpk+fXqx+5VXY37mS+IwkIiIiIqJSIBARERER0RcjLCxMAKDwo6mpKaxevVqu7rFjxwQAQmRkpFz53r17Fcqtra0FAMLRo0fFsoSEBEFTU1P48ccfxbJffvlFACBs3bpVIbacnBxBEATh0KFDAgChSpUqQkZGhrh94cKFAgDhypUrYpmLi4sAQFi3bp1YdvPmTQGAoKKiIpw+fVos37dvnwBACAsLE8vS0tIU4jh16pQAQFizZo3CeWvSpImQlZUlV3/y5MkCAOHFixfCjRs3hHLlygn16tUTXr16JVfP19dXsLa2Fl/HxcUJAAQTExO5utu3bxcACDt37hTLatSoIVhaWgr//vuvWHb48GEBgFybhRk+fLhgZWUlnuf9+/cLAISLFy/K1ZP19ezZs4W2t3nzZgGAcOjQIYVtsuth7969CtvyO+fu7u5CxYoV823jQ9eUk5OT4OHhUWisvr6+AgBhxIgRYllOTo7g4eEhaGhoCC9evBDLAQiTJ08WX8vOR1xcXKF9GDRokKCjoyOkp6eLZR4eHvm+P7L3Pve1WKtWLcHc3Fx4+fKlWHbp0iVBRUVF8PHxEctk11vfvn3l2uzcubNgYmJS6HnIyckRypcvL3Tt2lWufNOmTXLnetu2bUW6BvLj4uIiVKtWTRAEQQgODhYACOfPn5fr96+//irWHzVqlABAOHbsmFj277//Cra2toKNjY2QnZ0tCELxPhcKkpmZKZiYmAgTJ04Uy3r27Ck4OTkV2o/CFPQey+KtWLGiwvWSnp4u9ksmLi5O0NTUFKZMmaLQxof6fPHiRQGAsHnz5kJjlX3enzt3Tiy7f/++oKWlJXTu3Fksy++ad3FxEVxcXMTXWVlZcjEJgiC8fv1aKFOmjNy1+eLFC4XfKRnZtSwTExMjABD69+8vVy8gIEAAIPz9999iWVE/HwpibW2t8LmxYMECAYAQEREhlmVmZgrOzs6CVCoVUlJSBEH433Wsr68vJCQkfPBYt27dEgAIixcvlisfOnSoIJVK5a6PvNdKZmamUL16dcHNzU2uXPY37tq1awrHy3u+O3XqJGhoaAixsbFi2ZMnTwQ9PT2hWbNmYlne90Mm7/XwsZ8PSUlJgp6entCgQQPh7du3cttkf5cEoeC/lfmd72bNmgl6enrC/fv3i9yeTH79tba2Fnx9fcXXBf2d+5TPSCIiIiIiKj1c+oGIiIiI6Au0dOlSHDhwAAcOHEBERASaN2+O/v37yz0NuHnzZhgYGKBVq1ZITEwUf+rUqQOpVCo3xTcAVK1aFU2bNhVfm5mZwdHREffu3RPLtmzZAicnJ4WnpAEoTMHs7+8PDQ0N8bWs7dztAe+fYM79RKqjoyMMDQ1RpUoVuSdFZf/Ovb+2trb473fv3uHly5ews7ODoaFhvlPWDxgwAKqqqgrlAHD16lW4uLjAxsYGBw8ehJGRUb718urRo4dc3bz9fPLkCa5cuQIfHx+5p7VdXFxQo0aNIh0jKysLGzduRI8ePcTzLFt+ITIyskhtFJetrS3c3d0VynOfc9nMHi4uLrh3757cNPVA0a4pQ0NDXLt2DXfu3PlgTMOHDxf/LZs6PTMzU2FJkA/J3Yd///0XiYmJaNq0KdLS0nDz5s1itQUAT58+RUxMDPz8/OSeyq5ZsyZatWqF3bt3K+wzePBguddNmzbFy5cvkZKSUuBxJBIJunfvjt27dyM1NVUs37hxI8qXL48mTZoAeH9OAWDXrl149+5dsfsj88MPP8DIyAjBwcEF1tm9ezfq168vHht4/zs9cOBAxMfHK0ynX9TPhfzs2bMHL1++hLe3t1jm7e2NS5cu4dq1a0XuV3H4+vrKXS8AoKmpCRWV97dLsrOz8fLlS0ilUjg6Oub7ufOhPstmTNi3b98Hl/9wdnZGnTp1xNcVKlRAx44dsW/fPrmlSz5EVVVVjCknJwevXr1CVlYW6tatW6TlPvIju87HjBkjVy6b9SDvciBF+Xwo7vEtLCzkrg91dXWMHDkSqampOHLkiFz9rl27iktbFMbBwQG1atXCxo0bxbLs7GxERUWhQ4cOctdH7n+/fv0aycnJaNq0ab7n1MXFBVWrVi302NnZ2di/fz86deqEihUriuVly5ZFz549cfz48UI/M/LzsZ8PBw4cwL///ovx48dDS0tLblt+S07klfd8v3jxAkePHkXfvn1RoUKFYrf3KUrqM5KIiIiIiD4vDlQgIiIiIvoC1a9fHy1btkTLli3Rq1cvREdHo2rVquIXt8D7Nc+Tk5Nhbm4OMzMzuZ/U1FQkJCTItZn3iwIAMDIywuvXr8XXsbGxRZ5ePG97si/zc7cHAJaWlgpfShgYGMDKykqhLO/+b9++xS+//AIrKytoamrC1NQUZmZmSEpKUvjSHHj/5XtBOnToAD09Pezbtw/6+vpF6OF7H+rn/fv3AQB2dnYK++ZXlp/9+/fjxYsXqF+/Pu7evYu7d+8iLi4OzZs3x/r165GTk1PkeIuqoHN14sQJtGzZErq6ujA0NISZmZm4/ETec16Ua2rKlClISkqCg4MDatSogbFjx+Ly5csK+6moqMh9UQe8/wIRgNza60Vx7do1dO7cGQYGBtDX14eZmZm4bEp+182HyN5j2fIYuVWpUgWJiYkKS40U9fcjrx49euDt27ficgypqanYvXs3unfvLv4eubi4oGvXrggODoapqSk6duyIsLAwZGRkFKtfBgYGGDVqFHbs2IGLFy/mW+f+/fsF9lu2PbcP9Ts1NRXPnj0Tf168eCHWjYiIgK2tLTQ1NcXfg0qVKkFHR+ezDtjJKycnB/Pnz4e9vb3c587ly5fzvX4+1GdbW1uMGTMGK1asgKmpKdzd3bF06dJ827K3t1coc3BwQFpamty5Korw8HDUrFkTWlpaMDExgZmZGaKjoz/qdwB4/16rqKgofK5ZWFjA0NDwg9cCoPj5UNzj29vbi4NIZAq6Fgv7e5BXjx49cOLECTx+/BgAcPjwYSQkJKBHjx5y9Xbt2oWGDRtCS0sLxsbG4vIZxf17JPPixQukpaUV+DuWk5ODhw8fFrkfwMd/PsTGxgJAsZYYyS1vf2UDUj62vU9RUp+RRERERET0eXGgAhERERHRV0BFRQXNmzfH06dPxSfTc3JyYG5uLs68kPdnypQpcm0UNNOAIAgfFVNR2yuoXlH2HzFiBKZPnw5PT09s2rQJ+/fvx4EDB2BiYpLvl/d5n4zOrWvXroiNjS32F54lfd7yI4vJ09MT9vb24s/GjRvx+PFjhSeFS0J+5yo2NhYtWrRAYmIi5s2bh+joaBw4cACjR48GAIVzXpRz06xZM8TGxmLVqlWoXr06VqxYgdq1a2PFihUl2Jv/SUpKgouLCy5duoQpU6Zg586dOHDgAGbNmpVvHz6Xj71uGjZsCBsbG2zatAkAsHPnTrx9+1buC1OJRIKoqCicOnUKw4cPx+PHj9G3b1/UqVNHbiaGovjhhx9gaGhY6KwKxfGhfs+ZMwdly5YVf+rVqwcASElJwc6dOxEXFyf3O1C1alWkpaVh3bp1Jfo7J5Pf78GMGTMwZswYNGvWDBEREdi3bx8OHDiAatWq5Xv9FOW9njt3Li5fvowJEybg7du3GDlyJKpVq4ZHjx6VXGdyiYiIgJ+fHypVqoSVK1di7969OHDgANzc3D75d6CoT8OXxmdnYQr7e5BXjx49IAgCNm/eDADYtGkTDAwM0KZNG7HOsWPH8P3330NLSwvLli3D7t27ceDAAfTs2TPfPhXn+EVR0HnPO9NGSX4+FMfH9reo/Spum8o4B0REREREVDxqyg6AiIiIiIiKJisrCwDEm+yVKlXCwYMH0bhx4xL7QqRSpUq4evVqibRVEqKiouDr64u5c+eKZenp6UhKSip2W7/++ivU1NQwdOhQ6OnpoWfPniUSo7W1NQDg7t27CtvyK8vrzZs32L59O3r06IFu3bopbB85ciQiIyPRvHnzYsX1MVNr79y5ExkZGdixY4fc09B5lxEpLmNjY/j7+8Pf3x+pqalo1qwZgoKC0L9/f7FOTk4O7t27J86iAAC3b98GANjY2BT5WIcPH8bLly+xdetWNGvWTCyPi4tTqFvUcyR7j2/duqWw7ebNmzA1NYWurm6RY/wQT09PLFy4ECkpKdi4cSNsbGzQsGFDhXoNGzZEw4YNMX36dKxbtw69evXChg0b5M7rh8hmVQgKCoKvr6/Cdmtr6wL7LdteHD4+PnLLSMg+u7Zu3Yr09HSEhobC1NRUbp9bt25h0qRJOHHihNy+RfExvwdRUVFo3rw5Vq5cKVeelJSkEFtx1KhRAzVq1MCkSZNw8uRJNG7cGL/99humTZsm1slviZTbt29DR0enSMsY5O5DxYoVsXXrVrlzMHnyZLl6xTk/1tbWyMnJwZ07d8RZDADg+fPnSEpKKva1UFzW1ta4fPkycnJy5GZV+NhrMTdbW1vUr18fGzduxPDhw7F161Z06tQJmpqaYp0tW7ZAS0sL+/btkysPCwv76OOamZlBR0enwN8xFRUVcfYh2UwdSUlJ4tIGgOJMEjLF/XyoVKkSgPfLJBV1NqDCyGbI+VBOYWRklO/f9IL6lduHrt+S+IwkIiIiIqLPhzMqEBERERF9Bd69e4f9+/dDQ0ND/ILI09MT2dnZmDp1qkL9rKysj/oyv2vXrrh06RK2bdumsK20noLNTVVVVeG4ixcv/qgnLSUSCX7//Xd069YNvr6+4tT6n6pcuXKoXr061qxZI/ek5pEjR3DlypUP7r9t2za8efMGw4YNQ7du3RR+2rdvjy1bthR7ymrZF+fFuQ5kT0DnPufJycmf9EXcy5cv5V5LpVLY2dnl258lS5aI/xYEAUuWLIG6ujpatGhR5OPl14fMzEwsW7ZMoa6urm6RpsEvW7YsatWqhfDwcLnzefXqVezfvx/t2rUrcnxF0aNHD2RkZCA8PBx79+6Fp6en3PbXr18r/F7UqlULAD5qavNRo0bB0NBQYRYWAGjXrh3OnDmDU6dOiWVv3rzB77//DhsbG1StWrVYx6pYsaK4rE3Lli3RuHFjAO9nAKhYsSIGDx6s8DsQEBAAqVT6Ucs/FPU9zi2/z53NmzeLywIUV0pKijjQTKZGjRpQUVFReL9OnTqFCxcuiK8fPnyI7du3o3Xr1gXOUJCf/H4P/vnnH7n3EQB0dHQAFO1zQnadL1iwQK583rx5AAAPD48ix/cx2rVrh2fPnmHjxo1iWVZWFhYvXgypVAoXF5dPar9Hjx44ffo0Vq1ahcTERIVlH1RVVSGRSOT+/sTHx+PPP//86GOqqqqidevW2L59u9wSN8+fP8e6devQpEkTcaki2UCCo0ePivXevHmD8PBwuTY/9vOhdevW0NPTQ0hICNLT0+W2fczffzMzMzRr1gyrVq3CgwcPCmyvUqVKSE5OllsS6OnTp/nmIXkV9HeupD8jiYiIiIjo8+CMCkREREREX6A9e/aIT4kmJCRg3bp1uHPnDsaPHy9+aeHi4oJBgwYhJCQEMTExaN26NdTV1XHnzh1s3rwZCxcuzPcJ/cKMHTsWUVFR6N69uzhN8qtXr7Bjxw789ttvcHJyKvG+FqZ9+/ZYu3YtDAwMULVqVZw6dQoHDx6EiYnJR7WnoqKCiIgIdOrUCZ6enti9ezfc3Nw+Oc4ZM2agY8eOaNy4Mfz9/fH69WssWbIE1atX/+A005GRkTAxMUGjRo3y3f7999/jjz/+QHR0NLp06VLkmGrVqgVVVVXMmjULycnJ0NTUhJubG8zNzQvcp3Xr1tDQ0ECHDh0waNAgpKam4o8//oC5uTmePn1a5GPnVrVqVbi6uqJOnTowNjbGuXPnEBUVheHDh8vV09LSwt69e+Hr64sGDRpgz549iI6OxoQJE4r1JHmjRo1gZGQEX19fjBw5EhKJBGvXrs33i7Y6depg48aNGDNmDOrVqwepVIoOHTrk2+6vv/6Ktm3bwtnZGf369cPbt2+xePFiGBgYICgoqFjn5ENq164NOzs7TJw4ERkZGQpfmIaHh2PZsmXo3LkzKlWqhH///Rd//PEH9PX1P2rQhIGBAX744Yd8l38YP3481q9fj7Zt22LkyJEwNjZGeHg44uLisGXLFrkn2z/WkydPcOjQIYwcOTLf7ZqamnB3d8fmzZuxaNEiqKurF7nt4rzHMu3bt8eUKVPg7++PRo0a4cqVK4iMjBSfEC+uv//+G8OHD0f37t3h4OCArKwsrF27Fqqqqujatatc3erVq8Pd3R0jR46EpqamOMCmuEtztG/fHlu3bkXnzp3h4eGBuLg4/Pbbb6hatarcZ5K2tjaqVq2KjRs3wsHBAcbGxqhevTqqV6+u0KaTkxN8fX3x+++/i0usnDlzBuHh4ejUqVOxZ30proEDB2L58uXw8/PD+fPnYWNjg6ioKJw4cQILFiyAnp7eJ7Xv6emJgIAABAQEwNjYGC1btpTb7uHhgXnz5qFNmzbo2bMnEhISsHTpUtjZ2cl9yV5c06ZNw4EDB9CkSRMMHToUampqWL58OTIyMjB79myxXuvWrVGhQgX069cPY8eOhaqqKlatWgUzMzO5gQAf+/mgr6+P+fPno3///qhXrx569uwJIyMjXLp0CWlpaQoDIopi0aJFaNKkCWrXro2BAwfC1tYW8fHxiI6ORkxMDADAy8sLP/30Ezp37oyRI0ciLS0NoaGhcHBwkBu0k5+C/s6tW7euRD8jiYiIiIjo8+BABSIiIiKiL9Avv/wi/ltLSwuVK1dGaGgoBg0aJFfvt99+Q506dbB8+XJMmDABampqsLGxQe/evcUnlYtDKpXi2LFjmDx5MrZt24bw8HCYm5ujRYsWsLS0/OR+FdfChQuhqqqKyMhIpKeno3Hjxjh48CDc3d0/uk11dXVERUWhbdu26NixIw4ePIgGDRp8UpwdOnTA+vXrERQUhPHjx8Pe3h6rV69GeHg4rl27VuB+CQkJOHjwILy9vQt8WrpFixbQ0dFBREREsQYqWFhY4LfffkNISAj69euH7OxsHDp0qNCBCo6OjoiKisKkSZMQEBAACwsLDBkyBGZmZujbt2+Rj53byJEjsWPHDuzfvx8ZGRmwtrbGtGnTMHbsWLl6qqqq2Lt3L4YMGYKxY8dCT08PkydPlvtdKAoTExPs2rULP/74IyZNmgQjIyP07t0bLVq0ULhuhg4dipiYGISFhWH+/PmwtrYu8Evsli1bYu/evWJM6urqcHFxwaxZs2Bra1u8k1IEPXr0wPTp02FnZ4fatWvLbZN9QbxhwwY8f/4cBgYGqF+/PiIjIz86llGjRmHBggUKsw+UKVMGJ0+exE8//YTFixcjPT0dNWvWxM6dO0vsCfoNGzYgJyen0AEEHTp0wJYtW7Bnzx58//33RW67OO+xzIQJE/DmzRusW7cOGzduRO3atREdHY3x48cX+bi5OTk5wd3dHTt37sTjx4+ho6MDJycn7NmzR2FJDxcXFzg7OyM4OBgPHjxA1apVsXr1atSsWbNYx/Tz88OzZ8+wfPly7Nu3D1WrVkVERAQ2b96Mw4cPy9VdsWIFRowYgdGjRyMzMxOTJ0/Od6CCrG7FihWxevVqbNu2DRYWFggMDFRYUuJz0NbWxuHDhzF+/HiEh4cjJSUFjo6OCAsLg5+f3ye3b2lpiUaNGuHEiRPo37+/woAYNzc3rFy5EjNnzsSoUaNga2uLWbNmIT4+/pMGKlSrVg3Hjh1DYGAgQkJCkJOTgwYNGiAiIkLub5O6ujq2bduGoUOH4ueff4aFhQVGjRoFIyMj+Pv7i/U+5fOhX79+MDc3x8yZMzF16lSoq6ujcuXKGD169Ef1zcnJCadPn8bPP/+M0NBQpKenw9raWm6WGBMTE2zbtg1jxozBuHHjYGtri5CQENy5c+eDAxUK+jv3OT4jiYiIiIio5EkEZczfSkRERERE9A2oVasWzMzMcODAAWWH8kXz8/NDVFTUB2efIPovk0gkGDZsmNwSKERERERERET/VZ8+RyMREREREdE37t27dwpr0B8+fBiXLl2Cq6urcoIiIiIiIiIiIiL6QnHpByIiIiIiok/0+PFjtGzZEr1790a5cuVw8+ZN/Pbbb7CwsMDgwYOVHR4REREREREREdEXhQMViIiIiIiIPpGRkRHq1KmDFStW4MWLF9DV1YWHhwdmzpwJExMTZYdHRERERERERET0RZEIgiAoOwgiIiIiIiIiIiIiIiIiIiL6NqgoOwAiIiIiIiIiIiIiIiIiIiL6dnCgAhEREREREREREREREREREZUaDlQgIiIiIiIiIiIiIiIiIiKiUsOBCkRERERERERERERERERERFRqOFCBiIiIiIiIiIiIiIiIiIiISg0HKhAREREREREREREREREREVGp4UAFIiIiIiIiIiIiIiIiIiIiKjUcqEBERERERERERERERERERESlhgMViIiIiIiIiIiIiIiIiIiIqNRwoAIRERERERERERERERERERGVGg5UICIiIiIiIiIiIiIiIiIiolLDgQpERERERERERERERERERERUajhQgYiIiIiIiIiIiIiIiIiIiEoNByoQERERERERERERERERERFRqeFABSIiIiIiIiIiIiIiIiIiIio1HKhAREREREREREREREREREREpYYDFYiIiIiIiIiIiIiIiIiIiKjUcKACEX1WNjY28PPzK/XjxsfHQyKRYPXq1aV+7NLi6uqK6tWrKzuMr1pQUBAkEomywyAiIiIiKhY/Pz/Y2NgoOwwiIiKiEsc858ukrPv8RPTfxoEKRPRRYmNjMWjQIFSsWBFaWlrQ19dH48aNsXDhQrx9+1bZ4eVr9+7dCAoKKnJ9V1dXSCQSSCQSqKioQF9fH46OjujTpw8OHDjw+QLN5cmTJwgKCkJMTMxnaT87OxthYWFwdXWFsbExNDU1YWNjA39/f5w7d+6zHJOIiIjoaxUXF4fhw4fDwcEBOjo60NHRQdWqVTFs2DBcvnz5o9o8efIkgoKCkJSUVLLB/r+vIW9ftmxZsQcYp6enY/78+WjQoAEMDAygpaUFBwcHDB8+HLdv3/48gRIRERHRR5HdY/3Qz+HDh5UdaoGeP3+OgIAAVK5cGTo6OtDV1UWdOnUwbdq0z5bLExH910kEQRCUHQQRfV2io6PRvXt3aGpqwsfHB9WrV0dmZiaOHz+OLVu2wM/PD7///jsAICMjAyoqKlBXVy/VGAVBQEZGBtTV1aGqqgoAGD58OJYuXYqifuy5uroiNjYWISEhAIA3b97g7t272Lp1K+7duwdPT09ERER81r6dO3cO9erVQ1hYmMKIVVdXVyQmJuLq1asf1fbbt2/RpUsX7N27F82aNUOHDh1gbGyM+Ph4bNq0Cbdv38aDBw9gaWlZAj35MmVlZSErKwtaWlrKDoWIiIi+cLt27UKPHj2gpqaGXr16wcnJCSoqKrh58ya2bt2K+/fvIy4uDtbW1sVqd86cORg7dizi4uJK/Mmx4uTtylS9enWYmpoW+cZ0YmIi2rRpg/Pnz6N9+/Zo2bIlpFIpbt26hQ0bNuDZs2fIzMz8vEEr2bt375CTkwNNTU1lh0JERET0QREREXKv16xZgwMHDmDt2rVy5a1atYKxsfEXl+ecPXsW7dq1Q2pqKnr37o06deoAeH/vdsOGDWjUqBH279+v5Cg/L2Xd5yei/zY1ZQdARF+XuLg4eHl5wdraGn///TfKli0rbhs2bBju3r2L6OhosawoCeWbN2+gq6tbonFKJJIS+fLZwMAAvXv3liubOXMmRo4ciWXLlsHGxgazZs365OMow9ixY7F3717Mnz8fo0aNkts2efJkzJ8/XzmBlQLZNaempgY1Nf4pJCIiosLFxsaKOfBff/0llwMDwKxZs7Bs2TKoqHw5kxYWN2//mvj5+eHixYuIiopC165d5bZNnToVEydOVFJkn58sj+UNYiIiIvqa5L2/evr0aRw4cECh/EuUlJSEzp07Q1VVFRcvXkTlypXltk+fPh1//PGHkqL7vARBQHp6OrS1tb+ogSNE9N/x5dxFIaKvwuzZs5GamoqVK1cq3KAFADs7O/zwww/i67xrV61evRoSiQRHjhzB0KFDYW5uLvfE/p49e+Di4gI9PT3o6+ujXr16WLduXYHtybi6usLV1VV8HR8fD4lEIk4h6+fnh6VLlwKQn2rsY6iqqmLRokWoWrUqlixZguTkZLntERERqFOnDrS1tWFsbAwvLy88fPhQId7q1avj/PnzaNSoEbS1tWFra4vffvtNrHP48GHUq1cPAODv7y/GnHda3OvXr6N58+bQ0dFB+fLlMXv27A/24dGjR1i+fDlatWqlMEhB1seAgAC59+bixYto27Yt9PX1IZVK0aJFC5w+fVpuP9n7e/z4cYwcORJmZmYwNDTEoEGDkJmZiaSkJPj4+MDIyAhGRkYYN26c3AwXsvdtzpw5mD9/PqytraGtrQ0XFxeFmSMuX74MPz8/cRpjCwsL9O3bFy9fvpSrFxQUBIlEguvXr6Nnz54wMjJCkyZN5LblduDAATRp0gSGhoaQSqVwdHTEhAkT5OokJCSgX79+KFOmDLS0tODk5ITw8HC5Orn78vvvv6NSpUrQ1NREvXr1cPbs2Q+8Q0RERPQlmT17Nt68eYOwsLB8c2A1NTWMHDkSVlZWYllRcpWgoCCMHTsWAGBrayvme/Hx8WKdouSWBcVcnLw9KysLU6dOFXMWGxsbTJgwARkZGXL7SSSSfJdTKyjvP3HiBMaMGQMzMzPo6uqic+fOePHihdx+165dw5EjR8T+587r8/rnn38QHR2Nfv36KQxSAN4PlJ4zZ45c2d9//42mTZtCV1cXhoaG6NixI27cuCFXR5YX3r59G71794aBgQHMzMzw888/QxAEPHz4EB07doS+vj4sLCwwd+5cuf0PHz4MiUSCjRs3YsKECbCwsICuri6+//57hffr2LFj6N69OypUqABNTU1YWVlh9OjRCktx+Pn5QSqVIjY2Fu3atYOenh569eolbss7A8eGDRtQp04d8f+latSogYULF8rVuXfvHrp37w5jY2Po6OigYcOGCgNWZH3ZtGkTpk+fDktLS2hpaaFFixa4e/duAe8MERERUcnIm+fkvse2dOlSVKxYETo6OmjdujUePnwIQRAwdepUWFpaQltbGx07dsSrV68U2t2zZ4+YE+rp6cHDwwPXrl37YDzLly/H48ePMW/ePIVBCgBQpkwZTJo0Sa5s2bJlqFatGjQ1NVGuXDkMGzZMYXkI2f3hy5cvw8XFBTo6OrCzs0NUVBQA4MiRI2jQoAG0tbXh6OiIgwcPyu0vy19v3rwJT09P6Ovrw8TEBD/88APS09Pl6oaFhcHNzQ3m5ubQ1NRE1apVERoaqtAXGxsbtG/fHvv27UPdunWhra2N5cuXi9ty5/vv3r1DcHAw7O3toaWlBRMTEzRp0kRhyeTi5OJ3796Fn58fDA0NYWBgAH9/f6SlpeXzrhDRfwUfIyWiYtm5cycqVqyIRo0afVI7Q4cOhZmZGX755Re8efMGwPubmX379kW1atUQGBgIQ0NDXLx4EXv37kXPnj0/6XiDBg3CkydP8p1S7GOoqqrC29sbP//8M44fPw4PDw8A70fQ/vzzz/D09ET//v3x4sULLF68GM2aNcPFixdhaGgotvH69Wu0a9cOnp6e8Pb2xqZNmzBkyBBoaGigb9++qFKlCqZMmYJffvkFAwcORNOmTQFA7ty/fv0abdq0QZcuXeDp6YmoqCj89NNPqFGjBtq2bVtg/Hv27EFWVhb69OlTpP5eu3YNTZs2hb6+PsaNGwd1dXUsX74crq6uYtKc24gRI2BhYYHg4GCcPn0av//+OwwNDXHy5ElUqFABM2bMwO7du/Hrr7+ievXq8PHxkdt/zZo1+PfffzFs2DCkp6dj4cKFcHNzw5UrV1CmTBkA7wcU3Lt3D/7+/rCwsMC1a9fw+++/49q1azh9+rTCAITu3bvD3t4eM2bMKHD5j2vXrqF9+/aoWbMmpkyZAk1NTdy9excnTpwQ67x9+xaurq64e/cuhg8fDltbW2zevBl+fn5ISkqSu+EPAOvWrcO///6LQYMGQSKRYPbs2ejSpQvu3bvHJ+GIiIi+Ert27YKdnZ1CzlOYouQqXbp0we3bt7F+/XrMnz8fpqamAAAzMzMAxcst8ypu3t6/f3+Eh4ejW7du+PHHH/HPP/8gJCQEN27cwLZt24rc77xGjBgBIyMjTJ48GfHx8ViwYAGGDx+OjRs3AgAWLFiAESNGQCqVijMhyPK9/OzYsQMAipzHHjx4EG3btkXFihURFBSEt2/fYvHixWjcuDEuXLig8GV/jx49UKVKFcycORPR0dGYNm0ajI2NsXz5cri5uWHWrFmIjIxEQEAA6tWrh2bNmsntP336dEgkEvz0009ISEjAggUL0LJlS8TExEBbWxsAsHnzZqSlpWHIkCEwMTHBmTNnsHjxYjx69AibN2+Way8rKwvu7u5o0qQJ5syZAx0dnXz7eeDAAXh7e6NFixbijG83btzAiRMnxPz0+fPnaNSoEdLS0jBy5EiYmJggPDwc33//PaKiotC5c2e5NmfOnAkVFRUEBAQgOTkZs2fPRq9evfDPP/8U6dwTERERlaTIyEhkZmZixIgRePXqFWbPng1PT0+4ubnh8OHD+Omnn3D37l0sXrwYAQEBWLVqlbjv2rVr4evrC3d3d8yaNQtpaWkIDQ1FkyZNcPHixUKXYNuxYwe0tbXRrVu3IsUZFBSE4OBgtGzZEkOGDMGtW7cQGhqKs2fP4sSJE3L3A1+/fo327dvDy8sL3bt3R2hoKLy8vBAZGYlRo0Zh8ODB6NmzJ3799Vd069YNDx8+hJ6entzxPD09YWNjg5CQEJw+fRqLFi3C69evsWbNGrFOaGgoqlWrhu+//x5qamrYuXMnhg4dipycHAwbNkyuvVu3bsHb2xuDBg3CgAED4OjoWGA/Q0JC0L9/f9SvXx8pKSk4d+4cLly4gFatWgEofi7u6ekJW1tbhISE4MKFC1ixYgXMzc2/2hmNiagIBCKiIkpOThYACB07dizyPtbW1oKvr6/4OiwsTAAgNGnSRMjKyhLLk5KSBD09PaFBgwbC27dv5drIyckpsD0ZFxcXwcXFRXwdFxcnABDCwsLEsmHDhgnF+dhzcXERqlWrVuD2bdu2CQCEhQsXCoIgCPHx8YKqqqowffp0uXpXrlwR1NTU5MpdXFwEAMLcuXPFsoyMDKFWrVqCubm5kJmZKQiCIJw9e1ahH3nbWLNmjVwbFhYWQteuXQvt2+jRowUAwsWLFwutJ9OpUydBQ0NDiI2NFcuePHki6OnpCc2aNRPLZO+vu7u73Pvm7OwsSCQSYfDgwWJZVlaWYGlpme/7pq2tLTx69Egs/+effwQAwujRo8WytLQ0hTjXr18vABCOHj0qlk2ePFkAIHh7eyvUl22TmT9/vgBAePHiRYHnYsGCBQIAISIiQizLzMwUnJ2dBalUKqSkpMj1xcTERHj16pVYd/v27QIAYefOnQUeg4iIiL4cshy4U6dOCttev34tvHjxQvzJnZ8UNVf59ddfBQBCXFycXN3i5JYFxVzUvD0mJkYAIPTv31+uPCAgQAAg/P3332IZAGHy5MkKbRSU97ds2VIuLxw9erSgqqoqJCUliWXVqlWTywkL07lzZwGA8Pr16yLVl+XXL1++FMsuXbokqKioCD4+PmKZLC8cOHCgWCbLVyUSiTBz5kyx/PXr14K2trZcfw8dOiQAEMqXLy/mg4IgCJs2bZL7fwZByP/aCAkJESQSiXD//n2xzNfXVwAgjB8/XqG+r6+vYG1tLb7+4YcfBH19fbn/x8pr1KhRAgDh2LFjYtm///4r2NraCjY2NkJ2drZcX6pUqSJkZGSIdRcuXCgAEK5cuVLgMYiIiIiKorD7tHnzHNk9NjMzM7kcMjAwUAAgODk5Ce/evRPLvb29BQ0NDSE9PV0QhPf5jqGhoTBgwAC54zx79kwwMDBQKM/LyMhIcHJyKlK/EhISBA0NDaF169ZibiUIgrBkyRIBgLBq1SqxTHZvd926dWLZzZs3BQCCioqKcPr0abF83759CveIZfnr999/LxfD0KFDBQDCpUuXxLL88k93d3ehYsWKcmXW1tYCAGHv3r0K9fPm+05OToKHh0chZ6P4uXjfvn3l9u/cubNgYmJS6DGI6OvGpR+IqMhSUlIAQGHU5scYMGAAVFVVxdcHDhzAv//+i/Hjx0NLS0uu7scu0fC5SaVSAMC///4LANi6dStycnLg6emJxMRE8cfCwgL29vY4dOiQ3P5qamoYNGiQ+FpDQwODBg1CQkICzp8/X+QYcq/lpqGhgfr16+PevXuF7lec9zI7Oxv79+9Hp06dULFiRbG8bNmy6NmzJ44fPy62J9OvXz+5961BgwYQBAH9+vUTy1RVVVG3bt18Y+3UqRPKly8vvq5fvz4aNGiA3bt3i2WyJ9IAID09HYmJiWjYsCEA4MKFCwptDh48+IN9lT2VuH37duTk5ORbZ/fu3bCwsIC3t7dYpq6ujpEjRyI1NRVHjhyRq9+jRw8YGRmJr2UzY3zoPSIiIqIvgyzPkeV+ubm6usLMzEz8kS01BhQ/V8mruLllfjEXNW+X5VhjxoyRK//xxx8BQGFpgOIYOHCgXF7YtGlTZGdn4/79+x/VXnH69vTpU8TExMDPzw/GxsZiec2aNdGqVSu53FKmf//+4r9l+WrePNbQ0BCOjo755nM+Pj5ysXXr1g1ly5YtMI998+YNEhMT0ahRIwiCgIsXLyq0OWTIkA/21dDQEG/evFGYaje33bt3o379+uIyaMD763rgwIGIj4/H9evX5er7+/tDQ0NDfM08loiIiJSpe/fuMDAwEF/LZjvr3bs31NTU5MozMzPx+PFjAO/vOyclJcHb21sur1ZVVUWDBg0KzauB9/lnUfPqgwcPIjMzE6NGjYKKyv++fhswYAD09fUV8mqpVAovLy/xtaOjIwwNDVGlShW52dxk/84vD8s7I8KIESMAoMD8Mzk5GYmJiXBxccG9e/cUljW2tbWFu7v7B/tqaGiIa9eu4c6dO/lu/5hcPO/926ZNm+Lly5cK956J6L+DAxWIqMj09fUB/O+L+U9ha2sr9zo2NhYAUL169U9uu7SkpqYC+N9N0jt37kAQBNjb28vdsDYzM8ONGzeQkJAgt3+5cuWgq6srV+bg4AAAcusSF8bS0lJhIIeRkRFev35d6H7FeS9fvHiBtLS0fKf5qlKlCnJychTW3a1QoYLca9n/RORet1lWnl+s9vb2CmUODg5y5+XVq1f44YcfUKZMGWhra8PMzEy8rvIm2IDiNZefHj16oHHjxujfvz/KlCkDLy8vbNq0SW7Qwv3792Fvby/3PxvA+3Mh255b3nMhG7TwofeIiIiIvgyyXE+W++W2fPlyHDhwABEREQrbipur5FXc3DK34ubt9+/fh4qKCuzs7OTKLSwsYGho+NGDCoCSz4WK0zdZ3AXlsYmJieIydAXFa2BgAC0tLXFZjtzlRcljJRIJ7Ozs5PLYBw8eiDdspVIpzMzM4OLiAkDx2lBTU4OlpeUHevp+aT0HBwe0bdsWlpaW6Nu3L/bu3StX5/79+wWeC9n23JjHEhER0ZekOPcbgf/lLLIv0t3c3BTy6v379xeaVwPv88/i5NWAYv6poaGBihUrKuRb+d3bNTAw+GCfcsubf1aqVAkqKipy+eeJEyfQsmVL6OrqwtDQEGZmZpgwYQIAxfyzKPdQAWDKlClISkqCg4MDatSogbFjx+Ly5cvi9pLIxZl/Ev33qX24ChHRe/r6+ihXrhyuXr36yW3lHsVZHAXNrpCdnS03Q0NpkJ0H2Q3dnJwcSCQS7NmzJ99Y8nsK71MV1GdBEArdr3LlygCAK1euoFatWiUdVoFx5Vf+oVgL4unpiZMnT2Ls2LGoVasWpFIpcnJy0KZNm3xnQyjKNaetrY2jR4/i0KFDiI6Oxt69e7Fx40a4ublh//79H3WNfex7RERERF8GAwMDlC1bNt8cWPZkU36DTIubq+T1Kbnlx+btnzKTWXZ2dr7lJZ0L5c5jZU/4l6T84i3JPmRnZ6NVq1Z49eoVfvrpJ1SuXBm6urp4/Pgx/Pz8FK4NTU1NhQGy+TE3N0dMTAz27duHPXv2YM+ePQgLC4OPjw/Cw8OLHSfAPJaIiIi+LMW53wj8L2eR5Vdr166FhYWFQr3cszHkp3LlyoiJiUFmZqbcbFMl4WP7VJi8OX1sbCxatGiBypUrY968ebCysoKGhgZ2796N+fPnK+SfRb1v36xZM8TGxmL79u3Yv38/VqxYgfnz5+O3336Tm6WsOJh/En17OFCBiIqlffv2+P3333Hq1Ck4OzuXWLuVKlUC8P7L/7xPcuVmZGSEpKQkhfL79+/LLUuQn5JcQiI7Oxvr1q2Djo6OOHVqpUqVIAgCbG1txZkRCvPkyRO8efNGblaF27dvAwBsbGxKPObc2rZtC1VVVURERKBPnz6F1jUzM4OOjg5u3bqlsO3mzZtQUVFRGOX7qfKbMuz27dvieXn9+jX++usvBAcH45dffil0v+JSUVFBixYt0KJFC8ybNw8zZszAxIkTcejQIbRs2RLW1ta4fPkycnJy5G4a37x5EwBgbW39yTEQERHRl8XDwwMrVqzAmTNnUL9+/Q/WL06uUlC+V9zcMq/i5O3W1tbIycnBnTt3xKfrAeD58+dISkqSy2/yy8czMzPx9OnTYscoU5yct0OHDggJCUFERMQHByrI4i4ojzU1NVWY4exT5X2PBUHA3bt3UbNmTQDvB1jcvn0b4eHh8PHxEesVtmRDUWloaKBDhw7o0KEDcnJyMHToUCxfvhw///wz7OzsYG1tXeC5AJjHEhER0X+T7L6zubk5WrZsWez9O3TogFOnTmHLli1yS8HmJ3f+mftedWZmJuLi4j7q+B9y584duVkQ7t69i5ycHPE+6s6dO5GRkYEdO3bIzVjwoSUvisLY2Bj+/v7w9/dHamoqmjVrhqCgIPTv318puTgRfX249AMRFcu4ceOgq6uL/v374/nz5wrbY2NjsXDhwmK327p1a+jp6SEkJATp6ely23KPmKxUqRJOnz6NzMxMsWzXrl0KSw/kR5b45DfQoTiys7MxcuRI3LhxAyNHjhSnn+3SpQtUVVURHBysMMpTEAS8fPlSriwrKwvLly8XX2dmZmL58uUwMzNDnTp1SjTmvKysrDBgwADs378fixcvVtiek5ODuXPn4tGjR1BVVUXr1q2xfft2uacFnz9/jnXr1qFJkybiOSgpf/75p7iOHACcOXMG//zzD9q2bQvgf6Nr857nBQsWfNJxX716pVAmm3EiIyMDANCuXTs8e/YMGzduFOtkZWVh8eLFkEql4rS9RERE9N8xbtw46OjooG/fvvnmwHlzkuLkKgXle8XNLfOLuah5e7t27fKNb968eQDeD9SQqVSpEo4ePSpX7/fffy9wRoWi0NXVLXK+6+zsjDZt2mDFihX4888/FbZnZmYiICAAAFC2bFnUqlUL4eHhcu1fvXoV+/fvF/tdktasWSM3NXBUVBSePn1aaB4rCMJH/T9UbnmvBxUVFXFwRO489syZMzh16pRY782bN/j9999hY2ODqlWrflIMRERERF8id3d36OvrY8aMGXj37p3C9hcvXhS6/+DBg1G2bFn8+OOP4kNmuSUkJGDatGkAgJYtW0JDQwOLFi2Sy/dWrlyJ5ORkuby6pCxdulTutexeb2H5Z3JyMsLCwj7puHnzT6lUCjs7OzH3VEYuTkRfH86oQETFUqlSJaxbtw49evRAlSpV4OPjg+rVqyMzMxMnT57E5s2b4efnV+x29fX1MX/+fPTv3x/16tVDz549YWRkhEuXLiEtLU2crrR///6IiopCmzZt4OnpidjYWERERIgjYwsj+/J/5MiRcHd3h6qqKry8vArdJzk5WVxzOC0tDXfv3sXWrVsRGxsLLy8vTJ06Ve7cTJs2DYGBgYiPj0enTp2gp6eHuLg4bNu2DQMHDhRvmgJAuXLlMGvWLMTHx8PBwQEbN25ETEwMfv/9d6irq4ttGhoa4rfffoOenh50dXXRoEGDIq8VVpi5c+ciNjYWI0eOxNatW9G+fXsYGRnhwYMH2Lx5M27evCmen2nTpuHAgQNo0qQJhg4dCjU1NSxfvhwZGRmYPXv2J8eSl52dHZo0aYIhQ4YgIyMDCxYsgImJCcaNGwfg/fXSrFkzzJ49G+/evUP58uWxf/9+xMXFfdJxp0yZgqNHj8LDwwPW1tZISEjAsmXLYGlpKc6cMXDgQCxfvhx+fn44f/48bGxsEBUVhRMnTmDBggXiOtZERET032Fvb49169bB29sbjo6O6NWrF5ycnCAIAuLi4rBu3TqoqKjA0tISQPFyFVmOOnHiRHh5eUFdXR0dOnQodm6ZV3HydicnJ/j6+uL3339HUlISXFxccObMGYSHh6NTp05o3ry52G7//v0xePBgdO3aFa1atcKlS5ewb98+mJqafvT5rVOnDkJDQzFt2jTY2dnB3Nwcbm5uBdZfs2YNWrdujS5duqBDhw5o0aIFdHV1cefOHWzYsAFPnz7FnDlzAAC//vor2rZtC2dnZ/Tr1w9v377F4sWLYWBggKCgoI+OuSDGxsZo0qQJ/P398fz5cyxYsAB2dnYYMGAAgPdTB1eqVAkBAQF4/Pgx9PX1sWXLlk9ed7d///549eoV3NzcYGlpifv372Px4sWoVauWOEvG+PHjsX79erRt2xYjR46EsbExwsPDERcXhy1bthRpiQkiIiKir42+vj5CQ0PRp08f1K5dG15eXjAzM8ODBw8QHR2Nxo0bY8mSJQXub2RkhG3btqFdu3aoVasWevfuLebwFy5cwPr168UZzMzMzBAYGIjg4GC0adMG33//PW7duoVly5ahXr166N27d4n3Ly4uDt9//z3atGmDU6dOISIiAj179oSTkxOA9w8IymbeGjRoEFJTU/HHH3/A3Nz8k2ZFq1q1KlxdXVGnTh0YGxvj3LlziIqKwvDhw8U6pZ2LE9FXSCAi+gi3b98WBgwYINjY2AgaGhqCnp6e0LhxY2Hx4sVCenq6WM/a2lrw9fUVX4eFhQkAhLNnz+bb7o4dO4RGjRoJ2tragr6+vlC/fn1h/fr1cnXmzp0rlC9fXtDU1BQaN24snDt3TnBxcRFcXFzEOnFxcQIAISwsTCzLysoSRowYIZiZmQkSiUT40Eegi4uLAED8kUqlgr29vdC7d29h//79Be63ZcsWoUmTJoKurq6gq6srVK5cWRg2bJhw69YtubarVasmnDt3TnB2dha0tLQEa2trYcmSJQrtbd++XahataqgpqYm1ydZG3n5+voK1tbWhfYt9zlZsWKF0LRpU8HAwEBQV1cXrK2tBX9/f+HixYtydS9cuCC4u7sLUqlU0NHREZo3by6cPHlSrk5B7+/kyZMFAMKLFy8UYtXV1RVfy963X3/9VZg7d65gZWUlaGpqCk2bNhUuXbokt++jR4+Ezp07C4aGhoKBgYHQvXt34cmTJwIAYfLkyR88du5tMn/99ZfQsWNHoVy5coKGhoZQrlw5wdvbW7h9+7bcfs+fPxf8/f0FU1NTQUNDQ6hRo4bctZa3L3nljZGIiIi+Dnfv3hWGDBki2NnZCVpaWoK2trZQuXJlYfDgwUJMTIxc3aLmKoIgCFOnThXKly8vqKioCACEuLg4cVtRcsvCFDVvf/funRAcHCzY2toK6urqgpWVlRAYGChXRxAEITs7W/jpp58EU1NTQUdHR3B3dxfu3r1b5Lz/0KFDAgDh0KFDYtmzZ88EDw8PQU9PTwAgl9cXJC0tTZgzZ45Qr149QSqVChoaGoK9vb0wYsQI4e7du3J1Dx48KDRu3Fj8f4wOHToI169fl6tT1HxVJm8uLuvX+vXrhcDAQMHc3FzQ1tYWPDw8hPv378vte/36daFly5aCVCoVTE1NhQEDBgiXLl1S+P+Xgo4t25Y754+KihJat24tmJubCxoaGkKFChWEQYMGCU+fPpXbLzY2VujWrZtgaGgoaGlpCfXr1xd27dolV0fWl82bN8uV5/f/WEREREQfY9iwYQXem82b5xR0j62gnKWwPNTd3V0wMDAQtLS0hEqVKgl+fn7CuXPnihTzkydPhNGjRwsODg6ClpaWoKOjI9SpU0eYPn26kJycLFd3yZIlQuXKlQV1dXWhTJkywpAhQ4TXr1/L1Sno3q61tbXg4eGhUA5AGDZsmPhalr9ev35d6Natm6CnpycYGRkJw4cPF96+fSu3744dO4SaNWsKWlpago2NjTBr1ixh1apVCv/vUdCxZdty5/vTpk0T6tevLxgaGor/XzR9+nQhMzNTbr9PycVl72XuGInov0UiCHnmkCQios/O1dUViYmJuHr1qrJD+aLEx8fD1tYWv/76a6FPCBIRERERfUkOHz6M5s2bY/PmzejWrZuywyEiIiKi/7igoCAEBwfjxYsXnzS7GRGRMnFePyIiIiIiIiIiIiIiIiIiIio1HKhAREREREREREREREREREREpYYDFYiIiIiIiIiIiIiIiIiIiKjUSARBEJQdBBEREREREREREREREREREX0bOKMCERERERERERERERERERERlRoOVCAiIiIiIiIiIiIiIiIiIqJSo6bsAL4EOTk5ePLkCfT09CCRSJQdDhERERH9P0EQ8O+//6JcuXJQUeEY2+JinktERET0ZWKe+/GY4xIRERF9uYqT53KgAoAnT57AyspK2WEQERERUQEePnwIS0tLZYfx1WGeS0RERPRlY55bfMxxiYiIiL58RclzOVABgJ6eHoD3J0xfX1/J0RARERGRTEpKCqysrMR8jYqHeS4RERHRl4l57sdjjktERET05SpOnsuBCoA4RZi+vj6TWyIiIqIvEKd0/TjMc4mIiIi+bMxzi485LhEREdGXryh5LhdAIyIiIiIiIiIiIiIiIiIiolLDgQpERERERERERERERERERERUajhQgYiIiIiIiIiIiIg+WWhoKGrWrCkuy+Ds7Iw9e/aI211dXSGRSOR+Bg8erMSIiYiIiEhZ1JQdABEREf23ZGdn4927d8oOg74S6urqUFVVVXYYRERE9IVhTklfu281z7W0tMTMmTNhb28PQRAQHh6Ojh074uLFi6hWrRoAYMCAAZgyZYq4j46OjrLCJSIioiJgbk65lWSey4EKREREVCIEQcCzZ8+QlJSk7FDoK2NoaAgLCwtIJBJlh0JERERKxpyS/ku+xTy3Q4cOcq+nT5+O0NBQnD59WhyooKOjAwsLC2WER0RERMXA3JwKUlJ5LgcqEBERUYmQJa3m5ubQ0dH5pm7G0ccRBAFpaWlISEgAAJQtW1bJEREREZGyMaek/wLmue9lZ2dj8+bNePPmDZydncXyyMhIREREwMLCAh06dMDPP/9c6KwKGRkZyMjIEF+npKR81riJiIjoPebmlFdJ57kcqEBERESfLDs7W0xaTUxMlB0OfUW0tbUBAAkJCTA3N/8mp8clIiKi95hT0n/Jt5znXrlyBc7OzkhPT4dUKsW2bdtQtWpVAEDPnj1hbW2NcuXK4fLly/jpp59w69YtbN26tcD2QkJCEBwcXFrhExEREZibU8FKMs/lQAUiIiL6ZLI1yri2KH0M2XXz7t27b+oGLhEREcljTkn/Nd9qnuvo6IiYmBgkJycjKioKvr6+OHLkCKpWrYqBAweK9WrUqIGyZcuiRYsWiI2NRaVKlfJtLzAwEGPGjBFfp6SkwMrK6rP3g4iI6FvG3JwKU1J5rkpJBfQxQkNDUbNmTejr60NfXx/Ozs7Ys2ePuN3V1RUSiUTuZ/DgwXJtPHjwAB4eHtDR0YG5uTnGjh2LrKys0u4KERERAZz+iz4KrxsiIiLKjbkB/Vd8q9eyhoYG7OzsUKdOHYSEhMDJyQkLFy7Mt26DBg0AAHfv3i2wPU1NTfH+seyHiIiISse3ms9Q4UrqulDqjAqWlpaYOXMm7O3tIQgCwsPD0bFjR1y8eBHVqlUDAAwYMABTpkwR98k9cic7OxseHh6wsLDAyZMn8fTpU/j4+EBdXR0zZswo9f4QERERERERERER0f/k5OQgIyMj320xMTEAPn19YyIiIiL6+ih1RoUOHTqgXbt2sLe3h4ODA6ZPnw6pVIrTp0+LdXR0dGBhYSH+5B4xu3//fly/fh0RERGoVasW2rZti6lTp2Lp0qXIzMxURpeIiIiIiiU+Ph4SiUS8QVccf/31F6pUqYLs7OySD6yEeHl5Ye7cucoOg4iIiIi+Mn369PmiH0RKTEyEubk5Hj16pOxQviiBgYE4evQo4uPjceXKFQQGBuLw4cPo1asXYmNjMXXqVJw/fx7x8fHYsWMHfHx80KxZM9SsWVPZoRMREdE3ws/PD506dVLa8Znn/o9SZ1TILTs7G5s3b8abN2/g7OwslkdGRiIiIgIWFhbo0KEDfv75Z3FWhVOnTqFGjRooU6aMWN/d3R1DhgzBtWvX8N133+V7rIyMDLlRvCkpKZ+pV0RERN82m/HRpXq8+Jkexarv5+eH8PBwAICamhqMjY1Rs2ZNeHt7w8/PDyoqJTum08/PD0lJSfjzzz9LpL1x48Zh0qRJ4jpgq1evhr+/P9zd3bF3716xXlJSEoyMjHDo0CG4urp+8nHd3d1x8OBBnD59GvXq1ZPblrePkyZNQrNmzdC/f38YGBh88rGJiIjo21SaeWVxc0qZZ8+eISQkBNHR0Xj06BEMDAxgZ2eH3r17w9fXt8jr+65evRqjRo1CUlLSR8WR18WLFzFjxgwcPXoUycnJsLKygqurK8aOHQsHB4cSOUZRHD58GM2bN8fr169haGhYaN1Lly5h9+7dCA0NFctcXV1x5MgRrF+/Hl5eXmL5ggULsGDBAsTHx39yjI8ePULFihXh4OCAq1evKmyXSCTYtm0bOnXqBFNTU/j4+GDy5MlYuXLlJx/7vyIhIQE+Pj54+vQpDAwMULNmTezbtw+tWrXCw4cPcfDgQSxYsABv3ryBlZUVunbtikmTJik7bCIiIiqGLzk3/9CSBJMnT8bChQshCMKnhPXRmOfKU+qMCgBw5coVSKVSaGpqYvDgwdi2bRuqVq0KAOjZsyciIiJw6NAhBAYGYu3atejdu7e477Nnz+QGKQAQXz979qzAY4aEhMDAwED8sbKy+gw9IyIioq9BmzZt8PTpU8THx2PPnj1o3rw5fvjhB7Rv3x5ZWVnKDq9Ax48fR2xsLLp27SpXrqamhoMHD+LQoUOf5bgPHjzAyZMnMXz4cKxateqD9atXr45KlSohIiLis8RDRERE9CW4d+8evvvuO+zfvx8zZszAxYsXcerUKYwbNw67du3CwYMHlRLXrl270LBhQ2RkZCAyMhI3btxAREQEDAwM8PPPPyslpqJYvHgxunfvDqlUKleupaWFSZMm4d27d5/luKtXr4anpydSUlLwzz//fLC+v78/IiMj8erVq88Sz9do5cqViI+PR0ZGBhISEnDw4EG0atUKAGBlZYUjR47g5cuXSE9Px507dzB79my5GXSJiIiIPsXTp0/FnwULFkBfX1+uLCAgAAYGBh8cOPu5MM+Vp/SBCo6OjoiJicE///yDIUOGwNfXF9evXwcADBw4EO7u7qhRowZ69eqFNWvWYNu2bYiNjf2kYwYGBiI5OVn8efjwYUl0hYiIiL5CmpqasLCwQPny5VG7dm1MmDAB27dvx549e7B69WqxXlJSEvr37w8zMzPo6+vDzc0Nly5dErcHBQWhVq1aWL58OaysrKCjowNPT08kJyeL28PDw7F9+3ZIJBJIJBIcPnxY3P/evXto3rw5dHR04OTkhFOnThUa94YNG9CqVStoaWnJlevq6qJv374YP358oftfuXIFbm5u0NbWhomJCQYOHIjU1NQPnq+wsDC0b98eQ4YMwfr16/H27dsP7tOhQwds2LDhg/WIiIiIvlZDhw6Fmpoazp07B09PT1SpUgUVK1ZEx44dER0djQ4dOoh1582bhxo1akBXVxdWVlYYOnSomIcdPnwY/v7+SE5OFnPGoKAgAO9nCA0ICED58uWhq6uLBg0ayOWTeaWlpcHf3x/t2rXDjh070LJlS9ja2qJBgwaYM2cOli9fLtY9cuQI6tevD01NTZQtWxbjx4+XG7RrY2ODBQsWyLVfq1YtMTbg/VNYK1asQOfOnaGjowN7e3vs2LEDwPvlzpo3bw4AMDIygkQigZ+fX75xZ2dnIyoqSu6cyXh7eyMpKQl//PFHgf0GgNDQUFSqVAkaGhpwdHTE2rVrC60PAIIgICwsDH369EHPnj2L9PRYtWrVUK5cOWzbtu2DdYmIiIjo87OwsBB/DAwMIJFI5MqkUqnC0g+urq4YMWIERo0aBSMjI5QpUwZ//PEH3rx5A39/f+jp6cHOzg579uyRO9bVq1fRtm1bSKVSlClTBn369EFiYmKBsTHPVaT0gQoaGhqws7NDnTp1EBISAicnJyxcuDDfug0aNAAA3L17F8D7i+358+dydWSvLSwsCjympqYm9PX15X6IiIiIZNzc3ODk5IStW7eKZd27d0dCQgL27NmD8+fPo3bt2mjRooXcqNK7d+9i06ZN2LlzJ/bu3YuLFy9i6NChAICAgAB4enqKMzg8ffoUjRo1EvedOHEiAgICEBMTAwcHB3h7exc6o8OxY8dQt27dfLcFBQXhypUriIqKynf7mzdv4O7uDiMjI5w9exabN2/GwYMHMXz48ELPiyyp7d27NypXrgw7O7sCj5Fb/fr1cebMGbmlt4iIiIj+K16+fIn9+/dj2LBh0NXVzbdO7iloVVRUsGjRIly7dg3h4eH4+++/MW7cOABAo0aNFJ78CggIAAAMHz4cp06dwoYNG3D58mV0794dbdq0wZ07d/I95r59+5CYmCi2nZfsKbLHjx+jXbt2qFevHi5duoTQ0FCsXLkS06ZNK/a5CA4OhqenJy5fvox27dqhV69eePXqFaysrLBlyxYAwK1bt/D06dMC7/9dvnwZycnJ+ea6+vr6mDhxIqZMmYI3b97ku/+2bdvwww8/4Mcff8TVq1cxaNAg+Pv7f3DGsUOHDiEtLQ0tW7ZE7969sWHDhgKPkVv9+vVx7NixD9YjIiIioi9XeHg4TE1NcebMGYwYMQJDhgxB9+7d0ahRI1y4cAGtW7dGnz59kJaWBuD9Q21ubm747rvvcO7cOezduxfPnz+Hp6dngcdgnqtI6QMV8srJySnwJnZMTAwAoGzZsgAAZ2dnXLlyBQkJCWKdAwcOQF9fX1w+goiIiOhjVK5cWVz/6/jx4zhz5gw2b96MunXrwt7eHnPmzIGhoaHcF/Xp6elYs2YNatWqhWbNmmHx4sXYsGEDnj17BqlUCm1tbXEGBwsLC2hoaIj7BgQEwMPDAw4ODggODsb9+/fFwZn5uX//PsqVK5fvtnLlyuGHH37AxIkT8x3ssG7dOjHW6tWrw83NDUuWLMHatWsVBoHmdvDgQaSlpcHd3R0A0Lt37yKNwC1XrhwyMzMLXZqLiIiI6Gt19+5dCIIAR0dHuXJTU1NIpVJIpVL89NNPYvmoUaPQvHlz2NjYwM3NDdOmTcOmTZsAvH+gJ++TX1KpFA8ePEBYWBg2b96Mpk2bolKlSggICECTJk0QFhaWb1yyAQyVK1cuNP5ly5bBysoKS5YsQeXKldGpUycEBwdj7ty5yMnJKda58PPzg7e3N+zs7DBjxgykpqbizJkzUFVVhbGxMQDA3NxcfMItP/fv34eqqirMzc3z3T506FBoaWlh3rx5+W6fM2cO/Pz8MHToUDg4OGDMmDHo0qUL5syZU2jsK1euhJeXF1RVVVG9enVUrFgRmzdv/mCfy5Urh/v373+wHhERERF9uZycnDBp0iTY29sjMDAQWlpaMDU1xYABA2Bvb49ffvkFL1++xOXLlwEAS5YswXfffYcZM2agcuXK+O6777Bq1SocOnQIt2/fzvcYzHMVKXWgQmBgII4ePYr4+HhcuXIFgYGBOHz4MHr16oXY2FhMnToV58+fR3x8PHbs2AEfHx80a9YMNWvWBAC0bt0aVatWRZ8+fXDp0iXs27cPkyZNwrBhw6CpqanMrhEREdFXThAE8cm3S5cuITU1FSYmJuLNZqlUiri4OLklqSpUqIDy5cuLr52dnZGTk4Nbt2598Hiy/Ab436DM3IMx83r79q3Csg+5/fTTT3jx4gVWrVqlsO3GjRtwcnKSe+KvcePGH4x11apV6NGjB9TU1AC8n5LsxIkTH1yWS1tbGwDEEcdERERE34IzZ84gJiYG1apVk3so5+DBg2jRogXKly8PPT099OnTBy9fviw0V7py5Qqys7Ph4OAgl48eOXKkwFxMEIQixXnjxg04OzvLzfrQuHFjpKam4tGjR0Xs7Xu5c1pdXV3o6+sXmtPm5+3bt9DU1JSLJzdNTU1MmTIFc+bMyXdq3Rs3bqBx48ZyZY0bN8aNGzcKPGZSUhK2bt2K3r17i2VFHZSrra3NPJeIiIjoK5c7j1VVVYWJiQlq1KghlpUpUwbA/+7XXrp0CYcOHZLLzWUDhAvKz5nnKlL7rK1/QEJCAnx8fPD06VMYGBigZs2a2LdvH1q1aoWHDx/i4MGDWLBgAd68eQMrKyt07doVkyZNEvdXVVXFrl27MGTIEDg7O0NXVxe+vr6YMmWKEntFRERE/wU3btyAra0tACA1NRVly5bNdw1g2ZS5n0pdXV38tyxZLewJNlNTU7x+/brA7YaGhggMDERwcDDat2//yfG9evUK27Ztw7t37xAaGiqWZ2dnY9WqVZg+fXqh+wKAmZnZJ8dBRERE9KWxs7ODRCJRGPBZsWJFAP8btAkA8fHxaN++PYYMGYLp06fD2NgYx48fR79+/ZCZmQkdHZ18j5GamgpVVVWcP38eqqqqctukUmm++zg4OAAAbt68CWdn54/uH/B+uYq8Ax/evXunUC93Tgu8z2uLOyuDqakp0tLSkJmZKTcDWW69e/fGnDlzMG3aNNjY2BSr/fzIZhyTLTsLvB/okZOTg9u3b4vnMj+vXr1inktERET0lcsvjy3sfm1qaio6dOiAWbNmKbQlewgtL+a5ipQ6UKGw0RpWVlY4cuTIB9uwtrbG7t27SzKsUmczPlppx46f6aG0YxMREX2p/v77b1y5cgWjR48GANSuXRvPnj2DmppaoQnigwcP8OTJE3FJhtOnT0NFRUWcBlhDQwPZ2dklEuN3332H69evF1pnxIgRWLRokcL6v1WqVMHq1avx5s0bcVaFEydOyMWaV2RkJCwtLfHnn3/Kle/fvx9z587FlClTFG6ay1y9ehWWlpYwNTUtYu+IPlFQ/lNJl86xk5V3bCIiUgoTExO0atUKS5YswYgRI+Rmrcrr/PnzyMnJwdy5c6Gi8n6iU9myDzL55YzfffcdsrOzkZCQgKZNmxYprtatW8PU1BSzZ8/Gtm3bFLYnJSXB0NAQVapUwZYtW+RmFDtx4gT09PRgaWkJ4P2A06dPn4r7pqSkIC4urkhx5O4XgA/mw7Vq1QIAXL9+Xfx3XioqKggJCUGXLl0wZMgQuW1VqlTBiRMn4OvrK5adOHGi0GViV65ciR9//BF+fn5y5UOHDsWqVaswc+bMAve9evUqXF1dC+0TUYlhnktERPRFqF27NrZs2QIbGxtx9tkPYZ6rSKlLPxAREREpW0ZGBp49e4bHjx/jwoULmDFjBjp27Ij27dvDx8cHANCyZUs4OzujU6dO2L9/P+Lj43Hy5ElMnDgR586dE9vS0tKCr68vLl26hGPHjmHkyJHw9PSEhYUFAMDGxgaXL1/GrVu3kJiYmO9TaEXl7u6O48ePF1pHS0sLwcHBWLRokVx5r169xFivXr2KQ4cOYcSIEejTp484jVleK1euRLdu3VC9enW5n379+iExMRF79+4tMI5jx46hdevWxe8kERER0Vdi2bJlyMrKQt26dbFx40bcuHEDt27dQkREBG7evCkO6LSzs8O7d++wePFi3Lt3D2vXrsVvv/0m15aNjQ1SU1Px119/ITExEWlpaXBwcECvXr3g4+ODrVu3Ii4uDmfOnEFISAiio/N/AEZXVxcrVqxAdHQ0vv/+exw8eBDx8fE4d+4cxo0bh8GDBwN4f5Py4cOHGDFiBG7evInt27dj8uTJGDNmjDiYws3NDWvXrsWxY8dw5coV+Pr6FjhItSDW1taQSCTYtWsXXrx4gdTU1HzrmZmZoXbt2h/MdT08PNCgQQMsX75crnzs2LFYvXo1QkNDcefOHcybNw9bt25FQEBAvu3ExMTgwoUL6N+/v0Ku6+3tjfDwcGRlZeW7b1paGs6fP89cl4iIiOgbM2zYMLx69Qre3t44e/YsYmNjsW/fPvj7+xc4MJd5riIOVCAiIqJv2t69e1G2bFnY2NigTZs2OHToEBYtWoTt27eLN18lEgl2796NZs2awd/fHw4ODvDy8sL9+/flvti3s7NDly5d0K5dO7Ru3Ro1a9bEsmXLxO0DBgyAo6Mj6tatCzMzM5w4ceKj4+7VqxeuXbumMMVwXr6+vuK0wzI6OjrYt28fXr16hXr16qFbt25o0aIFlixZkm8b58+fx6VLl9C1a1eFbQYGBmjRokWBM2Wlp6fjzz//xIABA4rYMyIiIqKvT6VKlXDx4kW0bNkSgYGBcHJyQt26dbF48WIEBARg6tSpAAAnJyfMmzcPs2bNQvXq1REZGYmQkBC5tho1aoTBgwejR48eMDMzw+zZswEAYWFh8PHxwY8//ghHR0d06tQJZ8+eRYUKFQqMq2PHjjh58iTU1dXRs2dPVK5cGd7e3khOTsa0adMAAOXLl8fu3btx5swZODk5YfDgwejXr5/c8quBgYFwcXFB+/bt4eHhgU6dOqFSpUrFOkfly5dHcHAwxo8fjzJlymD48OEF1u3fvz8iIyM/2OasWbOQnp4uV9apUycsXLgQc+bMQbVq1bB8+XKEhYUV+DTYypUrUbVqVXFN4dw6d+6MhISEAmdz3b59OypUqFDkWS6IiIiI6L+hXLlyOHHiBLKzs9G6dWvUqFEDo0aNgqGhoTjYNz/Mc+VJhLwLzH2DUlJSYGBggOTkZOjr65f68bn0AxERfe3S09MRFxcHW1tbaGlpKTscpQgKCsKff/6JmJiYUjvm2LFjkZKSojC69ksSGhqKbdu2Yf/+/QXWKez6UXae9rX7Zs8fp8QlIvoqMackmbdv38LR0REbN26Es7OzssMpUMOGDTFy5Ej07Nkz3+3Mcz+Pb/rcMc8lIqJSwtz882CeK48zKhARERF9pSZOnAhra2vk5OQoO5QCqaurY/HixcoOg4iIiIi+Itra2lizZg0SExOVHUqBEhMT0aVLF3h7eys7FCIiIiL6SjDPlaf22Y9ARERERJ+FoaEhJkyYoOwwCtW/f39lh0BEREREX6GCprD9UpiammLcuHHKDoOIiIiIvjLMc/+HMyoQERERlYCgoKBSXfaBiIiIiIiIiIiIiOhrxYEKREREREREREREREREREREVGo4UIGIiIiIiIiIiIiIiIiIiIhKDQcqEBERERERERERERERERERUanhQAUiIiIiIiIiIiIiIiIiIiIqNRyoQERERERERERERERERERERKWGAxWIiIiIiIiIiIiIiIiIiIio1HCgAhEREZESxcfHQyKRICYmptj7/vXXX6hSpQqys7M/+viZmZmwsbHBuXPnProNIiIiIqKS1qdPH8yYMeOT2ti7dy9q1aqFnJycEoqKiIiIiL52fn5+6NSpk9KOzzz3f9SUHQARERH9hwUZlPLxkotV3c/PD+Hh4QAANTU1GBsbo2bNmvD29oafnx9UVEp2TKefnx+SkpLw559/lkh748aNw6RJk6CqqipX/vbtW5QvXx4qKip4/PgxNDU15bbb2Nhg1KhRGDVqFDQ0NBAQEICffvoJf/31V4nERURERFTiSjOvLGZOKfPs2TOEhIQgOjoajx49goGBAezs7NC7d2/4+vpCR0enSO2sXr0ao0aNQlJS0kfFkdfFixcxY8YMHD16FMnJybCysoKrqyvGjh0LBweHEjlGURw+fBjNmzfH69evYWhoWGjdS5cuYffu3QgNDVXYtn79evTu3RuDBw/G0qVLCz1GmzZt8PPPPyMyMhJ9+vQpye4QERERfbu+4NxcIpEUun3y5MlYuHAhBEH4lKg+GvNceZxRgYiIiL5pbdq0wdOnTxEfH489e/agefPm+OGHH9C+fXtkZWUpO7wCHT9+HLGxsejatavCti1btqBatWqoXLlykQZF9OrVC8ePH8e1a9c+Q6RERERE/3337t3Dd999h/3792PGjBm4ePEiTp06hXHjxmHXrl04ePCgUuLatWsXGjZsiIyMDERGRuLGjRuIiIiAgYEBfv75Z6XEVBSLFy9G9+7dIZVKFbatXLkS48aNw/r165Genv7Btvz8/LBo0aLPESYRERERfWGePn0q/ixYsAD6+vpyZQEBATAwMPjgwNnPhXmuPA5UICIiom+apqYmLCwsUL58edSuXRsTJkzA9u3bsWfPHqxevVqsl5SUhP79+8PMzAz6+vpwc3PDpUuXxO1BQUGoVasWli9fDisrK+jo6MDT0xPJycni9vDwcGzfvh0SiQQSiQSHDx8W97937x6aN28OHR0dODk54dSpU4XGvWHDBrRq1QpaWloK21auXInevXujd+/eWLly5QfPgZGRERo3bowNGzZ8sC4RERERKRo6dCjU1NRw7tw5eHp6okqVKqhYsSI6duyI6OhodOjQQaw7b9481KhRA7q6urCyssLQoUORmpoK4P2TUv7+/khOThZzxqCgIABARkYGAgICUL58eejq6qJBgwZy+WReaWlp8Pf3R7t27bBjxw60bNkStra2aNCgAebMmYPly5eLdY8cOYL69etDU1MTZcuWxfjx4+UG7drY2GDBggVy7deqVUuMDXj/9NqKFSvQuXNn6OjowN7eHjt27ADwfrmz5s2bA3ife0okEvj5+eUbd3Z2NqKiouTOmUxcXBxOnjyJ8ePHw8HBAVu3bi2w/zIdOnTAuXPnEBsb+8G6RERERPR1s7CwEH8MDAwgkUjkyqRSqcLSD66urhgxYgRGjRoFIyMjlClTBn/88QfevHkDf39/6Onpwc7ODnv27JE71tWrV9G2bVtIpVKUKVMGffr0QWJiYoGxMc9VxIEKRERERHm4ubnByclJLiHs3r07EhISsGfPHpw/fx61a9dGixYt8OrVK7HO3bt3sWnTJuzcuRN79+7FxYsXMXToUABAQEAAPD09xRkcnj59ikaNGon7Tpw4EQEBAYiJiYGDgwO8vb0LndHh2LFjqFu3rkJ5bGwsTp06BU9PT3h6euLYsWO4f//+B/tcv359HDt2rEjnh4iIiIj+5+XLl9i/fz+GDRsGXV3dfOvknoJWRUUFixYtwrVr1xAeHo6///4b48aNAwA0atRI4cmvgIAAAMDw4cNx6tQpbNiwAZcvX0b37t3Rpk0b3LlzJ99j7tu3D4mJiWLbecmeInv8+DHatWuHevXq4dKlSwgNDcXKlSsxbdq0Yp+L4OBgeHp64vLly2jXrh169eqFV69ewcrKClu2bAEA3Lp1C0+fPsXChQvzbePy5ctITk7ON9cNCwuDh4cHDAwMijwot0KFCihTpgxzXSIiIiIqUHh4OExNTXHmzBmMGDECQ4YMQffu3dGoUSNcuHABrVu3Rp8+fZCWlgbg/UNtbm5u+O6773Du3Dns3bsXz58/h6enZ4HHYJ6riAMViIiIiPJRuXJlxMfHA3i/zMKZM2ewefNm1K1bF/b29pgzZw4MDQ0RFRUl7pOeno41a9agVq1aaNasGRYvXowNGzbg2bNnkEql0NbWFmdwsLCwgIaGhrhvQEAAPDw84ODggODgYNy/fx93794tML779++jXLlyCuWrVq1C27ZtYWRkBGNjY7i7uyMsLOyD/S1XrlyRBjQQERERkby7d+9CEAQ4OjrKlZuamkIqlUIqleKnn34Sy0eNGoXmzZvDxsYGbm5umDZtGjZt2gQA0NDQUHjySyqV4sGDBwgLC8PmzZvRtGlTVKpUCQEBAWjSpEmBuZ5sAEPlypULjX/ZsmWwsrLCkiVLULlyZXTq1AnBwcGYO3cucnJyinUu/Pz84O3tDTs7O8yYMQOpqak4c+YMVFVVYWxsDAAwNzcXn3DLz/3796Gqqgpzc3O58pycHKxevRq9e/cGAHh5eeH48eOIi4v7YFzMdYmIiIioME5OTpg0aRLs7e0RGBgILS0tmJqaYsCAAbC3t8cvv/yCly9f4vLlywCAJUuW4LvvvsOMGTNQuXJlfPfdd1i1ahUOHTqE27dv53sM5rmKOFCBiIiIKB+CIIhPvl26dAmpqakwMTERbzZLpVLExcXJTa1VoUIFlC9fXnzt7OyMnJwc3Lp164PHq1mzpvjvsmXLAgASEhIKrP/27VuFZR+ys7MRHh4uJrUA0Lt3b6xevfqDN5m1tbXFEcFERERE9OnOnDmDmJgYVKtWDRkZGWL5wYMH0aJFC5QvXx56enro06cPXr58WWguduXKFWRnZ8PBwUEuHz1y5EiBU70KglCkOG/cuAFnZ2e5WR8aN26M1NRUPHr0qIi9fS93Tqurqwt9ff1Cc9r8vH37FpqamnLxAMCBAwfw5s0btGvXDsD7gSCtWrXCqlWrPtgmc10iIiIiKkzuPFZVVRUmJiaoUaOGWFamTBkA/7tfe+nSJRw6dEguN5cNEC4oP2eeq0hN2QEQEf1X2YyPVtqx42d6KO3YRP8VN27cgK2tLQAgNTUVZcuWzXcNYNmUuZ9KXV1d/LcsWS1scIGpqSlev34tV7Zv3z48fvwYPXr0kCvPzs7GX3/9hVatWhXY3qtXr2BmZvYxoRMRERF90+zs7CCRSBQGp1asWBHA+5uHMvHx8Wjfvj2GDBmC6dOnw9jYGMePH0e/fv2QmZkJHR2dfI+RmpoKVVVVnD9/HqqqqnLbpFJpvvs4ODgAAG7evAlnZ+eP7h/wfrmKvAMf3r17p1Avd04LvM9rizsrg6mpKdLS0pCZmSk3A9nKlSvx6tUrufOZk5ODy5cvIzg4GCoqBT+PxVyXiIiIiAqTXx5b2P3a1NRUdOjQAbNmzVJoS/YQWl7McxVxoAIRERFRHn///TeuXLmC0aNHAwBq166NZ8+eQU1NDTY2NgXu9+DBAzx58kRckuH06dNQUVERpwHW0NBAdnZ2icT43Xff4fr163JlK1euhJeXFyZOnChXPn36dKxcubLQgQpXr17Fd999VyKxEREREX1LTExM0KpVKyxZsgQjRoyArq5ugXXPnz+PnJwczJ07V7zhKFv2QSa/nPG7775DdnY2EhIS0LRp0yLF1bp1a5iammL27NnYtm2bwvakpCQYGhqiSpUq2LJli9yMYidOnICenh4sLS0BAGZmZnj69Km4b0pKSpGmos3bLwAfzIdr1aoFALh+/br475cvX2L79u3YsGEDqlWrJtbNzs5GkyZNsH//frRp0ybf9tLT0xEbG8tcl4iIiIhKTO3atbFlyxbY2NhATa1oX7czz1XEpR+IiIjom5aRkYFnz57h8ePHuHDhAmbMmIGOHTuiffv28PHxAQC0bNkSzs7O6NSpE/bv34/4+HicPHkSEydOxLlz58S2tLS04Ovri0uXLuHYsWMYOXIkPD09YWFhAQCwsbHB5cuXcevWLSQmJub7FFpRubu74/jx4+LrFy9eYOfOnfD19UX16tXlfnx8fPDnn3/i1atXBbZ37NgxtG7d+qPjISIiIvqWLVu2DFlZWahbty42btyIGzdu4NatW4iIiMDNmzfFWRDs7Ozw7t07LF68GPfu3cPatWvx22+/ybVlY2OD1NRU/PXXX0hMTERaWhocHBzQq1cv+Pj4YOvWrYiLi8OZM2cQEhKC6Oj8Z/PT1dXFihUrEB0dje+//x4HDx5EfHw8zp07h3HjxmHw4MEAgKFDh+Lhw4cYMWIEbt68ie3bt2Py5MkYM2aMOJjCzc0Na9euxbFjx3DlyhX4+voqzOzwIdbW1pBIJNi1axdevHiB1NTUfOuZmZmhdu3acrnu2rVrYWJiAk9PT7k818nJCe3atcPKlSsLPO7p06ehqan5ybNKEBERERHJDBs2DK9evYK3tzfOnj2L2NhY7Nu3D/7+/gUOzGWeq4gDFYiIiOibtnfvXpQtWxY2NjZo06YNDh06hEWLFmH79u3izVeJRILdu3ejWbNm8Pf3h4ODA7y8vHD//n1xfTLg/Y3nLl26oF27dmjdujVq1qyJZcuWidsHDBgAR0dH1K1bF2ZmZjhx4sRHx92rVy9cu3ZNnGJ4zZo10NXVRYsWLRTqtmjRAtra2oiIiMi3rVOnTiE5ORndunX76HiIiIiIvmWVKlXCxYsX0bJlSwQGBsLJyQl169bF4sWLERAQgKlTpwIAnJycMG/ePMyaNQvVq1dHZGQkQkJC5Npq1KgRBg8ejB49esDMzAyzZ88GAISFhcHHxwc//vgjHB0d0alTJ5w9exYVKlQoMK6OHTvi5MmTUFdXR8+ePVG5cmV4e3sjOTkZ06ZNAwCUL18eu3fvxpkzZ+Dk5ITBgwejX79+mDRpkthOYGAgXFxc0L59e3h4eKBTp06oVKlSsc5R+fLlERwcjPHjx6NMmTIYPnx4gXX79++PyMhI8fWqVavQuXNnhfV8AaBr167YsWMHEhMT821r/fr16NWrV4HLahARERERFVe5cuVw4sQJZGdno3Xr1qhRowZGjRoFQ0PDQpdqYJ4rTyLkXWDuG5SSkgIDAwMkJydDX1+/1I/PdeyJ/pv4u03fkvT0dMTFxcHW1hZaWlrKDkcpgoKC8OeffyImJqbUjjl27FikpKRg+fLln9ROjx494OTkhAkTJpRQZMVT2PWj7Dzta/fNnr8gAyUeO1l5xyYi+soxpySZt2/fwtHRERs3bvykJ8QSExPh6OiIc+fOwdbWtgQjLBrmuZ/HN33umOcSEVEpYW7+eTDPlccZFYiIiIi+UhMnToS1tTVycnI+uo3MzEzUqFEDo0ePLsHIiIiIiIg+nra2NtasWVPg02NFFR8fj2XLlinl5i0RERERUV7Mc+WpKTsAIiIiIvo4hoaGnzwLgoaGhty0vkREREREXwJXV9dPbqNu3bqoW7fupwdDRERERFRCmOf+D2dUICIiIioBQUFBpbrsAxERERERERERERHR14oDFYiIiIiIiIiIiIiIiIiIiKjUcKACERERERERERERERERERERlRoOVCAiIqISk5OTo+wQ6CvE64aIiIhyY25A/xW8lomIiOhrx3yG8lNS14VaibRCRERE3zQNDQ2oqKjgyZMnMDMzg4aGBiQSibLDoi+cIAjIzMzEixcvoKKiAg0NDWWHVCTZ2dkICgpCREQEnj17hnLlysHPzw+TJk0Sr3tBEDB58mT88ccfSEpKQuPGjREaGgp7e3uxnVevXmHEiBHYuXMnVFRU0LVrVyxcuBBSqVSsc/nyZQwbNgxnz56FmZkZRowYgXHjxpV6n4mIiEoDc0r6r/ha81wiIiIiGebmlJ+SznM5UIGIiIg+mYqKCmxtbfH06VM8efJE2eHQV0ZHRwcVKlSAisrXMdnXrFmzEBoaivDwcFSrVg3nzp2Dv78/DAwMMHLkSADA7NmzsWjRIoSHh8PW1hY///wz3N3dcf36dWhpaQEAevXqhadPn+LAgQN49+4d/P39MXDgQKxbtw4AkJKSgtatW6Nly5b47bffcOXKFfTt2xeGhoYYOHCg0vpPRET0uTCnpP+ary3PJSIiIpJhbk6FKak8lwMViIiIqERoaGigQoUKyMrKQnZ2trLDoa+Eqqoq1NTUvqoR2SdPnkTHjh3h4eEBALCxscH69etx5swZAO9HFi9YsACTJk1Cx44dAQBr1qxBmTJl8Oeff8LLyws3btzA3r17cfbsWdStWxcAsHjxYrRr1w5z5sxBuXLlEBkZiczMTKxatQoaGhqoVq0aYmJiMG/ePA5UICKi/yzmlPRf8TXmuURERES5MTen/JRknsuBCkRERFRiJBIJ1NXVoa6uruxQiD6bRo0a4ffff8ft27fh4OCAS5cu4fjx45g3bx4AIC4uDs+ePUPLli3FfQwMDNCgQQOcOnUKXl5eOHXqFAwNDcVBCgDQsmVLqKio4J9//kHnzp1x6tQpNGvWTG4KNXd3d8yaNQuvX7+GkZGRQmwZGRnIyMgQX6ekpHyOU0BERPRZMackIiIiIvoyMDenz4kDFYiIiIiIimH8+PFISUlB5cqVoaqqiuzsbEyfPh29evUCADx79gwAUKZMGbn9ypQpI2579uwZzM3N5barqanB2NhYro6tra1CG7Jt+Q1UCAkJQXBwcAn0koiIiIiIiIiIiOjz4QJpRERERETFsGnTJkRGRmLdunW4cOECwsPDMWfOHISHhys7NAQGBiI5OVn8efjwobJDIiIiIiIiIiIiIlLAGRWIiIiIiIph7NixGD9+PLy8vAAANWrUwP379xESEgJfX19YWFgAAJ4/f46yZcuK+z1//hy1atUCAFhYWCAhIUGu3aysLLx69Urc38LCAs+fP5erI3stq5OXpqYmNDU1P72TRERERERERERERJ8RZ1QgIiIiIiqGtLQ0qKjIp9GqqqrIyckBANja2sLCwgJ//fWXuD0lJQX//PMPnJ2dAQDOzs5ISkrC+fPnxTp///03cnJy0KBBA7HO0aNH8e7dO7HOgQMH4OjomO+yD0RERERERERERERfCw5UICIiIiIqhg4dOmD69OmIjo5GfHw8tm3bhnnz5qFz584AAIlEglGjRmHatGnYsWMHrly5Ah8fH5QrVw6dOnUCAFSpUgVt2rTBgAEDcObMGZw4cQLDhw+Hl5cXypUrBwDo2bMnNDQ00K9fP1y7dg0bN27EwoULMWbMGGV1nYiIiIiIiIiIiKhEcOkHIiIiIqJiWLx4MX7++WcMHToUCQkJKFeuHAYNGoRffvlFrDNu3Di8efMGAwcORFJSEpo0aYK9e/dCS0tLrBMZGYnhw4ejRYsWUFFRQdeuXbFo0SJxu4GBAfbv349hw4ahTp06MDU1xS+//IKBAweWan+JiIiIiIiIiIiIShoHKhARERERFYOenh4WLFiABQsWFFhHIpFgypQpmDJlSoF1jI2NsW7dukKPVbNmTRw7duxjQyUiIiIiIiIiIiL6InGgAhERERERlTib8dFKO3a81ofrEBERERERERERkfKoKDsAIiIiIiIiIiIiIiIiIiIi+nZwoAIRERERERERERERERERERGVGg5UICIiIiIiIiIiIqJPFhoaipo1a0JfXx/6+vpwdnbGnj17xO3p6ekYNmwYTExMIJVK0bVrVzx//lyJERMRERGRsnCgAhERERERERERERF9MktLS8ycORPnz5/HuXPn4Obmho4dO+LatWsAgNGjR2Pnzp3YvHkzjhw5gidPnqBLly5KjpqIiIiIlEFN2QEQERERERERERER0devQ4cOcq+nT5+O0NBQnD59GpaWlli5ciXWrVsHNzc3AEBYWBiqVKmC06dPo2HDhsoImYiIiIiUhDMqEBEREREREREREVGJys7OxoYNG/DmzRs4Ozvj/PnzePfuHVq2bCnWqVy5MipUqIBTp04V2E5GRgZSUlLkfoiIiIjo68eBCkRERERERERERERUIq5cuQKpVApNTU0MHjwY27ZtQ9WqVfHs2TNoaGjA0NBQrn6ZMmXw7NmzAtsLCQmBgYGB+GNlZfWZe0BEREREpUGpAxVCQ0NRs2ZN6OvrQ19fH87OztizZ4+4PT09HcOGDYOJiQmkUim6du2K58+fy7Xx4MEDeHh4QEdHB+bm5hg7diyysrJKuytERERERERERERE3zxHR0fExMTgn3/+wZAhQ+Dr64vr169/dHuBgYFITk4Wfx4+fFiC0RIRERGRsqgp8+CWlpaYOXMm7O3tIQgCwsPD0bFjR1y8eBHVqlXD6NGjER0djc2bN8PAwADDhw9Hly5dcOLECQDvpw/z8PCAhYUFTp48iadPn8LHxwfq6uqYMWOGMrtGRERERERERERE9M3R0NCAnZ0dAKBOnTo4e/YsFi5ciB49eiAzMxNJSUlysyo8f/4cFhYWBbanqakJTU3Nzx02EREREZUypc6o0KFDB7Rr1w729vZwcHDA9OnTIZVKcfr0aSQnJ2PlypWYN28e3NzcUKdOHYSFheHkyZM4ffo0AGD//v24fv06IiIiUKtWLbRt2xZTp07F0qVLkZmZqcyuEREREREREREREX3zcnJykJGRgTp16kBdXR1//fWXuO3WrVt48OABnJ2dlRghERERESmDUgcq5JadnY0NGzbgzZs3cHZ2xvnz5/Hu3Tu0bNlSrFO5cmVUqFABp06dAgCcOnUKNWrUQJkyZcQ67u7uSElJwbVr1wo8VkZGBlJSUuR+iIiIiIiIiIiIiOjjBQYG4ujRo4iPj8eVK1cQGBiIw4cPo1evXjAwMEC/fv0wZswYHDp0COfPn4e/vz+cnZ3RsGFDZYdORERERKVMqUs/AMCVK1fg7OyM9PR0SKVSbNu2DVWrVkVMTAw0NDTkpgEDgDJlyuDZs2cAgGfPnskNUpBtl20rSEhICIKDg0u2I0RERERERERERETfsISEBPj4+ODp06cwMDBAzZo1sW/fPrRq1QoAMH/+fKioqKBr167IyMiAu7s7li1bpuSoiYiIiEgZlD5QwdHRETExMUhOTkZUVBR8fX1x5MiRz3rMwMBAjBkzRnydkpICKyurz3pMIiIiIiIiIiIiov+ylStXFrpdS0sLS5cuxdKlS0spIiIiIiL6Uil9oIKGhgbs7OwAAHXq1MHZs2excOFC9OjRA5mZmUhKSpKbVeH58+ewsLAAAFhYWODMmTNy7T1//lzcVhBNTU1oamqWcE++UkEGSjpusnKOS0RERERERERERERERERESqWi7ADyysnJQUZGBurUqQN1dXX89ddf4rZbt27hwYMHcHZ2BgA4OzvjypUrSEhIEOscOHAA+vr6qFq1aqnHTkRERERERERERERERERERIVT6owKgYGBaNu2LSpUqIB///0X69atw+HDh7Fv3z4YGBigX79+GDNmDIyNjaGvr48RI0bA2dkZDRs2BAC0bt0aVatWRZ8+fTB79mw8e/YMkyZNwrBhwzhjAhERERERERERERERERER0RdIqQMVEhIS4OPjg6dPn8LAwAA1a9bEvn370KpVKwDA/PnzoaKigq5duyIjIwPu7u5YtmyZuL+qqip27dqFIUOGwNnZGbq6uvD19cWUKVOU1SUiIiIiIiIiIiIiIiIiIiIqhFIHKqxcubLQ7VpaWli6dCmWLl1aYB1ra2vs3r27pEMjIiIiIiIiIiIiIiIiIiKiz0BF2QEQERERERERERERERERERHRt4MDFYiIiIiIiIiIiIiIiIiIiKjUcKACERERERERERERERERERERlRoOVCAiIiIiIiIiIiIiIiIiIqJSw4EKRERERERERERERET0f+3debyUZf0//tewI8pBVEASERPFBYXUFDXUNFFJM8mlNDVN00ADXHFHUVxyw7Ust9JMyyXFL4oa4gIuuO9iKG5ARYC4sJ35/eHP+XhySeAwA3Oez8djHp25rmvu+317N/gC31w3AEDZaFQAAAAAAAAAAMpGowIAAAAAAAAAUDYaFQAAAAAAAACAstGoAAAAAAAAAACUjUYFAAAAAAAAAKBsNCoAAAAAAAAAAGWjUQEAAAAAAAAAKBuNCgAAAAAAAABA2WhUAAAAAAAAAADKRqMCAAAAAAAAAFA2GhUAAAAAAAAAgLLRqAAAAAAAAAAAlI1GBQAAAAAAAACgbDQqAAAAAAAAAABlo1EBAAAAAAAAACgbjQoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAomyaVLgAAAAAAAAAAqsqpNRU898zKnftrsqMCAAAAAAAAAFA2GhUAAAAAAAAAgLLRqAAAAAAAAAAAlI1GBQAAAAAAAACgbDQqAAAAAAAAAABlo1EBAAAAAAAAACgbjQoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMqmSaULAAAAAABg2Td8+PDccsstefnll9OyZctsscUWOfvss7POOuuU1myzzTZ54IEH6nzuF7/4Ra644opylwuw9Di1poLnnlm5cwMNmh0VAAAAAABYbA888ED69++f8ePHZ/To0Zk3b1522GGHfPDBB3XWHXzwwXnvvfdKr3POOadCFQMAUCl2VAAAAAAAYLGNGjWqzvtrrrkm7dq1y4QJE9K7d+/S+HLLLZcOHTqUuzwAAJYidlQAAAAAAKDezZz5yXbibdu2rTN+/fXXZ+WVV84GG2yQIUOG5MMPP/zSY8yZMyezZs2q8wIAYNlX0UaF4cOHZ9NNN80KK6yQdu3aZbfddssrr7xSZ80222yTQqFQ53XooYfWWTN58uT07ds3yy23XNq1a5ejjz468+fPL+elAAAAAADw/6utrc3AgQOz5ZZbZoMNNiiN/+QnP8kf//jH/P3vf8+QIUPyhz/8Ifvuu++XHmf48OGpqakpvTp16lSO8gEAWMIq+uiHT59Ztummm2b+/Pk5/vjjs8MOO+TFF19Mq1atSusOPvjgnHbaaaX3yy23XOnnBQsWpG/fvunQoUMeeeSRvPfee9lvv/3StGnTnHnmmWW9HgAAAAAAkv79++f555/PQw89VGf8kEMOKf3cvXv3rLrqqtluu+3y+uuv55vf/ObnjjNkyJAMHjy49H7WrFmaFQAAqkBFGxXq45ll99xzT1588cXce++9ad++fXr06JHTTz89xx57bE499dQ0a9ZsiV4DAAAAAAD/Z8CAAbnzzjszduzYrLbaal+5drPNNkuSTJw48QsbFZo3b57mzZsvkToBAKicij764b8tyjPLxo0bl+7du6d9+/alsT59+mTWrFl54YUXvvA8nmsGAAAAAFC/isViBgwYkFtvvTX3339/unTp8j8/8/TTTydJVl111SVcHQAAS5OK7qjwWV/1zLLOnTunY8eOefbZZ3PsscfmlVdeyS233JIkmTJlSp0mhSSl91OmTPnCcw0fPjxDhw5dQlcCAAAAANDw9O/fPzfccENuv/32rLDCCqU/n62pqUnLli3z+uuv54YbbsjOO++clVZaKc8++2wGDRqU3r17Z8MNN6xw9QAAlNNS06hQX88s+zo81wwAAAAAoH5dfvnlSZJtttmmzvjVV1+dAw44IM2aNcu9996bCy+8MB988EE6deqUfv365cQTT6xAtQAAVNJS0aiwOM8s69ChQx577LE6a6ZOnZok6dChwxcew3PNAAAAAADqV7FY/Mr5Tp065YEHHihTNQAALM0aVfLk9fHMsl69euW5557LtGnTSmtGjx6d1q1bZ7311lsidQMAAAAAAAAAi6aiOyrUxzPLdthhh6y33nr56U9/mnPOOSdTpkzJiSeemP79+9s1AQAAAAAAAACWMhXdUeHyyy/PzJkzs80222TVVVctvf785z8nSemZZTvssEO6deuWI488Mv369csdd9xROkbjxo1z5513pnHjxunVq1f23Xff7LfffjnttNMqdVkAAAAAAAAAwJeo6I4K9fXMss6dO+euu+6qr7IAAAAAAAAAgCWkojsqAAAAAAAAAAANi0YFAAAAAAAAAKBsNCoAAAAAAAAAAGWjUQEAAAAAAAAAKBuNCgAAsJDeeeed7LvvvllppZXSsmXLdO/ePU888URpvlgs5uSTT86qq66ali1bZvvtt89rr71W5xjTp0/PPvvsk9atW6dNmzY56KCDMnv27Dprnn322XznO99JixYt0qlTp5xzzjlluT4AAAAAgCVJowIAACyE//znP9lyyy3TtGnT/L//9//y4osv5rzzzsuKK65YWnPOOedkxIgRueKKK/Loo4+mVatW6dOnTz7++OPSmn322ScvvPBCRo8enTvvvDNjx47NIYccUpqfNWtWdthhh3Tu3DkTJkzIueeem1NPPTW//e1vy3q9AAAAAAD1rUmlCwAAgGXJ2WefnU6dOuXqq68ujXXp0qX0c7FYzIUXXpgTTzwxP/jBD5Ik1113Xdq3b5/bbrste++9d1566aWMGjUqjz/+eDbZZJMkycUXX5ydd945v/71r9OxY8dcf/31mTt3bq666qo0a9Ys66+/fp5++umcf/75dRoaAAAAAACWNXZUAACAhfC3v/0tm2yySfbYY4+0a9cuPXv2zJVXXlmanzRpUqZMmZLtt9++NFZTU5PNNtss48aNS5KMGzcubdq0KTUpJMn222+fRo0a5dFHHy2t6d27d5o1a1Za06dPn7zyyiv5z3/+s6QvEwAAAABgidGoAAAAC+Ef//hHLr/88nTt2jV33313DjvssBxxxBG59tprkyRTpkxJkrRv377O59q3b1+amzJlStq1a1dnvkmTJmnbtm2dNV90jM+e47/NmTMns2bNqvMCAAAAAFjaePQDAAAshNra2myyySY588wzkyQ9e/bM888/nyuuuCL7779/RWsbPnx4hg4dWtEaAAAAAAD+FzsqAADAQlh11VWz3nrr1Rlbd911M3ny5CRJhw4dkiRTp06ts2bq1KmluQ4dOmTatGl15ufPn5/p06fXWfNFx/jsOf7bkCFDMnPmzNLrrbfeWpRLBAAAAABYojQqAADAQthyyy3zyiuv1Bl79dVX07lz5yRJly5d0qFDh9x3332l+VmzZuXRRx9Nr169kiS9evXKjBkzMmHChNKa+++/P7W1tdlss81Ka8aOHZt58+aV1owePTrrrLNOVlxxxS+srXnz5mndunWdFwAAAADA0kajAgAALIRBgwZl/PjxOfPMMzNx4sTccMMN+e1vf5v+/fsnSQqFQgYOHJhhw4blb3/7W5577rnst99+6dixY3bbbbckn+zAsOOOO+bggw/OY489locffjgDBgzI3nvvnY4dOyZJfvKTn6RZs2Y56KCD8sILL+TPf/5zLrroogwePLhSlw4AAAAAUC+aVLoAAABYlmy66aa59dZbM2TIkJx22mnp0qVLLrzwwuyzzz6lNcccc0w++OCDHHLIIZkxY0a22mqrjBo1Ki1atCituf766zNgwIBst912adSoUfr165cRI0aU5mtqanLPPfekf//+2XjjjbPyyivn5JNPziGHHFLW6wUAAAAAqG8aFQAAYCF9//vfz/e///0vnS8UCjnttNNy2mmnfematm3b5oYbbvjK82y44YZ58MEHF7lOAAAAAIClkUc/AAAAAAAAAABlo1EBAAAAAAAAACgbjQoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAomyaVLgAAAAAAgMqZNGlSHnzwwbz55pv58MMPs8oqq6Rnz57p1atXWrRoUenyAACoQhoVAAAAAAAaoOuvvz4XXXRRnnjiibRv3z4dO3ZMy5YtM3369Lz++utp0aJF9tlnnxx77LHp3LlzpcsFAKCKaFQAAAAAACrn1JoKnntm5c5dYT179kyzZs1ywAEH5K9//Ws6depUZ37OnDkZN25cbrzxxmyyySa57LLLsscee1SoWgAAqo1GBQAAAACABuass85Knz59vnS+efPm2WabbbLNNtvkjDPOyBtvvFG+4gAAqHoaFQAAAAAAGpivalL4byuttFJWWmmlJVgNAAANTaNKFwAAAAAAQOU8+eSTee6550rvb7/99uy22245/vjjM3fu3ApWBgBAtdKoAAAAAADQgP3iF7/Iq6++miT5xz/+kb333jvLLbdcbr755hxzzDEVrg4AgGqkUQEAAAAAoAF79dVX06NHjyTJzTffnN69e+eGG27INddck7/+9a+VLQ4AgKrUpNIFALAEnFpTwXPPrNy5AQAAgIVWLBZTW1ubJLn33nvz/e9/P0nSqVOn/Otf/6pkaQAAVCk7KgAAAAAANGCbbLJJhg0blj/84Q954IEH0rdv3yTJpEmT0r59+wpXBwBANbKjAgAAAABAA3bhhRdmn332yW233ZYTTjgha621VpLkL3/5S7bYYosKVwcAVcRuyFCiUQEAAAAAoAHbcMMN89xzz31u/Nxzz03jxo0rUBEAANXOox8AAKh6Bx54YN5///3PjX/wwQc58MADK1ARAAAs/Vq0aJGmTZtWugwAAKqQRgUAAKretddem48++uhz4x999FGuu+66ClQEAACVteKKK6Zt27Zf6wUAAPXNox8AAKhas2bNSrFYTLFYzPvvv58WLVqU5hYsWJC77ror7dq1q2CFAABQGRdeeGHp53//+98ZNmxY+vTpk169eiVJxo0bl7vvvjsnnXRShSoEAKCaaVQAAKBqtWnTJoVCIYVCIWuvvfbn5guFQoYOHVqBygAAoLL233//0s/9+vXLaaedlgEDBpTGjjjiiFxyySW59957M2jQoEqUCABAFdOoAABA1fr73/+eYrGY7373u/nrX/9aZ9vaZs2apXPnzunYsWMFKwQAgMq7++67c/bZZ39ufMcdd8xxxx1XgYoAAKh2GhUAAKhaW2+9dZJk0qRJ6dSpUxo1alThigAAYOmz0kor5fbbb8+RRx5ZZ/z222/PSiutVKGqAACoZhoVAACoep07d86MGTPy2GOPZdq0aamtra0zv99++1WoMgAAqLyhQ4fm5z//ecaMGZPNNtssSfLoo49m1KhRufLKKytcHQAA1UijAgAAVe+OO+7IPvvsk9mzZ6d169YpFAqluUKhoFEBAIAG7YADDsi6666bESNG5JZbbkmSrLvuunnooYdKjQsAAFCf7H0LAEDVO/LII3PggQdm9uzZmTFjRv7zn/+UXtOnT690eQAAUHGbbbZZrr/++jz55JN58sknc/311y90k8Lw4cOz6aabZoUVVki7du2y22675ZVXXqmz5uOPP07//v2z0korZfnll0+/fv0yderU+rwUAACWAXZUAACg6r3zzjs54ogjstxyy1W6FAAAWCrV1tZm4sSJX/iotN69e3+tYzzwwAPp379/Nt1008yfPz/HH398dthhh7z44otp1apVkmTQoEEZOXJkbr755tTU1GTAgAHZfffd8/DDD9f7NQEAsPTSqAAAQNXr06dPnnjiiay55pqVLgUAAJY648ePz09+8pO8+eabKRaLdeYKhUIWLFjwtY4zatSoOu+vueaatGvXLhMmTEjv3r0zc+bM/P73v88NN9yQ7373u0mSq6++Ouuuu27Gjx+fzTffvH4uCACApZ5GBQAAql7fvn1z9NFH58UXX0z37t3TtGnTOvO77rprhSoDAIDKO/TQQ7PJJptk5MiRWXXVVVMoFOrluDNnzkyStG3bNkkyYcKEzJs3L9tvv31pTbdu3bL66qtn3LhxGhUAABqQijYqDB8+PLfccktefvnltGzZMltssUXOPvvsrLPOOqU1H3/8cY488sjceOONmTNnTvr06ZPLLrss7du3L62ZPHlyDjvssPz973/P8ssvn/333z/Dhw9Pkyb6MAAASA4++OAkyWmnnfa5uYX5G2IAAFCNXnvttfzlL3/JWmutVW/HrK2tzcCBA7Pllltmgw02SJJMmTIlzZo1S5s2beqsbd++faZMmfKFx5kzZ07mzJlTej9r1qx6qxEAgMppVMmTf/rMsvHjx2f06NGZN29edthhh3zwwQelNYMGDcodd9yRm2++OQ888EDefffd7L777qX5BQsWpG/fvpk7d24eeeSRXHvttbnmmmty8sknV+KSAABYCtXW1n7pS5MCAAAN3WabbZaJEyfW6zH79++f559/PjfeeONiHWf48OGpqakpvTp16lRPFQIAUEkV3XKgPp5Zds899+TFF1/Mvffem/bt26dHjx45/fTTc+yxx+bUU09Ns2bNKnFpAAAAAADLhMMPPzxHHnlkpkyZ8oWPSttwww0X6ngDBgzInXfembFjx2a11VYrjXfo0CFz587NjBkz6uyqMHXq1HTo0OELjzVkyJAMHjy49H7WrFmaFQAAqsBS9WyERXlm2bhx49K9e/c6j4Lo06dPDjvssLzwwgvp2bPn585juzAAgIblix758Fl24wIAoCHr169fkuTAAw8sjRUKhRSLxYV6VFqxWMzhhx+eW2+9NWPGjEmXLl3qzG+88cZp2rRp7rvvvtI5X3nllUyePDm9evX6wmM2b948zZs3X5TLAgBgKbbUNCos6jPLpkyZUqdJ4dP5T+e+yPDhwzN06NB6vgIAAJZWt956a5338+bNy6RJk9KkSZN885vf1KgAADR4axw3smLnfqNFxU7N/2/SpEn1cpz+/fvnhhtuyO23354VVlih9OezNTU1admyZWpqanLQQQdl8ODBadu2bVq3bp3DDz88vXr1yuabb14vNQAAsGxYahoVPn1m2UMPPbTEz2W7MACAhuWpp5763NisWbNywAEH5Ic//GEFKgIAgKVH586d6+U4l19+eZJkm222qTN+9dVX54ADDkiSXHDBBWnUqFH69euXOXPmpE+fPrnsssvq5fwAACw7lopGhcV5ZlmHDh3y2GOP1Tne1KlTS3NfxHZhAMCiqujfNDurb8XOXY1at26doUOHZpdddslPf/rTSpcDAAAV9frrr+fCCy/MSy+9lCRZb7318qtf/Srf/OY3v/YxisXi/1zTokWLXHrppbn00ksXuVYAAJZ9jSp58mKxmAEDBuTWW2/N/fff/5XPLPvUfz+zrFevXnnuuecybdq00prRo0endevWWW+99cpzIQAALJNmzpyZmTNnVroMAACoqLvvvjvrrbdeHnvssWy44YbZcMMN8+ijj2b99dfP6NGjK10eAABVqKI7KtTHM8t22GGHrLfeevnpT3+ac845J1OmTMmJJ56Y/v372zUBAIAkyYgRI+q8LxaLee+99/KHP/whO+20U4WqAgCApcNxxx2XQYMG5ayzzvrc+LHHHpvvfe97FaoMAIBqtciNCrW1tZk4cWKmTZuW2traOnO9e/f+Wseoj2eWNW7cOHfeeWcOO+yw9OrVK61atcr++++f0047bVEvDQCAKnPBBRfUed+oUaOsssoq2X///TNkyJAKVQUAAEuHl156KTfddNPnxg888MBceOGF5S8IAICqt0iNCuPHj89PfvKTvPnmm5977lihUMiCBQu+1nHq65llnTt3zl133fW1zgkAQMMzadKkSpcAAABLrVVWWSVPP/10unbtWmf86aefTrt27SpUFQAA1WyRGhUOPfTQbLLJJhk5cmRWXXXVFAqF+q4LAACWiLfffjtJstpqq1W4EgAAWDocfPDBOeSQQ/KPf/wjW2yxRZLk4Ycfztlnn53BgwdXuDoAAKrRIjUqvPbaa/nLX/6StdZaq77rAQCAeldbW5thw4blvPPOy+zZs5MkK6ywQo488siccMIJadSoUYUrBACAyjnppJOywgor5Lzzzis9Gq1jx4459dRTc8QRR1S4OgAAqtEiNSpsttlmmThxokYFAACWCSeccEJ+//vf56yzzsqWW26ZJHnooYdy6qmn5uOPP84ZZ5xR4QoBAKByCoVCBg0alEGDBuX9999P8kljLwAALClfu1Hh2WefLf18+OGH58gjj8yUKVPSvXv3NG3atM7aDTfcsP4qBACAxXTttdfmd7/7XXbdddfS2IYbbphvfOMb+eUvf6lRAWAhrHHcyIqd+42z+lbs3ADVbNKkSZk/f366du1ap0HhtddeS9OmTbPGGmtUrjgAAKrS125U6NGjRwqFQorFYmnswAMPLP386VyhUMiCBQvqt0oAAFgM06dPT7du3T433q1bt0yfPr0CFQEAwNLjgAMOyIEHHpiuXbvWGX/00Ufzu9/9LmPGjKlMYQAAVK2v3agwadKkJVkHAAAsMRtttFEuueSSjBgxos74JZdcko022qhCVQEAwNLhqaeeKj0i7bM233zzDBgwoAIVAQBQ7b52o0Lnzp1LP48dOzZbbLFFmjSp+/H58+fnkUceqbMWAAAq7Zxzzknfvn1z7733plevXkmScePG5a233spdd91V4eoAAKCyCoVC3n///c+Nz5w50+65AAAsEY0W5UPbbrvtF26RO3PmzGy77baLXRQAANSnrbfeOq+++mp++MMfZsaMGZkxY0Z23333vPLKK/nOd75T6fIAAKCievfuneHDh9dpSliwYEGGDx+erbbaqoKVAQBQrb72jgqfVSwWUygUPjf+73//O61atVrsogAAoL517NgxZ5xxRqXLAACApc7ZZ5+d3r17Z5111ik18j744IOZNWtW7r///gpXBwBANVqoRoXdd989ySdbgR1wwAFp3rx5aW7BggV59tlns8UWW9RvhQAAsIhee+21nHzyyfnNb36T1q1b15mbOXNmDjvssAwbNixrrrlmhSoEAIDKW2+99fLss8/mkksuyTPPPJOWLVtmv/32y4ABA9K2bdtKlwcAQBVaqEaFmpqaJJ/sqLDCCiukZcuWpblmzZpl8803z8EHH1y/FQIAwCI699xz06lTp881KSSfZNtOnTrl3HPPzeWXX16B6gAAYOnRsWPHnHnmmZUuAwCABmKhGhWuvvrqJMkaa6yRo446ymMeAABYqj3wwAP54x//+KXze+65Z37yk5+UsSIAAFg6Pfjgg/nNb36Tf/zjH7n55pvzjW98I3/4wx/SpUuXbLXVVpUuDwCAKtNoUT50yimnpFWrVpk2bVoefPDBPPjgg5k2bVp91wYAAItl8uTJadeu3ZfOr7zyynnrrbfKWBEAACx9/vrXv6ZPnz5p2bJlnnzyycyZMyfJJ49Ls8sCAABLwkLtqPCp999/P7/85S9z4403ZsGCBUmSxo0bZ6+99sqll15aekQEAABUUk1NTV5//fV07tz5C+cnTpz4hY+FAACAhmTYsGG54oorst9+++XGG28sjW+55ZYZNmxYBSuDBuzUCv53llNnVu7cADQYi7Sjws9//vM8+uijufPOOzNjxozMmDEjd955Z5544on84he/qO8aAQBgkfTu3TsXX3zxl86PGDEi3/nOd8pYEQAALH1eeeWV9O7d+3PjNTU1mTFjRvkLAgCg6i3Sjgp33nln7r777jrPJuvTp0+uvPLK7LjjjvVWHAAALI4hQ4akV69e+dGPfpRjjjkm66yzTpLk5ZdfzjnnnJO77747jzzySIWrBOBr8zcLAZaIDh06ZOLEiVljjTXqjD/00ENZc801K1MUAABVbZEaFVZaaaUvfLxDTU1NVlxxxcUuCgAA6kPPnj3zl7/8JQceeGBuvfXWOnMrrbRSbrrppnzrW9+qUHUAALB0OPjgg/OrX/0qV111VQqFQt59992MGzcuRx11VE466aRKlwcAQBVapEaFE088MYMHD84f/vCHdOjQIUkyZcqUHH300YIrAABLle9///t58803M2rUqEycODHFYjFrr712dthhhyy33HKVLg8AACruuOOOS21tbbbbbrt8+OGH6d27d5o3b56jjjoqhx9+eKXLAwCgCi1So8Lll1+eiRMnZvXVV8/qq6+eJJk8eXKaN2+ef/7zn/nNb35TWvvkk0/WT6UAALCIWrZsmR/+8IeVLgMAAJZKhUIhJ5xwQo4++uhMnDgxs2fPznrrrZfll1++0qUBAFClFqlRYbfddqvnMgAAAAAAqKRmzZplvfXWy6xZs3LvvfdmnXXWybrrrlvpsgAAqEKL1Khwyimn1HcdAAAAAABUwJ577pnevXtnwIAB+eijj7Lppptm0qRJKRaLufHGG9OvX79KlwgAQJVptKgfnDFjRn73u99lyJAhmT59epJPHvPwzjvv1FtxAAAAAAAsWWPHjs13vvOdJMmtt96a2trazJgxIyNGjMiwYcMqXB0AANVokRoVnn322ay99to5++yz8+tf/zozZsxIktxyyy0ZMmRIfdYHAAAAAMASNHPmzLRt2zZJMmrUqPTr1y/LLbdc+vbtm9dee63C1QEAUI0WqVFh8ODBOeCAA/Laa6+lRYsWpfGdd945Y8eOrbfiAACgvrz++us58cQT8+Mf/zjTpk1Lkvy///f/8sILL1S4MgAAqKxOnTpl3Lhx+eCDDzJq1KjssMMOSZL//Oc/df78FwAA6kuTRfnQ448/nt/85jefG//GN76RKVOmLHZRAAB8gVNrKnjumZU7dz144IEHstNOO2XLLbfM2LFjc8YZZ6Rdu3Z55pln8vvf/z5/+ctfKl0iAABUzMCBA7PPPvtk+eWXT+fOnbPNNtsk+eSREN27d69scQAAVKVF2lGhefPmmTVr1ufGX3311ayyyiqLXRQAANSn4447LsOGDcvo0aPTrFmz0vh3v/vdjB8/voKVAQBA5f3yl7/M+PHjc9VVV+Whhx5Ko0af/LHxmmuumWHDhlW4OgAAqtEi7aiw66675rTTTstNN92UJCkUCpk8eXKOPfbY9OvXr14LBACAxfXcc8/lhhtu+Nx4u3bt8q9//asCFQEAwNJl4403zsYbb1xnrG/fvhWqBgCAardIOyqcd955mT17dlZZZZV89NFH2XrrrbPWWmtlhRVWyBlnnFHfNQIAwGJp06ZN3nvvvc+NP/XUU/nGN75RgYoAAKCyzjrrrHz00Udfa+2jjz6akSNHLuGKAABoSBZpR4WampqMHj06Dz/8cJ555pnMnj073/rWt7L99tvXd30AALDY9t577xx77LG5+eabUygUUltbm4cffjhHHXVU9ttvv0qXBwAAZffiiy9m9dVXzx577JFddtklm2yySemxvvPnz8+LL76Yhx56KH/84x/z7rvv5rrrrqtwxQAAVJOFblSora3NNddck1tuuSVvvPFGCoVCunTpkg4dOqRYLKZQKCyJOgEAYJGdeeaZ6d+/fzp16pQFCxZkvfXWy4IFC/KTn/wkJ554YqXLAwCAsrvuuuvyzDPP5JJLLslPfvKTzJo1K40bN07z5s3z4YcfJkl69uyZn//85znggAPSokWLClcMAEA1WahGhWKxmF133TV33XVXNtpoo3Tv3j3FYjEvvfRSDjjggNxyyy257bbbllCpAACwaJo1a5Yrr7wyJ598cp577rnMnj07PXv2TNeuXStdGgAAVMxGG22UK6+8Mr/5zW/y7LPP5s0338xHH32UlVdeOT169MjKK69c6RIBAKhSC9WocM0112Ts2LG57777su2229aZu//++7Pbbrvluuuus30uAABLldNOOy1HHXVUOnXqlE6dOpXGP/roo5x77rk5+eSTK1gdAABUVqNGjdKjR4/06NGj0qUAANBANFqYxX/6059y/PHHf65JIUm++93v5rjjjsv1119fb8UBAEB9GDp0aGbPnv258Q8//DBDhw6tQEUAAAAAAA3XQjUqPPvss9lxxx2/dH6nnXbKM888s9hFAQBAfSoWiykUCp8bf+aZZ9K2bdsKVAQAAAAA0HAt1KMfpk+fnvbt23/pfPv27fOf//xnsYsCAID6sOKKK6ZQKKRQKGTttdeu06ywYMGCzJ49O4ceemgFKwQAAAAAaHgWqlFhwYIFadLkyz/SuHHjzJ8/f7GLAgCA+nDhhRemWCzmwAMPzNChQ1NTU1Oaa9asWdZYY4306tWrghUCAAAAADQ8C9WoUCwWc8ABB6R58+ZfOD9nzpx6KQoAAOrD/vvvnyTp0qVLtthiizRt2rTCFQEAwNJr4sSJef3119O7d++0bNnySx+hBgAAi2uhGhU+/YPer7LffvstcjEAALAkbL311qWfP/7448ydO7fOfOvWrctdEgAALDX+/e9/Z6+99sr999+fQqGQ1157LWuuuWYOOuigrLjiijnvvPMqXSIAAFVmoRoVrr766iVVBwAALDEffvhhjjnmmNx0003597///bn5BQsWVKAqAABYOgwaNChNmjTJ5MmTs+6665bG99prrwwePFijAgAA9a5RpQsAAIAl7eijj87999+fyy+/PM2bN8/vfve7DB06NB07dsx11123WMc+66yzUigUMnDgwNLYxx9/nP79+2ellVbK8ssvn379+mXq1Kl1Pjd58uT07ds3yy23XNq1a5ejjz468+fPr7NmzJgx+da3vpXmzZtnrbXWyjXXXLNYtQIAwBe55557cvbZZ2e11VarM961a9e8+eabFaoKAIBqplEBAICqd8cdd+Syyy5Lv3790qRJk3znO9/JiSeemDPPPDPXX3/9Ih/38ccfz29+85tsuOGGdcYHDRqUO+64IzfffHMeeOCBvPvuu9l9991L8wsWLEjfvn0zd+7cPPLII7n22mtzzTXX5OSTTy6tmTRpUvr27Zttt902Tz/9dAYOHJif//znufvuuxe5XgAA+CIffPBBlltuuc+NT58+Pc2bN69ARQAAVDuNCgAAVL3p06dnzTXXTJK0bt0606dPT5JstdVWGTt27CIdc/bs2dlnn31y5ZVXZsUVVyyNz5w5M7///e9z/vnn57vf/W423njjXH311XnkkUcyfvz4JJ/8jbUXX3wxf/zjH9OjR4/stNNOOf3003PppZdm7ty5SZIrrrgiXbp0yXnnnZd11103AwYMyI9+9KNccMEFi/OPAgAAPuc73/lOnZ3GCoVCamtrc84552TbbbetYGUAAFQrjQoAAFS9NddcM5MmTUqSdOvWLTfddFOST3ZaaNOmzSIds3///unbt2+23377OuMTJkzIvHnz6ox369Ytq6++esaNG5ckGTduXLp375727duX1vTp0yezZs3KCy+8UFrz38fu06dP6RgAAFBfzjnnnPz2t7/NTjvtlLlz5+aYY47JBhtskLFjx+bss8+udHkAAFShJpUuAAAAlrSf/exneeaZZ7L11lvnuOOOyy677JJLLrkk8+bNy/nnn7/Qx7vxxhvz5JNP5vHHH//c3JQpU9KsWbPPNUC0b98+U6ZMKa35bJPCp/Ofzn3VmlmzZuWjjz5Ky5YtP3fuOXPmZM6cOaX3s2bNWuhrAwCg4dlggw3y6quv5pJLLskKK6yQ2bNnZ/fdd0///v2z6qqrVro8AACqkEYFAACq3qBBg0o/b7/99nn55ZczYcKErLXWWtlwww0X6lhvvfVWfvWrX2X06NFp0aJFfZe6WIYPH56hQ4dWugwAAJZBNTU1OeGEEypdBgAADYRGBQAAGpzOnTunc+fOi/TZCRMmZNq0afnWt75VGluwYEHGjh2bSy65JHfffXfmzp2bGTNm1NlVYerUqenQoUOSpEOHDnnsscfqHHfq1KmluU//99Oxz65p3br1F+6mkCRDhgzJ4MGDS+9nzZqVTp06LdJ1AgDQsHz88cd59tlnM23atNTW1taZ23XXXStUFQAA1UqjAgAAVeujjz7Kfffdl+9///tJPvkP+Z99NELjxo1z+umnL9TOCNttt12ee+65OmM/+9nP0q1btxx77LHp1KlTmjZtmvvuuy/9+vVLkrzyyiuZPHlyevXqlSTp1atXzjjjjEybNi3t2rVLkowePTqtW7fOeuutV1pz11131TnP6NGjS8f4Is2bN0/z5s2/9rUAAECSjBo1Kvvtt1/+9a9/fW6uUChkwYIFX/tYY8eOzbnnnpsJEybkvffey6233prddtutNH/AAQfk2muvrfOZPn36ZNSoUYtcPwAAyx6NCgAAVK1rr702I0eOLDUqXHLJJVl//fVLOxK8/PLL6dixY51HQ/wvK6ywQjbYYIM6Y61atcpKK61UGj/ooIMyePDgtG3bNq1bt87hhx+eXr16ZfPNN0+S7LDDDllvvfXy05/+NOecc06mTJmSE088Mf379y81Ghx66KG55JJLcswxx+TAAw/M/fffn5tuuikjR45c7H8uAADwWYcffnj22GOPnHzyyWnfvv1iHeuDDz7IRhttlAMPPDC77777F67Zcccdc/XVV5fea7YFAGh4NCoAAFC1rr/++hxzzDF1xm644YasueaaSZI//vGPufTSSxeqUeHruOCCC9KoUaP069cvc+bMSZ8+fXLZZZeV5hs3bpw777wzhx12WHr16pVWrVpl//33z2mnnVZa06VLl4wcOTKDBg3KRRddlNVWWy2/+93v0qdPn3qtFQAApk6dmsGDBy92k0KS7LTTTtlpp52+ck3z5s1LjzwDAKBhalTJk48dOza77LJLOnbsmEKhkNtuu63O/AEHHJBCoVDnteOOO9ZZM3369Oyzzz5p3bp12rRpk4MOOiizZ88u41UAALC0mjhxYrp3715636JFizRq9H8R+Nvf/nZefPHFxT7PmDFjcuGFF9Y5z6WXXprp06fngw8+yC233PK5P4jt3Llz7rrrrnz44Yf55z//mV//+tdp0qRuH/E222yTp556KnPmzMnrr7+eAw44YLFrBQCA//ajH/0oY8aMKdv5xowZk3bt2mWdddbJYYcdln//+99lOzcAAEuHiu6oUB/bgO2zzz557733Mnr06MybNy8/+9nPcsghh+SGG25YorUDALD0mzFjRubMmVN6/89//rPOfG1tbZ15AABoiC655JLsscceefDBB9O9e/c0bdq0zvwRRxxRb+facccds/vuu6dLly55/fXXc/zxx2ennXbKuHHj0rhx48+tnzNnTp3MPmvWrHqrBQCAyqloo8LibgP20ksvZdSoUXn88cezySabJEkuvvji7Lzzzvn1r3+djh071nvNAAAsO1ZbbbU8//zzWWeddb5w/tlnn81qq61W5qoAAGDp8qc//Sn33HNPWrRokTFjxqRQKJTmCoVCvTYq7L333qWfu3fvng033DDf/OY3M2bMmGy33XafWz98+PAMHTq03s4PAMDSoaKPfvg6vmobsHHjxqVNmzalJoUk2X777dOoUaM8+uijX3rMOXPmZNasWXVeAABUn5133jknn3xyPv7448/NffTRRxk6dGj69u1bgcoAAGDpccIJJ2To0KGZOXNm3njjjUyaNKn0+sc//rFEz73mmmtm5ZVXzsSJE79wfsiQIZk5c2bp9dZbby3RegAAKI+K7qjwv/yvbcCmTJmSdu3a1flMkyZN0rZt20yZMuVLj6sLFwCgYTj++ONz0003ZZ111smAAQOy9tprJ0leeeWVXHLJJZk/f36OP/74ClcJAACVNXfu3Oy1115p1Kj8f6/t7bffzr///e+suuqqXzjfvHnzzz0OGACAZd9S3aiwsNuAfV1DhgzJ4MGDS+9nzZqVTp06LVatAAAsfdq3b59HHnkkhx12WI477rgUi8Ukn2xf+73vfS+XXXZZ2rdvX+EqAQCgsvbff//8+c9/rpcm3tmzZ9fZHWHSpEl5+umn07Zt27Rt2zZDhw5Nv3790qFDh7z++us55phjstZaa6VPnz6LfW4AAJYdS3Wjwn/77DZg2223XTp06JBp06bVWTN//vxMnz49HTp0+NLj6MIFAGg4unTpklGjRmX69OmlPzBda6210rZt2wpXBgAAS4cFCxbknHPOyd13350NN9wwTZs2rTN//vnnf+1jPfHEE9l2221L7z/9C2P7779/Lr/88jz77LO59tprM2PGjHTs2DE77LBDTj/9dH9eCwDQwCxTjQr/vQ1Yr169MmPGjEyYMCEbb7xxkuT+++9PbW1tNttss0qWCgDAUqZt27b59re/XekyAABgqfPcc8+lZ8+eSZLnn3++zlyhUFioY22zzTalncy+yN13373wBQIAUHUq2qiwuNuArbvuutlxxx1z8MEH54orrsi8efMyYMCA7L333unYsWOlLgsAAAAAYJnx97//vdIlAADQwDSq5MmfeOKJ9OzZs9StO3jw4PTs2TMnn3xyGjdunGeffTa77rpr1l577Rx00EHZeOON8+CDD9bZBuz6669Pt27dst1222XnnXfOVlttld/+9reVuiQAAAAAAAAA4CtUdEeF+tgGrG3btrnhhhvqsywAAAAAgKq2++6755prrknr1q2z++67f+XaW265pUxVAQDQUFS0UQEAAAAAgPKrqalJoVAo/QwAAOWkUQEAAAAAoIG5+uqrc9ppp+Woo47K1VdfXelyAABoYBpVugAAAAAAAMpv6NChmT17dqXLAACgAdKoAAAAAADQABWLxUqXAABAA6VRAQAAAACggSoUCpUuAQCABqhJpQsAAAAAAKAy1l577f/ZrDB9+vQyVQMAQEOhUQEAAAAAoIEaOnRoampqKl0GAAANjEYFAAAAAIAGau+99067du0qXQYAAA1Mo0oXAAAAAABA+f2vRz4AAMCSolEBAAAAAKABKhaLlS4BAIAGyqMfAAAAAAAaoNra2kqXAABAA6VRAQDqwRrHjazYud84q2/Fzg0AAAAAALCwPPoBAAAAAAAAACgbjQoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMpGowIAAAAAAAAAUDYaFQAAAAAAAACAstGoAAAAAAAAAACUjUYFAAAAAAAAAKBsNCoAAAAAAAAAAGWjUQEAAAAAAAAAKBuNCgAAAAAAAABA2WhUAAAAAAAAAADKRqMCAAAAAAAAAFA2GhUAAAAAAAAAgLLRqAAAAAAAAAAAlI1GBQAAAAAAAACgbDQqAAAAAAAAAABlo1EBAAAAAAAAACgbjQoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMpGowIAAAAAAPVi7Nix2WWXXdKxY8cUCoXcdtttdeaLxWJOPvnkrLrqqmnZsmW23377vPbaa5UpFgCAitGoAAAAAABAvfjggw+y0UYb5dJLL/3C+XPOOScjRozIFVdckUcffTStWrVKnz598vHHH5e5UgAAKqlJJU8+duzYnHvuuZkwYULee++93Hrrrdltt91K88ViMaecckquvPLKzJgxI1tuuWUuv/zydO3atbRm+vTpOfzww3PHHXekUaNG6devXy666KIsv/zyFbgiAKiAU2sqeO6ZlTs3AAAAS52ddtopO+200xfOFYvFXHjhhTnxxBPzgx/8IEly3XXXpX379rntttuy9957l7NUAAAqqKI7KtRHd+0+++yTF154IaNHj86dd96ZsWPH5pBDDinXJQAAAAAA8DVMmjQpU6ZMyfbbb18aq6mpyWabbZZx48Z94WfmzJmTWbNm1XkBALDsq+iOCovbXfvSSy9l1KhRefzxx7PJJpskSS6++OLsvPPO+fWvf52OHTuW7VoAAAAAAPhyU6ZMSZK0b9++znj79u1Lc/9t+PDhGTp06BKvDQCA8qrojgpf5et0144bNy5t2rQpNSkkyfbbb59GjRrl0Ucf/dJj68IFAAAAAFj6DRkyJDNnziy93nrrrUqXBABAPVhqGxW+TnftlClT0q5duzrzTZo0Sdu2bb+0Azf5pAu3pqam9OrUqVM9Vw8AAAAAwGd16NAhSTJ16tQ641OnTi3N/bfmzZundevWdV4AACz7ltpGhSVJFy4AAAAAQHl16dIlHTp0yH333VcamzVrVh599NH06tWrgpUBAFBuTSpdwJf5bHftqquuWhqfOnVqevToUVozbdq0Op+bP39+pk+f/qUduMknXbjNmzev/6IBAAAAABqw2bNnZ+LEiaX3kyZNytNPP522bdtm9dVXz8CBAzNs2LB07do1Xbp0yUknnZSOHTtmt912q1zRAACU3VK7o8LX6a7t1atXZsyYkQkTJpTW3H///amtrc1mm21W9poBAAAAABqyJ554Ij179kzPnj2TJIMHD07Pnj1z8sknJ0mOOeaYHH744TnkkEOy6aabZvbs2Rk1alRatGhRybIBACiziu6osLjdteuuu2523HHHHHzwwbniiisyb968DBgwIHvvvXc6duxYoasCAAAAAGiYttlmmxSLxS+dLxQKOe2003LaaaeVsSoAAJY2FW1UeOKJJ7LtttuW3g8ePDhJsv/+++eaa67JMccckw8++CCHHHJIZsyYka222upz3bXXX399BgwYkO222y6NGjVKv379MmLEiLJfCwAAAAAAAADwv1W0UaE+umvbtm2bG264YUmUBwAAAAAAAADUs0aVLgAAAAAAAAAAaDg0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMqmSaULAAAAYNm2xnEjK3buN87qW7FzAwAAALBo7KgAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAomyaVLgAAAAAW2ak1FTz3zMqdGwAAAGAZZkcFAAAAAAAAAKBs7KgAZbTGcSMrdu43zupbsXMDAAAAAAAAfMqOCgAAAAAAAABA2WhUAACAhTB8+PBsuummWWGFFdKuXbvstttueeWVV+qs+fjjj9O/f/+stNJKWX755dOvX79MnTq1zprJkyenb9++WW655dKuXbscffTRmT9/fp01Y8aMybe+9a00b948a621Vq655polfXkAAAAAAEucRgUAAFgIDzzwQPr375/x48dn9OjRmTdvXnbYYYd88MEHpTWDBg3KHXfckZtvvjkPPPBA3n333ey+++6l+QULFqRv376ZO3duHnnkkVx77bW55pprcvLJJ5fWTJo0KX379s22226bp59+OgMHDszPf/7z3H333WW9XgAAAACA+tak0gUAAMCyZNSoUXXeX3PNNWnXrl0mTJiQ3r17Z+bMmfn973+fG264Id/97neTJFdffXXWXXfdjB8/PptvvnnuueeevPjii7n33nvTvn379OjRI6effnqOPfbYnHrqqWnWrFmuuOKKdOnSJeedd16SZN11181DDz2UCy64IH369Cn7dQMAAAAA1Bc7KgAAwGKYOXNmkqRt27ZJkgkTJmTevHnZfvvtS2u6deuW1VdfPePGjUuSjBs3Lt27d0/79u1La/r06ZNZs2blhRdeKK357DE+XfPpMb7InDlzMmvWrDovAAAAAICljUYFAABYRLW1tRk4cGC23HLLbLDBBkmSKVOmpFmzZmnTpk2dte3bt8+UKVNKaz7bpPDp/KdzX7Vm1qxZ+eijj76wnuHDh6empqb06tSp02JfIwAAAABAfdOoAAAAi6h///55/vnnc+ONN1a6lCTJkCFDMnPmzNLrrbfeqnRJAAAAAACf06TSBQAAwLJowIABufPOOzN27NisttpqpfEOHTpk7ty5mTFjRp1dFaZOnZoOHTqU1jz22GN1jjd16tTS3Kf/++nYZ9e0bt06LVu2/MKamjdvnubNmy/2tQEAAAAALEl2VAAAgIVQLBYzYMCA3Hrrrbn//vvTpUuXOvMbb7xxmjZtmvvuu6809sorr2Ty5Mnp1atXkqRXr1557rnnMm3atNKa0aNHp3Xr1llvvfVKaz57jE/XfHoMAAAAAIBllR0VAABgIfTv3z833HBDbr/99qywwgqZMmVKkqSmpiYtW7ZMTU1NDjrooAwePDht27ZN69atc/jhh6dXr17ZfPPNkyQ77LBD1ltvvfz0pz/NOeeckylTpuTEE09M//79SzsiHHroobnkkktyzDHH5MADD8z999+fm266KSNHjqzYtQMAAAAA1Ac7KgAAwEK4/PLLM3PmzGyzzTZZddVVS68///nPpTUXXHBBvv/976dfv37p3bt3OnTokFtuuaU037hx49x5551p3LhxevXqlX333Tf77bdfTjvttNKaLl26ZOTIkRk9enQ22mijnHfeefnd736XPn36lPV6AQAAAADqmx0VAABgIRSLxf+5pkWLFrn00ktz6aWXfumazp0756677vrK42yzzTZ56qmnFrpGAAAAAIClmR0VAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMpGowIAAAAAAAAAUDZNKl0AUCan1lTw3DMrd24AAAAAAABgqWJHBQAAAAAAAACgbDQqAAAAAAAAAABlo1EBAAAAAAAAACgbjQoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMpGowIAAAAAAAAAUDYaFQAAAAAAKItTTz01hUKhzqtbt26VLgsAgDJbqhsV/ldo/fjjj9O/f/+stNJKWX755dOvX79MnTq1ghUDAAAAAPBV1l9//bz33nul10MPPVTpkgAAKLMmlS7gf1l//fVz7733lt43afJ/JQ8aNCgjR47MzTffnJqamgwYMCC77757Hn744UqUCgAAAADA/9CkSZN06NCh0mUAAFBBS32jwpeF1pkzZ+b3v/99brjhhnz3u99Nklx99dVZd911M378+Gy++eblLhUAAAAAgP/htddeS8eOHdOiRYv06tUrw4cPz+qrr/6Fa+fMmZM5c+aU3s+aNatcZQIAsAQt1Y9+SP4vtK655prZZ599Mnny5CTJhAkTMm/evGy//faltd26dcvqq6+ecePGfeUx58yZk1mzZtV5AQAAAACwZG222Wa55pprMmrUqFx++eWZNGlSvvOd7+T999//wvXDhw9PTU1N6dWpU6cyVwwAwJKwVDcqfFVonTJlSpo1a5Y2bdrU+Uz79u0zZcqUrzyucAsAAAAAUH477bRT9thjj2y44Ybp06dP7rrrrsyYMSM33XTTF64fMmRIZs6cWXq99dZbZa4YAIAlYal+9MNOO+1U+nnDDTfMZpttls6dO+emm25Ky5YtF/m4Q4YMyeDBg0vvZ82apVkBAAAAAKDM2rRpk7XXXjsTJ078wvnmzZunefPmZa4KAIAlbaneUeG/fTa0dujQIXPnzs2MGTPqrJk6dWo6dOjwlcdp3rx5WrduXecFAAAAAEB5zZ49O6+//npWXXXVSpcCAEAZLVONCp8NrRtvvHGaNm2a++67rzT/yiuvZPLkyenVq1cFqwQAAAAA4IscddRReeCBB/LGG2/kkUceyQ9/+MM0btw4P/7xjytdGgAAZbRUP/rhqKOOyi677JLOnTvn3XffzSmnnFIKrTU1NTnooIMyePDgtG3bNq1bt87hhx+eXr16ZfPNN6906QAAAAAA/Je33347P/7xj/Pvf/87q6yySrbaaquMHz8+q6yySqVLAwCgjJbqRoX/FVovuOCCNGrUKP369cucOXPSp0+fXHbZZRWuGgAAAACAL3LjjTdWugQAAJYCS3Wjwv8KrS1atMill16aSy+9tEwVAQAAAAAAAACLY6luVAAAAACgctY4bmTFzv3GWX0rdm4AAACWrEaVLgAAAAAAAAAAaDg0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZNKl0AQAAAAAAsCxY47iRFTv3Gy0qdmoAgHpnRwUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAomyaVLgAAAAAAAAAqaY3jRlbs3G+0qNipASrGjgoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGyaVLoAAAAAAPicU2sqdN6ZlTkvAABAA2JHBQAAAAAAAACgbDQqAAAAAAAAAABlo1EBAAAAAAAAACgbjQoAAAAAAAAAQNk0qXQBAAAAAAAAAFDf1jhuZMXO/UaLip16maBRAQAAAAAAAGgwKvUfr/2Ha/g/Hv0AAAAAAAAAAJSNHRUAAAAAAAD+i+3CAWDJsaMCAAAAAAAAAFA2GhUAAAAAAAAAgLLRqAAAAAAAAAAAlI1GBQAAAAAAAACgbDQqAAAAAAAAAABlo1EBAAAAAAAAACgbjQoAAAAAAAAAQNloVAAAAAAAAAAAykajAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMpGowIAAAAAAAAAUDYaFQAAAAAAAACAstGoAAAAAAAAAACUjUYFAAAAAAAAAKBsNCoAAAAAAAAAAGWjUQEAAAAAAAAAKBuNCgAAAAAAAABA2WhUAAAAAAAAAADKpmoaFS699NKsscYaadGiRTbbbLM89thjlS4JAAAWm5wLAEA1knMBABq2qmhU+POf/5zBgwfnlFNOyZNPPpmNNtooffr0ybRp0ypdGgAALDI5FwCAaiTnAgBQFY0K559/fg4++OD87Gc/y3rrrZcrrrgiyy23XK666qpKlwYAAItMzgUAoBrJuQAANKl0AYtr7ty5mTBhQoYMGVIaa9SoUbbffvuMGzfuCz8zZ86czJkzp/R+5syZSZJZs2Yt2WK/RO2cDyty3iSZVShW6MSV+WddaQ3yXifudwW43+Xnfjcc7nW5T/vJeYvFCl57hSzrOdd3pWFxvxsW97thaZD3270uu4b43ZZzv37OXZoybuK70tC43w2L+92wVOp+u9fl57td7tN+/Zy7zDcq/Otf/8qCBQvSvn37OuPt27fPyy+//IWfGT58eIYOHfq58U6dOi2RGpdmNZU68VkVO3ODVdF/4u532bnfDYv73XA05Hv9/vvvp6amYf3/Tc5ddA35u9IQud8Ni/vdsPgzi4ajIX+35dz/82U5V8b9Pw35u9IQud8Ni/vdcLjXDUtDvt9fJ+cu840Ki2LIkCEZPHhw6X1tbW2mT5+elVZaKYVCoYKVldesWbPSqVOnvPXWW2ndunWly2EJcq8bFve7YXG/G46Geq+LxWLef//9dOzYsdKlLBPk3Ib7XWmo3O+Gxf1uWNzvhqOh3ms59+uTcT/RUL8rDZX73bC43w2He92wNNT7vTA5d5lvVFh55ZXTuHHjTJ06tc741KlT06FDhy/8TPPmzdO8efM6Y23atFlSJS71Wrdu3aC+IA2Ze92wuN8Ni/vdcDTEe93Q/obZp+TcxdMQvysNmfvdsLjfDYv73XA0xHst5369nCvj1tUQvysNmfvdsLjfDYd73bA0xPv9dXNuoyVcxxLXrFmzbLzxxrnvvvtKY7W1tbnvvvvSq1evClYGAACLTs4FAKAaybkAACRVsKNCkgwePDj7779/Ntlkk3z729/OhRdemA8++CA/+9nPKl0aAAAsMjkXAIBqJOcCAFAVjQp77bVX/vnPf+bkk0/OlClT0qNHj4waNSrt27evdGlLtebNm+eUU0753NZpVB/3umFxvxsW97vhcK8bJjl34fmuNCzud8Pifjcs7nfD4V43THLuwvNdaVjc74bF/W443OuGxf3+3wrFYrFY6SIAAAAAAAAAgIahUaULAAAAAAAAAAAaDo0KAAAAAAAAAEDZaFQAAAAAAAAAAMpGowIAAAAAAAAAUDYaFYDPeeihhypdAgAA1Ds5FwCAaiTnArAs0qgA1PH000+nd+/eOeWUUypdCvXoiCOOyDXXXFPpMlhC3n333bzyyiuVLoMyGjZsWM4444xKlwGwTJFzq5OcW93k3IZHzgVYeHJudZJzq5uc2/DIuV9MowKLpVgsVroE6tm6666byy67LGeffXZOPfXUSpdDPRg8eHAuv/zy9OzZs9KlUM+KxWI++OCD9OrVK7feemtpjOo2b968vPPOO7nzzjszderUSpcDVcuvp9VHzq0+cm71knMbJjkXysOvp9VHzq0+cm71knMbJjn3y2lUYKF8+gvmnDlzUiwWUygUKlwR9a158+Y59NBDc/nll+eMM87I+eefX+mSWAwnnHBCfv/73+fll1/ORhttJPRUmUKhkFatWuWHP/xhrrrqqrz99tt+XW4AmjZtmh133DGvvPJKnn/++SRJbW1thauCZZ+cW/3k3Ooi51Y3ObdhknNhyZBzq5+cW13k3Oom5zZMcu6X06jA1/ZpkB05cmR+9rOfZdddd80DDzyQWbNmVbo06smnvzDed999ee+999K+ffscddRRGT58eIUrY1GcdNJJGT58ePbdd99885vfrHQ5LEG77LJLGjVqlEcffTRJsmDBggpXxJL2gx/8INtss01OOeWUfPzxx2nUSKSDxSHnVj85t7rIuQ2HnNvwyLlQv+Tc6ifnVhc5t+GQcxseOfeL+afA11YoFPLQQw9l7733TqtWrTJjxoz069cvv/nNb2xVUiUaNWqUO+64I7vuumuaNGmSI488Mj/72c9ywgkn5LTTTqt0eSyEwYMH5+KLL86ee+6Zp59+OmeccUZmzZqVQqGgC3cZ90X3b7vttkuXLl1y7rnnJkkaN25c7rIok9ra2tIfQvTr1y/Tpk3Ls88+W5oDFo2cW/3k3Ooh51YvObdhk3NhyZBzq5+cWz3k3Ool5zZscu5X06jAQnn77bdzzDHH5Morr8yDDz6Y/v3755JLLsnVV18t3C7jisVi5s+fn6uuuio//elPc8wxx2TQoEG54IILctFFF+XUU0/NWWedVeky+RqOP/74XHjhhZkwYUJuvPHGbLzxxrn11ltzySWXCLdVYM6cOXXez507N8knHddTpkzJX/7yl0qUxRJ0++2356677kryyR9AfNptu/fee6dQKOTSSy8tzQGLTs6tXnJu9ZBzq5uc2/DIuVAecm71knOrh5xb3eTchkfO/fr8E+Arffovv6eeeip33HFHnnzyyay88sql+aFDh+aAAw7IZZddluuuuy7vvfdepUplEX16j9966600adIk7777bp351q1bZ7/99svee++d448/XifuUu66665L586d89xzz5W2BxsxYkS22mqr3HLLLbn44ouF22XYW2+9le7du+fkk0/OuHHjkiTNmjVLknzzm9/MyiuvnHvvvbeSJVKPamtr8+yzz6Z///7Ze++9s/vuu+cvf/lL6Tc3jRs3zkknnZRHHnmk9P8H4OuTc6ufnFtd5NzqJuc2LHIuLFlybvWTc6uLnFvd5NyGRc5dBEX4H/76178WW7RoUVx77bWLhUKh+L3vfa/4xhtv1FkzdOjQYqtWrYoXXHBBcf78+RWqlEV1yy23FLt27Vp8++23i2eddVZxo402Kj711FN11px++unFNddcs7jKKqsUp02bVplC+Uq/+tWvioVCofjmm28Wi8Visba2ts738Ve/+lVx4403Lg4bNqw4c+bMYrFYLC5YsKAitbJonnjiieLw4cOLq622WrFbt27FPffcs/jUU08Vp0+fXiwWi8U///nPxVatWhXHjBlT4UqpT1OnTi3+/e9/L2655ZbFtdZaq7jBBhsUb7nlluKkSZOKM2bMKK655prF888/v1gs+k7DwpJzq5+cWx3k3Oon5zZMci4sOXJu9ZNzq4OcW/3k3IZJzv367KjAV3rnnXdyyy235KKLLsr48eNz5pln5t13383FF1+cN998s7Tu5JNPzoknnpi+fft6ls4yovj/d19Onjw5v//973P00UfnG9/4RjbffPPU1NTk4osvzjPPPFNaP3369Bx++OH5xz/+kVVWWaVSZfMlBg4cmOuuuy5PP/10Vl999SSfPIewcePGmT9/fpLkwgsvzFZbbZW//e1vueSSSzJjxgxbCy0jXn311QwcODBnnnlmVltttTz66KM59thj8+yzz+aHP/xhdtlll9x9991Zc801s/3222fMmDFJkgULFlS2cBbZn/70pwwaNCibbbZZjj/++EydOjUPPfRQrr322nTr1i2HH354vve97+XWW2/Nd77znZx77rl5++23fadhIci51UvOrS5ybnWTcxseOReWPDm3esm51UXOrW5ybsMj5y6iCjdKsBSbMGFC8Yc//GFxhx12KL799tul8XPPPbfYo0eP4sCBA0udfiybHn300eKhhx76uXv8hz/8obj11lsX11133eLee+9d/MEPflBs06ZN8cUXX6xgtXyZ4447rlhTU1N85ZVXSmO1tbXFxx57rPT+s524AwcOLK6++urF22+/vax1smiefvrp4iqrrFLcddddi3vttVexcePGxYsvvrg0f9VVVxX33HPPYqtWrYq77757ccUVVyyuscYaxdmzZ1ewahbHUUcdVezcuXNxr732Kh500EHFtddeu9ikSZPinnvuWfou33PPPcVhw4YVV1xxxeJqq61WLBQKxb/97W8VrhyWHXJu9ZNzq4OcW93k3IZHzoUlT86tfnJudZBzq5uc2/DIuYtOowJf6oorriiuv/76xbZt2xZfffXVOnPnnntucdNNNy0efPDBxcmTJ1eoQhbXr3/962L79u2Lbdq0KT733HN15h5++OHiiBEjin369CkedNBBxWeffbZCVfJVRo4cWSwUCsVjjz22NDZ37tzipptuWjzxxBPrbBv02XD7xz/+sax1smieeeaZYsuWLYvHH398sVj8ZBuoAQMGFH/1q18VZ82aVWftbbfdVjz66KOLK6+8crFQKPi1eRl13nnnFTt06FB8/PHHi/PmzSsWi8Xi5MmTi+edd16xVatWxV133bXO+tdff704YsSI4gknnFCJcmGZJedWPzl32SfnVjc5t+GRc6E85NzqJ+cu++Tc6ibnNjxy7uLRqMBX+sMf/lDcYIMNirvuumvxtddeqzN32mmnFXv37l2cMmVKhaqjPvzmN78prrHGGsWf/vSnn7vHxeInYaihPyNnaTZjxozij3/84+JWW21VvOqqq4offfRRcfPNNy9+97vf/VzwKRaLn3vmoHu79Jo8eXJx5ZVXLu6xxx51xvfaa69ijx49it26dSv26dOnePXVV5fmFixYUJw2bdrnnjvJ0q+2trY4e/bs4ve+973iRRddVBqrra0tFouffNcvuOCCYsuWLUvzn35/P/s99p2Gr0/OrX5y7rJNzq1ecm7DIudC+cm51U/OXbbJudVLzm1Y5Nz60cAffMGnip95vtWkSZPy/PPPJ0n23XffHHnkkfnPf/6TE088Mf/4xz9KnznppJNy6623pn379hWpmYXz6T1+5513Mnny5Lz++utJkkMOOSQDBw7Mc889l4svvrh0j4ufNDKlcePGnpGzlPr4449TU1OTK6+8MmuvvXYuu+yydO3aNa1bt87dd9+dFVZY4XOf+e9nDrq3S68FCxakS5cumTNnTh5++OEkyVlnnZU77rgj/fr1y1FHHZXJkyfnzDPPzFNPPZXkk+/tKqusks6dO1eydBZBoVDIjBkz8thjj6Vr1651xpOkpqYme+65Z7p165bHH388yf99fz/7Pfadhs+Tc6ufnFt95NzqJuc2LHIuLDlybvWTc6uPnFvd5NyGRc6tHw376knyyS+EhUIht9xyS/r06ZOtt946ffr0yX777ZcZM2bkgAMOyAEHHJB33303J598cl577bXSZ9u2bVvByvk6FixYULrHt956a3beeedsscUW+f73v5/9998/SfKrX/0qP/3pT/Pggw/m4osvzsSJE1MoFEq/oLJ0+dOf/pQjjzwyW2+9dQ444IDccccd+d3vfpdNNtkk8+bNyw477JAmTZokSWpraytcLYtqjTXWyPXXX5+5c+fmnHPOycEHH5wLLrggt956a0488cQcdNBBGTVqVCZOnFgKOv/9GxeWLa1bt06zZs1Kv1H57K/BxWIxHTt2TN++ffPUU09l/vz5mT9/fqVKhWWGnFvd5NzqI+c2DHJuwyPnQv2Tc6ubnFt95NyGQc5teOTcxadRgRQKhYwZMyb77rtvBg0alKuuuiqXX355Ro0alX79+mX27Nk58MADs//+++e5557LWWedlXnz5lW6bP6HRx55JMkn/6IrFAq5//7785Of/CSHHHJIrrjiihx33HG5++6706dPnyTJ4MGDs99+++W2227L7373O79gLqWOPvroDBkyJO+88066d++ecePGZd99982BBx6Y008/Pbvsskv+/Oc/59JLL838+fPTqFEj4XYZ1rVr11x00UX56KOPcv311+eYY47JDjvskGKxmHnz5qVx48bZcMMN/SFDlSgUCuncuXNGjhxZ+lsSyf/9DYok+c9//pNevXqVfvMKfDU5tzrJudVJzm1Y5NyGRc6F+ifnVic5tzrJuQ2LnNuwyLn1oBzPl2Dp8vrrrxfnzp1bZ+yUU04p7rLLLnXG3nzzzeJKK61UPOigg0pjf/jDHzwrZxkwePDg4sYbb1z85z//WRo75phjinvttVeddc8++2xxlVVWKR588MGlscsvv7z4j3/8o2y18vWdd955xQ4dOhQff/zx4rx584rF4ifPvTrvvPOKzZs3Lx544IHFBQsWFA866KBir169ipdeemlpHcu2iRMnFnfYYYfiTjvtVBw7dmxp/KSTTip26dKlOHny5ApWR326//77i02aNCnuv//+xddff73O3NSpU4vdunUr1tTUFDfaaKPir3/96+KHH35YoUph6STnVj85tzrJuQ2XnNtwyLmweOTc6ifnVic5t+GScxsOOXfxaFRoYG666aZio0aNiiNHjiz9C6+2tra47777Fnv37l1a9/HHHxeLxWLx+uuvL6655pqf+3Kx9HrggQeKrVu3Lo4fP75YLBaL//nPf4rFYrG4xx57FLfZZpvSuk/v/yWXXFLs2bNn8Z133il7rXw9tbW1xdmzZxe/973vFS+66KLSWG1tbbFYLBZnzJhRvOCCC4pNmzYt/uEPfyjOnj27uM8++xTXWmut4r333lvJ0qlHr776anHHHXcs9unTp/jkk08Wzz777GKLFi2KTz75ZKVLo55deumlxaZNmxa33Xbb4ogRI4rPPfdc8eabby5uuOGGxW222ab4pz/9qXjTTTcVp0yZUulSYaki51Y/Obf6yLkUi3JuQyLnwqKRc6ufnFt95FyKRTm3IZFzF51HPzQwe+yxR3bcccf8/Oc/z+jRozN37twUCoX86Ec/ygsvvJBbbrklSdK8efMkSYsWLdK4ceMsv/zylSybhdCkSZOsvvrqadWqVf70pz/l6KOPzrx58/KjH/0ob7/9dkaOHFlalyQrrrhi3n///TRr1qySZfMVCoVCZsyYkcceeyxdu3atM54kNTU12XPPPbPBBhtk5MiRadWqVS6++OIceeSR2W677SpVNvWsa9euGTFiRJo2bZodd9wxJ554Yh566KH07Nmz0qVRzw477LDccccdee+993L88cenR48e+fWvf51evXrl73//e/bee+/ssccead++faVLhaWKnFv95NzqI+eSyLkNiZwLi0bOrX5ybvWRc0nk3IZEzl10GhUakLlz5yZJRo4cmW9/+9v5+c9/nnvvvTdz587NJptskp133jkXXXRRKdzOnz8/TzzxRNq0aZOmTZtWsnS+hrPOOis333xzunXrlubNm2f//ffPPvvsk169eqVp06ZZf/31s8466+Sqq67KnXfemSSpra3NM888k/bt27vHS7nWrVunWbNmeeqpp5L8X6hNPnneUceOHdO3b98899xz+eijj7Liiivm0EMPLc1THbp27Zpf//rX2XzzzfPUU09l4403rnRJLAGFQiF9+vTJI488kpdffjmPP/54/va3v+WKK65IkixYsKDCFcLSR86tbnJudZNzSeTchkLOhYUn51Y3Obe6ybkkcm5DIecuukLRr3gNRrFYTKFQyHPPPZcpU6Zkp512ytprr53zzz8/O+64YyZMmJCLL744t99+e7p06ZLll18+zz//fO677z4dXku5YcOG5fzzz8+jjz6arl275pJLLskRRxyR9dZbL3/+85+z7rrrplGjRhkzZkzOP//8PPfcc1lppZXStm3bPPbYYxkzZkx69OhR6cvgK8yePTvbbrttmjVrluuuuy7f/OY3k/xfaC0UChkwYEDmzJmTK6+8MvPnzy91WVN95s2b5zejDdSn/y4H6pJzq5ecW/3kXD5Lzm245Fz4YnJu9ZJzq5+cy2fJuQ2XnPvVNCo0MLfffnv22GOPnHTSSXn33XfzxBNPZPLkybn22muz4447ZurUqXn++edz1113ZfXVV8/OO+9cZ2silj4ff/xx9tlnn3Tt2jVnnXVWXnzxxfz2t7/NN77xjVx99dVp3759zjzzzGy++eYpFAp55ZVX8o9//CN/+9vfsuaaa2bXXXfNOuusU+nL4Gv4+9//nh122CH77LNPTj755Ky55pqluWnTpmXrrbfOe++9lzXWWCM//elP88tf/jItW7asYMUAUD5ybvWRcxsOORcAvpycW33k3IZDzgX4ahoVGpBZs2Zl2223zU477ZRhw4Yl+WSrqO9///uZMGFCrr322my77bal55mxbPj444+z7777Zvbs2dlmm21ywgkn5KmnnsqGG26Yd955J9/97nez6qqrZvjw4enVq1ely2UxXXbZZRk4cGC22mqr/PCHP8y2226bl19+Oaeffnratm2bX/ziF2ncuHF69+7teUcANBhybnWScxsWORcAPk/OrU5ybsMi5wJ8OY0KDcgHH3yQLbbYIv37988hhxxS2mpm/vz52WSTTVIoFHLqqadm5513tgXNMuBf//pXVl555STJnDlzstpqq+WDDz7I4MGDS79xSZJ333032267bTp27Jizzjorm222WaVKph4Ui8Xcc889GThwYN5+++189NFH2WSTTdKjR4/S844AoKGRc6uLnNswybkA8HlybnWRcxsmORfgyzWqdAGUT6tWrVJTU5Pbb789SdK0adPMmzcvTZo0yfrrr59nnnkmxx13XObOnVvhSvlfzjvvvOy8886ZO3duFixYkGnTpuXf//53WrZsmeeeey5PPvlkaW3Hjh0zZsyY/POf/8yhhx6aJ554ooKVs7gKhUL69OmTRx55JC+//HIef/zx/O1vfyuF2gULFlS4QgAoPzm3esi5DZecCwCfJ+dWDzm34ZJzAb6cRoUq9elGGf/617/y/vvvZ/78+UmSk046KS+99FKOOOKIJCl12nbo0CGPPPJIRo8enVatWlWmaL62n/3sZ7nuuuvSrFmzUvfta6+9lhdeeCFPPfVUTjrppDz11FOl9auuumruvvvuNG3aNKusskoFK6e+rLjiivnGN76Rnj17pl27dkk++d43bty4wpUBwJIl51Y3ORc5F4CGSs6tbnIuci7A53n0QxW77bbbcvbZZ2fatGnZa6+9sueee6ZHjx659NJLc+6556Zr167Zfvvt89JLL+Wmm27Kiy++mDXWWKPSZfMVHnnkkay77rpZccUVkyQPPfRQfv7zn+dvf/tb1l577STJK6+8ku9973vp3r17hg0blp49e5Y+v2DBAsEHAFjmybnVR84FAJBzq5GcCwBfzo4KVeqpp57KQQcdlF122SV77LFH7rnnnpxyyikZP358+vfvn+uuuy6NGjXKyJEj89Zbb2XcuHFC7VKsWCzmiSeeyFZbbZXLLrsss2bNSpJ069YtSbLnnnvmtddeS5Kss846GT16dJ5//vmceuqpefzxx0vHadTIVx4AWLbJudVFzgUA+IScW13kXAD43+yoUIUmTpyYG2+8McViMSeddFKSZPTo0Tn77LPTokWLHHPMMendu3eSZN68eVmwYEFatGhRyZL5CsViMYVCIUly8cUXZ+DAgTn99NPzy1/+Mm3atMm///3v9OnTJx9//HFuvfXWdO3aNUny6quv5lvf+lb69u2b6667Ls2bN6/kZQAALDY5t7rIuQAAn5Bzq4ucCwBfT5NKF0D9evfdd/PjH/84b7zxRvbbb7/S+Pe+970kyVlnnZULLrgg77//fvr27ZumTZuWnmvG0qe2tjaNGjXKlClT8vbbb2fvvffOSiutlH333TeFQiGHHXZYVlpppdx9993p06dPfvjDH5bC7dprr52nn346xWJRqAUAlnlybnWRcwEAPiHnVhc5FwC+PjsqVKEbbrghZ5xxRlZYYYVcfvnldZ5pdd999+W4447LWmutld///vdZbrnlKlgpX+XTUPviiy/mkEMOyXLLLZfll18+t9xySy666KIMGjQoZ5xxRg477LA6nbjz58/PjTfeWNpGDACgWsi51UHOBQCoS86tDnIuACwcjQpV6sYbb8w555yTHj165Fe/+lU22mij0tyYMWOy5pprZvXVV69ghXyVT7cHe+GFF7LVVlvll7/8ZX7xi19k1VVXLXVMjxgxIgMHDvxcuP32t7+d9u3b54EHHtBdDQBUHTl32SbnAgB8MTl32SbnAsDC06iwDPs0/DzxxBN55plnMn/+/GyxxRbp3r17kuS6667LiBEj0r179wwaNCgbbrhhhStmYUyfPj0/+MEP8q1vfSsXXXRRaXz+/Plp0uSTp7Z8UbidPn16Zs6cmS5dulSqdACAxSLnVjc5FwBoqOTc6ibnAsDCaVLpAlg0n4baW265JT//+c+z8cYbZ+LEienatWt22223/PKXvyw90+yyyy7LaaedllNPPTUbbLBBhSvn65oyZUree++99OvXr7RtWJI0adIktbW1KRQKOeKII1IoFDJo0KB88MEHOfroo9O2bdu0bdu2wtUDACwaObf6ybkAQEMk51Y/ORcAFo5GhWVUoVDI2LFj079//5x99tk5+OCD8+ijj2a77bbL1KlT8+GHH+aoo47Kfvvtlzlz5uSGG24QdpYxTz/9dN5888185zvfSaFQqBNuP/3fDz/8MHvuuWeWW265HHXUURk0aFAlSwYAWGxybvWTcwGAhkjOrX5yLgAsHI9+WAZ8NtB8duzMM8/Mu+++m8suuyyTJk3K9ttvn0033TSFQiHjx4/PUUcdlf79+ydJZs6cmZqamkqUzyJ65JFHst122+WPf/xj+vXr94VrLrrooowcOTL33HNPpk+f7jcvAMAyRc5tmORcAKDaybkNk5wLAAvHjgpLuU9D7VtvvZV77rkntbW1WXfddbPVVlvlwAMPLHXb7rPPPtl6661z1VVX5eWXX84WW2yRc889N3Pnzs2gQYPSunXrSl8KC6lz585p3bp1rrvuumyyySbp3Llzkv/bJi5J3nrrrfTo0SO1tbVZccUVK1kuAMBCkXMbLjkXAKhmcm7DJecCwMLRqLAU+zTUPvvss9l1113Tvn37vP7662nTpk3OPvvs9OvXLx07dswjjzyS999/P8ccc0ySZO7cudlkk03SvXv3Uufmp0GIZcc3vvGNXH755fnJT36Sk046Kccdd1zWW2+9FAqFfPjhhxk2bFj+8pe/5J577vlchzYAwNJMzm3Y5FwAoFrJuQ2bnAsAC0ejwlLqs6G2V69eOeKII3LSSSflkUceyQEHHJCrr746O+20U5ZbbrnU1tZmxowZefLJJ9OtW7f85S9/Sbt27XLSSSelTZs2lb4UFsNuu+2Wiy66KAMGDMjjjz+eXr16pUWLFnnnnXcyfvz4jBo1KmuvvXalywQA+NrkXBI5FwCoPnIuiZwLAAujUCwWi5Uugi/21ltv5Vvf+la23Xbb3HTTTaXxb3/725k5c2Yee+yx1NTU5P33389+++2XF198McViMf/6179y//33p0ePHpUrnnr12GOP5dxzz83EiROzwgorZIsttshBBx2Url27Vro0AICFJufyKTkXAKgmci6fknMB4H/TqLAUe+ONN7Lnnntm1VVXzTHHHJMtt9wyw4cPzwknnJBNN9007du3T9u2bdOnT5+suuqqefPNNzN//vz07t1b4KlCCxYsSOPGjStdBgDAYpNz+Sw5FwCoFnIunyXnAsBX06iwlHvttddyxBFHpFmzZmnXrl1uv/32XHbZZfn2t7+dJ598Ms8//3xGjBiR1q1bZ6ONNspf//rXSpfMElIsFkvPpvvszwAAyyI5l0/JuQBANZFz+ZScCwBfTaPCMuDVV1/NgAED8uCDD+b000/PUUcdVWf+3//+d2lrMJ23AAAsK+RcAACqkZwLAPC/aVRYRrz++uv55S9/mcaNG+f444/PVlttlSSZN29emjZtWuHqAABg0ci5AABUIzkXAOCrNap0AXw93/zmN3PJJZekWCxm2LBhefjhh5NEqAUAYJkm5wIAUI3kXACAr6ZRYRnStWvXjBgxIk2bNs1RRx2V8ePHV7okAABYbHIuAADVSM4FAPhyGhWWMV27ds25556b1VZbLR07dqx0OQAAUC/kXAAAqpGcCwDwxQrFYrFY6SJYeHPnzk2zZs0qXQYAANQrORcAgGok5wIA1KVRAQAAAAAAAAAoG49+AAAAAAAAAADKRqMCAAAAAAAAAFA2GhUAAAAAAAAAgLLRqAAAAAAAAAAAlI1GBQAAAAAAAACgbDQqAAAAAAAAAABlo1EBYBlQKBRy2223LdFzjBkzJoVCITNmzFii5wEAgE/JuQAAVCM5F+B/06gAsBSYMmVKDj/88Ky55ppp3rx5OnXqlF122SX33XdfkuS9997LTjvttERr2GKLLfLee++lpqYmSXLNNdekTZs2S/ScAABUNzkXAIBqJOcCLL4mlS4AoKF74403suWWW6ZNmzY599xz071798ybNy933313+vfvn5dffjkdOnT4ymPMmzcvTZs2Xaw6mjVr9j/PAwAAX5ecCwBANZJzAeqHHRUAKuyXv/xlCoVCHnvssfTr1y9rr7121l9//QwePDjjx49PUnersDfeeCOFQiF//vOfs/XWW6dFixa5/vrrkyRXXXVV1l9//TRv3jyrrrpqBgwYUOczTz/9dOm8M2bMSKFQyJgxY5LU3SpszJgx+dnPfpaZM2emUCikUCjk1FNPLdc/EgAAqoCcCwBANZJzAeqHHRUAKmj69OkZNWpUzjjjjLRq1epz81+1Vddxxx2X8847Lz179kyLFi1y+eWXZ/DgwTnrrLOy0047ZebMmXn44YcXqa4tttgiF154YU4++eS88sorSZLll19+kY4FAEDDI+cCAFCN5FyA+qNRAaCCJk6cmGKxmG7dui30ZwcOHJjdd9+99H7YsGE58sgj86tf/ao0tummmy5SXc2aNUtNTU0KhYLtwwAAWGhyLgAA1UjOBag/Hv0AUEHFYnGRP7vJJpuUfp42bVrefffdbLfddvVRFgAALBY5FwCAaiTnAtQfjQoAFdS1a9cUCoW8/PLLC/3Zz24t1rJly69c26jRJ7/cfzZIz5s3b6HPCQAAX4ecCwBANZJzAeqPRgWACmrbtm369OmTSy+9NB988MHn5mfMmPG1jrPCCitkjTXWyH333feF86usskqS5L333iuNPf300195zGbNmmXBggVf6/wAAPBZci4AANVIzgWoPxoVACrs0ksvzYIFC/Ltb387f/3rX/Paa6/lpZdeyogRI9KrV6+vfZxTTz015513XkaMGJHXXnstTz75ZC6++OIkn3Tobr755jnrrLPy0ksv5YEHHsiJJ574lcdbY401Mnv27Nx3333517/+lQ8//HCxrhMAgIZFzgUAoBrJuQD1Q6MCQIWtueaaefLJJ7PtttvmyCOPzAYbbJDvfe97ue+++3L55Zd/7ePsv//+ufDCC3PZZZdl/fXXz/e///289tprpfmrrroq8+fPz8Ybb5yBAwdm2LBhX3m8LbbYIoceemj22muvrLLKKjnnnHMW+RoBAGh45FwAAKqRnAtQPwrFzz7gBgAAAAAAAABgCbKjAgAAAAAAAABQNhoVAAAAAAAAAICy0agAAAAAAAAAAJSNRgUAAAAAAAAAoGw0KgAAAAAAAAAAZaNRAQAAAAAAAAAoG40KAAAAAAAAAEDZaFQAAAAAAAAAAMpGowIAAAAAAAAAUDYaFQAAAAAAAACAstGoAAAAAAAAAACUjUYFAAAAAAAAAKBs/j9AxZfO4AriQgAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<Figure size 2100x600 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"fig, axs = plt.subplots(1, 3, figsize=(21, 6))\n",
|
||
"df.plot(x=\"Circuit\", y=[\"Depth (No AI)\", \"Depth (AI)\"], kind=\"bar\", ax=axs[0])\n",
|
||
"axs[0].set_title(\"Circuit Depth Comparison\")\n",
|
||
"axs[0].set_ylabel(\"Depth\")\n",
|
||
"axs[0].set_xlabel(\"Circuit\")\n",
|
||
"axs[0].tick_params(axis=\"x\", rotation=45)\n",
|
||
"df.plot(\n",
|
||
" x=\"Circuit\",\n",
|
||
" y=[\"Gate Count (No AI)\", \"Gate Count (AI)\"],\n",
|
||
" kind=\"bar\",\n",
|
||
" ax=axs[1],\n",
|
||
")\n",
|
||
"axs[1].set_title(\"Gate Count Comparison\")\n",
|
||
"axs[1].set_ylabel(\"Gate Count\")\n",
|
||
"axs[1].set_xlabel(\"Circuit\")\n",
|
||
"axs[1].tick_params(axis=\"x\", rotation=45)\n",
|
||
"df.plot(x=\"Circuit\", y=[\"Time (No AI)\", \"Time (AI)\"], kind=\"bar\", ax=axs[2])\n",
|
||
"axs[2].set_title(\"Time Comparison\")\n",
|
||
"axs[2].set_ylabel(\"Time (seconds)\")\n",
|
||
"axs[2].set_xlabel(\"Circuit\")\n",
|
||
"axs[2].tick_params(axis=\"x\", rotation=45)\n",
|
||
"fig.suptitle(\n",
|
||
" \"Benchmarking AI transpilation vs Non-AI transpilation for various circuits\"\n",
|
||
")\n",
|
||
"\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ee11b216-4966-467f-9fa3-1eeada3703a1",
|
||
"metadata": {},
|
||
"source": [
|
||
"The AI transpiler's performance varies significantly based on the type of circuit being optimized. In some cases, it achieves notable reductions in circuit depth and gate count compared to the standard transpiler. However, these improvements often come with a substantial increase in runtime.\n",
|
||
"\n",
|
||
"For certain types of circuits, the AI transpiler may yield slightly better results in terms of circuit depth but may also lead to an increase in gate count and a significant runtime penalty. These observations suggest that the AI transpiler's benefits are not uniform across all circuit types. Instead, its effectiveness depends on the specific characteristics of the circuit, making it more suitable for some use cases than others."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ac7b9f26-97e6-443a-b7c6-e23f6126303f",
|
||
"metadata": {},
|
||
"source": [
|
||
"## When should users choose AI-powered transpilation?\n",
|
||
"\n",
|
||
"The AI-powered transpiler in Qiskit excels in scenarios where traditional transpilation methods struggle—particularly with large-scale and complex quantum circuits. For circuits involving hundreds of qubits or those targeting hardware with intricate coupling maps, the AI transpiler offers superior optimization in terms of circuit depth, gate count, and runtime efficiency. In benchmarking tests, it has consistently outperformed traditional methods, delivering significantly shallower circuits and reducing gate counts, which are critical for enhancing performance and mitigating noise on real quantum hardware.\n",
|
||
"\n",
|
||
"Users should consider AI-powered transpilation when working with:\n",
|
||
"- Large circuits where traditional methods fail to efficiently handle the scale.\n",
|
||
"- Complex hardware topologies where device connectivity and routing challenges arise.\n",
|
||
"- Performance-sensitive applications where reducing circuit depth and improving fidelity are paramount.\n",
|
||
"\n",
|
||
"#### Getting the Best Results: Using `ai=\"auto\"`\n",
|
||
"For optimal results, users can set ai=\"auto\" in the Qiskit Transpiler Service. This automatically selects the best AI-based optimizations based on the circuit and target hardware, ensuring that the transpiler delivers the highest performance without manual configuration. This mode is ideal for users who want the convenience of automatic optimization while still benefiting from the powerful AI-driven enhancements to circuit routing and synthesis."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b02c6498-4f7b-43df-9008-4602089d1fec",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Part III. Exploring AI-powered permutation network synthesis\n",
|
||
"\n",
|
||
"Permutation networks are foundational in quantum computing, particularly for systems constrained by restricted topologies. These networks facilitate long-range interactions by dynamically swapping qubits to mimic all-to-all connectivity on hardware with limited connectivity. Such transformations are essential for implementing complex quantum algorithms on near-term devices, where interactions often span beyond nearest neighbors.\n",
|
||
"\n",
|
||
"In this section, we highlight the synthesis of permutation networks as a compelling use case for the AI-powered transpiler in Qiskit. Specifically, the `AIPermutationSynthesis` pass leverages AI-driven optimization to generate efficient circuits for qubit permutation tasks. By contrast, generic synthesis approaches often struggle to balance gate count and circuit depth, especially in scenarios with dense qubit interactions or when attempting to achieve full connectivity.\n",
|
||
"\n",
|
||
"We will walk through a Qiskit patterns example showcasing the synthesis of a permutation network to achieve all-to-all connectivity for a set of qubits. We will compare the performance of `AIPermutationSynthesis` against the standard synthesis methods in Qiskit. This example will demonstrate how the AI transpiler optimizes for lower circuit depth and gate count, highlighting its advantages in practical quantum workflows.\n",
|
||
"\n",
|
||
"For more details about the AI-powered permutation synthesis in QTS, please refer to the [Qiskit API documentation](https://docs.quantum.ibm.com/api/qiskit-ibm-transpiler/qiskit_ibm_transpiler.ai.AIPermutationSynthesis)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "22ef1d50-3221-44b3-bbc9-221f8f473d0b",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 1: Map classical inputs to a quantum problem\n",
|
||
"\n",
|
||
"To represent a classical permutation problem on a quantum computer, we start by defining the structure of the quantum circuits. For this example:\n",
|
||
"\n",
|
||
"1. **Quantum Circuit Initialization**:\n",
|
||
" We allocate 27 qubits to match the backend we will use, which has 27 qubits.\n",
|
||
"\n",
|
||
"2. **Applying Permutations**:\n",
|
||
" We generate five random permutation patterns (`pattern_1` through `pattern_5`) using a fixed seed (42) for reproducibility. Each permutation pattern is applied to a separate quantum circuit (`qc_1` through `qc_5`).\n",
|
||
"\n",
|
||
"3. **Circuit Decomposition**:\n",
|
||
" Each permutation operation is decomposed into native gate sets compatible with the target quantum hardware. We analyze the depth and the number of two-qubit gates (nonlocal gates) for each decomposed circuit.\n",
|
||
"\n",
|
||
"The results provide insight into the complexity of representing classical permutation problems on a quantum device, demonstrating the resource requirements for different permutation patterns."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "4d0259c1-9de4-4371-a9d7-0ace6fd7391d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAC08AAAb4CAYAAADtCgk1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZzVdaE//teZGWBYZRl1UBBUQFkUDJesNC3XVFrdMiuzbDOtTLzdW9nyvZnmvd3MLOu2l4hplmFuhRWaGriUCoqiINuoI4vsMDPn90e/vKmonOHMnMHzfD4ePND5fN7v9+uc8x5gZl7znkKxWCwGAAAAAAAAAAAAAOBVrqbSAQAAAAAAAAAAAAAAOoPyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqqA8DQAAAAAAAAAAAABUBeVpAAAAAAAAAAAAAKAqKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVAXlaQAAAAAAAAAAAACgKihPAwAAAAAAAAAAAABVQXkaAAAAAAAAAAAAAKgKytMAAAAAAAAAAAAAQFVQngYAAAAAAAAAAAAAqoLyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqqA8DQAAAAAAAAAAAABUBeVpAAAAAAAAAAAAAKAqKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVIW6SgcAAACArmbDxtbc/8iy3D37mSxYsjobNrWmW11NGvrX5zWjB+U1owelf78elY4JAAAAAAAAQImUpwEAACBJa2tbbvrL4lw2dU5u/svibGppe9n7J+w5MB85fnROOWb39OnVrZNSAgAAAAAAALA1CsVisVjpEAAAAFBJ1/5hfs65+K95fPGqksf27d0t57x3XD77wfHp3q22A9IBAAAAAAAAUC7K0wAAAFStZ1aszycuuCNTbnhsq+cav8fA/PgrB2fCnoPKkAwAAAAAAACAjqA8DQAAQFV6ZMHKHHbGDXli6ZqyzdmtriZXfO2QvOuIXcs2JwAAAAAAAADlozwNAABA1Xn0iWdz0Punpal5Xdnnrqkp5MqLDs3xCtQAAAAAAAAAXY7yNAAAAFVl1ZqNmXD8r/PYolUdtka3uprM+PExOWDvHTpsDQAAAAAAAABKV1PpAAAAANCZzv3vmSUXp2dOmZSFt5yUmVMmbdH9m1ra8v7P/znrN7S0JyIAAAAAAAAAHUR5+mU0Nzdn8uTJGTFiROrr6zN06NCcffbZWbNmTU4//fQUCoVceumllY4JAADAFvrDnUty+S8fKnlcY0OvDNmxdxobem3xmIceX5kvfPuektcCAAAAAAAAoOPUVTpAV3Xffffl6KOPTlNTU3r37p0xY8ZkyZIlueSSSzJv3rwsW7YsSTJhwoTKBgUAAOgAxWIxd/396Xz3lw/lgUeXZ/2GlgzqX593vHlY3jdpZPr361HpiO3yuUtndep63/zFg/nM+/bKDoN6duq65dDS0pbf/umJ/OjXj+SJptUpFpOhjb3zvkkj87ZDh6VbN9+PDQAAAAAAAGx7CsVisVjpEF1Nc3Nz9tlnnyxatCjnnHNOzj///PTt2zdJctFFF+W8885LXV1dWltbs2LFivTr16/CiQEAAMpn7vyVOeWzf8ysB5s3e71XfV0mn7ZXvvCRfVIoFDo5XfvdM7s5E0/6TbvGLrzlpAzZsXcWPbkmQw+/sqSxF5y9b/7t9PHtWrdSfjdjYc740m1Z/NTazV4fvH2vXPrZA/OOw4Z3bjAAAAAAAACAreSYqM0466yzsmjRopx55pm5+OKLnytOJ8nkyZMzfvz4tLS0ZPjw4YrTAADAq8rsecvzuvf+9iWL00mydn1Lvvide/ORr9yeben7cb/7y4cqtm5b27bzPF1102M57hO3vGRxOkmWPr027zrnD/nJbx7pxGQAAAAAAAAAW095+gXmzJmTqVOnpqGhIRdccMFm75k4cWKSZPz4558c9vjjj2fSpEnp27dvBgwYkPe+97155plnOjwzAABAOWzc1Jpjz7wlz6zYsEX3f+/qh/PdqypTSG6Pm+9YXJF1FyxZnUcWrKzI2qWa89iKnPrvf9qisnexmHzwizNy75yXLtoDAAAAAAAAdDXK0y8wZcqUtLW15ZRTTkmfPn02e0/Pnj2TPL88vWrVqhx66KFZtGhRpkyZku9973uZMWNGjj322LS1tXVKdgAAgK3xq9/Pz+OLV5U05r9+ev82caryMyvWZ8GS1RVb/+7Z28Y31l46ZXY2btryj2FbWou55IrZHZgIAAAAAAAAoLyUp19g+vTpSZJDDz30Je9ZtGhRkueXp7/3ve9l8eLF+fWvf51jjz02xx9/fK644orceeedue666zo2NAAAQBlcNnVOyWPmLVyVm/9SmROdS3H37Mqejnz3NnA686o1G/PT3z5S8rgrb3wsz6xY3wGJAAAAAAAAAMqvUCwWu/4RYZ1o6NChWbRoUe69995MmDDhRddbWloyePDgNDc3Z968edltt92S/F/Z+tZbb33e/bvvvnsOOeSQ/OAHPyg5y7777pumpqbSHwQAAECJiilkyYAvJIXSv8e277o/pd+66R2QqnzWdh+f5X3esdlrM6dMSmNDr5cd39jQM3W1NWlpbUtT87qXvK+peW32O/nF30Dbc8PfM3DNNaWF7mQb6nZJc7/T2zV20Kqfpn7TvDInAgAAAAAAANi8xsbGzJo1q11j68qcZZu3Zs2aJMm6dZv/YvjUqVPT3Nycvn37Ztddd33u7bNnz87xxx//ovvHjh2b2bPb9yOMm5qasnhx1z/BDQAAeBWo6ZEMbN8PJ1q1ZlNWLe3iH7sM2C3ps/lLjQ29MmTH3ls0TV1tzRbf+6/Wrd/Y9T++6zMg6de+oc8sW5M828UfHwAAAAAAAECUp1+ksbExy5cvzz333JMDDzzwedeWLl2ac889N0my9957p1AoPHdt+fLl6d+//4vmGzhwYB5++OF2ZwEAAOgMxRSypNjWvpOne3dLv5137oBU5bO2e58sf4lrTc1rX3F8KSdPb07P+m4Z2MWfow11fdPczrGDBvROfd+u/fgAAAAAAACAV4+t6dgqT7/AYYcdljlz5uTCCy/M4YcfnlGjRiVJZs6cmVNPPTXNzf/4UvKECRM6PEt7jxMHAABojzd/8HeZ/telJY/79c+/ljcdsFMHJCqf39+5OIefceNmr+138nWvOH7hLSdlyI6909S8LkMPv7Lk9T9+xnvy9XMuKXlcZ1qzdlN2PvzKrFy1saRxverr8uhtN6d/vx4dlAwAAAAAAACgfNr3M5lfxSZPnpxBgwZl4cKFGTt2bPbaa6+MHDky+++/f3bbbbe86U1vSpKMHz/+eeMGDBiQFStWvGi+ZcuWZeDAgZ0RHQAAYKt87MTRJY/ZY/h2OXT/wR2Qprwmjmmo6Pr7jq3s+luid69uef+kkSWPO+WY3RWnAQAAAAAAgG2G8vQLDBkyJDNmzMgxxxyT+vr6zJ8/PwMHDszll1+e66+/PnPnzk3y4vL06NGjM3v27BfNN3v27IweXXoBAQAAoLNNOmRYRg3brqQxk0/bO4VCoYMSlc+Afj2y25C+FVu/0uXtLfXxk0anZ4/aLb6/e7eanPXuMR2YCAAAAAAAAKC8lKc3Y/To0Zk2bVpWrVqVVatW5a677soZZ5yRNWvWZP78+ampqcm4ceOeN+bYY4/NbbfdlkWLFj33trvuuivz5s3Lcccd19kPAQAAoGTdutXk+m8fkcaGnlt0/6dOHZvT3lb6ScWVcuTrdq7IursP7VvR4nYpRg7bLlO//qZ0q3vlTxfU1hbys6++MeNG+mlLAAAAAAAAwLZDeboEDz74YIrFYkaOHJlevXo979oZZ5yRwYMH561vfWumTZuWq6++OieffHL233//vPWtb61QYgAAgNKM2KVf7vz5cXnjvo0veU//vt1z8Tn7578+c8A2cer0P330hMr8VKCPnjA6NTXbzvN03CG75KbvHpmRw/q95D277tw30751RE44crdOTAYAAAAAAACw9ZSnS3D//fcnScaPH/+ia/369cv06dMzePDgnHTSSfngBz+Y173udZk2bVpqajzNAADAtmPYTn3zxx8ek/uveXvOPHlMunf7x8c0PbrX5AdfOiiLf39yznnfXttUcTpJ9ho1MAe9ZsdOXbO+R23e/9Zt53Tufzp0/53y0G/elZsvPyrvfsvuz+2Bnj1q87tvH5FHrz8+R71hSIVTAgAAAAAAAJROq7cEL1eeTpLdd98906ZNy+rVq7NixYr8/Oc/z/bbb9+ZEQEAAMpm3MiB+dZnD8z2A+qTJA396/OBt49Kr551FU7Wfv/5iX3TmZ3vc9+/Vwb1r++8BcuopqaQww/cOb/42iHP7YGB2/XI0QcN3aZO0gYAAAAAAAD4V8rTJXil8jQAAABd20ETG3PWu8d2ylp7jRyQz50xoVPWAgAAAAAAAGDLbLvHhVXA9OnTKx0BAACArfSfn5iYm/6yKA89vnKLxzQ1r33e76+kvkdtfvyVg9O9W227MgIAAAAAAADQMZSnAQAAqCq9e3XLTd89Kge9f1qeWLpmi8bsd/J1Wzx/XV0hv7z4TXnNmIb2RgQAAAAAAACgg9RUOgAAAAB0tl0G98mff3RMRg7rV9Z5e9bX5jffPDzHvnGXss4LAAAAAAAAQHkoTwMAAFCVhu3UN7OmvDVnvGuPssx34Pgdcu/Ut+UtBw0ty3wAAAAAAAAAlJ/yNAAAAFWrX5/uufwLb8jNlx+VcSMGtGuO7QfU5+Jz9s+MHx+TPXbtX96AAAAAAAAAAJRVXaUDAAAAQKUdfuDO+fs1b89t9zyZb0+dnev/vCir1256yfvr6gp57V475KMnjM47Dx+eHt1rOzEtAAAAAAAAAO2lPA0AAABJCoVCDprYmIMmNqatrZi5C1bm7tnNWbBkdb72g79l1dqW9O/bLTd99+jsPWpA6nv4kBoAAAAAAABgW+MrvQAAAPACNTWF7Llr/+y5a/8kyWVT52TV2pb07tkt+++1fWXDAQAAAAAAANBuNZUOAAAAAAAAAAAAAADQGZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqqA8DQAAAAAAAAAAAABUBeVpAAAAAAAAAAAAAKAqKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVAXlaQAAAAAAAAAAAACgKihPAwAAAAAAAAAAAABVQXkaAAAAAAAAAAAAAKgKytMAAAAAAAAAAAAAQFVQngYAAAAAAAAAAAAAqoLyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCnWVDgAAAAAAAAAAAAAAXcnTy9blmZUb0tLSlvoedRmyY6/U91C7fTXwKgIAAAAAAAAAAABQ1Z5eti4//e2j+fPdTbl7dnMWP7X2edfr6goZN2JAJo5uyNvfPCxHvX5IamtrKpSWraE8DQAAAAAAAAAAAEBV+vvcZfn6j/+eq256PBs3tb3kfS0txdz30LLc99Cy/ODauRm+U5985IQ984mTx6ZXT3XcbYnKOwAAAAAAAAAAAABVZeOm1nzxsnsy8aRf5+fT5r1scXpz5i9ZnX/7n1mZcMK1uf3eJzsoJR1BeRoAAAAAAAAAAACAqvHE0tU54JTr8qXv3puWluJWzfXIgmdz0Pun5XPfmpVicevmonMoTwMAAAAAAAAAAABQFR5b9Gze8L5pue+hZWWbs1hM/vP7f8tHvnJ72toUqLs65WkAAAAAAAAAAAAAXvWefGZdDvvQjVnYtKZD5v/e1Q/nvG/M7JC5KR/laQAAAAAAAAAAAABe1YrFYj7yldvz+OJVWzxm5pRJWXjLSZk5ZdIWj7n4J/fnptsXtScinUR5+mU0Nzdn8uTJGTFiROrr6zN06NCcffbZWbNmTU4//fQUCoVceumllY4JAAAAAAAAAAAAwMuY8rvH8uvpC0oa09jQK0N27J3Ghl4ljfvgF2/LylUbSxpD56mrdICu6r777svRRx+dpqam9O7dO2PGjMmSJUtyySWXZN68eVm2bFmSZMKECZUNCgAAAAAAAAAAAJTVIwtW5o8zl+bZNZvSp1e3vGGfHTN2xIBKx6Kd1q5rydkX3dlp6y16ck2+cvm9ufgzB3TamuW29Om1ueG2RVn+7Ib0qq/LPnsOygF7b59CoVDpaFtNeXozmpubc9xxx6WpqSnnnHNOzj///PTt2zdJctFFF+W8885LXV1dCoVC9t577wqnBQAAAAAAAAAAAMrh93cuztd/fH9u/sviF117476NOee9e+W4Q3apQDK2xtSbHkvz8vWduuYPrp2bL398Ynr13LaquvfMbs7Xfvj3XPuH+WlpLT7v2vg9Buasd4/NaW8buU2XqGsqHaArOuuss7Jo0aKceeaZufjii58rTifJ5MmTM378+LS0tGT48OHp169fBZMCAAAAAAAAAAAA5fDNnz+QIz5842aL00nyp1lNmXTWLfnSd+7p5GRsrcumzun0NVes2pgrb3ys09fdGtf+YX5e997f5pc3P/6i4nSS/O3hZTn9/Bk57fMz0traVoGE5aE8/QJz5szJ1KlT09DQkAsuuGCz90ycODFJMn78+Ofe9s+y9f77758ePXps0416AAAAAAAAAAAAqCa/uP7RfPKiu1J8cV/0Rb74nXvz7Stnd3woymLewmcz68Hmiqx95Y3zKrJue8y4uyknTb41Gza+cin6J9c9knMu/msnpOoYytMvMGXKlLS1teWUU05Jnz59NntPz549kzy/PP3oo4/mmmuuSWNjY/bbb79OyQoAAAAAAAAAAABsnU2b2jL5GzNLGvMf37o7a9Zu6qBElFOlitP/XLu4JY38LuDfvjkzGzdt+WnSl1zxYB5b9GwHJuo4ytMvMH369CTJoYce+pL3LFq0KMnzy9MHH3xwli5dmuuuuy6HHXZYx4YEAAAAAAAAAAAAyuK6Py7IkqfWljRm5aqNmXLDYx2UiHKqZHl6+bMbM3/x6oqtv6Xue+iZ/OW+p0oaUywml//yoQ5K1LGUp19gwYIFSZJhw4Zt9npLS0tuv/32JM8vT9fUeCoBAAAAAAAAAABgW9PeEvQVv5tX5iR0hIfnr6zq9bfElTe2731gW/0GgrpKB+hq1qxZkyRZt27dZq9PnTo1zc3N6du3b3bdddcOzbLvvvumqampQ9cAAAB4JUv7fzqp2S5Lm5ZmyJAhlY5TEdX+HFT74wcAAAAAAF7dnu77gaTb5g9cfTkz7vhbhgw5owMSUU7Nfd+bdNt9s9dmTpmUxoZeLzm2saHnc78vvOWkl12nqXlt9jv5uhe9/ZRTT0vPTXNKSNz5lvd+W9Jjn5LHLVy6smJfP2xsbMysWbPaNVZ5+gUaGxuzfPny3HPPPTnwwAOfd23p0qU599xzkyR77713CoVCh2ZpamrK4sWLO3QNAACAV9S3NalJ2lpbq/djlGp/Dqr98QMAAAAAAK9uu65LupU+rGXTel872RYMf+nXt7GhV4bs2PsVp6irrdmi+zZn2TPNyaouvk92XpX0aMe4tpZt8n1AefoFDjvssMyZMycXXnhhDj/88IwaNSpJMnPmzJx66qlpbm5OkkyYMKHDszQ2Nnb4GgAAAK9kaW1t2pLU1NZm8M47VzpORVT7c1Dtjx8AAAAAAHh1W163OmvbMa6+dlUG+dpJl7ese7LuJa41Nb/8K9/Y0DN1tTVpaW1LU/NLzfLyczUM7J0e/br2PllVvz7PtmNct+Ly7FCh94Gt6dgqT7/A5MmTc8UVV2ThwoUZO3Zs9txzz6xfvz6PPvpojj766AwfPjw33XRTxo8f3+FZ2nucOAAAQDkNOWxKFj+1NoMbB2fRA4sqHaciqv05qPbHDwAAAAAAvLrNfODp7P/u60oe95sffjpHvO6/OyAR5fT/vndvPn/pPZu9tt/JL/+6L7zlpAzZsXeamtdl6OFXtmv9h+77fQb1r2/X2M7S1Lw2uxwxNZta2koa940vvCMfP+lzHZSq49RUOkBXM2TIkMyYMSPHHHNM6uvrM3/+/AwcODCXX355rr/++sydOzdJOqU8DQAAAAAAAAAAAHSs/cZtn33HNpQ0ZsQu/XLYa7v2acL8w8TRpb225TRspz5dvjidJI0NvfLOw4aXNKZPr7qceuyIjgnUwZw8vRmjR4/OtGnTXvT21atXZ/78+ampqcm4ceMqkAwAAAAAAAAAAAAotx99+aC8/n3T8uzqTa94b88etfn5V9+YmppCJyRja+03bvvU1hbS2lrs9LUP3HuHTl+zvb4x+YDc8fensmDJ6le8t1BIfvTlg9OvT/dOSFZ+Tp4uwYMPPphisZiRI0emV69eL7p+9dVX5+qrr87s2bOf9/+zZs3q7KgAAAAAAAAAAADAFho3cmD+8P2js8PAlz8luH/f7rnhO0fmgG2oFFvtGgbU562HDKvI2qe/Y1RF1m2PxoZeufV/35I9hm/3svd171aTn3/1kLzriF07KVn5OXm6BPfff3+SZPz48Zu9fvzxx2/2/9/3vvflxz/+cYdmAwAAAAAAAAAAANpv37Hb5+Hr3pUf/+aRXHbVnDyy4NnnrtXWFPKfZ03MB942KtsP7FnBlLTHx04cnV/9YX6nrjlq2HZ50/47deqaW2vXIX1z71Vvy5U3PpZvXzknd89ufu5aTSE57wPjc8a79sjwnftWMOXWU54uwSuVp4vFzj/SHQAAAAAAAAAAACiP/v165JOnjstZp4zNkqfWZuJJv85Ty9Znx0H1Oe8Dm+8O0vW96YDBec3oQblnzjOdtuZn3jcuNTWFTluvXHrW1+W0t43KaW8blaVPr82E46/NU8vWp7GhZ7569r6VjlcWNZUOsC15pfI0AAAAAAAAAAAAsO2rqSlkSGPvdKv7R82yUNj2SrD8n0KhkB9++aDU1XXO63jIfoNz+jv26JS1OtLg7Xu9Kt8HnDxdgunTp1c6AgAAAAAAAAAAAAAlGr/HoHz+jH1y/mX3bPGYpua1z/t9S/TuWZcffumgbfLU6WqhPA0AAAAAAAAAAADAq96/f3B87n3omfx6+oItun+/k68raf7a2kKu+Noh2XVI3/bEo5PUVDoAAAAAAAAAAAAAAHS0urqaXHnRoZl0yC5ln7tbXU2mXHhoJh06rOxzU17K0wAAAAAAAAAAAABUhR7da3P1f70557x3XAqF8sw5tLF3bvzOkTn+iF3LMyEdSnkaAAAAAAAAAAAAgKrRrVtNLv7MAbntJ8dm1LDttmquD75jVO6/5h150wE7lSkdHa2u0gEAAAAAAAAAAAAAoLO9bsKO+fs1b8+vfj8/l02dk9vufXKLxvXuWZf3HDsiHz1hz4zfY1AHp6TclKcBAAAAAAAAAAAAqEo9utfm5LfsnpPfsnsefHR5ZtzTlLtnN+feh5blvoeeSWtbMbW1hbz5gJ0ycXRDJo4ZlMNeu3O269u90tFpJ+VpAAAAAAAAAAAAAKre2BEDMnbEgOf+f8hhU7L4qbVpHNQzN333qAomo5xqKh0AAAAAAAAAAAAAAKAzKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVAXlaQAAAAAAAAAAAACgKihPAwAAAAAAAAAAAABVQXkaAAAAAAAAAAAAAKgKytMAAAAAAAAAAAAAQFVQngYAAAAAAAAAAAAAqoLyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqqA8DQAAAAAAAAAAAABUBeVpAAAAAAAAAAAAAKAqKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKpQV+kAAAAAAAAAAAAAXcFDj6/IX+9/OrNmN+fBR5dnzbqWFItJ7551GTtiQCaOGZT9x22f0bv1T6FQqHRcAKAdlKcBAAAAAAAAAICqtW59S6666fFcNnVO/vrA0y95360zlz733xPHNORjJ47OSUftll49VbAAYFtSU+kAAAAAAAAAAAAAlXDdrQuy+zG/zPs//+eXLU6/0N2zm3P6+TOy69FT86vfz++4gABA2SlPAwAAAAAAAAAAVWXFsxty6r//MW89+/dZ+vTads/z1LL1eeen/5CTJk/PspUbypgQAOgoytMAAAAAAAAAAEDVePKZdXnjB36Xn0+bV7Y5p974eA5+/7QseWpN2eYEADqG8jQAAAAAAAAAAFAVlq3ckMM+dEP+PndZ2ed+cN6KHHbGjWlevr7scwMA5aM8DQAAAAAAAAAAvOoVi8W857N/zAOPLu+wNeY8tiInn3drisVih60BAGwd5WkAAAAAAAAAAOBV70e/fiQ33LaopDEzp0zKwltOyswpk7Z4zO/vXJLvXf1wqfEAgE6iPP0ympubM3ny5IwYMSL19fUZOnRozj777KxZsyann356CoVCLr300krHBAAAAAAAAACgA6xb35IVz25Ia2tbpaOwlZY+vTaf+vqdJY9rbOiVITv2TmNDr5LGfea//pqFTatLXo+upa2tmBXPbsjadS1OEwd4FamrdICu6r777svRRx+dpqam9O7dO2PGjMmSJUtyySWXZN68eVm2bFmSZMKECZUNCgAAAAAAAABA2TQvX58fXjs33/3lQ3l88aokSV1dIW87dFg+duLoHLLf4BQKhQqnpFTfveqhPLt6U6ett3rtplw2dU4uOHu/TluT8igWi5lxd1Muu2pOfvX7BdnU8o9vnhi2U5985Pg9c/rbR2X7gT0rnBKAreHk6c1obm7Occcdl6amppxzzjlZunRp7rnnnjQ1NeXCCy/M9ddfn5kzZ6ZQKGTvvfeudFwAAAAAAAAAAMrgmlsezy5HXpnz/mfmc8XpJGlpKebqW+bnTR+8IUd+5MasXLWxgikp1aZNbfneNQ91+rr/+6u52bCxtdPXpf1WrdmYYz5+c974gd9l6o2PP1ecTpIFS1bns9+claFHTM3UGx+rYEoAtpby9GacddZZWbRoUc4888xcfPHF6du373PXJk+enPHjx6elpSXDhw9Pv379KpgUAAAAAAAAAIBy+NXv5+f4z0zPuvUvX3a95Y4lOeqjN2bd+pZOSsbWun7GE2lqXtfp6zYvX5/f3Lqg09elfdZvaMkxH785N9y26GXv27CxNSdNvlWBGmAbpjz9AnPmzMnUqVPT0NCQCy64YLP3TJw4MUkyfvz459529dVX553vfGeGDRuWXr16Zc8998x//Md/ZPXq1Z2SGwAAAAAAAACA9nlmxfqc+u9/SrG4Zfff+fen86Xv3tuxoSibGfc8WbG1b7u3cmtTmq/+799K2ivv+9yf8uQznV/KB2DrKU+/wJQpU9LW1pZTTjklffr02ew9PXv2TPL88vTFF1+c2trafPWrX80NN9yQj370o/nOd76To446Km1tbZudBwAAAAAAAACAyvvxbx7J2hJPkv7fXz2c9RucPr0tuHt2c1WuzZbbuKk1l//yoZLGbNjYlh9eO7eDEgHQkeoqHaCrmT59epLk0EMPfcl7Fi36x49m+Nfy9G9/+9tsv/32z/3/G9/4xmy//fY55ZRTctttt+Xggw/uoMQAAAAAAAAAAGyN75ZYmkySZ1ZsyDW/n59TjhnRAYkop/seXla5tR9almKxmEKhULEMvLJfT1+Qp5atL3ncd385J/92+t5eX4BtjPL0CyxYsCBJMmzYsM1eb2lpye23357k+eXpfy1O/9O+++6bJFm8eHG7suy7775pampq11gAAIByWdr/00nNdlnatDRDhgypdJyKqPbnoNofPwAAAACvbsXUZsnAL7Rr7Ec++ZWc9+E/lDkR5VRMsnLgl17y+swpk9LY0Oslrzc29Hzu94W3nPSS9zU1r81+J1/3orevXd+SIUOHp5DWLQ9Np3u25yFJz5c+bPOlPLF0TXYeultqsqn8oegyfJ2kunn9u+5z0NjYmFmzZrVrrPL0C6xZsyZJsm7dus1enzp1apqbm9O3b9/suuuuLzvXrbfemiQZPXp0u7I0NTW1u3gNAABQNn1bk5qkrbW1ej9GqfbnoNofPwAAAACvbjU9koHtG7p6zfqsXupzZl1bzcu+vo0NvTJkx96vOEtdbc0W3bc5S5Y0JcWN7RpLJ9lxXdKzfUOXNj2dtK4pbx66Fl8nqW5e/1flc6A8/QKNjY1Zvnx57rnnnhx44IHPu7Z06dKce+65SZK99375H7ewePHifP7zn89RRx2VCRMmtDsLAABApS2trU1bkpra2gzeeedKx6mIan8Oqv3xAwAAAPDqVkyypLgpKXQreWy/XjXp63NmXd7iYmtSqN3stabmtS87trGhZ+pqa9LS2pam5s0fxvhK8+y00w4ppLhlYamIVfW1ebY9A4ut2alxYArpX+ZEdCW+TlLdvP5d9znYmo6t8vQLHHbYYZkzZ04uvPDCHH744Rk1alSSZObMmTn11FPT3NycJC9biF69enXe+ta3pnv37vnhD3/Y7iztPU4cAACgnIYcNiWLn1qbwY2Ds+iBRZWOUxHV/hxU++MHAAAA4NXv3efdmik3PFbyuL/e8p3ssWv/8geirPacdHUenr9ys9f2O/m6lx278JaTMmTH3mlqXpehh19Z8tq77tw3j/19Ycnj6FzzFj6bkcf+MsUSO+7vPHz3XP3fT3RMKLoMXyepbl7/V+dzUFPpAF3N5MmTM2jQoCxcuDBjx47NXnvtlZEjR2b//ffPbrvtlje96U1JkvHjx292/Lp163Lcccfl8ccfz80335zBgwd3ZnwAAAAAAAAAAEr0sRNHlzzmzQfspDi9jZg4pqFia+87tnJrs+V2H9ovR71+SMnj2vNnBwCVpzz9AkOGDMmMGTNyzDHHpL6+PvPnz8/AgQNz+eWX5/rrr8/cuXOTbL48vWnTprzrXe/KrFmzcsMNN2TMmDGdHR8AAAAAAAAAgBK9fp8d85aDtrw42a2uJl/86D4dmIhyqmSBeeKYQRVbm9Kc/5F90qP7ltfpDnvtTjl0fwdrAmyLlKc3Y/To0Zk2bVpWrVqVVatW5a677soZZ5yRNWvWZP78+ampqcm4ceOeN6atrS2nnHJK/vCHP+Q3v/lN9t9//wqlBwAAAAAAAACgFIVCIVdedGgOes2Or3hvt7qa/PyCN+YNr2nshGSUw9sOHZZCoTJrv+PNwyuzMCU7YO8dMuXCQ9O92ytX6g4cv0Ou/q83p1CpjQXAVlGeLsGDDz6YYrGYkSNHplevXs+79vGPfzy//OUv86lPfSq9evXKnXfe+dyvp59+ukKJAQAAAAAAAADYEn17d8/Nlx+Vz50xIdsPqN/sPYcfuFNu/cFbcsKRu3VyOrbGrkP65i0HDe30dQ8/cKeMHLZdp69L+739zcPzpx8ek6Nev/mT6BsG1Oezp4/PH75/dLbr272T0wFQLnWVDrAtuf/++5Mk48ePf9G1G264IUnyta99LV/72teed+1HP/pR3v/+93d4PgAAAAAAAAAA2q++R12+cubEfO6MCfn19AX50BdnZNXalvTr3S0zp7w1o4Yrwm6rPn7i6Fz/54Wdu+ZJYzp1PcrjteN3yA3fOTKPPvFsfvX7+fnK9+7N6rUtGdCvexbdclJ6dK+tdEQAtpKTp0vwcuXp+fPnp1gsbvaX4jQAAAAAAAAAwLajR/fanHjUbunX5x8ny/bt3U1xeht31BuG5NiDO+/06SNft3MmHbJLp61H+Y3YpV8mf2DvbPf//znQq75OcRrgVUJ5ugQvV54GAAAAAAAAAAC6pkKhkMu/8Pr079u9w9fq16dbvv/FN6RQKHT4WgBA6eoqHWBbMn369EpHAAAAAAAAAAAA2mGnHXrnf7/4hhz/mekpFrdsTFPz2uf9viUu//zrM7SxT3siAgCdQHkaAAAAAAAAAACoCu88fNd89/Ovz4e/fPsW3b/fydeVNP+l/35gTjp69/ZEAwA6SU2lAwAAAAAAAAAAAHSWM961Z3721Temvkdt2ebs0b02P/zyQfn4SWPKNicA0DGUpwEAAAAAAAAAgKrynmNH5L6r3pbXTdhhq+faf9z2ufeqt+W0t40qQzIAoKMpTwMAAAAAAAAAAFVnj137588/Oibf+dzrssfw7UoeP2KXfvnWZw/M7T89NqN361/+gABAh6irdAAAAAAAAAAAAIBKqK2tyUdOGJ0PH79npt+1ND/97SP56wNP5+H5K1Msvvj+UcO2y/57NeS9x43Mmw/YKTU1hc4PDQBsFeVpAAAAAAAAAACgqhUKhbz5tTvlza/dKUmyas3GzHlsZY75+E1pXrEh2w/okUevPyH9+nSvcFIAYGvVVDoAAAAAAAAAAABAV9K3d/fsv9f26dG9NknSvVut4jQAvEooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqqA8DQAAAAAAAAAAAABUBeVpAAAAAAAAAAAAAKAqKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVAXlaQAAAAAAAAAAAACgKihPAwAAAAAAAAAAAABVQXkaAAAAAAAAAAAAAKgKytMAAAAAAAAAAAAAQFVQngYAAAAAAAAAAAAAqoLyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqlBX6QAAAAAAAF3Nho2tuf+RZZnz2IqsWdeSQqGQfr27Za+RA7Lnrv1TV+dcCgAAAAAA2BYpTwMAAAAAJFn+7Ib8+DeP5BfXz8vf5y7Lppa2zd7Xs742+43dPu9/68iceORu6dXTp1kBAAAAAGBb4bP6AAAAAEBVa16+Pv/xrVn56W8fzfoNra94/7r1rfnz3U35891NOefiu/LRE0bnc2dMSM96n24FAAAAAICuzs+WBAAAAACq1q9+Pz9j335Nvnf1w1tUnH6h5c9uzFf/92+ZcPyv85f7nuyAhAAAAAAAQDkpTwMAAAAAVaetrZhPXHBH3vnpP+SpZeu3er65C1bmDe+blv/52QNlSAcAAAAAAHQUP0cSAAAAAKgqbW3FfOhLt+WH184t67zFYvKpr9+VDZtac94Hxpd1bgAAAAAAoDycPA0AAAAAVJXPX3p32YvT/+rf/mdWfvKbRzpsfgAAAAAAoP2UpwEAAACAqvGX+57MBT/4W0ljZk6ZlIW3nJSZUyZt8ZhPfO2OPLF0danxAAAAAACADqY8/TKam5szefLkjBgxIvX19Rk6dGjOPvvsrFmzJqeffnoKhUIuvfTSSscEAAAAALbAuvUtOe3zM1IsljausaFXhuzYO40NvbZ4zKo1m/LBL85IsdTFAAAAAACADlVX6QBd1X333Zejjz46TU1N6d27d8aMGZMlS5bkkksuybx587Js2bIkyYQJEyobFAAAAIAOMX/xqvzg2rmZu2BlNrW0ZYeBPXPSUbvljfs2plAoVDoe7XD5Lx/K3AUrO229W+5YkptuX5yj3jCk09aEcprz2Ir86Ndz8/jiVWlrS3besVdOPXZE9hu3faWjAQAAAAC0m/L0ZjQ3N+e4445LU1NTzjnnnJx//vnp27dvkuSiiy7Keeedl7q6uhQKhey9994VTgsAAABAOT2xdHU+9p9/ye9mLHzRCcWX//KhjN6tf77+6f1yzMG7VCYg7VIsFvOdqx7q9HUvmzpHeZptzux5y3PmV+/IrTOXvujat66YnYljGvI/kw/IG17TWIF0AAAAAABbp6bSAbqis846K4sWLcqZZ56Ziy+++LnidJJMnjw548ePT0tLS4YPH55+/fpVMCkAAAAA5TR3/sq89j2/zfV/fnFx+p/mPLYik876fX7067mdG46tMv2upZ166vQ/XT9jYRYsWdXp60J7zXzg6bz+vdM2W5z+p7tnN+fNH7ohv/3jE52YDAAAAACgPJSnX2DOnDmZOnVqGhoacsEFF2z2nokTJyZJxo8f/9zbZsyYkcMOOyyDBw9Ojx49MmTIkJx44omZM2dOp+QGAAAAYOusXdeSt3z8pix9eu0r3tvWVsyHvnRbZtzd1AnJKIdpf65MybOtrZgbb19ckbWhVE89sy7HnnlzVqza+Ir3btzUlhPPnZ7Z85Z3QjIAAAAAgPJRnn6BKVOmpK2tLaecckr69Omz2Xt69uyZ5Pnl6eXLl2evvfbKJZdckptvvjkXXnhhHnzwwRx44IFZtGhRp2QHAAAAoP2uvPGxzFu45ScEt7YW87Uf/q0DE1FOsx5sruDaT1dsbSjF9695OE8tW7/F96/b0Jr//ukDHZgIAAAAAKD86iodoKuZPn16kuTQQw99yXv+WYb+1/L0pEmTMmnSpOfdt99++2WPPfbINddck7PPPrsD0gIAAABQDsViMd++cnbJ4264bVEeW/RsdhvSrwNSUS6trW2596FnKrb+3bMrtzZsqZaWtlx+9UMlj7vihnn5+jn7Z0C/Hh2QCgAAAACg/Jw8/QILFixIkgwbNmyz11taWnL77bcneX55enMGDRqUJKmr01EHAAAA6Mqal6/PPXNKL7gWi8lNty/ugESU0/JnN2bNupaKrf9E0+qKrQ1bavZjK7KwaU3J49atb82fZi3tgEQAAAAAAB2jUCwWi5UO0ZUMHDgwy5cvz1/+8pcceOCBL7r+i1/8Iu95z3vSt2/frFy5MoVC4XnXW1tb09bWlgULFuSzn/1sbrvttvz973/P9ttvX3KWfffdN01NTe1+LAAAAOWwtP+n01azXWraVmbwiv+udJyKqPbnoNofP9WhpWZgnuzfvp8c1m/tLem7/rYyJ6KcWgt90zTgMy95feaUSWls6PWS1xsbeqautiYtrW1pal73kvc1Na/Nfidf96K3F4obstPyr5YWGjrZhrpd0tzv9HaN7b/6V+m98W9lTgQAAF2Dz41hD2APYA9UN69/130OGhsbM2vWrHaNdSTyCzQ2Nmb58uW55557XlSeXrp0ac4999wkyd577/2i4nSSvPGNb3zuZOoRI0Zk+vTp7SpOJ0lTU1MWL3ZyEQAAUGF9W5OapK21tXo/Rqn256DaHz/VoW510r99Q59d8XSefcb7RpdW2zcZ8NKXGxt6ZciOvV9xmrrami2674WKrS3+/KTrq69L+rVv6IpnnsyKZ+1xAABepXxuDHsAewB7oLp5/V+Vz4Hy9AscdthhmTNnTi688MIcfvjhGTVqVJJk5syZOfXUU9Pc3JwkmTBhwmbH/+AHP8iKFSvy+OOP5+tf/3qOOOKI3H777dlll11KztLY2NjuxwEAAFAuS2tr05akprY2g3feudJxKqLan4Nqf/xUh2IKebJ1RVpr+5cwqJgUCtm+95p0r/e+0ZUVU5slxdakULvZ603Na192fCknT29OXWFddvTnJ11cW2rSVFyfYqG+tIHFYnbcbkPq+trjAAC8OvncGPYA9gD2QHXz+nfd52BrOraFYrFYLGOWbd6iRYsyYcKEPPPMM6mrq8uee+6Z9evX59FHH83RRx+dtra23HTTTfne976XD33oQy8714oVKzJ8+PC85z3vyaWXXtpJjwAAAKC8hhw2JYufWpudd+iVRb8/udJxKqLan4Nqf/xUj//83n353KV3lzRmnz0H5e6pb93sTyija9nnhGtz30PL2jV24S0nZciOvbPoyTUZeviVJY8/6ajdMuWiQ9u1NnSmM7/6l3z7yjkljXnLQUNy/beP7KBEAABQeT43hj2APYA9UN28/q/O56Cm0gG6miFDhmTGjBk55phjUl9fn/nz52fgwIG5/PLLc/3112fu3LlJkvHjx7/iXP3798+IESPy6KOPdnRsAAAAALbS6e8Yld49S/tBbZ98z1jF6W3ExNENlVt7TOXWhlJ87MTRqast7c+0s08Z20FpAAAAAAA6hvL0ZowePTrTpk3LqlWrsmrVqtx1110544wzsmbNmsyfPz81NTUZN27cK87z1FNP5eGHH87uu+/eCakBAAAA2BqNDb0y9euHbnFx8MPH75lTjxvRwakol0P3H1yVa0Mpxuw+IN//4hu2+P4vfnSfHPG6IR2YCAAAAACg/Eo7SqfKPfjggykWixk1alR69er1vGvvec97MmLEiEyYMCH9+/fPI488km984xupq6vLpz71qQolBgAAAKAUxxy8S3532ZE55d/+mKeXr9/sPXW1hUw+be985cyJTp3ehrzzsOE5+8I788yKDZ267r5jG5w8zTbl/W8dlZ496vLhr9yelas2bvae+h61+epZ++aT73HqNAAAAACw7VGeLsH999+fJBk/fvyLrr32ta/NT3/603zzm9/M+vXrM3To0Bx66KH593//9wwbNqyzowIAAADQTocfuHMW3nJSrrllfr7/q4fz57ub0tZWTF1tIed/dJ988B17pLGh1ytPRJdS36Mup799VC760f2duu7HThzdqetBOZx41G459uChmXLDY/nBtQ/nrw88nba2pFtdIRd+av+8b9LIDNyuR6VjAgAAAAC0S02lA2xLXq48feaZZ+avf/1rli9fnnXr1mXu3Lm5/PLLFacBAAAAtkE9utfm3cfsnlt/8JYMbuiZJNlxUM987ox9FKe3YWefMjbb9e3eaeuNHNYvJx21W6etB+XUu1e3fPCde+SOn0/K4P//z70dBvbMp04dpzgNAAAAAGzTlKdL8HLlaQAAAACga9tph975n8kHdMpahULyoy8fnJ71fvgfAAAAAAB0JT5zX4Lp06dXOgIAAAAAsBXeN2lkrrllfqb9eeEWj2lqXvu837fEp04dl9fvs2PJ+QAAAAAAgI6lPA0AAAAAVI1CoZBffO2QvPlDN2TWg81bNGa/k68raY23v3lYLvzkfu2JBwAAAAAAdLCaSgcAAAAAAOhM/fp0z82XH5UDx+9Q9rlPOHLXXHnRoamr86lXAAAAAADoinwGHwAAAACoOgP69cgfvn90Pv3ecSkUtn6++h61ufic/XPF1w5J9261Wz8hAAAAAADQIZSnAQAAAICq1LO+Lv/1mQMy48fHZszu/ds9z8ETG3PfVW/LOe/bK7W1PuUKAAAAAABdWV2lAwAAAAAAVNLr99kxD/zqHZl+19JcNnVOfvPHBWltLb7smPoetXn3W3bPR0/YM/uO3b6TkgIAAAAAAFtLeRoAAAAAqHqFQiFvfu1OefNrd8qqNRtz30PLcvfs5sx+bEV+Pu3RrNvQmt4963LxOftn4piG7DVyQOp7+PQqAAAAAABsa3x2HwAAAADgX/Tt3T0HTWzMQRMbkyS/m7Ewi59am/59u+cjJ4yucDoAAAAAAGBr1FQ6AAAAAAAAAAAAAABAZ1CeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVAXlaQAAAAAAAAAAAACgKihPAwAAAAAAAAAAAABVQXkaAAAAAAAAAAAAAKgKytMAAAAAAAAAAAAAQFVQngYAAAAAAAAAAAAAqoLyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqqA8DQAAAAAAAAAAAABUBeVpAAAAAAAAAAAAAKAqKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVAXlaQAAAAAAAAAAAACgKihPAwAAL6utrZgNG1vT1lasdBQqpFgsPu93qkuxWLQHAAAAAAAAgFeNukoHAAAAuo5isZjb730yN9+xOLMebM7ds5vz1LL1z13fYWB9Jo5pyL5jG3LEgTvn9fvsmEKhUMHElNvGTa2Z9qeFmXFPU+6e3Zz7Hl6WVWs2JUmWPL0uu7/lquw7tiETRzfk7W8elpHDtqtwYspt+bMbcs0t83PX/U/l7tnP5IFHl2dTS1uSf+yBCcdfm4ljGrL/uO3zrsOHZ1D/+gonBgAAAAAAANhyytMAAEDWrW/Jj3/zSC6bOicPPLr8Je97atn63HDbotxw26J85fL7stfIAfnYiaPzvkkj07PehxfbsqVPr813rpqT71/zcJqa173kfY8tWpXHFq3KVTc9nvP+Z2aOeN3O+fiJo3PcIbso0m/j/j53Wb51xYP5xe/mZd361pe8728PL8vfHl6WH147N2dfeGdOOmq3nPXuMXnNmIZOTAsAAAAAAADQPtoNAABQ5W6/98mc9oU/55EFz5Y89v5Hluej/+8v+cbPHsyPvnJQXjdhxw5ISEcqFov58W8eyae+fldWrtpY8vib/7I4N/9lcY543c75/vlvyC6D+3RASjrS+g0t+cK378l//fSBtLUVSxq7YWNrfnLdI/npbx/JJ04ek6+etW969+rWQUkBAAAAAAAAtl5NpQMAAACV0dralsn//dcc9P5p7SpO/6u5C1bmDe+blvO+8de0traVKSEdbfmzG3LMx2/OB74wo13F6X91818WZ9w7fpUrrp9XpnR0hvvnLss+J/w6X//x/SUXp/9VsZhccsXsjD/+2tw9u7mMCQEAAAAAAADKS3kaAACqUEtLW97z2T/l6z++P8X29yWfp1hMLvrR/Tn13/+UlhYF6q7uqWfW5Y2nXZ8bbltUtjlXrdmUUz77x3zrigfLNicd56/3P52DT7s+Dz2+smxzzlu4Koee/rvMuLupbHMCAAAAAAAAlJPyNAAAVJlisZgPfvG2XHnjYx0y/5QbHsuHvnRbiuVqZVN2K1dtzJEfvTH3P7K8Q+Y/62t35ge/erhD5qY87p+7LEd+5Mas2MoTxzdn1ZpNOebMm51ADQAAAAAAAHRJytMAAFBlfnjt3Pzkukc6dI0f/+aR/OjXHbsG7Xf2hXfmvoeWdegaH/1/f8kDj3TsGrTP+g0tOeHc6R1SnP6nVWs25YTPTM+atZs6bA0AAAAAAACA9lCeBgCAKrKwaXU+ffFdJY2ZOWVSFt5yUmZOmVTSuE99/c4sbFpd0hg63vV/fqLk8nx79sCmlra8//MzsmlTW6kR6WDnX3ZPHnp8ZUlj2rMHHlu0Kp+9ZFap8QAAAAAAAAA6lPL0y2hubs7kyZMzYsSI1NfXZ+jQoTn77LOzZs2anH766SkUCrn00ksrHRMAgA40d/7K3DBjYab96YnMevDpFIvFSkfaKmdfeGeeXV3aSbCNDb0yZMfeaWzoVdK4Z1dvyicvLK2o3dW0tRUz68GnM+1PT+TG2xblkQWlFU67mg0bW3PGl28veVx798Dds5vz7Stnl7xeV7J+Q0v+NGtp1m1oSZK0tm3bfwY88MiyXPyTB0oe19498K0rZmfmA0+XvB4AAAAAAABAR6mrdICu6r777svRRx+dpqam9O7dO2PGjMmSJUtyySWXZN68eVm27B8/fnrChAmVDQoAQNm1tRXzy5sfz2VT5+TPdzc979qoYdvloyfsmdPfMSp9e3evUML2eXzRqvx6+oJOXfPa6fMzf/GqDN+5b6euu7VWrdmYH/xqbr5z1UOZ+4LC9Bv3bczHThyddx2+a2pqChVK2D5X3/J4ljy1tlPXvOSK2fnEu8ektnbb+t7dJ5auzrevnJ0fXDs3z6zY8Nzbm5rX5eTJt+asU8bkwPE7VjBh+1x65Zy0dXIB/FtXzM5Pv/rGTl0TAAAAAAAA4KVsW1+97iTNzc057rjj0tTUlHPOOSdLly7NPffck6amplx44YW5/vrrM3PmzBQKhey9996VjgsAQBlt2NiakybfmpMm3/qi4nSSzF2wMp/6+l15/XunZfGTayqQsP0uv/qhdPbB2cXiP9bdlix+ck1e/95p+dTX73pRcTpJ/jSrKSeee2tOPu/WbNjYWoGE7XfZ1Dmdvubji1flpr8s7vR1t8Zt9zRlwvHX5qIf3f+84vQ/XXnjY3ndqdPyXz+5vwLp2m/lqo35+bRHO33dqTc9lubl6zt9XQAAAAAAAIDNUZ7ejLPOOiuLFi3KmWeemYsvvjh9+/7fKXmTJ0/O+PHj09LSkuHDh6dfv34VTAoAQDkVi8W8/3N/zi9vfvwV773/keU58iM3ZsWzLy5WdkXFYjE//W3nlyaT5Ke/fTTFzm5tt9OKZzfkiI/cmPsfWf6K91510+M57fN/3mYe27yFz+Yv9z1VkbV/+ttHKrJue/zt4Wdy9MduyvJnN77ivZ/5r7/mOxUopLfXtdPnZ826lk5fd+Omtlx102Odvi4AAAAAAADA5ihPv8CcOXMyderUNDQ05IILLtjsPRMnTkySjB8//iXnOfroo1MoFPLFL36xI2ICANABfn/nklx545YX/B6ctyLf+NmDHZiofBY/uTZLn15bkbWXPLU2S56qzNql+u+fPZDZ81Zs8f1Tbngsf7hrSccFKqO/3v90BddurtjapfrkRXdl9dotLxif8193Zfk28k0UFd0DD2w7ewAAAAAAAAB4dVOefoEpU6akra0tp5xySvr06bPZe3r27JnkpcvTV111Ve67776OiggAQAe5rB0nyH7vmoeyaVNbB6Qpr7vnVLa4ePfsrl+c3LipNd+/5uGSx7Vn31RCJV+DxxevyrKVXb9gPHve8vxx5tKSxqxb35qf/GbbOFn77tnPVHDtrv9nAAAAAAAAAFAdlKdfYPr06UmSQw899CXvWbRoUZLNl6efffbZfPKTn8zFF1/cMQEBAOgQz6xYn+v++ETJ45qa1+XmOxZ1QKLyeuCR5RVd/8ESTnOulJv/sjhNzetKHvebW5/YJorBDzxa2T0we15l198SP7mufSXoH20j5elK7oHZj61Ia2vX/0YTAAAAAAAA4NWvUCwWi5UO0ZUMHTo0ixYtyr333psJEya86HpLS0sGDx6c5ubmzJs3L7vtttvzrn/iE5/I/fffnz/+8Y8pFAo5//zz88UvfrFdWfbdd980NTW1aywAAKXZVLtDntru4+0a23/Nb9N7w6wyJyqvlT3fnNU9D97stZlTJqWxoddLjm1s6Jm62pq0tLa9Yrm4qXlt9jv5uhe9vc+6P2e7dX8oLXQnW91jv6zsfWy7xu6w8tJ0a326zInK6+m+H8jGbsM2e60z9sCgVT9L/aZHSwvdyZb1fmfW9di75HGFtrXZacWFHZCofIpJlgz80kteL9ceeKnXP0kGL/t/qcmmLc4MXcnS/p9OW812qWlbmcEr/rvScagAe4Bq530AAIBq5t/D2APYA9gD1c3r33Wfg8bGxsya1b6uRl2Zs2zz1qxZkyRZt27zXwyeOnVqmpub07dv3+y6667PuzZr1qx8//vfz913312WLE1NTVm8eHFZ5gIA4BX0KCbbtW/oihUrsmJZF/93246rkp6bv9TY0CtDduz9ilPU1dZs0X2bs3rVqqx+sos/RwNHJu17eHnqyaeSDUvKm6fcdtuQdNv8pc7YA880Nyeru/geGLou6VH6sGJbcdv42G3gS1/qjD2wdMmSpLixXWOh4vq2JjVJW2vrtvH+TvnZA1Q77wMAAFQz/x7GHsAewB6obl7/V+VzoDz9Ao2NjVm+fHnuueeeHHjggc+7tnTp0px77rlJkr333juFQuG5a62trfnwhz+cM888M2PHji1bFgAAOkdroWeaim1JoabksYP6FVLfc+cOSFU+q+rr8+xLXGtqXvuyY0s9dXhz+vXpkb51Xfs5WtetkGXtGVhsy+Dte6Wm2LUfX3O3Qja8xLXO2AMNg/qlx3Zd+zla2WNTVrdjXF1WZcedu/ZjS5IlxY0pFrpv9lq59sBLzlNsy0477ZBC/PArtk1La2vTlqSmtjaDt4H3d8rPHqDaeR8AAKCa+fcw9gD2APZAdfP6d93nYGs6tsrTL3DYYYdlzpw5ufDCC3P44Ydn1KhRSZKZM2fm1FNPTXNzc5JkwoQJzxt36aWX5sknn8wXv/jFsmVp73HiAAC0z9s/+fv8evqCksYM3r5XFtz9h3TrVnrpujP95tYFedvZv9/stf1Ovu5lxy685aQM2bF3mprXZejhV7Zr/Z99/2uZdOiwdo3tLBs3tWbYkVNfsRz8Qm8/bNf86huPdFCq8vnMxXflv376wGavdcYeePhvt2bgdu041rkTzZ63PGPf/quSx339s2/NJ0/9jw5IVF4HvPu6/PWBpzd7raP3wLiRg3L/rxaWPA66iiGHTcnip9ZmcOPgLHpgUaXjUAH2ANXO+wAAANXMv4exB7AHsAeqm9f/1fkcdO2GRwVMnjw5gwYNysKFCzN27NjstddeGTlyZPbff//stttuedOb3pQkGT9+/HNjmpub8/nPfz5f+MIX0tLS8o8f275iRZJk/fr1WbFiRdra2irxcAAAKMHHThxd8pgPvWOPLl+cTpKJoxsqu/6Yyq6/Jbp3q82H3rlHyePas28qoZKvwa479+3yxekkGbP7gByy3+CSxvSsr8373jqygxKV18Qxgyq4dtf/MwAAAAAAAACoDl2/5dHJhgwZkhkzZuSYY45JfX195s+fn4EDB+byyy/P9ddfn7lz5yZ5fnl60aJFWbVqVT784Q9nwIABz/1KkgsvvDADBgzIE088UZHHAwDAljvstTvl5KN32+L7x+7eP586dWwHJiqfnXfslcHb96rI2jvt0Cs77VCZtUv16VPHZezu/bf4/ne/Zfe8+YCdOi5QGe2/1/YVXHvbKc7+z+QD0rd3ty2+/78/c0AG9Ov6xfCkwntg3LazBwAAAAAAAIBXN+XpzRg9enSmTZuWVatWZdWqVbnrrrtyxhlnZM2aNZk/f35qamoybty45+4fMWJEbr311hf9SpL3ve99ufXWW9PY2FiphwMAwBYqFAr50VcOzglH7vqK9+49amBu+u5R6b+NlCYLhULee9yIiqz93uNGpFAoVGTtUvXv1yM3ffeo7DVywCvee+JRu+aHXz5om3lsuw/tl9dN2KEia7/3uG3jZOYkGb/HoPzu20dkQL/ur3jvxefsn4+csG2cPJ4kb3/T8PTuWdfp6/boXpsTjtzyb0wBAAAAAAAA6Eid/1XTbdiDDz6YYrGYUaNGpVev/zs5r0+fPjnkkEM2O2b48OEveQ0AgK6nR/faTLnw0LzzsOG5bOqc/GlW0/Oujxq2XT524p75wNtHpW/vVy5XdiUffteeuehHf0+x2HlrFgrJR47fs/MWLIOdd+yd2396bH547dxcNvWhzF2w8nnXD9lvcD56wp551+G7pqZm2yhO/9PHThydv9z3VKeuuevOfXPU64d06ppb6w2vaczfrn57vn3lnPzvrx7OMys2PHetW11N3nX48Hzi3WNy4PgdK5iydNv17Z73HDsil//yoU5d94Qjdk3DgPpOXRMAAAAAAADgpShPl+D+++9PkowfP77CSQAA6Eg1NYWccORuOeHI3TJ3/sq87tTf5pmVG7L9gB556Lp3bjMnDb/QrkP65m1vGpZr/7Cg09Z8+5uGZ9hOfTttvXLp27t7zn7PuJx1ytjcPbs5R37kpixbuSE7DqzPrT94S6Xjtdu7Dt81531jZhY/tbbT1jzr3WO2uZJ5kgxt7JOvfXK/fPGj++Sv9z+dFas2pnfPbhk3ckB2HNSz0vHa7cyTRuf71zyctrbO+y6Ks04Z02lrAQAAAAAAALwS5ekSlFqeLnbmkX4AAHSIUcO3S32P2iRJ926122xx+p++ed5r84e7luTZ1Zs6fK3t+nbPN897bYev05EKhUL2Hbt9ev7/e6CurqbCibZOj+61ufwLr8+xZ97SKevtO7YhZ568bRdn63vU5eB9B1c6RtmMGzkw575/r1z4w793ynqfePeY7Dt2+05ZCwAAAAAAAGBLbNtf+e9kTp4GAGBbN7SxT/77MweUNKapeW0WPbkmTc2lnVb8jXMPyJDG3iWNoeMdc/Aued+kkSWNac8e6N6tJj/68kHbfOH81eiLH90no3frX9KY9uyB3Yf2zQVn7VtiOgAAAAAAAICO5eTpEkyfPr3SEQAAYKt94O2jctu9T+bHv3lki+7f7+TrSl7j/W8dmfe/tbSCLp3nm+e9Nn+b+0zue2jZFt3fnj1w2X+8LuNGDix5HB2vvkddrvr6oTn4tOuz/NmNWzSm1D3Qt3e3TP36m9K7V7f2RAQAAAAAAADoMI4AAwCAKlMoFPL989+Qk4/erUPmP/no3fL989+QQqHQIfOz9bbr2z03feeo7D2qY8rNl/zba3P6O/bokLkpj3EjB+bG7xyV/n27l33uvr275fpLj8jEMQ1lnxsAAAAAAABgaylPAwBAFaqrq8nPvvrGTD5tr5Sr41woJJNP2ys/++obU1fnQ42ubodBPfPHH74lR79hSNnm7NenW35xwSH5xLvHlm1OOs7+e22fP//omOy563Zlm3P3oX1z6w/ekoMmNpZtTgAAAAAAAIBy0mgAAIAqVVtbkws/tX9m/PjYjBzWb6vmGjVsu9z2k2Nz4af2T22tDzO2FQP69cj13z4iP/zyQdluK08gPvJ1O+eBX70j7z5m9zKlozPsNWpg7r3qbZl82l6pqWn/d1IUCsnZp4zN369+hxOnAQAAAAAAgC6trtIBAACAynr9Pjvmb798e35y3SO5bOqc3P/I8i0eu9fIAfn4SWPy3uNGpGe9Dy+2RYVCIae9bVSOev2QfPeqh/K9ax5KU/O6LR5/5Ot2zsdOHJ3jDtklhXIdY06nqu9Rlws/tX9OOWZELp0yO7+4fl7Wrm/ZwrG1Oemo3fKJk8fkNUrTAAAAAAAAwDZAuwEAAEjP+rp85ITR+fDxe+b2e5/MLXcsyd1zmnP37ObnFWkbG3pm4piGTBzdkCNet3NeN2EHhdlXicHb98qXPv6afO6MCZn25ycy456m3DPnmdz70DN5dvWmJP84XXj3of0yccygTBzdkLe/eXhG7LJ1p5bTdew9amC+d/4bctGn9svVt8zPXx94OnfPbs4Djy7Pxk1tSZJudTUZO6J/Jo5uyH7jts+7Dh+eQf3rK5wcAAAAAAAAYMspTwMAAM8pFAp5w2sa84bXND73tp3ffEWWPL0uO23fM4v/8O4KpqMzdOtWk7e/eXje/ubhz72ttbUtLa3FdO9WoyxfBfr365EPvnOPfPCdezz3tpaWthSL/9gfAAAAAAAAANsy5WkAAOBl/bMsqzRbvWpra1JbW+kUVFJdndI0AAAAAAAA8Orgq58AAAAAAAAAAAAAQFVQngYAAAAAAAAAAAAAqoLyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCooTwMAAAAAAAAAAAAAVUF5GgAAAAAAAAAAAACoCsrTAAAAAAAAAAAAAEBVUJ4GAAAAAAAAAAAAAKqC8jQAAAAAAAAAAAAAUBWUpwEAAAAAAAAAAACAqqA8DQAAAAAAAAAAAABUBeVpAAAAAAAAAAAAAKAqKE8DAAAAAAAAAAAAAFVBeRoAAAAAAAAAAAAAqArK0wAAAAAAAAAAAABAVVCeBgAAAAAAAAAAAACqgvI0AAAAAAAAAAAAAFAVlKcBAAAAAAAAAAAAgKqgPA0AAAAAAAAAAAAAVAXlaQAAAAAAAAAAAACgKihPAwAAAAAAAAAAAABVQXkaAAAAAAAAAAAAAKgKytMAAAAAAAAAAAAAQFVQngYAAAAAAAAAAAAAqoLyNAAAAAAAAAAAAABQFZSnAQAAAAAAAAAAAICqoDwNAAAAAAAAAAAAAFQF5WkAAAAAAAAAAAAAoCrUVToAAHQ1xWIxi59cm7vnNOfu2c1Z2LQmGza2pltdTXYY2DOvGT0oE8c0ZMQu/VJTU6h0XAAAAAAAAAAAALaQ8jQA/P9WrdmYX1w/L5dNnZP7H1n+ivcP2bF3Pnz8HvngO/ZIY0OvTkgIAAAAAAAAAADA1qipdAAAqLTW1rZ842cPZOfDrsxH/99ftqg4nSSLnlyTz196T3Y5YmrO/todWbN2UwcnBQAAAAAAAAAAYGsoTwNQ1ebOX5k3fuB3+fTX78qqNe0rP29qacslV8zO+OOvzZ9nLS1zQgAAAAAAAAAAAMpFeRqAqnXbPU3Z792/ye33PlmW+eYtXJVDP3hDfvybuWWZDwAAAAAAAAAAgPKqq3QAAKiEO/72ZI78yE1Zu76lrPO2tRVz2udnJEne/9ZRZZ0bAAAAAAAAAACArePkaQCqzpKn1uTYM28pe3H6X51+/m257Z6mDpsfAAAAAAAAAACA0ilPA1BVisVizvjy7Vm2ckNJ42ZOmZSFt5yUmVMmbdH9bW3FnPaFGVm7ruMK2gAAAAAAAAAAAJRGefplNDc3Z/LkyRkxYkTq6+szdOjQnH322VmzZk1OP/30FAqFXHrppZWOCUAJfvbbR3P9nxeWPK6xoVeG7Ng7jQ29tnjMo088m89dOqvktQAAAAAAAAAAAOgYdZUO0FXdd999Ofroo9PU1JTevXtnzJgxWbJkSS655JLMmzcvy5YtS5JMmDChskGBDrP06bX5/jUPZ+pNj+WpZetTV1vIqGHb5Yx37ZF3Hb5renSvrXREStTWVsyXL7+3U9f89pVz8tnTx2f7gT07dV22XltbMb+/c3Eumzond89+JmvXt6R/3+455uCh+egJozN6t/6VjggAAAAAAAAAAJRIeXozmpubc9xxx6WpqSnnnHNOzj///PTt2zdJctFFF+W8885LXV1dCoVC9t577wqnBcqtra2Yz33r7nz9x39PS2vxedeamtflz3c35dNfvys/v+CQHH7gzhVKSXvccsfizFu4qlPX3LipLT/89dyc94HxnbouW+fhx1fk7Z/6Q+Y8tuJ5b1+2ckO+dcXsfOuK2Tn+iF3zoy8flN69ulUmJAAAAAAAAAAAULKaSgfois4666wsWrQoZ555Zi6++OLnitNJMnny5IwfPz4tLS0ZPnx4+vXrV8GkQLkVi8V89P/dngt+8LcXFaf/1VPL1uctH7spv5uxsBPTsbW++8uHKrPuVQ+lWHzp/UTX8tDjK/L69017UXH6hX558+M56qM3Zf2Gls4JBgAAAAAAAAAAbDXl6ReYM2dOpk6dmoaGhlxwwQWbvWfixIlJkvHj/+8U0T/+8Y8pFAov+jVhwoTOiA2UyU+ueyTfu/rhLbq3pbWYEz4zPU8+s66DU1EOxWIxf5y5tCJrz1+yOguWrK7I2pSmra2Yt539+zyzYsMW3X/bvU/m3/5nVgenAgAAAAAAAAAAykV5+gWmTJmStra2nHLKKenTp89m7+nZs2eS55en/+nb3/527rjjjud+/exnP+vQvED5FIvFfPMXD5Y0Zs26lvzgV1tWtqayHlu0KitWbazY+nfPbq7Y2my5m25flIfnryxpzA+ufTir1lRubwEAAAAAAAAAAFtOefoFpk+fniQ59NBDX/KeRYsWJdl8eXrMmDF57Wtf+9yvvfbaq2OCAmV359+fyn0PLSt53Hd/+VBaW9s6IBHldM+cZ6p6fbbMZVPnlDxm9dqW/HzavA5IAwAAAAAAAAAAlFtdpQN0NQsWLEiSDBs2bLPXW1pacvvttyfZfHm6nPbdd980NTV16BrA/1nd44Ck91tKHrewaU2GDB+T2uLqDkhFuazusV/S+9jNXps5ZVIaG3q97PjGhp7P/b7wlpNe8r6m5rXZ7+TrXvT2/7n0B/nJRW/b8sBUxNL+n0lq+pY87jNfuDT/ec5vOiARXcXS/p9OarbL0qalGTJkSKXjdLpqf/yJ5wCg2vl7AHuAaud9AACAaubfw9gD2APYA9XN6991n4PGxsbMmjWrXWOVp19gzZo1SZJ169Zt9vrUqVPT3Nycvn37Ztddd33R9RNPPDHNzc0ZNGhQJk2alK997WtpaGhoV5ampqYsXry4XWOBdth+XdK7fUObnlqebHyqvHkor0F7vuTr29jQK0N23LIXv662Zovv/Vdr123IWn+md33bdWvXsLXrWr2+r3Z9W5OapK21tTr/fVbtjz/xHABUO38PYA9Q7bwPAABQzfx7GHsAewB7oLp5/V+Vz4Hy9As0NjZm+fLlueeee3LggQc+79rSpUtz7rnnJkn23nvvFAqF565tt912Offcc3PwwQenT58+ueOOO3LBBRfkzjvvzKxZs1JfX9+uLEDnWd2jR1a2c2zjDtultti+0iWdY02PPlnxEteamte+4vjGhp6pq61JS2tbmpo3/w02LzdXr57dM2DnnbcgKZXUlA1pTel/Z/eqL3h9X+WW1tamLUlNbW0GV+FrXe2PP/EcAFQ7fw9gD1DtvA8AAFDN/HsYewB7AHugunn9u+5zsDUdW+XpFzjssMMyZ86cXHjhhTn88MMzatSoJMnMmTNz6qmnprm5OUkyYcKE543bZ599ss8++zz3/4ccckjGjRuXSZMmZcqUKTnttNNKztLe48SB9pm38NmMPPaXKRZLG7fv2IbMnDK3Y0JRNr+bsTDHfPzmzV7b7+TrXnH8wltOypAde6epeV2GHn5lyev/x7kfyb9/6Lslj6NznfGl2/L9ax4uedwvvnte3vam73RAIrqKIYdNyeKn1mZw4+AsemBRpeN0ump//InnAKDa+XsAe4Bq530AAIBq5t/D2APYA9gD1c3r/+p8DmoqHaCrmTx5cgYNGpSFCxdm7Nix2WuvvTJy5Mjsv//+2W233fKmN70pSTJ+/PhXnOvYY49N7969laBhG7H70H456vVDSh738ZNGd0Aaym3imIaqXp8t87ETS39/HrJj7xx78C4dkAYAAAAAAAAAACg35ekXGDJkSGbMmJFjjjkm9fX1mT9/fgYOHJjLL788119/febO/cfpsltSnv6nQqHQUXGBMvu3D+yd2totf5/dfWjfnHjkbh2YiHLZcVDPDNmxd8XWV57eNkzYc1COOXhoSWP+7fS9U1fnn1QAAAAAAAAAALAt0PTZjNGjR2fatGlZtWpVVq1albvuuitnnHFG1qxZk/nz56empibjxo17xXmuu+66rFmzJvvvv38npAbK4eB9B+f7578hW/I9Dzvt0Cs3XHZketbXdXwwyuLYEkux5bL/uO3TMKC+ImtTuiu+dkj2HbtlZfdPvmdsu06rBgAAAAAAAAAAKkPjrwQPPvhgisViRo0alV69ej3v2nve857stttuec1rXpM+ffrkjjvuyEUXXZQJEybkpJNOqlBioD1Oe9uobD+gPuf9z8zMnrfiRdcLheTYg3fJt//jwAxt/P/Yu/c4K6t6f+CfPTPAcEdAGRXyigoqWF7SLEvFW15KzdTMbpaZmZ7yRKdOZXfDLMvMMks9mSLlLUXTLEpNTcG7gKIkyG3UERDkPsz8/ujk76Cgc98zPO/369WLV/M8a63vWvt5nr1rPrN2n44vkBb7zPEj8ovfP9nh4372BOHarqRfn+7566/fmy/84P5cOfGZrFy19nXnbL5pr3z5lFE548SRvmECAAAAAAAAAAC6EOHpZnj88ceTJKNHj37dsZ133jlXX311fvzjH2fFihUZOnRoPvWpT+Wcc85J9+7dO7pUoJWOePdbcvh+w3LXg7W55o//zBU3PZ2Vq9amb6+qPHbdMdl6y77lLpEWGLXDwOz71iG55+HnO2zMgf175IOHbNNh49E2+vTqll+e8858/z/2zBV/mJGv/vTBrFi1Nr2qK/Ob7747R71nq3Tr5gs8AAAAAAAAAACgq5H6aYY3Ck9/+ctfzuOPP54lS5ZkzZo1efbZZ/OjH/0o/fv37+gygTZSKpXy7j02z8+/tm8G9e+R5F870gpOd20/+MKeqajouJ2Czz1rj1T38LdKXdXA/j3yhY/smoH/+wzYpF+PHHvQNoLTAAAAAAAAAADQRUn+NMMbhacB6Br2GT0kXzh5lw4Za8zeW+RTx+7YIWMBAAAAAAAAAADw5myF2QyTJk0qdwkAtIFvffZt+dN98/LYjIVNblNbt3ydf9/MoAE98qtvvDOlUsftcg0AAAAAAAAAAMAbE54GoHB6Vlfl9l8ckv0+fkuenr2kSW32PPGmJvffv2/33P6LQ7PVFn1bWiIAAAAAAAAAAADtoKLcBQBAOdQM7pW7Lj88o3cc2Kb9DhnUM3/79Xuz+8jBbdovAAAAAAAAAAAArSc8DUBh1QzulX/89siM/fiuqagotbq/Dx6yTR6/7ujsttOgNqgOAAAAAAAAAACAtiY8DUChVfeoyrjP75V7f3NE3r1HTYv62Hm7Abn2hwdkwg8OyKYDe7ZxhQAAAAAAAAAAALSVqnIXAACdwdtHbZa/XXZ4pj6zKL/4/ZO55a45eXbe0g2eXzO4Z/bfc/N85oMj8s63DUmp1PqdqwEAAAAAAAAAAGhfwtMA8H/svP0m+emX98lPv7xPFr68Kg9Nr8uc2mX5/Hn/yMuvrMnA/t3z2LXHZIvNeglMAwAAAAAAAAAAdDEV5S4AADqrgf17ZMzeW+bj798hfXp1S5L07FGVLYf0FpwGAAAAAAAAAADogoSnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAAqhqtwFAAAAAAAAdDZr1zbk6eeWpLZuRVavWZse3SszdEjvbDu0b0qlUrnLAwAAAABaSHgaAAAAAAAgybznl+VX1z+Vv9w/Pw8/uTCvLF/zunMG9O2et40YlMPeOSwff//wDBpQXYZKAQAAAICWEp4GAAAAAAAK7dGnXsq3L3kkN/51dtaubXzDcxcvXZ1JDyzIpAcW5KsXPZjjD9km53zmrdl2aL8OqhYAAAAAaI2KchcAAAAAAABQDmvWNOSbP38oe5z4h1z351lvGpx+rVWr1+Y3Nz+TXY+5IReNn5aGhua1BwAAAAA6nvA0AAAAAABQOLV1y7PPyTfnGz9/OPX1rQs9L19Zn8+de18O/cxtWfLK6jaqEAAAAABoD8LTAAAAAABAocx7flne9bFb8uC0ujbt94775ufAT/0xLy8VoAYAAACAzkp4GgAAAAAAKIwlr6zOwafdlmeeW9Iu/U+ZWpcjP/enrFnT0C79AwAAAACtIzwNAAAAAAAUxn/+8IFMm7m4yedPHn9U5txxQiaPP6rJbe5+6Pl8/7JHW1AdAAAAANDehKffQF1dXcaOHZvtt98+1dXVGTZsWM4666wsW7Ysp5xySkqlUi666KJylwkAAAAAADTBn+6dm0uve6pZbWoG98rQIb1TM7hXs9p9+5JH8tiMhc1qAwAAAAC0v6pyF9BZPfLIIznssMNSW1ub3r17Z+TIkZk/f34uvPDCzJw5MwsX/uv/8Nxtt93KWygAAAAAtIPGxsbc+8gL+cv987N02Zr07lmVd75tSA7Ya4tUVJTKXR5AszU0NOZz5/6jw8ZbU9+Q/xj3j0z69Xs7bEyAtlRf35Bb7p6TB6fVZcXKtRnQt3sO329YdttpULlLAwAAgFYRnl6Purq6HHnkkamtrc3ZZ5+dc845J3379k2SnHfeefnSl76UqqqqlEqljBo1qszVAgAAAEDbuvqWmRl3+WPr3TF1h6365/Mn75xPH7dTSiUhaqDr+Mv98zNj9ssdOuZfJy/ItJmLMnK7TTp0XIDWqK9vyA9/83guGj89c59fts6xr170YPYZvVm+eupuee+7hpWpQgAAAGidinIX0BmdeeaZmTt3bs4444ycf/75rwank2Ts2LEZPXp06uvrs/XWW6dfv35lrBQAAAAA2tZ/XzglJ335b+sNTifJjNkv5zPfuTef/tY9aWho7ODqAFru4gnTyzLuz3/3ZFnGBWiJ1WvW5tgv/CX/9eMprwtO/9t9j76QI874U352zbQOrg4AAADahvD0a0yfPj0TJkzI4MGDc+655673nN133z1JMnr06Ncdu+GGG/KOd7wjvXv3Tv/+/bPvvvtm6tSp7VozAAAAALSFn10zLd/71aNNOvfS657Kt37xcDtXBNA2Vq6qz8S7nivL2Nf9eVZZxgVoic98597c9Lc3f142NiZnfO++3PCXWe1fFAAAALQx4enXGD9+fBoaGnLSSSelT58+6z2nZ8+eSV4fnr7wwgvzwQ9+MO985ztz0003Zfz48RkzZkxWrFjR7nUDAAAAQGusXFWfb/y8eWHo8654LIuWrGqnigDazmMzFqW+vjy75S94cXnmv7D+3VsBOpMZs17OZTfMaFabr170YBobfRsJAAAAXUtVuQvobCZNmpQk2X///Td4zty5c5OsG56eOXNmvvjFL+aCCy7IGWec8erP3/ve97ZTpQAAAADQdq69Y1bqFq1sVpsVK9fmij88nc+fvEs7VQXQNh6cVlfm8V/KFpv1LmsNAG/mF7+f3uw202Yuzl0P1ubde2zeDhUBAABA+7Dz9GvMnj07SbLVVlut93h9fX3uueeeJOuGpy+77LJ069Ytn/rUp9q/SAAAAABoY9f9eVaL2l17x7NtWwhAO5g5Z0lZx3+mzOMDNEXLPw+2rB0AAACUS6nR9yitY+DAgVm0aFHuvffe7LPPPq87ftVVV+XDH/5w+vbtm5dffjmlUinJv3aqXrJkSU4//fR85zvfyZw5czJ8+PB8/etfz4knntiiWvbYY4/U1ta2aj5A21gw4AtpqOifioaXs/niH5W7HMrANVBsXn+Kfg0Uff6JNQAouqK8D7zY9+NZ3W3rZrerWvtihrx8UdsX1IkU5RqADdkY7oHFvQ7Psuq91nts8vijUjO41wbb1gzumarKitSvbUht3Yo3HKe2bnn2PPGm1/283/I/p+/Ku5tXNEAHm7/JV9JY6tHsdj1XPZ6By65th4oAOoeN4fMwreMawDWAa6DYvP6ddw1qamoyZcqUFrWtauNauryamposWrQoDz300OvC0wsWLMgXv/jFJMmoUaNeDU7/+9i8efPy5S9/OePGjcuwYcPy61//Oh/60Iey6aabZsyYMc2upba2NvPmzWvdhIC20XdtUpE0rF3rviwq10Cxef0p+jVQ9Pkn1gCg6IryPrD18qRb85vVr16xca9LUpxrADZkY7gHNl+SVK//UM3gXhk6pPebdlFVWdGk89ZnycuLsqSui64dUBz91iRVzQ9Pr1i2pOu+PwA0xcbweZjWcQ3gGsA1UGxe/41yDYSnX2PMmDGZPn16xo0bl4MOOig77LBDkmTy5Mk5+eSTU1dXlyTZbbfd1mnX0NCQV155JVdeeWXe//73J0kOPPDATJs2Ld/+9rdbFJ6uqalp1VyAtrOgsjINSSoqK7P5lluWuxzKwDVQbF5/in4NFH3+iTUAKLqivA8s7rYky1rQrmfF4gzciNclKc41ABuyMdwDS3pWZukGjtXWLX/Dts3deXp9BvTrkd49uubaAcXxYuNLWZ0+zW7Xr/qV9O2i7w8ATbExfB6mdVwDuAZwDRSb17/zrkFrMrbC068xduzYXH311ZkzZ0523nnn7LTTTlm5cmWeeeaZHHbYYdl6661z++23Z/To0eu0GzhwYJKsE5IulUoZM2ZMrrjiihbV0tLtxIG2N3TM+Mx7YXk2r9k8c5+YW+5yKAPXQLF5/Sn6NVD0+SfWAKDoivI+MG3moux89PXNbnfbVf+V/fb4STtU1HkU5RqADdkY7oEbJ83K0f/xl/Ue2/PEm96w7Zw7TsjQIb1TW7ciww66pkXj33HTr7LHzpu2qC1AR7nqlmfy4S/f2aw2PbpXZuadv8ngTTawvT/ARmBj+DxM67gGcA3gGig2r//GuQYV5S6gsxk6dGjuvvvuHH744amurs6sWbMycODAXHLJJbnlllsyY8aMJHldeHrnnXfeYJ8rV65s15oBAAAAoLVGbrdJDthr82a12XX4JnnX7r49Dej83jZicNnG7lZVkV2HDyzb+ABN9YGDtsmQQT2b1eb4Q7YRnAYAAKDLEZ5ejxEjRmTixIlZunRpli5dmvvvvz+nnnpqli1bllmzZqWioiK77LLLOm3e9773JUn+9Kc/vfqzhoaG3HHHHdlzzz07tH4AAAAAaInLv71fNt+0V5PO7d+ne8aP2z+lUqmdqwJovWE1vfOWzXuXZew9dxmcHt0ryzI2QHP06F6Z3/1g/3Tv1rRfIe+0Tf9cMHbvdq4KAAAA2p7wdDNMnTo1jY2NGT58eHr1WveXSEceeWTe9a535dRTT82ll16a22+/Pccff3ymTp2ar3/962WqGAAAAACa7i2b98ldlx+eHbbq/4bnbblZr9x5+Xuz8/abdFBlAK1TKpXyqWN3LMvY5RoXoCX222Pz3PbzQzKgb/c3PG/PXQbnb5cdnoH9e3RQZQAAANB2hKeb4fHHH0+SjB49+nXHSqVSbrrpphx77LH5yle+kqOOOiqzZ8/OrbfemgMOOKCjSwUAAACAFtn+Lf3y+PVHZ8IP9s+796hZ51i3qopc8e398vTE4zJ6x0FlqhCgZT55zI6pqurY3fI36dc9xx+ybYeOCdBa+++1RWbffnx+9pV9svN2A9Y5dvh+w3LLzw7OfVcemSGDepanQAAAAGgl4elmeKPwdJIMGDAgl1xySV588cWsWrUqDzzwQA455JCOLBEAAAAAWq17t8p88JBt87fLDs+ahz6ezQf/Kxiz2cDqfPR9w9OzuqrMFQI0X83gXvnE+3fo0DH/48O7eGYCXVK/Pt1z+gkj88QNx2aLTf/1WXCLTXtm4kUH573vGpbKSr9mBgAAoOvyv2qb4c3C0wAAAACwsamqqkhFRcfu1ArQXs77/F4ZOqR3h4w1eseB+a9TRnXIWADtqVQqrfMvAAAAdHW2O2iGSZMmlbsEAAAAAACghfr37Z5Lz3lnDjv99ia3qa1bvs6/TVFVVcoV394v3btVNrtGAAAAAKB9CU8DAAAAAACFceg7h2bcf+yZL/14cpPO3/PEm5rVf6mUXPHt/bLbToNaUh4AAAAA0M4qyl0AAAAAAABARxr7iVH53pl7tHm/FRWlXPatd+Wkw7dv874BAAAAgLYhPA0AAAAAABTOlz85Otect38G9u/RJv0NHdI7t/38kHzsfTu0SX8AAAAAQPsQngYAAAAAAArp+EO3zbQbj83RB27Vqn5OOXqHPHH9MTlony3bqDIAAAAAoL1UlbsAAAAAAACAchkyqGeuv2BMHp5el5//7slcdcvMLF9Z/6bt+vftno+/b3hOO26n7LjNgPYvFAAAAABoE8LTAAAAAABA4b11xOD88px35gdf2Cv/eOyFPDitLg9OeykT73ouq9c0pHu3ihxz4NbZfeTg7D5yUN6+62bp1dOvWQAAAACgq/H/6gEAAAAAAPyv/n2755B9h+aQfYcmSYaOGZ95LyzPpptUZ/x5+5e5OgAAAACgtSrKXQAAAAAAAAAAAAAAQEcQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAohKpyFwAAAAAAAAAAAED5zZyzJH99YEEenFaXh598KS8sXJk19Q3p0b0iw2r6ZPcRg7L7yMEZs/cW2XRgz3KXCwAtIjwNAAAAAAAAAABQUPX1DZl413O5eML03HHf/A2eN3PO0vxt8oIkSfduFfngIdvk9ONHZO9Rm6VUKnVUuQDQasLTAAAAAAAAAAAABfT4jIX52NfuykPTX2pWu9VrGvLbiTPz24kzc+yYrXPxf78jmw2yEzUAXUNFuQsAAAAAAAAAAACg4zQ0NOZ7lz6S3U/4Q7OD06913Z9nZeTR1+X6P89qm+IAoJ0JTwMAAAAAAAAAABTE2rUN+eQ37s5///TBrKlvaJM+X1q8Ksd+4S/52TXT2qQ/AGhPwtMAAAAAAAAAAAAF0NjYmNO/e28uv/Hpdun/jO/dl19d91S79A0AbUV4GgAAAAAAAAAAoAAuve6p/PLa9g03n/ade/LgtLp2HQMAWkN4GgAAAAAAAAAAYCM3e/7SnH3+A81qM3n8UZlzxwmZPP6oJrdZu7YxH/vqXVm1em1zSwSADiE8/Qbq6uoyduzYbL/99qmurs6wYcNy1llnZdmyZTnllFNSKpVy0UUXlbtMAAAAAAAAAIA299LilXny2cV55rklWbZ8TbnLAVrpM9+5N680816uGdwrQ4f0Ts3gXs1q98QzizLussea1QbofBYtWZUnn12cp2e/3OznB3RmVeUuoLN65JFHcthhh6W2tja9e/fOyJEjM3/+/Fx44YWZOXNmFi5cmCTZbbfdylsoAAAAAAAAAEAbWbu2IbfePTcXT5ie2+6Z++rPe1ZX5qT3bpfTjx+Rt44YXMYKgZaY+syi/PHvc9/8xDZ04dVTM/bju6a6h4gadCUNDY35073z8rNrpuWWu+eksfFfP+/RvTInHLptTj9+RPbaddPyFgmtZOfp9airq8uRRx6Z2tranH322VmwYEEeeuih1NbWZty4cbnlllsyefLklEqljBo1qtzlAgAAAAAAAAC02pJXVuew02/PUWfesU5wOklWrFybX10/I287/g/56k+npPHfSSqgS/j576Z3+JgvLV6V3//p2Q4fF2i5ZcvX5P1n/TmHnX57Jt71/4PTSbJq9dr8z01P5+0n3ZQv/OAfaWjwWYCuS3h6Pc4888zMnTs3Z5xxRs4///z07dv31WNjx47N6NGjU19fn6233jr9+vUrY6UAAAAAAAAAAK23avXaHHXmHbnjvvlveu53L300X//ZQx1QFdAW1qxpyG9ufqYsY//6hhllGRdovjVrGnLsF/6Sm+987k3PveDKqTn7/Ps7oCpoH8LTrzF9+vRMmDAhgwcPzrnnnrvec3bfffckyejRo1/92Xve856USqX1/ue0007rkNoBAAAAAAAAAFriwqum5s4ptU0+/zu/fCQPTqtrx4qAtjJ15qIsXbamLGM/8MSLqa9vKMvYQPNcet2Tuf3eeU0+/8e/nZq7pixox4qg/QhPv8b48ePT0NCQk046KX369FnvOT179kyybnj64osvzn333bfOf7761a8mSY444oj2LxwAAAAAAAAAoAUaGhrz89892ex2P58wvR2qAdpaOf/QYcXKtXny2cVlGx9omsbGxlzcgvf1i3/nswBdU1W5C+hsJk2alCTZf//9N3jO3Llzk6wbnh45cuTrzvvud7+bTTfdNIceemgbVwkAAAAAAAAA0DYmPTA/z85b2ux2V/9xZn78pb3Tp1e3dqgKaCuPzlhY1vEfm7EouwwfWNYagDf2j8deyNSZi5vd7ro7ZuWlxSszaEB12xcF7Uh4+jVmz56dJNlqq63We7y+vj733HNPknXD06/14osv5rbbbsvpp5+eqqqWLfMee+yR2tqmfyUO0H4WDPhCUtE/C2oXZOjQoeUuhzJwDRSb15+iXwNFn39iDQCKzvuANSj6/KHo90DR5w/gOQjF8EqPPZPezf9W7RUr12a7nfZIt4aX2qGqzsFzkI3hGljU+/1Jj7eu99jk8UelZnCvDbatGdzz1X/n3HHCG45TW7c8e5540+t+/tkzz87YT09pesGdzMZwDdA6RbgGlncfnfQ5ptnt6tc2ZsTod6b72o0351iE1//NdNY1qKmpyZQpLXt/EZ5+jWXLliVJVqxYsd7jEyZMSF1dXfr27Zttttlmg/2MHz8+9fX1Ofnkk1tcS21tbebNm9fi9kAb6rs2qUga1q51XxaVa6DYvP4U/Roo+vwTawBQdN4HrEHR5w9FvweKPn8Az0EohkE7Jr1b1vSFF+qSVfPbtp7OxHOQjeEaGLoi6bH+QzWDe2XokDd/AFRVVjTpvPVZvHhJFi/somuXbBzXAK1ThGtgk62TPi1r+uKLC5MVG+m6JMV4/d/MRrgGwtOvUVNTk0WLFuWhhx7KPvvss86xBQsW5Itf/GKSZNSoUSmVShvs58orr8yIESOyxx57tKoWoHNYUFmZhiQVlZXZfMsty10OZeAaKDavP0W/Boo+/8QaABSd9wFrUPT5Q9HvgaLPH8BzEIphefeqLGph25pNe6eyceN9PngOsjFcA4t6ds/yDRyrrdvQkX+pGdwzVZUVqV/bkNq69W9G+WZ9DejfK717ds21SzaOa4DWKcI1sLJbtzT7eyQaG5NSKUMG90xVw8a5LkkxXv8301nXoDUZW+Hp1xgzZkymT5+ecePG5aCDDsoOO+yQJJk8eXJOPvnk1NXVJUl22223Dfbx5JNPZsqUKfne977Xqlpaup040PaGjhmfeS8sz+Y1m2fuE3PLXQ5l4BooNq8/Rb8Gij7/xBoAFJ33AWtQ9PlD0e+Bos8fwHMQiuGV5WuyxYHjs3TZmma1O2ifLfKnS2a0U1Wdg+cgG8M18KPfPJ6zz39gvcf2PPGmN2w7544TMnRI79TWrciwg65p0fi3XP/rvGO3IS1q2xlsDNcArVOEa2DlqvoMO3hC6hatbHqjUin7jN4s9145tf0K6wSK8Pq/mY1xDSrKXUBnM3bs2AwaNChz5szJzjvvnF133TXDhw/PXnvtlW233TYHHHBAkmT06NEb7OPKK69MqVTKSSed1FFlAwAAAAAAAAC0SJ9e3fLRo4Y3u93px49oh2qAtrbHyMFlG7uiopTddhxUtvGBpqnuUZVTjt6h2e18FqCrEp5+jaFDh+buu+/O4Ycfnurq6syaNSsDBw7MJZdckltuuSUzZvzrLyY3FJ5ubGzMVVddlfe85z15y1ve0pGlAwAAAAAAAAC0yNiP75qawT2bfP7+e26eI/aTi4Cu4K0jBqWiolSWsUduOyC9elaVZWygeT5/8i4ZVtO7yefvPWrTHHfwNu1YEbQf4en1GDFiRCZOnJilS5dm6dKluf/++3Pqqadm2bJlmTVrVioqKrLLLrust+1dd92V2bNn5+STT+7gqgEAAAAAAAAAWmZYTZ/c9vNDmhSg3vetQ3L9BQemqkrsBLqCvr275/B3DSvL2Cccum1ZxgWab8ignrn9F4c2KUC9x86Dc/NPD06P7pUdUBm0PZ9im2Hq1KlpbGzM8OHD06tXr/Wec+WVV6Znz575wAc+0MHVAQAAAAAAAAC03OgdB+WBq4/KZ08Ykb69u73u+FZb9Mm5Z+2RP//y0Azo16MMFQItdfrxIzp8zG5VFfnksTt2+LhAy43YdkDuv+qo/MeHd07/vt1fd3zLzXrlm6e/LX/79XszeJPqMlQIbUN4uhkef/zxJMno0aPXe3zlypW59tpr8/73vz99+/btyNIAAAAAAAAAAFptWE2fXPSVd2Ten0/I+HHvSf8+/wpRD+rfIzNvOS7/dcroVPeoKnOVQHMd/I4tM3yrfh065gcP2SZDBr35bvZA57L5pr1ywdi9M++OEzLhB/uv81lg1m3H5+unvTW9e73+j6ygKxGeboY3C09XV1dn8eLFufrqqzuyLAAAAAAAAACANtW3d/eccNh26fO/4ajqHpWprBQzga6qoqKUX3x13w4br3/f7hn3H3t22HhA2+vdq1s+eMi263wWqKryWYCNgyu5Gd4sPA0AAAAAAAAAANAZHfD2LXLacTt1yFg/Gbt3thzSu0PGAoDm8j0qzTBp0qRylwAAAAAAAAAAANAi531hz/zj8RfyyJMLm3R+bd3ydf5tipMO3y4fOWr7FtUHAB1BeBoAAAAAAAAAAKAA+vbuntt/fmgO+OStmTpz8Zuev+eJNzWr/6MP3CqXf2u/lEqlFlYIAO2votwFAAAAAAAAAAAA0DE2G9Qzd15+eN69R02b9vvp43bK735wQLp1E0kDoHPzTgUAAAAAAAAAAFAggwZUZ9Kv3puffGnv9KyubFVfW27WK7f87OD84mv7pqpKHA2Azs+7FQAAAAAAAAAAQMFUVJRy5kk75/Hrjslpx+2U3j2rmtV+80175euffmueuP6YvPddw9qpSgBoe817xwMAAAAAAAAAAGCjsd2wfvn51/bNuM/vmd9OfCZ/nbwgD057Kc/OW7rOeRUVpYzcdkB2Hzk4h+83LO/ff6t062bvTgC6HuFpAAAAAAAAAACAguvXp3tOP2FkTj9hZJJk4curMvJ91+b5hSszZGB1Zt76wfTu1a3MVQJA6/nTHwAAAAAAAAAAANYxsH+PVFX9K15WVVUhOA3ARkN4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQqspdAADQOT3/0opMmfpips1cnFeW16dUSvr06pZdtt8ku48clE0H9ix3iQAAAAAAAAAAAM0iPA0AvOq5Ba/kl9c+mSsnPpPnFix7w3O32bJvPnrU9vnUsTtmi816d1CFAAAAAAAAAAAALSc8DQBkbu2yfP4H/8j1f5mdhobGJrV5dt7SfOPnD+fbv3wkxx+ybX70xbdnyCC7UQMAAAAAAAAAAJ1XRbkLAADKp7GxMZffOCO7HHt9rr1jVpOD0//X2rWNufrWmRn5/usy/taZaWxsfh8AAAAAAAAAAAAdQXgaAAqqvr4hn/j63fnE1+/Oy0tXt7q/hS+vyof+62/53Ln3tSiEDQAAAAAAAAAA0N6EpwGggNaubcjJX7kzV/zh6Tbv+2fXTM+p3/y7HagBAAAAAAAAAIBOR3gaAArov348Jdfc9s926//XN8zIt37xcLv1DwAAAAAAAAAA0BLC0wBQMHc/WJsf/ubxZrWZPP6ozLnjhEwef1ST23z7l4/koWl1zS0PAAAAAAAAAACg3QhPv4G6urqMHTs222+/faqrqzNs2LCcddZZWbZsWU455ZSUSqVcdNFF5S4TAJps+Yr6fOKcu9PY2Lx2NYN7ZeiQ3qkZ3KvJbdaubczHvnZXVq9Z28wqAQAAAAAAAAAA2kdVuQvorB555JEcdthhqa2tTe/evTNy5MjMnz8/F154YWbOnJmFCxcmSXbbbbfyFgrQjh6eXpdLrn0q0/+5OKtWr82mm1TnuIO3yQcP2SbVPbyFdEWX3Tgjzzy3pMPGe/zpRRl/6z/z0fcN77AxaTvLlq/J+D/+MzdMmpW6RavSs7oyu2y/SU47bqfsMnxgucsDAAAAAAAAAIBmk3xbj7q6uhx55JGpra3N2WefnXPOOSd9+/ZNkpx33nn50pe+lKqqqpRKpYwaNarM1QK0vadnv5yPfvWu3PfoC687NvGuOfn8D+7PN09/W844cWQZqqOlGhsbc/GE6R0+7sUTpgtPdzGNjY05/4rH891fPZqXl65e59idU2rzs2um59171OR/vrNfttqib5mqBAAAAAAAAACA5qsodwGd0Zlnnpm5c+fmjDPOyPnnn/9qcDpJxo4dm9GjR6e+vj5bb711+vXrV8ZKAdre1GcWZZ+Tb15vcPrfFr68Kp8797589adTOrAyWuvOKbWZ/s/FHT7uA0+8mClTX+zwcWmZxsbGfP68+zP2gsmvC07/X3dOqc3eH745M+d03E7mAAAAAAAAAADQWsLTrzF9+vRMmDAhgwcPzrnnnrvec3bfffckyejRo9f5+d13350DDzwwgwcPzoABA7L33nvn+uuvb/eaAdrKipX1OfyMP+WlxauadP53L300E277ZztXRVu5/d65ZRv7T/fOK9vYNM/lNz6dn1w1tUnn1tatyOGf/VPWrGlo56oAAAAAAAAAAKBtCE+/xvjx49PQ0JCTTjopffr0We85PXv2TLJuePrRRx/NQQcdlMrKylxxxRWZMGFChg0blg984AOZOHFih9QO0Fq/u/3ZzJ7/SrPanHf5Y2lsbGynimhLD06rK9vYU8o4Nk3X2NiYcZc91qw2T816OTff+Vw7VQQAAAAAAAAAAG1LePo1Jk2alCTZf//9N3jO3Ln/2rnz/4anJ0yYkFKplBtvvDFHHHFEDjnkkFxzzTUZNmxYrrrqqvYtGqCNXDxherPbPDT9pUx+QjC2s2tsbMyD014q2/jlDG7TdJPuX5AZs19udruWPDsAAAAAAAAAAKAchKdfY/bs2UmSrbbaar3H6+vrc8899yRZNzy9evXqdO/e/dVdqZOksrIyffv2TUODr7IHOr9ly9fkgSdebFHbSQ/Mb+NqaGur1zRk4curyjb+ghdXlG1smq6l9/JfJy9IQ4Md6AEAAAAAAAAA6Pyqyl1AZ7Ns2bIkyYoV6w95TZgwIXV1denbt2+22WabV39+8skn52c/+1nOPvvsfOlLX0pVVVUuueSSPP3007n44otbVMsee+yR2traFrUF2taCAV9IKvpnQe2CDB06tNzltIu1pd7JJmNb1Pa73/9RLjrnL21cUefS1a+BhnRPBv73Bo9PHn9Uagb32uDxmsE9X/13zh0nbPC82rrl2fPEm1738zX1Ddly6LCU0jUDtl399W+qxb0OS6r3bna7hobGDH3LtqnImnaoqnMoyjWwIUWff2INAIrO+4A1KPr8oej3QNHnD+A5CBT9OVD0+eMaKPr8E2uAa8D8iz3/pPOuQU1NTaZMmdKitsLTr1FTU5NFixbloYceyj777LPOsQULFuSLX/xikmTUqFEplUqvHhs9enT+8pe/5JhjjskFF1yQJOndu3d+//vfZ7/99mtRLbW1tZk3b14LZwK0qb5rk4qkYe3ajfe+LHVPNmlZ01defjGvvLiRrsu/dfVroFSVDNzw4ZrBvTJ0SO837aaqsqJJ571OY33mz5vb/HadRVd//ZtqyEtJdQvaNTZkwbzZSRcNxzdJUa6BDSn6/BNrAFB03gesQdHnD0W/B4o+fwDPQaDoz4Gizx/XQNHnn1gDXAPmX+z5JxvlGghPv8aYMWMyffr0jBs3LgcddFB22GGHJMnkyZNz8sknp66uLkmy2267rdPu6aefzvHHH58999wzp59+eiorK3PVVVflhBNOyMSJE3PAAQc0u5aamppWzwdoGwsqK9OQpKKyMptvuWW5y2kXjUlerJ+fNVVbNKNRY1IqZXCvxemxka7Lv3X1a6AxyYKG5WmsWP/u0rV1y9+wfc3gnqmqrEj92obU1q3/2xneqJ/KhmWp6YLr9m9d/fVvqpXdFualFrTrXv9cNt2yGc+OLqgo18CGFH3+iTUAKDrvA9ag6POHot8DRZ8/gOcgUPTnQNHnj2ug6PNPrAGuAfMv9vyTzrsGrcnYCk+/xtixY3P11Vdnzpw52XnnnbPTTjtl5cqVeeaZZ3LYYYdl6623zu23357Ro0ev0+4rX/lKevXqlRtuuCFVVf9a1oMPPjjPPfdczj777Dz88MPNrqWl24kDbW/omPGZ98LybF6zeeY+0YV3z30Tv7ruqXzqm39veoNSKaN2GJhHfn/POrvxb4w2hmtgzKf+mL/cP3+9x/Y88aY3bDvnjhMydEjv1NatyLCDrmn22EeM2TU3/qRrrluycbz+TdHQ0Jgdjvx9Zs5Z2qx2v7ng4zn+0G+3U1WdQ1GugQ0p+vwTawBQdN4HrEHR5w9FvweKPn8Az0Gg6M+Bos8f10DR559YA1wD5l/s+Scb5xpUlLuAzmbo0KG5++67c/jhh6e6ujqzZs3KwIEDc8kll+SWW27JjBkzkuR14enHH388o0ePfjU4/W977LFHpk+f3mH1A7TGh967XbbYbP07E2/I2R/ZZaMPTm8sdh85qIxjDy7b2DRdRUUpZ39k12a12XZo3xx94FbtVBEAAAAAAAAAALQt4en1GDFiRCZOnJilS5dm6dKluf/++3Pqqadm2bJlmTVrVioqKrLLLrus06ampiaPPPJI6uvr1/n55MmTs2Un2qYc4I306lmVWy46OP37dG/S+Z8/eeecfOT27VwVbeWgfcr3fnTQ3t4Lu4rTPrhTPnXsjk06d/Am1Zl40cHp3q2ynasCAAAAAAAAAIC2ITzdDFOnTk1jY2OGDx+eXr3W3Zn1s5/9bJ5++ukcffTRmThxYv74xz/m5JNPzp133pmzzjqrTBUDNN9uOw3KPb85IqN3HLjBc/r0qsr3/2OP/PA/327X6S7kgL22yPCt+nX4uG/daVDePmrTDh+XlimVSvnF1/bNOae9Nb2qqzZ43p67DM59Vx6ZEdsO6LjiAAAAAAAAAACglYSnm+Hxxx9PkowePfp1x4477rjcfPPNWbx4cT760Y/mxBNPzFNPPZWrrroqZ555ZkeXCtAqO2+/SR7+3fvz9/85IicfsX26Vf3r7aJ7t4pc/N/vyPy/nJgvfWK04HQXU1FRymc+OKLDxz39+BGulS6moqKUb5z+tsz78wn5yZf2zrv3qElV5b9ew17Vlbn/qqNy/1VHZfu3dHwYHwAAAAAAAAAAWmPD2wnyOm8Unk6SI444IkcccURHlgTQbkqlUvZ965Ds+9YhmfTA/Mx7YXk23aQ6nzm+48O3tJ1PHrNDfnLV1Mye/0qHjLfj1v3z4SO265CxaHsD+vXImSftnDNP2jlDx4zPvBeWZ5N+PbLXrnYSBwAAAAAAAACga7LzdDO8WXgaADq7vr2759ffeFeHjFVRUcoV394v1T38rRYAAAAAAAAAANA5SDM1w6RJk8pdAgC02oF7b5HPnjAiP7tmepPb1NYtX+ffphj78V2z9+jNml0fAAAAAAAAAABAexGeBoAC+vHYvTP3+WX5w1+fa9L5e554U7P6/9B7t8t3P7dHS0oDAAAAAAAAAABoNxXlLgAA6HhVVRX53fkH5IOHbNPmfX/sfcPzP9/ZLxUVpTbvGwAAAAAAAAAAoDWEpwGgoLp3q8z4cfvnp1/eJ72qW/9lFP36dMuvvvHOXPatd6WqykcMAAAAAAAAAACg85FsAoACq6go5YwTR+bx64/OYe8c2qI+SqXkffu/JU9cf0xOOWbHlEp2nAYAAAAAAAAAADqn1m8zCQB0edsO7ZdbLz4kTz27OL/4/ZP57S0zU7do5Ru2GTKoZz5y5Pb59HE7Zbth/TqoUgAAAAAAAAAAgJYTngYAXrXjNgNywdi986Mvvj2z5r2SKdPqMvWZRfnhbx7PK8vr07d3t1zx7f2y+8hBecvmfewyDQAAAAAAAAAAdCnC0wDA65RKpWwztG+2Gdo3xx28TX51/VN5ZXl9+vXulmPGbF3u8gAAAAAAAAAAAFqkotwFAAAAAAAAAAAAAAB0BOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQqspdAAAAAAAAAAB0NmvXNuSFhSuzavXaVFVWZEC/7unTq1u5ywIAAKCVhKcBAAAAAAAAKLzGxsb8/aHnc/1fZmXK1Lo8/ORLWbaifp1zhm/VL7uPGJx3vW1IPvTe7TKgX48yVQsAAEBLCU8DAAAAAAAAUFir16zNZTfMyM+umZ4nnln0huc+PXtJnp69JNfc9s988UeTc9Lh2+Xsj+ySHbcZ0DHFAgAA0GoV5S4AAAAAAAAAAMrhkSdfyl4fuimf+c69bxqcfq3lK+tz6XVPZdQHbsi4yx5NfX1DO1UJAABAWxKeBgAAAAAAAKBQGhsbc/4Vj2fPD/0hjz61sFV9rV7TkP/68ZTs+5GJmff8sjaqEAAAgPYiPA0AAAAAAABAYTQ2Nua/fjw5X/zRA6mvb2yzfh944sW886MTM2ve0jbrEwAAgLYnPA0AAAAAAABAYXzv0kdz3uWPt0vfs+a/koM+fVteeGlFu/QPAABA6wlPAwAAAAAAAFAI9zz8fL72swfbdYxnnluS075zTxob225XawAAANqO8PQbqKury9ixY7P99tunuro6w4YNy1lnnZVly5bllFNOSalUykUXXVTuMgEAAAAAAAB4E8tX1OfjX78rzc00Tx5/VObccUImjz+qyW1u+MvsTLjtn82sEAAAgI5QVe4COqtHHnkkhx12WGpra9O7d++MHDky8+fPz4UXXpiZM2dm4cKFSZLddtutvIUCAAAAAAAAbW7Nmob85f75mfv8spRKyVZb9Mn+e26eykr7U3VVP7jisTw9e0mz29UM7pWhQ3o3u93nvv+PHPWerdKrp1/Ld1Wz5y/N3x9+Pq8sr0+fXlV519tq8pbN+5S7LAAAoJX8r7T1qKury5FHHpna2tqcffbZOeecc9K3b98kyXnnnZcvfelLqaqqSqlUyqhRo8pcLQAAAAAAANBWFi9ZlZ9cNTW/vO6pzH9h+TrHttqiTz79gZ1y5odGpnevbmWqkJZYvWZtfv67Jzt0zLpFK3PNbf/MJ47eoUPHpfX+NnlBfvSbJzLxrufW2am8oqKUI989LGd/ZNe8a/ea8hUIAAC0ij+LXo8zzzwzc+fOzRlnnJHzzz//1eB0kowdOzajR49OfX19tt566/Tr16+MlQIAAAAAAABtZW7tsuz70Yn5xs8ffl1wOklmz38lX7lwSt79iVvz4sIVZaiQlrrhL7Pz/Esd/5r97Jppafy/6Vs6vQuvmpoDPnlrbr5z3eB0kjQ0NOYPf30u7/7ELbn4mmnlKRAAAGg14enXmD59eiZMmJDBgwfn3HPPXe85u+++e5Jk9OjR6/z8z3/+c/bee+9UV1dns802y2mnnZaXX3653WsGAAAAAAAAWmfJK6tz6Gduy7SZi9/03Aen1eWIM+7IipX17V8YbeLqW2eWZdyHpr+UGbP8zriruPLmp3PWuH+8LjT9Wo2NyWe/d1+u+WN5risAAKB1hKdfY/z48WloaMhJJ52UPn36rPecnj17Jlk3PH3nnXfm0EMPzZZbbpkbbrgh3/3ud3Pttdfm/e9/v78kBgAAAAAAgE7ukt8/malNCE7/2wNPvJirbhGc7ComT60r29hTppVvbJpu1eq1Ofv8B5rV5gvnP5A1axraqSIAAKC9CE+/xqRJk5Ik+++//wbPmTt3bpJ1w9Pf+ta3Mnz48Pz+97/PYYcdlk996lP55S9/mb/97W+55ZZb2rdoAAAAAAAAoMXWrm3Iz3/3ZLPb/WzCNBspdQHzX1iWBS8uL9v4DwpPdwnX3TErLy5a2aw2C15cnhv/OrudKgIAANqL8PRrzJ79r/9hs9VWW633eH19fe65554k64an77///owZMyYVFf9/SQ8++OAkyY033thO1QIAAAAAAACt9Y/HXsyz85Y2u90jTy7MtGbsVk15PPnsy4Uen6a56tZnWtTutxNb1g4AACifqnIX0NksW7YsSbJixYr1Hp8wYULq6urSt2/fbLPNNq/+vLKyMt27d1/n3G7duqVUKmXq1KktqmWPPfZIbW1ti9oCbWvBgC8kFf2zoHZBhg4dWu5yOlzR559YA/Mv9vwTa2D+xZ5/Yg0Ais77gDUo+vyh6PdA0ecPRbGi28ik7/EtavvuMUeluv7ZNq6o89gYnoMruw1P+n54vccmjz8qNYN7vWH7msE9X/13zh0nbPC82rrl2fPEm17387/89e8ZOvSUZlRMObzQ77SkavNmt/vjn+/N0KEfb4eKOo+N4TnQGkWfP66Bos8/sQa4Bsy/2PNPOu8a1NTUZMqUKS1qKzz9GjU1NVm0aFEeeuih7LPPPuscW7BgQb74xS8mSUaNGpVSqfTqsR122CH333//OudPnjw5jY2NWbhwYYtqqa2tzbx581rUFmhjfdcmFUnD2rXFvC+LPv/EGph/seefWAPzL/b8E2sAUHTeB6xB0ecPRb8Hij5/KIp+myV9W9b0pboXk2Ub8fNhY3gO9h24wde3ZnCvDB3Su0ndVFVWNPnc/2v1qpVdd+2KpHplixIUa4rw+m4Mz4HWKPr8cQ0Uff6JNcA1YP7Fnn+yUa6B8PRrjBkzJtOnT8+4ceNy0EEHZYcddkjyryD0ySefnLq6uiTJbrvttk67M888Mx/5yEfyne98J6eddlrmzp2b008/PZWVlamoqGhRLTU1Na2aC9B2FlRWpiFJRWVlNt9yy3KX0+GKPv/EGph/seefWAPzL/b8E2sAUHTeB6xB0ecPRb8Hij5/KIo1laW8kCSNjcn/2UDpDf3vuUMGVqVqwMb7fNgYnoOrqvqkbgPHauuWv2n7msE9U1VZkfq1DamtW/83GL9RX9Xdk0FddO2KZGHlsmz41d2wnlXLMnAjf303hudAaxR9/rgGij7/xBrgGjD/Ys8/6bxr0JqMrfD0a4wdOzZXX3115syZk5133jk77bRTVq5cmWeeeSaHHXZYtt5669x+++0ZPXr0Ou0+/OEPZ+rUqfn2t7+dr33ta6msrMxnP/vZdO/ePf369WtRLS3dThxoe0PHjM+8F5Zn85rNM/eJueUup8MVff6JNTD/Ys8/sQbmX+z5J9YAoOi8D1iDos8fin4PFH3+UCR7nviHTJm6oYjtepRKOWifLfKnS55ov6I6gY3hObhoyaoMfOdv13tszxNvetP2c+44IUOH9E5t3YoMO+iaZo9/9mePz3c+94Nmt6Nj3XHfvBz86dua3e7W334579nzwnaoqPPYGJ4DrVH0+eMaKPr8E2uAa8D8iz3/ZONcg5ZtibwRGzp0aO6+++4cfvjhqa6uzqxZszJw4MBccsklueWWWzJjxowkeV14ulQq5fvf/37q6ury6KOP5vnnn88Pf/jDPP3003nHO95RjqkAAAAAAAAATXT68SM6pA0db5N+PbLdsL5lG3/3kYPLNjZNd+Dbt8jwrZq3MdqIbQfk3Xv4RmkAAOhq7Dy9HiNGjMjEiRNf9/NXXnkls2bNSkVFRXbZZZf1tu3bt29GjRqVJLn00kuzYsWKfPzjH2/XegEAAAAAAIDWOfmI7XPdn2fllrvmNOn8D713uxz1nq3auSrayt6jNsvMOUvLMvZeu2xalnFpnoqKUi7/1n458FO3ZtXqhjc9v2ePylz+rXelVCp1QHUAAEBbsvN0M0ydOjWNjY0ZPnx4evXqtc6xKVOm5Nxzz83tt9+eW265JZ///Odz2mmnZdy4cdluu+3KVDEAAAAAAADQFFVVFfndDw7I+/Z/y5uee9Lh2+Xyb78rFRVCk13FJ96/Q1nGPXTfodlySO+yjE3z7fvWIZl40cHp27vbG57Xv0/33HrxIXn7qM06qDIAAKAt2Xm6GR5//PEkyejRo193rEePHrn55ptz7rnnpr6+PrvuumsmTJiQD3zgAx1dJgAAAAAAANACvXpW5bofHZhb756biydMz233zF3n+Pv2f0tOP35EDtpnS7vNdjH777V5dty6f56a9XKHjnv68SM6dDxab8zeW+bJPxybS697Kpdc+1QWvLj81WNbbtYrnz5up3zymB2z+aa93qAXAACgMxOeboY3Ck/vuuuuuffeezu6JAAAAAAAAKANVVZW5Mj3vCVHvuctqa1bnlHH3pAXF61MzeCeufEnB5W7PFqoVCrl7I/sklO/dU+Hjbnj1v3z3ncN7bDxaDtbbNY753zmbfnKJ3fL0IPG54WFK7PZwOrMuu34VFX5gm8AAOjqfKpvhjcKTwMAAAAAAAAbl5rBvdK9279+pVpZYafpru6UY3bMu/eo6ZCxSqXksm+9K5WVfiXflXXrVpFu/xuW7lZVITgNAAAbCTtPN8OkSZPKXQIAAAAAAAAALVBRUcpl33pXdj3mhixfWd/kdrV1y9f5tym+cPIuecduQ5pdIwAAAO1PeBoAAAAAAACAQth2aL9c+b1357j/nJSGhsYmtdnzxJuaNcaBb98i3/nc7i0pDwAAgA7gO2UAAAAAAAAAKIxjxmydK7/77lRWltq87/333Dw3/mRMqnvYxwwAAKCzEp4GAAAAAAAAoFA+dPh2ueWig1MzuGeb9fmpY3fMrRcfnD69urVZnwAAALQ94WkAAAAAAAAACueQfYdm6g3H5uQjtm9VP8Nqeuf2XxySX57zTjtOAwAAdAHC0wAAAAAAAAAU0sD+PfKb77079191VD561PD06F7Z5LajdhiYX3xt30y78dgc/I6h7VglAAAAbcmfvQIAAAAAAABQaHvtumn22nXT/PA/98qtd8/Jg9NeyoPT6jJz7tLU1i1PY2NSVVnKBw7aJruPHJx3vW1I9tp105RKpXKXDgAAQDMJTwMAAAAAAABAkkEDqnPykcNz8pHDX/3Z0DHjM++F5RkyqGfGn7d/GasDAACgLVSUuwAAAAAAAAAAAAAAgI4gPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCMLTAAAAAAAAAAAAAEAhCE8DAAAAAAAAAAAAAIUgPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCMLTAAAAAAAAAAAAAEAhCE8DAAAAAAAAAAAAAIUgPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCMLTAAAAAAAAAAAAAEAhCE8DAAAAAAAAAAAAAIUgPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCMLTAAAAAAAAAAAAAEAhCE8DAAAAAAAAAAAAAIUgPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCMLTAAAAAAAAAAAAAEAhCE8DAAAAAAAAAAAAAIUgPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCMLTAAAAAAAAAAAAAEAhCE8DAAAAAAAAAAAAAIUgPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCMLTAAAAAAAAAAAAAEAhCE8DAAAAAAAAAAAAAIUgPA0AAAAAAAAAAAAAFILwNAAAAAAAAAAAAABQCFXlLgAAAAAAAAAAACi/+vqGPDpjYR6cVpcHp9Vl9vxXsmpNQ7pVlTJ4QHXeNmJwdh85KHvusmn69OpW7nIB2tyq1Wvz8PSX8uD0fz0H572wPC8uWpkkWbhkVX7y2yey+8jB2X3k4PSsFr9k47N2bUMem7EwD057KQ9Oq8uz85b+/3vg5VU577LHsvvIwdlzl8Hp16d7mattOXcvAAAAAAAAAAAU2IIXl+dX1z+VS37/ZOa9sHyD543/4z+TJL17VuXDR2yfz3xwp4zecVBHlQnQbmbNW5pLrn0yv7p+Rur+Nyj6WitWrs1/nHd/kmRA3+75+PuH57TjRmSHrft3ZKnQLl5cuCK/vmFGfvH7JzN7/ivrPWfFqrX50o8nJ0l6VlfmxMO2y+nHj8juIwd3ZKltQngaAAAAAAAAAAAKaNXqtfn2JQ9n3OWPpb6+scntlq2ozyW/fzKX/P7JvP+ArXLxf78jm2/aqx0rBWgfryxfky9dMDk//930NDb9MZjFS1fngiun5oIrp+ajRw3PBWPfnk369Wi/QqGdrFnTkHGXP5pvX/JIVq9paHK7FSvX5rIbZuSyG2bk0H2H5pfn7JthNX3asdK2VVHuAgAAAAAAAAAAgI710LS67HHCH/LdSx9tVnD6tW6cNDs7H31drr5lZhtWB9D+7pyyIKOOvSEXT2hecPq1/uemp7PLMdfn1rvntF1x0AGeeHph9v7wTfnaRQ81Kzj9WrfdMzc7H319fn39U2lszc3UgYSnAQAAAAAAAACgQG6/Z27e+bGJeeKZRW3S36Ilq3PSl/+Wb1z8UJcJTQHFdvUtM3Pgp/6YZ+ctbZP+5r+wPEec8af8fML0NukP2tudUxbkHR+ZmIemv9Qm/S1dtiaf/Mbf86ULJneJzwJV5S4AAAAAAAAAAADoGH/5x/wcdeYdrdphckO++YuHU1FRytdPe2ub9w3QVibc9s98+Ct/a9Vu0+vT2Jic/t17U1lZyqkf2KltO4c2dM/Dz+ew02/PipVr27zvH1zxeEqlZNzn92rzvtuSnacBAAAAAAAAAKAAnlvwSo7+/J/bJTj9b+dc/FCuu+PZdusfoDUefeqlnPyVO9s8OP1/nfbte3L3g7XtNwC0Qm3d8hx15h3tEpz+t/Mufzz/84en263/tiA8DQAAAAAAAAAAG7nGxsZ88ht3Z+myNc1qN3n8UZlzxwmZPP6oJrf5zHfuzYsLVzS3RIB2tWZNQz72tbuypr55f0DS3OdgY2PyiXPuzvIV9S0pE9pNY2NjTvv2PVn48qpmtWvJZ4GzzvtH5j2/rLkldphChqfr6uoyduzYbL/99qmurs6wYcNy1llnZdmyZTnllFNSKpVy0UUXlbtMAAAAAAAAACirtWsbUt/MgBHQOV12w4zccd/8ZrerGdwrQ4f0Ts3gXk1u8+KilTlr3D+aPRbQ+TQ0NGZNO+5W35HGXf5oHnlyYbPbteQ5+MxzS/K1nz3Y7LHofBrbc5vyDjbhtn/mD399rtntWnIPvLx0dT7znXubPVZHKVx4+pFHHsmuu+6aH/zgB6mtrc3IkSOzZs2aXHjhhTn++OMzffr0JMluu+1W3kIBAAAAAAAAoAyef2lFvnfpI9n2sN+l29suT7e3XZ7B+/02Z33/vjz57OJylwe0QENDY8799aMdOuY1t/0zM+cs6dAxgbZRt2hlfnD5Y9nhyN+n6q2Xpfvul2fgO6/M6d+5J0883fzwcWewfEV9fvSbJzp0zIsnTG/2Dr90Dq8sX5NfXvtk3vrBGzL/xX99k8L8F5fnpP/6W+595PkuGahubGzMdy/t2M8CN9/5XB6f0TmfGYUKT9fV1eXII49MbW1tzj777CxYsCAPPfRQamtrM27cuNxyyy2ZPHlySqVSRo0aVe5yAQAAAAAAAKBDXXrtk3nLwdfkv3/6YJ6dtzT/zoW8tHhVLrx6Wka877qc8b177UYNXcyf7p2XmXOWduiYjY3JL373ZIeOCbTebyc+k2EHX5OxF0zO07OXvPpZYNGS1fn5757MrsfekFPOuTur16wtb6HNNOH2f2bRktUdOubKVWtzxR9mdOiYtN6k++fnLQdfk09/6551dipvbEyuvnVm9v3IxBz2mduz5JWOvZ5a6+8PPZ8nnlnU4eP+/HfTO3zMpihUePrMM8/M3Llzc8YZZ+T8889P3759Xz02duzYjB49OvX19dl6663Tr1+/MlYKAAAAAAAAAB3r4mum5dRv3ZPVa944GP2za6bnlHPu7pI77kFR/fK68oSYL7txRta8yTMF6Dyu+MOMnPyVO7Ny1RsHoy+7YUY+9KW/paGh63wW+OW15XkOXvL7p8oyLi3z1wfm59DP3P6mQfvb752Xgz99W5avqO+gylqvXJ8Frpw4s1OuU2HC09OnT8+ECRMyePDgnHvuues9Z/fdd0+SjB49+tWf/Ttsvddee6VHjx4plUobHOPZZ5/NUUcdlb59+2aTTTbJRz7ykbz00kttOxEAAAAAAAAAaGPTZi7K577/jyaf/5ubn8lvbnqmHSsC2kpjY2PuerC2LGMvfHlVpj+7uCxjA83z7Nyl+dQ3/t7k86/786z8opPuKPtaK1bWZ/LUurKMPWP2y3nhpRVlGZvmWbZ8TT5w9qSsaeI3rNz/+Iv56kVT2rmqtnP3Q8+XZdxXlq/JI091vhxtYcLT48ePT0NDQ0466aT06dNnvef07Nkzybrh6WeeeSbXXXddampqsueee26w/6VLl2b//ffP3LlzM378+Pzyl7/M3XffnSOOOCINDf6CDgAAAAAAAIDO6+e/e7LZu0dedM20dqoGaEvPLXglLy1eVbbxH5xWnsAi0DyXXPtk6tc297PA9C7xTRSPPrUwa5s5t7bkOdg1jP/jP7Pw5ea9X15249NZtnxNO1XUdl5avDKz579StvE74z1QmPD0pEmTkiT777//Bs+ZO3duknXD0/vtt18WLFiQm266KWPGjNlg21/+8peZN29ebrzxxhxxxBE57rjjcvXVV+cf//hHbrrppjaaBQAAAAAAAAC0rWXL1+R/bnq62e2mTK3LlKkvtkNFQFt6+Mny7vZY7vGBN7d6zdr8+oYZzW43/Z+Ly7azfXOU+zlU7vFpml/8/slmt3l56epcc9s/26GatlXua7Dc469PqbEr/OlHGxg2bFjmzp2bhx9+OLvtttvrjtfX12fzzTdPXV1dZs6cmW233fZ153zjG9/IN7/5zfX+tcy/Q9l//etf1/n5dtttl/e85z359a9/3eya99hjj9TWdv43FyiCBQO+kIaK/qloeDmbL/5RucvpcEWff2INzL/Y80+sgfkXe/6JNQAoOu8D1qDo84ei3wNFnz/gOVD0+SfFWIM1FZvmhQFntKjtgFduSO/Vj7RtQZ1IEV7/N1P0NdgY5r+s+25Z3Ofo9R6bPP6o1Azu9Ybtawb3TFVlRerXNqS2bsUGz6utW549T3z9BoM9Vz2agcuub17RncjGcA20RtHnnxRjDeor+uf5AV9oUdv+y25Nn1X3t3FFbWtp9buypNf6N07tiOdgnxX3pP+KPzWv6E6kCPdAY5L5m3wtKVU1u23vlf/IgOV/bPui2tDy7jtnUZ8PrvdYR9wD1aunZ9Ar1zSv6CaoqanJlClTWtS2+a90F7Vs2bIkyYoV63/hJkyYkLq6uvTt2zfbbLNNs/ufNm1ajjvuuNf9fOedd860aS37qqLa2trMmzevRW2BNtZ3bVKRNKxdW8z7sujzT6yB+Rd7/ok1MP9izz+xBgBF533AGhR9/lD0e6Do8wc8B4o+/6QYa1BdmQxoWdPFLy/L4oUb6bokxXj930zR12BjmP8m2yZ91n+oZnCvDB3Su0ndVFVWNPnc/2vFitVdd+2SjeMaaI2izz8pxhp0r2/xZ4GXlyzLy3WdfF02eyXZQDa0I56DryxbnlcWdPI1eiNFuAdSSga2LE67bNmqLJvfydel/5Zl/SywcuWaTnftFCY8XVNTk0WLFuWhhx7KPvvss86xBQsW5Itf/GKSZNSoUSmVSs3uf9GiRRkwYMDrfj5w4MA89dRTLa4Z6BwWVFamIUlFZWU233LLcpfT4Yo+/8QamH+x559YA/Mv9vwTawBQdN4HrEHR5w9FvweKPn/Ac6Do80+KsQb1FX3yfJI0NibN/H35Jv27p1fPjXNdkmK8/m+m6GuwMcx/efe+WbSBY7V1y9+0fXN2m1yfXj2rskkXXbtk47gGWqPo80+KsQZrS71S28K2A/p2T+8enXtdllb3zpINHOuI52Cf3tXp34WvnSLcA0kyv2FFGit6Nrtdn14Vnf71XdGtXxZu4FhH3APV1ZUZ1A5r1JqMbWHC02PGjMn06dMzbty4HHTQQdlhhx2SJJMnT87JJ5+curq6JMluu+1WxirX1dLtxIG2N3TM+Mx7YXk2r9k8c5+YW+5yOlzR559YA/Mv9vwTa2D+xZ5/Yg0Ais77gDUo+vyh6PdA0ecPeA4Uff5JMdagsbExbzv+xjzy5IYiFevXs7oyM/9+Uzbp16OdKiu/Irz+b6boa7AxzP/vD9XmXR+7Zb3H9jzxpjdtP+eOEzJ0SO/U1q3IsIOuafb4X/r8Kfn6aRc1u11nsTFcA61R9PknxVmDd350Yu55+PlmtamqLGX6A9ekZvAGtnXuJH7/p2fzwf+ctN5jHfEc/OG5/5VTP3BFs9t1FkW5Bz721bvyPzc93ex2f7n+B9lr103boaK288iTL+WtH7xxvcc64h743Kkn5Lwv/KjZ7dpTRbkL6Chjx47NoEGDMmfOnOy8887ZddddM3z48Oy1117Zdtttc8ABByRJRo8e3aL+N9lkkyxevPh1P1+4cGEGDhzYmtIBAAAAAAAAoN2USqWc/sERzW534mHbbdTBadhY7LbToOZuKt+mdh85qHyDA03Wks8Cxx60dacPTiflfw7tPnJwWcenaU4/vvn3wO4jB2fPXTr/67vzdpukR/fKso3fGe+BwoSnhw4dmrvvvjuHH354qqurM2vWrAwcODCXXHJJbrnllsyYMSNJy8PTI0aMyLRp017382nTpmXEiObfVAAAAAAAAADQUT703u2y0zb9m3x+397d8sWP7dqOFQFtpU+vbhmx7YCyjd8ZA1PA6x170NYZtUPTNwnt2aMy//WJlmXtOto2W/bNJv26l2XsblUV2WX7TcoyNs2z5y6Dc8R+w5p8fqmUfOMzb02pnH+h1ETdulVk1A7luw4742eBwoSnk38FnCdOnJilS5dm6dKluf/++3Pqqadm2bJlmTVrVioqKrLLLru0qO8jjjgif//73zN37v/flv7+++/PzJkzc+SRR7bVFAAAAAAAAACgzfXu1S23/uyQbL1Fnzc/t2dVbrhgTHbaZkD7Fwa0iaMP2Kos4+49atMusSstkPToXplbf3Zwdtjqzf+YqrpHZX53/gHZbaeusbN8qVTK0QduXZaxj3j3sLLu+EvTlUqljD9v/7zzrUOacG7ys6+8I0e8+y0dUFnbOPqArcsy7q7DN8l2w/qWZew3Uqjw9IZMnTo1jY2NGT58eHr1ev0HtmuvvTbXXnvtqztL//u/T5ky5dVzTj311Gy++eZ53/vel4kTJ+baa6/NiSeemL322ivve9/7OmwuAAAAAAAAANAS2wztm39cdVQ+etTwVPd4fcinVEoO3Xdo7r7i8By49xZlqBBoqVM/sFMqKjp+Z8zTj/dt7dCVbDmkd+698oh88pgd0rN6/YHfMXtvkb/9+r1dKjSalO955DnYtfTp1S13/PLQjP34rhvcrXzPXQbn5p8elM90sdf2lKN3SLeqjo8Mn378iE65O3dVuQvoDB5//PEkyejR6/8ageOOO269//2jH/1orrjiiiRJv379MmnSpJx11lk54YQTUlVVlSOOOCIXXHBBKipk1AEAAAAAAADo/IYM6pkrvrNffvife+WqW2bmKxdOybIV9enXu1se+t37s92wfuUuEWiBt2zeJ0e95y25cdLsDhtz8CbVOe7gbTpsPKBtDBpQnUu/8a784At75epbZ2bsBZOzbEV9+vbulslXH5Udu+g3T+w+cnDevuumuf/xFztszB226p8D9vIHZ11NdY+qjPv8XvnGZ96W3//p2Tw6Y2FWrKzPwP498r79t8qeu2xa7hJbZLNBPfPBQ7bJVbfM7LAx+/bulpMO367DxmsO4em8eXi6sbGxSf1st912mThxYpvVBQAAAAAAAADlMGhAdc48aeecd/ljrwamBKehaxv3H3vmtnvmZuWqtR0y3vlf2CvVPUSToKsa0K9HTj9hZL73q0df/UOqrhqc/rcfj907+350YhoampYHbK0L/2vvsuz6T9voWV2Vjxw1vNxltKnvfm733PS357J02ZoOGe/7Z+2Rvr3Xv4N3udkSOW8engYAAAAAAAAAgK5sh63753tn7tEhYx2+37B85KjtO2QsgKbae/RmOfsju3TIWJ88Zoccsu/QDhkLmmqrLfrm/LP36pCx3rPn5jntgyM6ZKyWEJ5OMmnSpDQ2Nubwww8vdykAAAAAAAAAANAuzvzQyBz8ji2b1aa2bnnmPr8stXXLm3T+Fpv1yi+/vm9KJbutAp3Ptz77trxtxKBmtWnuc3DHrfvn/LPf3pLyoN196tgd877939KsNs29BzbdpDqXffNdnXrndd+NAQAAAAAAAAAABVBZWZHrfnRgDjntttz7yAtNarPniTc1uf9NN6nOHZccmi02693SEgHaVXWPqtz280PynlNuzbSZi5vUpjnPwW227Js7fnlo+vft3sIKoX2VSqWMH7d/jjjjT5n0wIImtWnOPbBJv+65/ReHZJuhfVtaYoew8zQAAAAAAAAAABREn17d8qdfHJrD3jm0TfvdZsu+ufuKwzNyu03atF+AtrbpwJ6587LDs8/ozdq031E7DMzdVxyeYTV92rRfaGs9q6sy8aKDc8yBW7dpv0OH9M6dlx2et44Y3Kb9tgfhaQAAAAAAAAAAKJDevbpl4kUH5+L/fkd692z9F9d/5oM75bHrjs6O2wxofXEAHWDwJtW56/LD893P7Z5uVa2LUVZWlvKVT47OA1cflS2H2HmfrqFndVWu/dEB+fU335V+fbq1ur+Pv394Hr/u6Oy6w8A2qK79CU8DAAAAAAAAAEDBVFSU8pnjR+Tx647Jh4/YLt27NT9GtP+em2fSrw7LxV/dN316tT54BdCRqqoq8pVP7ZaHJrwvxxy4dSorS81qXyolh+83LPddeWS+e+Ye6dG9sp0qhfZRKpXyiaN3yNTrj83H3z881T2afw2/861D8seLD8ll39ovA/r1aIcq20fr/3QMAAAAAAAAAADokrYZ2jdXfu89+dF/vj2X3TgjE++ck4effCnLVtS/7tzKylJ22X6TvGePzfPp43bKiG0HdHzBAG1sl+EDc90FB2be88ty6XVP5bZ75ubRGQuzctXa153bvVtFRu0wMGP23iKnHrtTthnatwwVQ9saWtM7l31rv5x/9tvzPzc9nRsnzc7DT76UpcvWvO7ciopSdt5uQPbbvSaf/sBOXWan6dcSngYAAAAAAAAAgILbdGDPfOkTo/OlT4zO2rUNmTF7SWbPfyUnffmvWfjy6my6SY/Mvv2E9KwWNwI2TlsO6Z1vnP62fOP0t2XNmoZMf3Zx5j2/LKvWrE2PbpUZMqhndhm+Sbp3s8M0G6eB/Xvk8yfvks+fvEsaGhrz9OyX8+y8V7JydX26VVVkUP/qjNphYHr17PqfBbr+DAAAAAAAAAAAgDZTWVmREdsOyIhtB6Rnj6okq9O9W6XgNFAY3f53h+lRXXRXXWitiopSdtxmQHbcZkC5S2kXFeUuAAAAAAAAAAAAAACgIwhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFUFXuAqCzamxszLPzlubxpxflleVr0tiY9KquyohtB2SHrfqlstLfHrDxm//Csjzy1MIsX1mfJFmxsj6PPPlSdt5uk3Tr5h6Ajd3qNWvz+NOLMnPOkixf8a/nwMpVa1Nbtzw1g3uVubr219jYmOcWvJLHZixa5zk49ZlF2Wmb/j4LFMDatQ158tmX8+Szi///NbCqPrPnL81bNu+TUqlU5goBAAAAAAAAgOYSnob/Y/Watblx0uxc8Yen84/HXsiiJavXe17vnlXZfeTgnHT4djnpvduld69uHVwptI+Ghsbccd+8XHrdU7nnkedTW7dineMLl6zOWz94Y3p0r8zoHQbmuIO3ycffPzyDBlSXqWKgrb3w0or8+oYZue7Ps/L40wuzek3DOsdfenlVNj9gfLbcrFfe+bYhOfXYnbL/XptvNCHS+vqG3Hznc7nshhm577EX8tLiVescX7hkdXY55vr0qq7K20YMyomHbZsPH7F9+vXpXqaKaWtLXlmdKyc+k/F//Gcenv7Sq6Hpf1v48upsfejvMniT6uy966b5xNE75Mh3vyVVVcL0AAAAAAAAANAVCE9D/hWaPv+Kx/PT8dNeFxZdn2Ur6nPXg7W568HafPFHD+STx+yYc057q+AUXVZDQ2N+ff1TGXf5Y5k5Z+mbnr9q9do88MSLeeCJF/PVix7MiYdtm+9+bvdssVnvDqgWaA/PLXglX7lwSn53+7NZU9/wpufPe2F5Jtz2bCbc9mx22qZ/vnzK6Jx85PZdNkRdX9+Qn1w1NRdc+UTmvbD8Tc9fvrI+f3/4+fz94efzpR9PycfeNzzf+uzbskm/Hh1QLe1h4curcs7FD+WKPzydV5avedPz6xatzMS75mTiXXMydEjv/MeHd85ZJ+0sRA0AAAAAAAAAnZzf7FN4D0+vy54n3pT//umDTQpOv9aSV9bkR795Irscc33+dO/cdqgQ2tezc5dmzKf+mFO/dU+TgtOvtWr12lzxh6ez89HX58qbn05jY2M7VAm0l8bGxlx67ZPZ5Zjrc9UtM5sUnH6tJ599OR/96l054ow/Zd7zy9qhyvb1xNMLs/eHb85//vCBJgWnX+uV5Wty0fhp2fno63Pz355rhwppbzf/7bnsfPR1uWj8tCYFp19r7vPL8p8/fCD7nHxzpj6zqB0qBAAAAAAAAADaivA0hXbptU9mr5NuymMzFra6rzm1y3LIabfnKz+ZIjxKl/HHu+dk12Ovz18nL2h1X4uXrs5H/vuufPjLd2b1mrVtUB3Q3lauqs+xX/hLTv3WPVm6rPmB0de69e652fmY6/O3NnimdJTfTnwmu5/whzw4ra7VfS14cXmOOvOO/Me4f6ShwWeBrqChoTFnff++HHXmHS36I7rXmjK1Lm87/sb8duIzbVAdAAAAAAAAANAehKcprAuvmppTv3VP6uvbNtx07q8fzZnf/4cANZ3eH/46O0eddUeWrahv036vvnVmPvCFSVmzpvm71wIdZ+Wq+hxxxh254S+z27Tfl5euzqGfuT133DevTfttD7+67qmc/JU7s7qNn1c/uWpqPvXNvwtQd3INDY355DfuzoVXT2vTflevacjJX7kzv77+qTbtFwAAAAAAAABoG8LTFNI1f5yZs8b9o936v2j8tHz30kfarX9orXsfeT4f/M9Jbf7HA/92853P5VPf/Hu79A20XmNjYz785Tvzl/vnt0v/q1avzfvP+nMent763Zzby01/nZ1Tv9V+z6nLbpiR//7plHbrn9b7yoVTcvmNT7db/5/65t9z89+ea7f+AQAAAAAAAICWEZ6mcOY9vyynfefeZrWZPP6ozLnjhEwef1ST23zj5w/nwWmdNzRGcS1fUZ+P/HfzdlptyT3wPzc9nevueLYlJQLt7Dc3PZPr/jyrWW2a+xxYvrI+H/nvu7J6zdoWVNi+Xly4Ip/8xt/TnC+JaMlzcNxlj+XuB2tbUCHt7a4pCzLussea1aa510BjY/LJb9ydukUrW1IiAAAAAAAAANBOChmerqury9ixY7P99tunuro6w4YNy1lnnZVly5bllFNOSalUykUXXVTuMmkHjY2N+fS378nLS1c3q13N4F4ZOqR3agb3anKbtWsb87Gv3pVVqztfaIxi+8qFUzJzztJmtWnJPZAkp3/3XqEx6GTmPb8sZ53X/G9faMlz4IlnFuXblzzS7LHa2xnn3pcXm/lsasn8GxuTT5xzd5avqG9uibSjZcvX5BPn3N3sdi25Bl5YuDKfO/e+Zo8FAAAAAAAAALSfqnIX0NEeeeSRHHbYYamtrU3v3r0zcuTIzJ8/PxdeeGFmzpyZhQsXJkl222238hbaCTQ0NGbSA/Pzh78+l0VLVqVnj8qM3nFQTj5i+/Tv273c5bXIX+6fn1vumtNh4z3xzKL8+vqncvoJIztszLa0clV9fnf7s7nnkeezbEV9+vbqlgPfvkXet/9W6datkH970eXNnLMkF149tcPGe2HhynzvV4/kR1/cu8PGpG099ezi/ObmZ7Jwyar8P/buPDqKKn//+NNL9oUtQAIBwk7YArIoqCAIKLK4sg06qCgqMui44DjqiMuoKKOjIoorOqMQBBQEEVFAFlHZRQirBAgkQIdAQvak+/eHP/nKkEC6093VSb1f53g8oere+7nVVdVNeOq2JGWfLtK+Q9lq3ija4Mrgqafe2uz2Q0SV8cL7WzV+RKLi6rr38IWvrNt6VHOW+m9V/L0HszVt1g5Nur2j38b0psKiUs3/JlVZ2b+dM1nZRZq9ZJ9u6Jeg4CCbwdV55o3ZKW4/RFQZs7/6VfeNbqdLkur5bUwAAAAAAAAAAAAAAFA+U4WnHQ6HhgwZooyMDD344IN68sknFRUVJUl68cUX9cgjj8hut8tisahjx6oZcPGWWV/u0+Q3N2v3gVPnbHvklfUaM7SFXnyguyLDgwyoznPTk1P8Puabc3bqnhGJslgsfh/bUyUlTj0zY4veSN6hzJOFZ21769OdiqsbrofGtNdfb2lfpeYFacanO+Vy+XfMmQv26NkJXRUeZqq3nCpv665MPTj1J33745Gz/jwnr0QtBn2qqy+N1yuTLlabpjWNKRAeOZldqI8X7/PrmCUlLr07f5eeuKuzX8ctjxGfBd76dKceurWDrNaq857pdLr0wntb9erH23XsxP+t0p1XUKJRj6xUvdqhuv/m9nrk9o5Val6lpU699elOv4/75pwUwtMAAAAAAAAAAAAAAAQIUy0dO3HiRKWlpWnChAmaOnXqmeC0JE2aNElJSUkqKSlRQkKCoqPNu6LmC+9t1Z/+trLM4LT0W2jmzTk71Wfsl35dubKy0jJytWDFQb+P+8veLK3emOH3cT1VXOzUTQ9+q6dnbD4nOP279ON5enDqT7pz8hq5/J3EhccKCkv03me7/T5uVnaRZn/1q9/HhedWb8zQ5bcuPic4/UdfrU1Tz1u+0Ibtx/1YGSrroy/2Kq+gxO/jzvh0p0pKnH4f938dP5Hv11Wnf7f/cI6Wrk3z+7ieKi116uZHV+qx1zeeFZz+o2MnCvT31zbo5kdXqrTU+Ne2opZ+f1j7D/tv1enfJS/dL0dW2ccSAAAAAAAAAAAAAAD4l2nC0ykpKUpOTlZMTIyef/75Mvfp0qWLJCkpKenMn/0etu7evbtCQkLKXWW3ovsFuuSvftWjr26o0L4btjs0/OHlVSY8u3j1ITmdxtS6cKX/Q9ueemDqjxUOmb/32W79850tvi0IXrN28zGdOFV2IN7XFq48YMi4cF/q4RwNnbhMObnFF9w3K7tIg+79WhmOPD9UBm9YsMKYa/HwsTxtSsk0ZOw/Wvr9YRUVGxP0rUqfBR57faNmLanYQy+zlvyqx6dt9HFF3mPUNVBYVKqvvz9syNgAAAAAAAAAAAAAAOBspglPz5o1S06nU6NHj1ZkZGSZ+4SFhUk6Ozy9d+9ezZs3T7GxserWrVu5/Vd0v0Dmcrn01Fub3Wrz9feH9ePPVWPV0Y07HMaNHQCBsYpIP56nt+akuNXmpZnblJt34ZAljGfoNbCjalwDkF6ftUMn3fhWgWMnCvTWnJ0+rAje4nK5DH0/MvIeFAg1bEwxfv4VceJUoV79eLtbbV79eLuyso15OMddRr4fVZVzAAAAAAAAAAAAAACA6s404enly5dLkvr06VPuPmlpv32d+h/D07169VJ6eroWLlyofv36ldu2ovsFslUbM5Ty60m3273pZtjWKBu2GxkcdRi26rU73p2/SyWl7tWZfbq4wqtTwlhGhrbSjubqaGa+YeOjYvLyS/TB57vdbvf2vF0qNmg1X1TcvkM5OuVGMN7bzB6e3rrrhIqKSw0bv6I+XLhHBYXu1ZlfUKoPF+zxUUXeU1Rcqm17Thg2vpGfRQEAAAAAAAAAAAAAwP8xTXj6wIHfvqK7SZMmZW4vKSnR2rVrJZ0dnrZaK3aIKrpfIPvCw6+T/+K7qvE19AfSTxs2dk5ucZVYkXHRd4c8aldVzgGzSz1s3DXw2/g5ho6PC1u39Ziyst0P16Yfz9MmVlQNeAeOGHwPMHh8o2soKnYqwxH4D5Es8vA9vSp8Fkg/nqciAx/0SD3C+yAAAAAAAAAAAAAAAIHAbnQB/pKbmytJys8vO7SSnJwsh8OhqKgoNW3a1J+llatr167KyMjw23hZEddKIRe53y67SA3j42XxQU3elFXrMckSXOa29bOGKjYmvNy2sTFhZ/5/aNnIcvfLcOSp26iFZW5r36GzbK7ADs1k1PiLZItxu91Xy1YrPv42H1QUONJrPiBZayg9I13x8fFGl+ORo9H3SPbYMrd56xqQyr8OBg+9XiElB9yoOLBUh3PgQvKD2kpRIzxqO+ja4Qot3uvligJHdXj9C4JaSlE3l7ntQvcAqfLvhavXrFN8/J1uVOx96TUflqyRZW7zx2eBbhdfqiBnphsV+9+x6LskewO3263+fqPi48f5oCLvKbbWkWpOLHe7r8+BtMMZVfb+AQCoHp8HK8vsx8Ds8wfMfg2Yff4AuA+Yff4Sx4D5m3v+EsfA7POXOAbM39zzlzgGZp8/OAcQuGJjY7VhwwaP2pomPB0bG6usrCxt2rRJPXr0OGtbenq6Hn74YUlSx44dZbEERgw4IyNDhw8f9t+AcVlSiAftnIU64s86PVWjRLKVHZ6OjQlXfP2IC3Zht1krtF9ZMtLTpFLjV908r7B8Kcz9ZkUFOf49V40QVSpZJWdpadWda2hBuXd9f1wDjuNHpbwqeuyk6nEOXEhUbSnKs6aZx45U7df3QqrD6x9Zo9zXt6L3AMnz+0BRYb7xxy6quNzvXfHHffBYxhGpOMBXaQ/J8+hvCMWFuca/vhcSVCjVLH+zr88BZ0lx4B8jAED5qsPnwcoy+zEw+/wBs18DZp8/AO4DZp+/xDFg/uaev8QxMPv8JY4B8zf3/CWOgdnnD84BVEumCU/369dPKSkpmjJlivr3769WrVpJktavX69bbrlFDsdvQZZOnToZWOXZYmPLXiHWV3KDs3XSg3bBpRmq27Cht8vxugzlq1RlryaY4cg7b9vYmDDZbVaVlDqV4Sh79fLz9uMqVYPY2rKoRoXrNUKW1aE8NXK7XaQ9SzWqwDlQGek2m5ySrDab4qroXB32YhWWs81b18D5+qpXJ0JBtarmsZOqxzlwISXWEh11OSVLOenS8rhKFFtbslXh1/dCqsPrX2QL1/Fytl3oHiBV/r0wNLhUdQw+dscsBSouZ5vPPwtIiqsXLatHT6r5z0lbpnLVwu12EbYTqhng14bTEqL082z39TkQZC1UvQA/RgCA8lWHz4OVZfZjYPb5A2a/Bsw+fwDcB8w+f4ljwPzNPX+JY2D2+UscA+Zv7vlLHAOzzx+cAwhclcnYmiY8PWnSJH3yySc6dOiQ2rVrpzZt2qigoEB79+7VwIEDlZCQoKVLlyopKcnoUs/wdDlxT+Xll6hhv1k6mVPkVrsPpo7RnwY97aOqvGfYg99q7rLUMreV9dXqf3Ro2UjF149QhiNfjfrPdnvspDZ1teXTA26387efth3XxaPPfyz+l8UibVv5uhIaerhcbRUR32+WDh/LU1xsnNJ+STO6HI/8/dUNev69rWVu8/U1EBURpPQtW2S1BsbK/p6oDudARVx33zItWHHQrTY3D2mt/zy320cVBYbq8PoXFpUq6pKPVFziPGfbhe4BUuXvA/94aIweveNlt9t5021PrNLMBXvK3Obr+2CLxtHa8/M+t9v52/a9WWp/w3y32/20ZIraNn/bBxV5V4tBc7TvUE6Z23x9Dtx8Uy+9//TjbrcDAASG6vB5sLLMfgzMPn/A7NeA2ecPgPuA2ecvcQyYv7nnL3EMzD5/iWPA/M09f4ljYPb5g3MA1ZObS0tWXfHx8Vq9erUGDRqk0NBQpaamqnbt2poxY4YWL16s3bt/C30FUnja38LD7LrzxtZutYmrG64b+yf4piAv69I2xpRju6N7h7q6pGNdt9pc26dJtQ9OVxcXJdYxbOzObepU6eC0mdw3up3bbf4yyv028L+QYJvat6hl2PhG3oMCoYYubY2ff0W0a1FLV17cwK02/Xs0UNvmxp1b7rgokc+DAAAAAAAAAAAAAACYnWnC05KUmJioRYsWKScnRzk5Ofrxxx81btw45ebmKjU1VVarVe3btze6TEM9M6GLenWp2FLm4aF2ff7vfgoJtvm4Ku+4omucYWP3ruAxDQSzX+yjuLrhFdq3ZZNovfPkZT6uCN5yaef6stmMCTD37lp1rgGz69O9gSbf07nC+//roe7q3sG9hy5gnCu6GXMthgTbdHEAnCfGfhYwbmx3/ee53mrSILJC+zZpEKkPn+3t44q85woD34+q0udBAAAAAAAAAAAAAACqM1OFp8uzfft2uVwutWzZUuHh54ZG586dq7lz52rHjh1n/bxhwwaP9gtkIcE2ffnGAN3YL+G8+zWsF66V719TpQJzF3esq46tavt93FrRwRo2oKnfx/VUkwZRWvvhYHVoef4VJHt2qqfVMwcrplaonypDZcXVDde1VzTx+7hWq0V33ODeqvYw1j/u7qyXHuiu4KDyPyaEhtg0/bGeeuDPHfxYGSpr3E1tDBl35NXNVDM6xJCx/6hDq9rqkVTP7+NGhNk1elBzv4/rqbi64Vozc/AFV0ru2i5Ga2YOrvBDV4Fg9KAWCg+1+33cSzvXV/uW/v8cCgAAAAAAAAAAAAAAzuX/5EAA2rZtmyQpKSmpzO3Dhg0r8+cxY8Zo5syZbu8X6CLCgzT35Sv18+4TejM5RQtWHlT68TxJUnCQVf95rreu75ugoPOE6gKRxWLR+BGJuvuZtX4d9/brWinMgJBOZTSNj9KWT6/XNz8c1huzU7Tou4NyuiSrRRpxdTONH5GoSzvXl8VizCrG8Nz4EYma/22qX8cc0ruRGsdVbAVTBAaLxaKHbu2gPw9pofc+260PF+5R2tFcWSwWNY6L0G3XttJt17VUnZo8PFHVtGlaU327x2n5T+l+HXf8iES/jnc+40ckat3WY34d85bBLRQdGezXMSsrPjZC62cN1cr16ZqenKKVGzKUk1usqIggXdE1VuNHJOqKbnFV7rNAjahg3Ty4ud6eu8uv444fHjjXAAAAAAAAAAAAAAAAZle1Ep0+cqHwtMvlqlA/Fd2vqujYqrbefOJSvfnEpYrvN0uHj+Wpbq1QDb+qmdGleezmQc31wntblXrktF/Gi4oI0n03t/PLWN5mtVo0oGe8BvSMP/P6x9UN1ydT+hhdGiqh78Vx6tmpnr7f4p/goNVq0d/v6OSXseB99eqE6dE7kvToHWW/P6JqenxcJ7+Gpwf0bKhu7c+/grE/DRvQVM++vUW7Uk/5ZbzQEJseHFM1V2i3WCzq072B+nRvYHQpXvXQmA766Iu9Kigs9ct4bZrW0I39E/wyFgAAAAAAAAAAAAAAuLCqtXSwj1woPI3qIyI8SO89dbnfxpv6YHc1imXFXQQOi8WiD57updAQm1/Ge/DP7dW9Q12/jAWgYvp0b6C7h7Xxy1hREUF658nLAmp14pBgmz545nJZrf6p6bmJXdWicbRfxkLFtGxSQ89O6OKXsaxWi2Y+00shwf553wUAAAAAAAAAAAAAABdGeFrS8uXL5XK5NGjQIKNLgR/0vbiBxo9w76vTMxx5SjuaqwxHXoXb9O/RQHfe2Nrd8gCfa5VQQ89N7OpWG0+ugcRmNfX0vRe5Wx4AP3jxgW5KaODewz2e3AdefuhiNY4LvIeIeiTV14N/bu9WG0/mf1nn+pr4p7bulgc/uP/mdrq0c3232nhyDjx8awdd3LGeu+UBAAAAAAAAAAAAAAAfshtdAGCEVyZdrF/TcvTV2rQK7d9t1EK3+u/YqraSX+obUCttAn90/83ttCv1lGZ8urNC+7t7DTSoF67F0wYoNIS3GSAQRUUEa8mbV+nyWxfLkVVQoTbu3gce/HN7jb2hlSfl+cVzE7tq76FsffbtgQrt7+78WyfU0PxXrpTNxrOKgchms2r+y1fq8lsXa/eBUxVq4+45cMOVCX5b4RoAAAAAAAAAAAAAAFQcaQ6YUnCQTfNfuVKDejXyet8XJdbRN29frVrRIV7vG/AWi8Wi6Y/11D3D23i978ZxEVrx7jVqGh/l9b4BeE+bpjW14t2Biqsb7vW+HxrTQS892D2gHyKy262aNaWPbuqf4PW+2zWvqeXvDlTd2mFe7xveU69OmFa8N1Btm9f0et/DBjTVrBevkN3OX7cAAAAAAAAAAAAAAAg0/Gs+TCss1K7PXumnyfd0lt3unXDXXcPaaOX71xCWQpVgtVr0xmM99dYTlyoyPMgrfQ69orF+/HioWiXU8Ep/AHyrfcva+vHjIbqqZ0Ov9FcjKlgzn+mlFx/oFtDB6d+FBNs0+8U+ev6+rgoO8s7H4jFDW2rNh4PVoF6EV/qDbzWoF6G1Hw7WmKEtvdJfcJBVL9zfVbOmXKHgIJtX+gQAAAAAAAAAAAAAAN5FeBqmFhRk1ZP3XKT1n1yrixLreNxP04ZRWvb21XrriUsVFRHsxQoB37JYLLprWBttm3e9BlQiPBlTK1T/fb63Pn+1n2JjvL+KLQDfaRQbqSVvXqV3J1+mWtGev4cNvaKxts+/QWOubVklgtO/s9ms+tvYJG2ec50u6VjX434axUZo0bT+mvlsL9Xk2yeqlJrRIZr5bC998Xp/NYr1PPTeI6meNs+5To/cniSbjb9mAQAAAAAAAAAAAAAQqOxGFwAEgk5t6mjD7Gu1amOGpienaP63qSopcV2w3VU9G2r8iERdc3kjvpYdVVpCwygtfetqbU5x6M05O/Xx4n3KKyi5YLtLOtbV+BGJGjagqUJDeEsBqiqLxaKxN7TWqIHNNWvJPr0xO0Wbd2ZesF1keJD+PKSFxo9IVLsWtfxQqe+0bV5L3/9niNZtPabpySn69Ov9Kip2XrBd3+5xGj8iUUOvaKIgL61eDWMM7t1YV/WM18KVB/TG7BStWJ9+wTbBQVYNG9BU40ckqkdSvSr14AAAAAAAAAAAAAAAAGZF0g34/ywWi3p3jVPvrnE6lVOkTSkObdyRqW17TmjO1/tVUFiqsBCb/n5nkrokxqhL2xjVqxNmdNmAV3VOjNHbT16mf0+6RFt2ZWrjDoe27Dqhk9lFKil1KizUppaNa6hL2zrq0jZGjWIjjS4ZgBeFh9k19obWuv36VjqYflobd/x2H9iXlq38glIF2a2qFR2szm1+uwd0bFVbYaHV5+OkxWJRz0711bNTfU1/rKc27/xt/j/vzlJObrFKnU6Fh9rVpmnNM/dBVtuvXoKCrLqxf1Pd2L+pMhx52rjjt8+DO/efVF5BiWxWq6IigtSxVS11aRujzm3qKDqSbx0BAAAAAAAAAAAAAKAqqT5pF8CLakQFq0/3BurTvYEk6dsfj+jwsTzVrhGix8d1Nrg6wPfCw+xnAoQAzMdisahJgyg1aRClG/olGF2OIaIjg888VAVzio0J16BejTWoV2OjSwEAAAAAAAAAAAAAAF7Ed4sDAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTIDwNAAAAAAAAAAAAAAAAAAAAwBQITwMAAAAAAAAAAAAAAAAAAAAwBcLTAAAAAAAAAAAAAAAAAAAAAEyB8DQAAAAAAAAAAAAAAAAAAAAAUyA8DQAAAAAAAAAAAAAAAAAAAMAUCE8DAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTIDwNAAAAAAAAAAAAAAAAAAAAwBQITwMAAAAAAAAAAAAAAAAAAAAwBcLTAAAAAAAAAAAAAAAAAAAAAEyB8DQAAAAAAAAAAAAAAAAAAAAAUyA8DQAAAAAAAAAAAAAAAAAAAMAUCE8DAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTsBtdAAJP6uEcffHdQW3ckamNOxzafzhHufklkqR0R74GT/haXRJj1KtLrPp0j5PVajG4YniTy+XS+l8c+uaHw9q4I1ObUhw6fCxPknTkWJ5aDv5UXdrWUZfEGF19abw6tKptcMXedywzXwtWHNCGHQ5t3JGp3QdOKSe3WJKUfjxP/cctUZe2MeqZVE8DL2ukoCCeQwGqE5fLpVUbM7Ryfbo2pWRqU0rmWffBttfNO3MfHNy7sVo0jja4YgAAAAAAAAAAAAAAAAAVRXgakn4Lin21Jk3Tk1O0ePUhuVxl7+d0urR41SEtXnVIktSicbTuGd5Gt1/XSjWjQ/xYMbytoLBEn3z5q96YvUObUjLL3Mclae/BbO09mK3kr/Zr0ivrdVnn+ho/IlHDBjSV3V61Q8Q/bD2mabN36NOv96uo2FnmPk6X9M0PR/TND0ckSXF1w3XnDa119/A2iqsb7s9yAXhZTm6RZi7Yo+nJKdq5/1SZ+7gkpfx6Uim/ntR/F+3TX1/6UVf1bKjxIxI1uHdjHigCAAAAAAAAAAAAAAAAAlzVTjrCK9IycjXo3q91zb1fa9Gq8oPTZdl7MFsPTv1JidfN0xcrD/quSPjUD1uPqfPwzzX2ydXlBqfLs2bzUf3pbyt1yc1f6Jc9J3xUoW+dzC7UbU+sUo9bvtDHi/eVG5wuS/rxPD09Y7NaD52rd+bulMudCwhAwPj6+zS1u36+Jr7wQ7nB6fIs/f6wrr3vG/W7c4n2p+X4qEIAAAAAAAAAAAAAAAAA3kB42uRmfblP7W+cryVr0irVT4YjX0MnLtOf//6d8vJLvFQdfK201KlHX12vS8cscjss+L827nCoy8gFeumDn6tUgHjFT0fU/ob5mrlgT6X6yckt1rin1+qqu7/Sscx8L1UHwNcKi0o17qk1uurupTqUkVupvlasT1eHG+fr/c92e6k6AAAAAAAAAAAAAAAAAN5GeNrEXvt4u/70t5U6lVPktT7/s2ivrr7nK2Wf9l6f8I2SEqdu+ft3euG9n+V0eifsXFTs1KRX1uv+KT9UiQD158tTdfU9S3X4WJ7X+ly27oguv3Wx0ioZwgTge3n5JRo6cZnembfLa33m5pdo7JOr9dw7W7zWJwAAAAAAAAAAAAAAAADvITxtUu/M3an7pvzgk75XbzqqoROXqaCQFagDlcvl0tgnV2vWkl990v9rn+zQ3/693id9e8vX36dp+EMrVFTs9Hrfuw+cUv+7lsiRVeD1vgF4R3GxU8Me+lZff3/YJ/0/9vpG/fs/v/ikbwAAAAAAAAAAAAAAAACeIzxtQlt3ZWr8c9/7dIzvNmTo8dc3+nQMeO7tubv00Rd7fTrGix9s04IVB3w6hqcyHHka9chKFZd4Pzj9u537T+mOyaurxArcgBk99+4Wfbk6zadjPPivn7Ru61GfjgEAAAAAAAAAAAAAAADAPYSnTaa42Klbn1ilkhL3Ap3rZw3VoWUjtX7W0Aq3efk/v+j7LYTGAk3q4Rw99K+f3GrjyesvSXc/s1YnThW61cbXXC6XR3V5cgwWrDioT77c526JAHxsy85MPfvOFrfaeHIPcDpduu2J1cov4JsYAAAAAAAAAAAAAAAAgEBhyvC0w+HQpEmT1KJFC4WGhqpRo0a67777lJubq7Fjx8pisWjatGlGl+kTr/znF23ZecLtdrEx4YqvH6HYmPAKt3G5pLFPrpbTWbVX3j1wJEeFRaWS5NOViv1lwvPrdDqv2K02nrz+kpThyNekl90LavvaZ98e0IIVB91u5+kx+Mvz63QyO7AC5HBPUXGpNmw/roL/fx+o6vc0s3O5XLpj8hq3HyLy9B6wK/WUnnt3q1ttAAAAAAAAAAAAAAAAAPiO6cLTW7ZsUYcOHfTSSy8pIyNDbdu2VXFxsV577TWNGDFCKSkpkqROnToZW6gPlJQ49don2/065s79p7R0bZpfx/QGp9Olz5enasBdS5Rw9Rw5Tv4Wfj12okDd/7RAMxfsPhOorkp27T+pxasO+XXM/yzaK0dWgV/HPJ9X/vOLX8fLyi7SR1/s9euY8I7DR3P1xLSNajwgWd1GLVTm/78PZDjydc8za/XLHvcfRIHx1mw6qo07HH4d8805KSooZPVpAAAAAAAAAAAAAAAAIBCYKjztcDg0ZMgQZWRk6MEHH1R6ero2bdqkjIwMTZkyRYsXL9b69etlsVjUsWNHo8v1ui++O6jDx/L8Pu705BS/j1kZhUWl+tPfVuj6+7/VsnVHztm+/heHbntitfrduUQnTlWtFYXf+nSn38csKnbq/c92+33csvy8+4TWbD7q93GnJ6fI5WK14qpkzaYMdbhxvp59e4uOZuaftc2l366lzsM/18wFgXFuo+KMeE/KPFmoT7/e7/dxAQAAAAAAAAAAAAAAAJzLVOHpiRMnKi0tTRMmTNDUqVMVFRV1ZtukSZOUlJSkkpISJSQkKDo62sBKfWPmgj2GjLt49SEd+5/wYaByOl269fFVSv7qwiG3NZuPavCEr5VfUDVWE3U6XYatgDxzoTHn3v/60KA6dqWe0o8/HzdkbLhvc4pDA8cvVVZ20Xn3Kyl16bYnVmvO0l/9VBkqKye3SPO+STVkbKPegwEAAAAAAAAAAAAAAACczTTh6ZSUFCUnJysmJkbPP/98mft06dJFkpSUlHTmz34PW3fv3l0hISGyWCxltp07d65uvPFGNWnSROHh4WrTpo0ee+wxnT592vuT8YDL5dKP24wJb7pc0oYdDkPGdteSNYc0+6uKByHXbT2mGQas5uyJfYeyDVspO+XXkzqVc/4gqj8YdQ1I0k+/EJ6uKu59bp1O51X8oYi7n1lbZR6iMLvNKZkqLnEaMvb67Q45naxADwAAAAAAAAAAAAAAABjNNOHpWbNmyel0avTo0YqMjCxzn7CwMElnh6f37t2refPmKTY2Vt26dSu3/6lTp8pms+m5557TkiVLdM899+jNN9/U1VdfLafTmKDWHx05lqejBq7+vLGKhKffmJ3idpvpc1KqRCDO6Ndg885MQ8cvLXVqc4pxNRh9/FExm1McWrf1mFttsrKL3HroAsbZaOA9ICe3WHsOnDJsfAAAAAAAAAAAAAAAAAC/sRtdgL8sX75cktSnT59y90lLS5N0dni6V69eSk9PlyRNnjxZa9euLbPtF198obp16575uXfv3qpbt65Gjx6tNWvWqFevXpWeQ2X8sjfL0PG37TF2/Io4cixXX61Nc7vdngPZWrv5qC7vEuuDqrzH+HPghK7oFmfY+KlHTivPwNWBq8I1AOmDBXs8avf+Z7t123WtvFwNvM34+2CWWjetaWgNAAAAAAAAAAAAAAAAgNlZXC5X4C+Z6wWNGjVSWlqaNm/erE6dOp2zvaSkRHFxcXI4HNq3b5+aNWt2zj6TJ0/WU089pYoest27d6t169b65JNPNGrUKLdr7tq1qzIyMtxuV5b8oLY6ETWizG3rZw1VbEz4edvHxoTJbrOqpNSpDEf5K1hnOPLUbdTCc/48pGi3Yk5/7F7RflZka6jjNcZ51LbW6XkKL/rZyxV518nwgcoNvaTMbRc6Byr6+kvlnwPRed8oqmC1e0V7UbGtvo7VGF/mNn9cA7ZSh2JPve5e0fC7zMhRKghu43Y7W+lJxZ56xQcVwZtORAxTfkj7Mrf54z5Y8/Rniija4lbNAAAACAzpNR+Q01pDVucpxZ182ehyDGH2Y2D2+QNmvwbMPn8A3AfMPn+JY8D8zT1/iWNg9vlLHAPmb+75SxwDs88fnAMIXLGxsdqwYYNHbU2z8nRubq4kKT+/7MBTcnKyHA6HoqKi1LRpU6+MuWLFCklSYmKiR+0zMjJ0+PBhr9Si6FgpquxNsTHhiq8fUaFu7DZrhff9o8LCQu/NxVfCQqQanjXNyspS1skAn19crhRa9qaKngOevv6SlJ2drezjBh6jUGu5r68/roHSktLAvwYgNSmUgt1vVlrq5PWtChoXSCFlb/LHffDkyZM6mcV5AgAAUCVFlUpWyVlq4r/bmf0YmH3+gNmvAbPPHwD3AbPPX+IYMH9zz1/iGJh9/hLHgPmbe/4Sx8Ds8wfnAKol04SnY2NjlZWVpU2bNqlHjx5nbUtPT9fDDz8sSerYsaMsFkulxzt8+LCeeOIJXX311WWudF0RsbGxla7jdwVBUcosZ1uGI+/Ctbix6m5ZQkOsqtOwYUVKNUyJNVRHJcnlktw8B2Jq2BUSEdjzOxUWrNPlbLvQOeDuiqtlqREVpshg445RsbWWjpWzzR/XQJDNqXoBfg1AOhlcpFwP2gVZc3l9q4CsUJvKu9r9cR+sVTNC4eGcJwAAAFVRus0mpySrzaY4k372N/sxMPv8AbNfA2afPwDuA2afv8QxYP7mnr/EMTD7/CWOAfM39/wljoHZ5w/OAQSuymRsTROe7tevn1JSUjRlyhT1799frVq1kiStX79et9xyixwOhyR5HHT+o9OnT+vaa69VcHCw3n//fY/78XQ58bKkHs5R04FzytzWbdTCC7Y/tGyk4utHKMORr0b9Z7s9/sN/Ga2n7w38Jfv7jP1SK9enu9WmcVyEft38nWw2q4+q8o7/fLFHf35sVZnbLnQOVPb1l6RP//uq+vcwMDxd7FRUj49UWFR6zjZ/XAM3DblUn0x53O128K91W4+q5y2L3G73738M1/iRk71fELzqxfd/1iP/Xl/mNn/cB1ctnaX2LWt71BYAAADGiu83S4eP5SkuNk5pv6QZXY4hzH4MzD5/wOzXgNnnD4D7gNnnL3EMmL+55y9xDMw+f4ljwPzNPX+JY2D2+YNzANVTYKc9vWjSpEmqU6eODh06pHbt2qlDhw5q2bKlunfvrmbNmqlv376SpKSkpEqNk5+fryFDhmj//v36+uuvFRcX543yK61Jg0jVqRli2Phd28YYNrY7xo9IdLvNXTe1CfjgtCR1Mfg1MHr8oCCrOrU2LrRo9PxRMZd0rKckN8+TyHC7bh7cwkcVwZu6tjPuOgwPtatN05qGjQ8AAAAAAAAAAAAAAADgN4Gf+PSS+Ph4rV69WoMGDVJoaKhSU1NVu3ZtzZgxQ4sXL9bu3bslVS48XVxcrJtuukkbNmzQkiVL1LZtW2+VX2kWi0Xd29c1bHwjA2vuuL5vE13Vs+KrI7dvUUv3jgyc1/l8WifUUFREkCFjN28Updo1jAvv/657B+OugW5V5BowO4vFotceuUTBQRV/e5z64MWKjgz2YVXwlosS68hqtRg2tt1umo9dAAAAAAAAAAAAAAAAQMAyVYonMTFRixYtUk5OjnJycvTjjz9q3Lhxys3NVWpqqqxWq9q3b+9R306nU6NHj9a3336rBQsWqHv37l6uvvJGD2puyLh9u8epQb0IQ8Z2l91u1af/6qt+lzS44L4dWtbSV29epRpRVSM0abNZ9adrjDkHbh4UGKvyGlVHQoNIXdq5viFjw329usZp7r+uVFiI7YL7vvRAd901rI0fqoI31IwO0eBejQwZm9XJAQAAAAAAAAAAAAAAgMBgqvB0ebZv3y6Xy6WWLVsqPDz8nO1z587V3LlztWPHjrN+3rBhw5l97r33Xn366af661//qvDwcP3www9n/jt+/Ljf5nI+N/VvqphaoX4fd/yIRL+PWRlREcFa/MYAvfXEperYqvY525s2jNKU+7tpzYeD1bB+1QiF/+6e4f4PedpsFt15Y2u/j1uWbu1j1KWt/1eAvnt4G9ls3G6rkiFXNNbG5Os07qbWigizn7XNZrPohisT9N371+ihWzsYVCE8ZcR7UlREkGEPMAEAAAAAAAAAAAAAAAA4m/3Cu1R/27ZtkyQlJSWVuX3YsGFl/jxmzBjNnDlTkrRkyRJJ0gsvvKAXXnjhrP0/+OAD3XrrrV6s2DMhwTbdM7yNnpmxxW9jNo6L0NArmvhtPG8JDrLprmFtNO6m1tqUkqnUwzkqdbrUoG64enaqL6vVYnSJHklqXUdXdIvTyvXpfhvzpv4JARMyt1gsum90W/35sVV+GzMizK7br2vlt/HgPYnNamrGPy7Ti3/trrVbjupUTpEiwuy6KDFG8bGBcU7Dff17NFSbpjW0c/8pv4059vpWigwP8tt4AAAAAAAAAAAAAAAAAMpHeFoXDk+7XK4L9pGamurNknzmb7cnafZXv2rPgWy/jPf2Py5TUFDVXXHXYrGoS1tjViv2lemP9VTn4Z+rsKjU52PVjArWyw9d7PNx3DF6UAt98PkerfBTgPzFv3ZT3dphfhkLvlEjKljXXN7I6DLgJVarRe88eZl63bZYFXh7r7RGsRF6avxFvh8IAAAAAAAAAAAAAAAAQIVU3VSrF10oPF2dhIfZ9cHTvWRxc+HkDEee0o7mKsORV+E2d9zQSlddGu9mhfC1xGY19bSbQT5PXn9JevWRS9SgXmCt0Gu1WvTeU5crIsy9Z0c8OQZ9usXp7uGJ7pYIwMcuuyhW941u51YbT++D706+TNGRwW61AQAAAAAAAAAAAAAAAOA7rDwtafny5UaX4FeXdq6v5yZ21aOvbqhwm26jFro1Ruc2dfSvAFtxGP/ngT+31+pNGVq06lCF9nf39Zek269vpVuGtHC7nT80jY/S+09frpGTVlR45Vl3j0Gj2Ah9+M9eslrdfFIBgF88N7GrfvrluL7fcqxC+3tyH3zsziQN6MlDRAAAAAAAAAAAAAAAAEAgYeVpk3rk9o56fFwnn/TdsVVtLX3rKlbaDGB2u1VzpvbVVT0b+qT/UQOb6e1/XCqLu0uc+9Hwq5rp3cmXu70Ke0U0rBeuZTOuVqPYSO93DsArwkLtWjxtgLq1j/FJ//ff3E7PTOjik74BAAAAAAAAAAAAAAAAeI7wtElZLBY9M6GLXn3kEgUHee80uKpnQ618/xrVrR3mtT7hG2Ghdi14rb9uv76V1/q0WKSHxnTQf57rLZst8G8vt1/fSp9O7asaUd4L+l+UWEdrPhys1k1req1PAL5RMzpE374zUNf1beK1Pu12i164v6tefvjigH6ABAAAAAAAAAAAAAAAADCrwE83wqcmjm6nzXOuq/TKm9GRQXp38mVa8uZVqhUd4qXq4GshwTa999TlWjStvxrUC69UX80bRem79wfppQe7V4ng9O9u7N9U2+ffoGsuj69UP0F2q56d0EU//HeoEhpGeak6AL4WFRGs+a9cqf8+31u1oiv3IEVS69pa/8m1euT2JILTAAAAAAAAAAAAAAAAQICyG10AjNe2eS19/9EQfbx4n6Ynp+inX45XuG1MrVCNvb6V/jKqrRrWj/BhlfClQb0aa/v8+nrr051669OdOnDkdIXbtk6ooXuGt9EdN7RWRHiQD6v0nYb1I7Ro2gB9sfKgps3eoWXrjlS4bWR4kG4e1Fz33dxObVhtGqiSLBaLRg9qoX6XNNQbs3fo7bm7dDQzv8LtO7WprfHDEzXm2pYKDrL5sFIAAAAAAAAAAAAAAAAAlUV4GpIku92qMde21JhrW2rjDoc+X35AG3c4tHGHQ8dOFJzZLyTYpo6taqlr2xj16hKr669MUEgwQbHqoGZ0iP42NkkP39pBX61N0zc/HNHGHQ5t3nlCp/OKz+xXIypYXRLrqEvbGF19abz6dI+rFiusWiwWDe3TREP7NNGeA6c0Z+l+bUxxaMN2hw5l5J7Zz2azqF3zWurSto56JtXX8KuaKjqycqvVAggM9euE6el7u+jxcZ20cMVBrdyQro07HNqy64QKCkvP7FenZoi6to1Rl7YxGty7kS7pWK9a3AcBAAAAAAAAAAAAAAAAMyA8jXN0+f+BMElyuVzKyy9RQVGpguxWRYTZZbNZDa4QvmSzWTWoV2MN6tVYkuR0upSbX6yiYqdCgm2KCLNX+5BgyyY19Ni4Tmd+zi8oUX5hqWxWi8JD7QoK4hoAqrPgIJtuGtBUNw1oKkkqLXUqr6BERcVOhQbbFG6C+yAAAAAAAAAAAAAAAABQXRGexnlZLBZFhAcpIjzI6FJgEKvVoqgIc6+sHBZqV1got0vArGw2q+nvgwAAAAAAAAAAAAAAAEB1wfKpAAAAAAAAAAAAAAAAAAAAAEyB8DQAAAAAAAAAAAAAAAAAAAAAUyA8DQAAAAAAAAAAAAAAAAAAAMAUCE8DAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTIDwNAAAAAAAAAAAAAAAAAAAAwBQITwMAAAAAAAAAAAAAAAAAAAAwBcLTAAAAAAAAAAAAAAAAAAAAAEyB8DQAAAAAAAAAAAAAAAAAAAAAUyA8DQAAAAAAAAAAAAAAAAAAAMAUCE8DAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTIDwNAAAAAAAAAAAAAAAAAAAAwBQITwMAAAAAAAAAAAAAAAAAAAAwBcLTAAAAAAAAAAAAAAAAAAAAAEyB8DQAAAAAAAAAAAAAAAAAAAAAUyA8DQAAAAAAAAAAAAAAAAAAAMAUCE8DAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFOwG10AAAAAAAAAAACBJPt0kTbvzNTGHQ79mpajwqJS2W1WxdQKVec2ddSlbR01jouUxWIxulQAgA8UFzv1y94T2rgjUzt+zVJWdqEk6VROkT74fLe6to1RYrOasttZpwqoro5l5mvjDoc2pjh0MqdIknQyp0j/fHuLurSNUZe2dVS3dpjBVcJXXC6X9h/O0cYdmdqcknnWOfDqf39Rl7Yx6tSmjiLDgwyuFICv5OYVa8uuE9q4w6G9h7L/7/Pg6SIlf/WruraLUbP4KH4vAABVGOFpAAAAAAAAAIDpFRc7tXDlAU1PTtGK9elyuc6/f5MGkRp3Y2uNvaG16tchOAMA1cH6X45renKKkpf+qvyC0nO2n84v0e3/WC1JigwP0uhBzTV+RKI6tqrt71IB+MDpvGJ9vHif3pyToq27TpyzPTe/RI9P23jm585t6uie4W30p2uaK4IQbbWQlpGrd+bt0ruf7dKRY3nnbM/NL9H9L/4oSbJaLbqqZ0ONH5GogZfFy2bjgRqgqnM6XVq6Nk3Tk1P05Zo0OZ3n/mLgdF6JRk5aIUmKjQnTHTe01ribWqtRbKS/ywUAVBLhaQAAAAAAAACAablcLs1Zul8PTv1Rh8sISJTnwJHTeuz1jZr85maNu6m1Xri/GyvPAUAVtW33Cd31zFqt23qswm1O5xVrxqc7NePTnerbPU5vPXGpWjap4cMqAfhKSYlTUz/cpufe3aqc3OIKt9u8M1Pjnl6rh17+SY/f2UkP/Lk9AdoqKiu7UA9O/VEffbFXpaUXeIry/3M6XVqyJk1L1qQpoUGkXn+0hwb3buzjSgH4yldr0jTh+e+171BOhdtkOPL17Ntb9Ny7W3XzoOZ6+eGLVadmqA+rBAB4E5/cAQAAAAAAAACmdCwzX8MeXK6Rk1a4FZz+o+ISp96YnaION8zXip+OeLlCAIAvlZQ49c+3t6jLyAVuBaf/1/Kf0pU07DP9+z+/lLlCIYDAtWNflnr++Qs9+uoGt4LTf5R9uliTXlmvy8Ys0s79J71bIHxu8aqDan/DfH3w+Z4KB6f/V+qR0xryl2Ua89h3ysou9HKFAHzpVE6Rxj65WgPHL3UrOP1HTqdLH32xV+2un68FKw54uUIAgK8QngYAAAAAAAAAmM6u/SfVddQCzfsm1Sv9pR45rSvvXKI3k1O80h8AwLfy8ks0dOIyPT5to4pLnJXuL7+gVH996UeNemSFiopLvVAhAF9btu6wuo1aqPW/OLzS3w8/H1e3UQt5oK4KeeG9rRo8YZmOePgg5f/66Iu9unj0Qh1MP+2V/gD4VlpGrnrc8oXe/2y3V/o7mpmv6+77Rs/M2CyXiwfqACDQEZ4GAAAAAAAAAJjKngOn1Pv2L3UoI9er/bpc0vh/fq/ps3d4tV8AgHcVFP4WnF6yJs3rfc9Zul8jHl6hEi8EsgH4zrJ1hzV4wtfKKyjxar+n84o1cPzXBKirgOfe2aJHX93g9X73HMhW79sWK83Lf9cA4F3px/N0xdjFSvn1pNf7/scbmzR5+mav9wsA8C7C0wAAAAAAAAAA0zidV6yr71mqo5n5Phvj3ufWacnqQz7rHwBQOXc/872+/dF3wcbPlx/Qwy//5LP+AVTO7tRTuu6+b1RU7JuHHAqLSjV04jfadyjbJ/2j8mYv2afHXt/os/5Tj5zWoAlfq7CIbyIAAlFxsVODJ3ytfYdyfDbG0zM266OFe3zWPwCg8ghPAwAAAAAAAABMY9LLP+nXNPf+gXT9rKE6tGyk1s8aWuE2dzy1RiezC90tDwDgY1+sPKgP3QyyePI+8O//bteqDenulgfAx0pLnbr1iVVurTjtyT3gdF6xbv/HajmdLk/KhA9lOPJ073Pr3GrjyTnw8+4TevotVp4FAtFz727RppRMt9p4ch+YOOUHHT7KKvQAEKhMGZ52OByaNGmSWrRoodDQUDVq1Ej33XefcnNzNXbsWFksFk2bNs3oMgEAAAAAAAAAXrTipyN6c85Ot9vFxoQrvn6EYmPCK9zmyLE8PTD1R7fHAgD4TlZ2ocY9vcbtdp68D0jSbf9Yrbz8igc0Afjeqx9v17qtx9xq4+k9YNXGDE1PTnGrDXzvnme/14lT7j3k6Ok5MOWDn7Vh+3G32gDwra27MvXsO1vcbufJfeBUTpHuemat22MBAPzDdOHpLVu2qEOHDnrppZeUkZGhtm3bqri4WK+99ppGjBihlJTf/vLSqVMnYwsFAAAAAAAw0LHMfL3w3lZ1HblATa6arVZDPtV19y3TktWHWDkLQJX15PRNfh1v5oI9+jWNr2sHUDXtPZith6b+qA43zFfjAbOVeO1c3fbEKq3/peqGwN6as1MZjny/jfdrWo4++oKva6+q0o/n6ZkZm3XR8M/PnDeZpwr1zQ+H+TtRFVVQWKLn3t3q1zGffXuLiopL/Tomyrc5xaHPlx/w23ilpS49+/YWv40H78ovKNHMBbt1xe2Lz7wPHM8q0Puf7ebhqCrs2be3qKTEf+/ji1cd0k/bqu7nZwCozuxGF+BPDodDQ4YMUUZGhh588EE9+eSTioqKkiS9+OKLeuSRR2S322WxWNSxY0eDqwUAAAAAAPA/p9OlJ6Zt1NQPt6mo2HnWtj0HsrVgxUE1bxSl2S/2Udd2dQ2qEgDct233Ca3edNSvY7pc0oxPd2rKX7v7dVwAqIzcvGKNnbxayV/tP2fbzv2nNHPBHl3aub7mvNRHDepFGFChZ0pLnXrrU/+vADs9OUV3DWsji8Xi97HhmZISpx761096Y/YOlZSeHa4qKCxV/3FfKbFZTc15qY/at6xtUJXwxKdf71fmSfdWHK6so5n5mv9NqkYObO7XcVE2T76FprK++O6QDqafVuO4SL+PDc/NXrJP9z637pxVyouKnRr75Go9OPVHvf5oD908uIVBFcITR47l6jM/PkDxu+nJKeregd+jAkCgMdXK0xMnTlRaWpomTJigqVOnnglOS9KkSZOUlJSkkpISJSQkKDo62sBKAQAAAAAA/M/lcmncU2v03LtbzwlO/9G+QznqfduXWrfVvyFEAKiMGXP9H5SQpPc+281qgwCqjLz8Eg24+6syg9N/tHbzUfW45QsdPprrp8oq76u1aTqY7v96t+3J0vdbjvl9XHjG6XTp5r+v1Ksfbz8nOP1HKb+e1GVjFmvrrkw/VofKeutTYz4PGhHYxbmyTxfp48X7/D6u0+nSO/N2+X1ceO69+bs06pGV5wSn/+hkTpFu+ft3ejPZ/w9mwXPvfbZbped5f/eV2V/9et7zCQBgDNOEp1NSUpScnKyYmBg9//zzZe7TpUsXSVJSUtKZP/s9bN29e3eFhISU+1T46tWr1a9fP8XFxSkkJETx8fEaMWKEUlL4oAQAAAAAAKqGd+bt0nuf7a7QvnkFJRo68Rvl5Bb5uCoA8I5vfzxiyLiZJwv18+4ThowNAO56YOqPFQ76HkzP1fCHN2DvjgABAABJREFUl8vl8n8AxRNGvQ9I0vKfjBsb7nn5o18u+PDA706dLtKQvyxTYREPSVUFp/OK9cPPxw0Z+/utR1VQWGLI2Pg/P247rrwCY14H3geqji07M3XXM2srvP+E59dp/S/G3FvgPqM+DxYWlbIIBQAEINOEp2fNmiWn06nRo0crMrLsr0MJCwuTdHZ4eu/evZo3b55iY2PVrVu3cvvPyspShw4d9Nprr+nrr7/WlClTtH37dvXo0UNpaWnenQwAAAAAAICXuVwuvfzRL261cWQVGLJqEwC4Kye3SLtSTxk2/obtDsPGBoCKyjxZoJkL9rjV5vstx7T+l6pxjzPyXrxxR9U4RmZXUuLUqx9vd6vNoYxczVuW6puC4FVbdmbK6TTmYY+SEpd+3p1lyNj4P0a+D2zemamSkvK/4QuB4/VZO9xamdjpdOm1T9x774AxnE6XNqUY940R/F4AAAKPacLTy5cvlyT16dOn3H1+Dzn/MTzdq1cvpaena+HCherXr1+5bYcOHapXXnlFw4YNU+/evTV69GjNnz9fp06d0rx587w0CwAAAAAAAN9Y8VO6R8HC6ckpVWa1QQDmtXXXCRl5qyI0B6Aq+ODzPR6toDu9CnxdvdPp0uadxn0LwMYdxgV1UHGLVh1U2tFct9u9kbzDB9XA24wMzEl8HgwEm1KMew3yC0q1c/9Jw8ZHxWRlF+qTL91fJGDO0v06fiLfBxXBm/YdylZObrFh4/N5EAACj8Vlkn/datSokdLS0rR582Z16tTpnO0lJSWKi4uTw+HQvn371KxZs3P2mTx5sp566qkK/4NgZmamYmJiNG3aNN17771u19y1a1dlZGS43Q4AAAAAAMBdOaG9lB1+pUdt4048K6uM+8cHX0uv+YCc1hqyOk8p7uTLRpdjCLMfA7PPvzrID0rUiaiRZW5bP2uoYmPCz9s+NiZMdptVJaVOZTjK/0fxDEeeuo1aeM6fhxbtVJ3Ts9wrOoCY/Row+/xhHpmRw1UQ3M7tdvbS46p/apoPKvIep4KUXvvxcrdf6L2gsu8DcpWoYdYzbtUcSMxyHzwV1k+nwy53v6GrVA2ynpbF+yUFjOpwDpwKu1Knw3qVuc1b9wCp/PtAVN4KRResdKvmQFIdzoHjUbepKCihzG3+OAdismcqpGS/WzUHkupwDlxIoT1BjujbPGpbJ/tDhZb86uWKAkd1eP0L7Y3liB5b5jZ//F4gqOSQ6mW/617RAaQ6nAOoHM4BBKrY2Fht2LDBo7Z2L9cSsHJzf3tKOD+/7Dew5ORkORwORUVFqWnTph6PU1paKqfTqQMHDujRRx9VbGyshg8f7lFfGRkZOnz4sMe1AAAAAAAAVFj9Aun8/0ZQrvSMTKk0x7v1BJKoUskqOUtLzfu7GrMfA7PPvzqo0VCKKntTbEy44utHVKgbu81a4X3/qKCwuGqfO2a/Bsw+f5hHgksKdr9ZidMe+NeGNUyqXf7mir4XePo+IEsVOEbnY5b7YFyRFOZBO4tNR44ck1zV94HSanEOxOaV+/r6/B4gKed0nnKOVtFjJ1WPc6B5qRRU9iZ/nAOOzCzpdBU9dlL1OAcuJKq2FO1Z08ysXCm7mh4XqXq8/hFR5b6+/vi9QHGxs+oeO6l6nAOoHM4BVEOmCU/HxsYqKytLmzZtUo8ePc7alp6erocffliS1LFjR1ksnj8X3Lt3b61du1aS1KJFCy1fvlx169b1uGYAAAAAAAB/yAkNVraHbRvE1pbF039dqgLSbTY5JVltNsU1bGh0OYYw+zEw+/yrg/ygaJ0oZ1uGI++C7d1ZYaosoSF21anC547ZrwGzzx/mcSJY8uQL5+3WYtUP8GvDJbuOnGf7hd4LKvs+IFexGgb4MTofs9wHT4UF6bQnDV2latCgXvVeeboanAPZYWEq75Ffb90DztdXVGSYou1V89hJ1eMcOB5kU1E52/xxDsTUqamQGlXz2EnV4xy4kEJ7pBwetq1TK1yhUdXzuEjV4/UvtNcs9/X1x+8Fgu0W1a2ix06qHucAKodzAIGqMhlb04Sn+/Xrp5SUFE2ZMkX9+/dXq1atJEnr16/XLbfcIofjt7fITp06VWqc9957TydPntT+/fv10ksvacCAAVq7dq0aN27sdl+eLicOAAAAAADgro07HOo6coHb7S6/qL5WzUz1fkEBJL7fLB0+lqe42Dil/ZJmdDmGMPsxMPv8q4P1vxxX9z+d+7W5ksr8Ot3/dWjZSMXXj1CGI1+N+s92e/w7xtyo1x+d6na7QGH2a8Ds84d5vDtvl+58ao3b7e79cx/9+5FHfVCR97hcLsX0+lgnThWWuf1C7wWVfR9o0aSO9myruvcPs9wHV65PV5+xX7rd7ppeTbT4jep7XKTqcQ7M+HSn7n5mbZnbfH0PkKRXpz6p265r5VHbQFAdzoGbH12pjxfvK3ObP86Bdau+VIvGVffB8+pwDlxIXn6J4vvPUlZ2eTH7skVFBCn1h+WKDC9nafNqoDq8/gfTT6vJVcllbvPH7wWuHdRbc6Y+5Xa7QFEdzgFUDucAqiOr0QX4y6RJk1SnTh0dOnRI7dq1U4cOHdSyZUt1795dzZo1U9++fSVJSUlJlRqndevWuvjiizVy5Eh9++23ysnJ0YsvvuiNKQAAAAAAAPhMl7YxuriD+9+eNX5Eog+qAQDv6tCylux249aD7NK2jmFjA0BFjRrYTDWigt1ud8/wNj6oxrssFouh92LeB6qG3l1jldisptvt7h3Z1vvFwOuMvg67tI0xdHwY+xrUiApW80ZRho2PigkPs3v0kMOYoS2rdXC6umgUG6GYWqGGjW/0+xAA4FymCU/Hx8dr9erVGjRokEJDQ5WamqratWtrxowZWrx4sXbv3i2p8uHpP6pZs6ZatGihvXv3eq1PAAAAAAAAX3n0Dvd+L9KqSQ3d0C/BN8UAgBeFhtjVvkUtw8bvkkhYBkDgiwgP0v2j27nV5oYrE9S6aU3fFORlRobmeB+oGiwWix4d29GtNp3a1NZVPfna8qqgQ8vaCrIbE48IDbGprQfBfHhXl0TjgosXtakji8W4hzlRcRNGtlVURMWD0OGhdv1lFA/RVAUWi8XQ+wAP0QBA4DFNeFqSEhMTtWjRIuXk5CgnJ0c//vijxo0bp9zcXKWmpspqtap9+/ZeG+/YsWPatWuXmjdv7rU+AQAAAAAAfOXaPk30wv1dK7Rvg3rh+nL6AAUH2XxcFQB4x8BLGxkybuO4CLVtXtOQsQHAXf+4u7NGXt2sQvt2b19XM5+93McVec81lxnzPiBJV18ab9jYcM8tQ1rqsTsr9lBp04ZR+uK1AbLZTPVP7lVWSLBNV17cwJCx+1/SUHaDgtv4P9071FWdmiGGjH3N5ca9B8E9TeOjNO/lKxUacuHfdwUHWfXpv/qqVUINP1QGbxh4mTGfyWpEBatHx3qGjA0AKB+f0CVt375dLpdLLVu2VHh4+Dnb586dq7lz52rHjh1n/bxhw4Yz+9x8882aPHmyPv/8c61cuVLvvPOOrrjiCtntdv31r3/121wAAAAAAAAq45HbkzTzmV6Krx9R7j5XXxqvH/47RM0bRfuxMgConLuGtZbV6v/V3u4elkioCkCVYbVa9N/ne+sfd3VWdGTZqy4GB1l1+/WttPzdgYqKCPZzhZ677KL6hnwLweUX1VeHVrX9Pi489+xfuurNx3uqfp2wMrdbLNK1fRpr3X+HKD62/L83IfCMH5FoqnFxttAQu26/rpXfxw0Jtum261r6fVx4rn+Phlr+7kB1blP+KsUdW9XWN28PJBhfxYwZ2lLhoXa/j3vr0JaKCK/4iuYAAP/w/ztCANq2bZskKSmp7KeIhw0bVubPY8aM0cyZMyVJl1xyiT766CO9+uqrKigoUKNGjdSnTx/9/e9/V5MmTXxXPAAAAAAAgJeNubalRg9qri++O6hPv96v+d+kqrDYqchwuzbPuV4tGhOaBlD1NGkQpcG9GmnhyoN+GzPIbtXY6/0f0ACAyrDZrHrq3os06bYO+uTLffpq7WEtXnVQhcVORUcEae/iYapbu+xQaSCzWCy6d2Si7nn2e7+OS2iyarp7eKJuv76VPl9+QPO/TdWJU4UKDbarQ8tauvPG1kpoGGV0ifDANZfHq3FchA6m5/ptzOaNojSgZ0O/jYfzu3t4G039cJtcLv+NOeKqpqpTM9R/A8IreiTV18bka/Xjz8f1wYLdOpSRK5dLiq8frluvbaWenerJYvH/w7monJrRIRo9qLnembfLr+PeM7yNX8cDAFQM4WldODztqsAn5wkTJmjChAlerQsAAAAAAMAodrtV11+ZoOuvTFB8v1k6fCxPNSKDCU4DqNKendBFS9akqbjE6ZfxJt3WQfXKWbUSAAJdRHiQ7rypje68qc2Zz4NREUFVMjj9u1uvbanXPtmhlF9P+mW87u3r6qb+Tf0yFrwvOMim4Vc10/CrmhldCrzEZrNqyv3dNOqRlX4bc8r93Qz59hOUrVl8tO4ZnqjpySl+GS8izK7J91zkl7HgfRaLRZck1dMlSfWMLgVe9Pi4Tpr91a/KyS32y3h33NBKrZvW9MtYAAD38F2BunB4GgAAAAAAAABQ9XVoVVv/uLuTX8Zq36KWnrirs1/GAgBUTGiIXTOf6eWXIGNwkFUfPHO57Hb+ORYIJCOubqbrr/TPN0ePuLqpbuQBioAz5a/dlNAg0m9jNY1npXogkDSOi9S/Huzul7EaxUboXw9d7JexAADu42/rkpYvXy6Xy6VBgwYZXQoAAAAAAAAAwIceuS1Jl3Ss61abDEee0o7mKsORV6H9Q0NsmvlsL4UE2zwpEQDgQ9071NXf73BvQSV33wck6fn7uqpt81rulgfAxywWi958/FLF1Q2vcBtP7gEN64Vr2qM9PSkRPhYZHqSZz/aS3V7xB2k8OQcG9Gyoe4YnelIiAB+748bWGtSrkVtt3L0P2GwWvf/05YqODPakRACAH9iNLgAAAAAAAAAAAH8JCrJq0bQB6n3bYm3fd7JCbbqNWljx/u1Wzf1XX3VpG+NhhQAAX3tq/EU6cjxP73+2u0L7u/M+IEl/vaWd/npLe09KA+AH9euE6eu3rlLv27/UiVOFF9zf3XtA3VqhWvb2QMXUCvW0RPhY765x+ujZ3rr579/J6XRdcH93z4Hu7etq7r/6+uWbDgC4z2KxKPnFPhpw91f6fsuxCrVx5z5gsUjvP3W5+l3S0NMSAQB+wMrTAAAAAAAAAABTqVMzVCvfH6Ru7b0bcA4PtWvha/01qFdjr/YLAPAuq9Wid568TBNGtfV633+/I0n/euhiWSwE5oBA1r5lba36YJAa1Kv4CtQVEV8/QqtmDlJis5pe7RfeN+qa5kp+sY+Cg7wbm+ndNVbL3r5aURGsNgsEsojwIC1962r1u6SBV/sNslv18fNX6M9DW3q1XwCA9xGeBgAAAAAAAACYTkytUK2eOVh/vyNJNlvlA26XX1RfW+der6svi/dCdQAAX7NaLXr90R6aM7WvV1aHbVgvXIvfGKB/TuxKcBqoItq1qKWf516vUQObeaW/Wwa30Na516tN05pe6Q++d9OApto4+1p1bVf5hyqDg6x6bmJXffP2QEVHEpwGqoLI8CB99eZVevGv3RQSbKt0f53b1NGG2ddq1DXNvVAdAMDXCE8DAAAAAAAAAEwpJNimf07sqh/+O0S9usR61EeDeuF6/dEeWvn+ILVoHO3lCgEAvjZsQFPt+OwG3XZdS49WHw0LtWn8iET9Mv8GXXN5Ix9UCMCX6tQM1SdT+mj+K1d6vFp0u+Y1tfC1/vroud6qXSPEuwXC59q3rK11/xmiKfd3U10PH6bp36OBNs6+Vo/ekSS7nRgOUJXYbFY9fFtHbZ5znQZ6+DB0TK1Q/fMvXfTjx0PVsVVtL1cIAPAVu9EFAAAAAAAAAABgpK7t6uq7Dwbplz0n9Oacnfp8xQEdOZZX7v7hoXZd2rme7h6WqCG9GyvIy1/1DQDwr7q1w/T+07005f5uev/z3frPF3u149eTcrnK3t9qtahDy1q6dWhLjbm2pWpFE5YEqrrrr0zQdX2b6LsNGZqenKJl6w7rZE5RufvXig7WgJ4NNX54oi7vEsuK81Wc3W7VpNs76r6b22n+N6l6e94u/fDzMRUUlpbbplFshG7sl6B7hieqVUINP1YLwBcSm9XUl9Ov0t6D2XprTormfpOqA0dOl7t/SLBNF3eoqztvbK1hA5p6ZeVqAIB/EZ4GAAAAAAAAAEC/rTr3xmM99cZjPZXhyNPGHQ7tP3xaj72+Qdmni1UrOlirZw5Wm6Y1ZLMRmAaA6qZu7TA9cnuSHrk9SafzirVlZ6a27zup3PxiWSwWRYbZ1b5lLSW1qqPwMP6ZFahuLBaLrugWpyu6xcnlcmn/4Rxt3JGpDEeeCoucCgm2Ki4mXF3axiihYSSB6WooJNimUdc016hrmqu42KmU/Se1ZWemsrILVVLqUmiITc3jo9WlbR3VrR1mdLkAfKBF42hNfehiTX3oYjmyCrQpxaE9B7OVX1Aqu82iWtEh6tSmtto2q8WD1ABQxfG3egAAAAAAAAAA/kdsTLgG9WosSXrhva3KPl2s8FC72rWoZXBlAAB/iAwP0mUXxeqyi2KNLgWAASwWi5rFR6tZfLTRpcAgQUFWdWxVWx1b1Ta6FAAGiakVqgE94zWgp9GVAAB8gUdgAAAAAAAAAAAAAAAAAAAAAJgC4WkAAAAAAAAAAAAAAAAAAAAApkB4GgAAAAAAAAAAAAAAAAAAAIApEJ4GAAAAAAAAAAAAAAAAAAAAYAqEpwEAAAAAAAAAAAAAAAAAAACYAuFpAAAAAAAAAAAAAAAAAAAAAKZAeBoAAAAAAAAAAAAAAAAAAACAKRCeBgAAAAAAAAAAAAAAAAAAAGAKhKcBAAAAAAAAAAAAAAAAAAAAmALhaQAAAAAAAAAAAAAAAAAAAACmQHgaAAAAAAAAAAAAAAAAAAAAgCkQngYAAAAAAAAAAAAAAAAAAABgCoSnAQAAAAAAAAAAAAAAAAAAAJgC4WkAAAAAAAAAAAAAAAAAAAAApkB4GgAAAAAAAAAAAAAAAAAAAIApEJ4GAAAAAAAAAAAAAAAAAAAAYAqEpwEAAAAAAAAAAAAAAAAAAACYAuFpAAAAAAAAAAAAAAAAAAAAAKZAeBoAAAAAAAAAAAAAAAAAAACAKRCeBgAAAAAAAAAAAAAAAAAAAGAKhKcBAAAAAAAAAAAAAAAAAAAAmALhaQAAAAAAAAAAAAAAAAAAAACmQHgaAAAAAAAAAAAAAAAAAAAAgCkQngYAAAAAAAAAAAAAAAAAAABgCoSnAQAAAAAAAAAAAAAAAAAAAJgC4WkAAAAAAAAAAAAAAAAAAAAApkB4GgAAAAAAAAAAAAAAAAAAAIApEJ4GAAAAAAAAAAAAAAAAAAAAYAqEpwEAAAAAAAAAAAAAAAAAAACYAuFpAAAAAAAAAAAAAAAAAAAAAKZgN7oAAAAAAAAAAAAAAAAAIJA4nS79mpajrOxClZQ6FRpsU7P4aNWICja6NAAAAFQS4WkAAAAAAAAAAAAAAACY3q9p2Xpv/m6t2XxUm3dmKie3+Jx9WjSOVte2MbqhX4Ku69NEQUF86TsAAEBVQ3gaAAAAAAAAAAAAAAAAprV6Y4ZeeH+rlqxJk8t1/n33HszW3oPZmv3Vr4qrG667bmqtB8d0UGR4kH+KBQAAQKXx+BsAAAAAAAAAAAAAAABM53Rese795/fqddtifbn6wsHp/5V+PE+T39ysjjd+phU/HfFNkQAAAPA6wtMAAAAAAAAAAAAAAAAwlR37stTxxs80PTml0n3tP5yjvncs0SOv/CSXuwlsAAAA+B3haQAAAAAAAAAAAAAAAJjG1l2Z6nXbYu0/nOPVfl/8YJvGPbVGTicBagAAgEBGeBoAAAAAAAAAAAAAAACmsD8tRwPu+kqZJwt90v+783frb/9e75O+AQAA4B2EpwEAAAAAAAAAAAAAAFDtOZ0u3frEKh07UVDhNutnDdWhZSO1ftbQCrd5aeY2ffPDYU9KBAAAgB+YLjztcDg0adIktWjRQqGhoWrUqJHuu+8+5ebmauzYsbJYLJo2bZrRZQIAAAAAAAAAAAAAAMCLps3aoVUbM9xqExsTrvj6EYqNCXer3dgnVyv7dJFbbQAAAOAfdqML8KctW7Zo4MCBysjIUEREhNq2basjR47otdde0759+3TixAlJUqdOnYwtFAAAAAAAAAAAAABgqANHcrRw5UFlnixUaIhNHVrW0tWXxstmM90aZUC1cOJUoR59dYPfxjuYnqvn39uq5+/r5rcxAXhXWkauFqw8IEdWgYKDbGrbvKYGXd5IdjufBQCgqjNNeNrhcGjIkCHKyMjQgw8+qCeffFJRUVGSpBdffFGPPPKI7Ha7LBaLOnbsaHC1AAAAAAAAAAAAAAAj/LTtuJ59e4sWrTool+vsbU0aRGr88EQ98Of2BKeAKmbmgt3KKyjx65jvzt+tJ+/urNAQ08RzgGphy85MPTNjixasPKDS0rM/DDSsF667h7fRpNs6KjjIZlCFAIDKMs3f5iZOnKi0tDRNmDBBU6dOPROclqRJkyYpKSlJJSUlSkhIUHR0tIGVAgAAAAAAAAAAAACM8Nm3qep12yJ98d25wWlJOnDktB7593oNnbhMBYX+DWEC8JzT6dKbc3b6fVxHVoHmLkv1+7gAPLdk9SFd+udFmv9t6jnBaUk6fCxPT0zbpKvvXqrTecUGVAgA8AZThKdTUlKUnJysmJgYPf/882Xu06VLF0lSUlLSmT/7PWzdvXt3hYSEyGKxVGi8gQMHymKxaPLkyZWuHQAAAAAAAAAAAADge99vOaqRk1aosMh5wX2XrEnTrU+s8kNVALxh665M7T2YbcjYc5buN2RcAO7btMOhGx/4tkKr1K9Yn65Rk1bIVdbTVgCAgGeK8PSsWbPkdDo1evRoRUZGlrlPWFiYpLPD03v37tW8efMUGxurbt26VWisOXPmaMuWLZWuGQAAAAAAAAAAAADgP09M26ii4gsHp3+X/NV+bdrh8GFFALxlw3bjrtWNKdwngKpi8publV9YWuH9F606pDWbjvqwIgCAr5giPL18+XJJUp8+fcrdJy0tTdLZ4elevXopPT1dCxcuVL9+/S44TnZ2tu6//35NnTq1khUDAAAAAAAAAAAAAPwl5deTWv5Tutvtpien+KAaAN62MSXTsLGPHMtT+vE8w8YHUDGph3O0aNVBt9vxWQAAqiZThKcPHDggSWrSpEmZ20tKSrR27VpJZ4enrVb3Ds9jjz2mVq1aafTo0R5WCgAAAAAAAAAAAADwt7nL9nvULnmpZ+0A+Nfu1FOGjr/ngLHjA7iw+d+myuVyv928b1JVUlLxb64AAAQGu9EF+ENubq4kKT8/v8ztycnJcjgcioqKUtOmTT0aY8OGDXrnnXe0ceNGj+v8X127dlVGRobX+gMAAAAAAPBEes0HJGsNpWekKz4+3uhy/M7s85c4BmafPzgHmL+55w9IXAdmZ5bX/2T4QCn0Erfbnc4rVsP4BFlU4oOqAoNZzgGUrzqcA8ei75Dsjcrctn7WUMXGhJfbNjYm7Mz/Dy0bed5xMhx56jZq4Tl/fsOwkQot3udGxYGlOpwD8JxZXv9TYf2ksMvdbldc4lTjpq1ldZWdS6sOzHIOoHycAwhUsbGx2rBhg0dtTRGejo2NVVZWljZt2qQePXqctS09PV0PP/ywJKljx46yWCxu919aWqq77rpLEyZMULt27bxSsyRlZGTo8OHDXusPAAAAAADAI1GlklVylpaa83cVZp+/xDEw+/zBOcD8zT1/QOI6MDuzvP6xp6RQz5oeOXxQkgdLVVYVZjkHUL7qcA6EFJSbkImNCVd8/YgLdmG3WSu0X1kyjx+XcqvosZOqxzkAz5nl9a+XJYV51jT9yCHJWejdegKJWc4BlI9zANWQKcLT/fr1U0pKiqZMmaL+/furVatWkqT169frlltukcPhkCR16tTJo/6nTZumo0ePavLkyV6q+DexsbFe7Q8AAAAAAMAT6TabnJKsNpviGjY0uhy/M/v8JY6B2ecPzgHmb+75AxLXgdmZ5fXPDSnQSQ/a2Uodim3YwNvlBBSznAMoX3U4BxxBTpUXa8xw5J23bWxMmOw2q0pKncpwnH9l2fL6qlsnUsE1q+axk6rHOQDPmeX1zwsuVJYH7azObMXGxcj95TqrDrOcAygf5wACVWUytqYIT0+aNEmffPKJDh06pHbt2qlNmzYqKCjQ3r17NXDgQCUkJGjp0qVKSkpyu2+Hw6EnnnhCU6dOVUlJiU6ePHlmW0FBgU6ePKno6GhZrVa3+/Z0OXEAAAAAAABviu83S4eP5SkuNk5pv6QZXY7fmX3+EsfA7PMH5wDzN/f8AYnrwOzM8vrn5BapYb/ZysktdqvdlEnX6MExj/ioqsBglnMA5asO58Djr2/QP9/ZWua2bqMWnrftoWUjFV8/QhmOfDXqP9vtsW02iw7s+l5hoVU3olMdzgF4ziyvf0FhieL7z1bmSfdWkH5ywhX6x91/9VFVgcEs5wDKxzmA6sj9RG8VFB8fr9WrV2vQoEEKDQ1VamqqateurRkzZmjx4sXavXu3JHkUnk5LS1NOTo7uuusu1apV68x/kjRlyhTVqlVLBw8e9Op8AAAAAAAAAAAAAADeExURrDFDW7rVJizUpluvda8NAGN0aRtj2Njtmteq0sFpwCxCQ+y644bWbrWx2yy644ZWPqoIAOBLpvl0lpiYqEWLFp3z56dPn1ZqaqqsVqvat2/vdr8tWrTQihUrzvnzPn36aMyYMbr11lsrtTQ4AAAAAAAAAAAAAMD3np3QRas2Zujn3ScqtP/MZ3qpTs1QH1cFwBsu6VhPFovkcvl/7J5J9fw/KACPPDGuk1b8lK6ffjleof3fmXyZGtSL8HFVAABfME14ujzbt2+Xy+VSq1atFB4efs72uXPnSpJ27Nhx1s8JCQnq2rWrIiMjdcUVV5TZd0JCQrnbAAAAAAAAAAAAAACBo0ZUsL55+2pde983Wrf1WLn7BQdZ9dE/e2v4Vc38WB2AyoirG67BvRrri+/8/83hd97o3kq2AIwTER6kr966Sjf89VutXJ9e7n52m0VvP3mZbr2WVacBoKoyfXh627ZtkqSkpKQytw8bNqzMn8eMGaOZM2f6tDYAAAAAAAAAAAAAgP/UrR2m1TMH6cvVaZqenKKv1qad2Wa1WjT5ns6644bWiqt77sJcAALbPcPb+D083b19XV3UNsavYwKonFrRIfr2nYH6+vvDmp6cokWrDp5Ztd5qlR67s5PuvLG1GsVGGlsoAKBSCE9fIDzt8vA7WzxtBwAAAAAAAAAAAAAwjs1m1ZArGmvIFY2Vl1+i5tckKyOzQLF1QvXEXZ2NLg+Ah666NF5JrWtr664Tfhtz0m0d/DYWAO+xWi26+rJ4XX1Z/P98FgjT0/d2Mbo8AIAXWI0uwGgXCk8DAAAAAAAAAAAAAMwpPMwum+23f1a3WCwGVwOgMqxWiz54+nLZ7f65lm/sl6Ab+iX4ZSwAvsNnAQConky/8vTy5cuNLgEAAAAAAAAAAAAAAAA+1jkxRo/d0UlPvbW5wm0yHHln/b8iYmqFavpjPQlaAgAABCjTh6cBAAAAAAAAAAAAAABgDo+P66Rte7I0/9vUCu3fbdRCt/oPC7Xp83/3U706YR5UBwAAAH+wGl0AAAAAAAAAAAAAAAAA4A92u1WfTLlC11/ZxOt9R4TZtej1Abq0c32v9w0AAADvITwNAAAAAAAAAAAAAAAA0wgJtmnOS3319zuSZLNZvNJnu+Y1tXrmIPW9uIFX+gMAAIDvEJ4GAAAAAAAAAAAAAACAqdjtVv1zYlf98N8hate8psf92GwW/f2OJG1Mvk6dE2O8VyAAAAB8xm50AQAAAAAAAAAAAAAAAIARurarqy2fXq9Fqw5qenKKlq07UqF2dWuF6s4bW2vcTa3VpEGUj6sEAACANxGeBgAAAAAAAAAAAAAAgGnZ7VZd1zdB1/VN0P60HK3dclQbdzi0eWemvt9yVMUlLgXZLbr+ygR1SYxRl7Yxuuyi+goJthldOgAAADxAeBoAAAAAAAAAAAAAAACQ1DQ+Sk3jo3Tz4BaSpPh+s3T4WJ7q1Q5T8kt9Da4OAAAA3mA1ugAAAAAAAAAAAAAAAAAAAAAA8AfC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTIDwNAAAAAAAAAAAAAAAAAAAAwBQITwMAAAAAAAAAAAAAAAAAAAAwBcLTAAAAAAAAAAAAAAAAAAAAAEyB8DQAAAAAAAAAAAAAAAAAAAAAUyA8DQAAAAAAAAAAAAAAAAAAAMAUCE8DAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTIDwNAAAAAAAAAAAAAAAAAAAAwBQITwMAAAAAAAAAAAAAAAAAAAAwBcLTAAAAAAAAAAAAAAAAAAAAAEyB8DQAAAAAAAAAAAAAAAAAAAAAUyA8DQAAAAAAAAAAAAAAAAAAAMAUCE8DAAAAAAAAAAAAAAAAAAAAMAXC0wAAAAAAAAAAAAAAAAAAAABMgfA0AAAAAAAAAAAAAAAAAAAAAFMgPA0AAAAAAAAAAAAAAAAAAADAFAhPAwAAAAAAAAAAAAAAAAAAADAFwtMAAAAAAAAAAAAAAAAAAAAATIHwNAAAAAAAAAAAAAAAAAAAAABTsBtdAAAAAAAAAAAgcKQeztGazUe1YbtDm3dmKvNkgUpKXQoNsalpwyh1aVtHXdvWVa8usQoP41fMAAAAAAAAAICqhd9sAwAAAAAAAIDJlZY6tXjVIU1PTtHS7w+Xu9/WXSf0+fIDkqSaUcG67bqWuntYolol1PBXqQAAAAAAAAAAVIrV6AIAAAAAAAAAAMbZsjNTXUYu0LX3fXPe4PT/OplTpFf+s12th87VxBfWKTev2IdVAgAAAAAAAADgHYSnAQAAAAAAAMCEnE6Xnn5rs7r9aYG27jpRqb5e/2SHkoZ9pu+3HPVSdQAAAAAAAAAA+AbhaQAAAAAAAAAwmeJip25+dKWenL5JJSUur/S571CO+t6xRAtXHPBKfwAAAAAAAAAA+ALhaQAAAAAAAAAwEafTpVufWKVZS371et+FRaW66cHl+mpNmtf7BgAAAAAAAADAGwhPAwAAAAAAAICJ/OvDbfrky30+67+4xKlhDy3XgSM5PhsDAAAAAAAAAABPEZ4GAAAAAAAAAJNI+fWknnhjk1tt1s8aqkPLRmr9rKEVbnM6r1h3PrVGLpfL3RIBAAAAAAAAAPApU4anHQ6HJk2apBYtWig0NFSNGjXSfffdp9zcXI0dO1YWi0XTpk0zukwAAAAAAGAwp9MlR1aBDhzJ0cnsQqPLAYBKcblcumPyahUWlbrVLjYmXPH1IxQbE+5Wu2Xrjmjmgj1utQGAQFNS4tTRzHwdTD+t03nFRpcDAAAAAAAAL7AbXYC/bdmyRQMHDlRGRoYiIiLUtm1bHTlyRK+99pr27dunEydOSJI6depkbKEAAAAAAMAwmScLNHPBHr05J0X7DuWc+fOLO9TV+BGJGn5VU4WGmO7XKgCquLWbj+r7Lcf8OuaLH/ysW69tKYvF4tdxAaCy9qflaMbcnXrvs91yZBVIkiwWadDljXTPiERd1bOhbDZTrlEEAAAAAABQ5ZnqtzoOh0NDhgxRRkaGHnzwQaWnp2vTpk3KyMjQlClTtHjxYq1fv14Wi0UdO3Y0ulwAAAAAAGCA5T8eUbNr5uihf/10VnBakn7cdlxjHl+l9jfM154DpwyqEAA8Mz05xe9j7tx/SivXp/t9XACojLfmpKjF4E815f2fzwSnJcnlkhatOqRB936t/uO+4ptJAAAAAAAAqihThacnTpyotLQ0TZgwQVOnTlVUVNSZbZMmTVJSUpJKSkqUkJCg6OhoAysFAAAAAABGWL0xQwPHL1X26fN/Jfu+QznqffuXOph+2k+VAUDlZGUXau6yVEPGfmfeLkPGBQBPzPh0p+559ns5na7z7rdifbquvmep8vJL/FQZAAAAAAAAvMU04emUlBQlJycrJiZGzz//fJn7dOnSRZKUlJR05s9+D1t3795dISEh5X695MqVK2WxWM75r1OnTl6fCwAAAAAA8L6SEqdGPbJCRcXOCu2ffjxP9zy71sdVAYB3bNjuUHFJxe5v3vb91mOGjAsA7jqYflr3Pvd9hff/cdtxPf/eVh9WBAAAAAAAAF+wG12Av8yaNUtOp1OjR49WZGRkmfuEhYVJOjs8vXfvXs2bN0/dunVTcHCw1q49/z+KvvHGG7rooovO/BwREeGF6gEAAAAAgK8tXHlQh4/ludVmyZo0/ZqWrWbxfIMVgMC2cYfDsLEPHDmtzJMFqlMz1LAaAKAi3p67U6Wl519x+n+9M2+Xnrirk4KDbD6qCgAAAAAAAN5mmpWnly9fLknq06dPufukpaVJOjs83atXL6Wnp2vhwoXq16/fBcdp27atLrnkkjP/dejQoZKVAwAAAAAAf5gxd6fbbVwu6d15u31QDQB419ZdJwwdf8tOY8cHgAtxOl16Z94ut9sdzczXwhUHfVARAAAAAAAAfMU0K08fOHBAktSkSZMyt5eUlJxZVfqP4Wmr1bh8edeuXZWRkWHY+AAAAAAAmElGjfslWy23273y5ix99NJ1Xq8nkKTXfECy1lB6Rrri4+ONLsfvzD5/iWNQHebviBwtBbcqc9v6WUMVGxNebtvYmLAz/z+0bOR5x8lw5KnbqIXn/PnwUX9WWLH7D6kEiupwDlQG8zf3/M3CaQnTsVp/86jt2PGP6f6CVV6uKLBwHZgbrz/HwOzzB+eA2ecvcQzMjtefY2D2+YNzAIErNjZWGzZs8KitacLTubm5kqT8/PwytycnJ8vhcCgqKkpNmzb1eJwRI0bI4XCoTp06Gjp0qF544QXFxMR41FdGRoYOHz7scS0AAAAAAMANURbJg29bLygorv5/f48qlaySs7S0+s+1LGafv8QxqA7zTyiSgsveFBsTrvj6ERfswm6zVmi/spw4cVLKrqLHTqoe50BlMH9zz98s7NGS+8/RSZKyc3KVfayanxtcB+bG688xMPv8wTlg9vlLHAOz4/XnGJh9/uAcQLVkmvB0bGyssrKytGnTJvXo0eOsbenp6Xr44YclSR07dpTFYnG7/xo1aujhhx9Wr169FBkZqXXr1un555/XDz/8oA0bNig0NNSjmgEAAAAAgH8ctRSoxIN24SGlqtWwodfrCSTpNpuckqw2m+Kq+VzLYvb5SxyD6jD/zBCbCsrZluHIO2/b2Jgw2W1WlZQ6leEoe3GKC/VVu3a0wqKq5rGTqsc5UBnM39zzNwuXbDriKpUs7j9NVyPSpsig6n1ucB2YG68/x8Ds8wfngNnnL3EMzI7Xn2Ng9vmDcwCBqzIZW9OEp/v166eUlBRNmTJF/fv3V6tWv31F5fr163XLLbfI4XBIkjp16uRR/507d1bnzp3P/HzFFVeoffv2Gjp0qGbNmqXbbrvN7T49XU4cAAAAAAC477l3tuix1ze63W7++4/qqkvf8EFFgSO+3ywdPpanuNg4pf2SZnQ5fmf2+Uscg+ow/4f/9ZOmfritzG3dRi08b9tDy0Yqvn6EMhz5atR/tkfjr1vxmVol1PCobSCoDudAZTB/c8/fTG564FvN+ybVrTY2m0U71v1HDep5tjJ/VcF1YG68/hwDs88fnANmn7/EMTA7Xn+OgdnnD84BVE9Wowvwl0mTJqlOnTo6dOiQ2rVrpw4dOqhly5bq3r27mjVrpr59+0qSkpKSvDbm4MGDFRERQQgaAAAAAIAqYOwNrRVkd+9XJc0bRal/D1ZZABD4urStY9jYURFBatE42rDxAaCixo9IdLvN9X2bVPvgNAAAAAAAQHVjmvB0fHy8Vq9erUGDBik0NFSpqamqXbu2ZsyYocWLF2v37t2SvBue/p3FYvF6nwAAAAAAwLvq1wnTpNs6uNXmhfu6yWrl7/0AAl/XdnUNG7tL2xjulQCqhD7d4zTwsvgK7x8Zbtc/7up84R0BAAAAAAAQUOxGF+BPiYmJWrRo0Tl/fvr0aaWmpspqtap9+/ZeG2/hwoXKzc1V9+7dvdYnAAAAAADwnafv7aLjWQV6e+6u8+5nsUjTHu2hmwY09VNlAFA5zRtFqXObOtq8M9PvYw/nXgmgirBYLJozta8GT/ha323IOO++keF2ff7v/urQqrafqgMAAAAAAIC3mCo8XZ7t27fL5XKpVatWCg8PP2f73LlzJUk7duw46+eEhAR17dpVknTzzTerWbNmuuiiixQZGal169bpxRdfVKdOnTRy5Eg/zQQAAAAAAFSG1WrRW09cqks61tMr//lF2/ZknbPPlRc30N/GdlS/SxoaUCEAeMZisejekYm6Y/Iav44bFRGkmwc39+uYAFAZkeFBWvrW1Zo6c5ve+nSn0o7mnrXdbrPoxv4JeuyOTgSnAQAAAAAAqijC05K2bdsmSUpKSipz+7Bhw8r8ecyYMZo5c6YkqV27dvrkk0/073//W/n5+YqPj9edd96pJ598UsHBwb4rHgAAAAAAeJXFYtFt17XSrde21Pdbjumae5cq+3SxakQG6YePh6pN05pGlwgAHhk1sLkmvbJeJ04V+m3MMUNbKiqC348CqFpCgm16bFwnPXJ7Ry1Zk6abH12p7Nxi1YwKUsqCmxQbc+5CPAAAAAAAAKg6CE/rwuFpl8t1wT4effRRPfroo16tCwAAAAAAGMdisejSzvUVFR6k7NPFigwPIjgNoEoLD7Pr5Ycu1q1PrPLLePXrhGnyPZ39MhYA+ILdbtWQKxorKiJI2bnFiggLIjgNAAAAAABQDViNLiAQXCg8DQAAAAAAAADVwZ+HttCgXo38MtaMf1yqOjVD/TIWAAAAAAAAAAAVxcrTkpYvX250CQAAAAAAAADgcxaLRW//41JdcvMXOpSRW6E2GY68s/5fEXcPa6Nr+zTxqEYAAAAAAAAAAHyJ8DQAAAAAAAAAmEiDehH65u2BumLsl0o/fuFAdLdRC93qf/Sg5pr29x6elgcAAAAAAAAAgE9ZjS4AAAAAAAAAAOBfrRJqaO2Hg9W2eU2v9nvf6Hb68Nlestn41TMAAAAAAAAAIDDxG2wAAAAAAAAAMKGm8VHaOPtaPXJ7R1mtlkr11Sg2Qkvfukr/fuQSgtMAAAAAAAAAgIDGb7EBAAAAAAAAwKRCQ+x64f5u+uG/Q3RjvwTZbO6FqOvXCdPj4zpp27wbNKBnvI+qBAAAAAAAAADAe+xGFwAAAAAAAAAAMFa39nU19+Urdfhort7/fLdWb8rQhu0OZWUXnbNvyybR6pIYo+uvbKLr+jZRcJDNgIoBAAAAAAAAAPAM4WkAAAAAAAAAgCSpYf0IPXFXZ0mSy+XSwfTT6jZqoY5nFaherVDtXjRMNaKCDa4SAAAAAAAAAADPWY0uAAAAAAAAAAAQeCwWi5o0iFJw0G+/Rg4KshKcBgAAAAAAAABUeYSnAQAAAAAAAAAAAAAAAAAAAJgC4WkAAAAAAAAAAAAAAAAAAAAApkB4GgAAAAAAAAAAAAAAAAAAAIApEJ4GAAAAAAAAAAAAAAAAAAAAYAqEpwEAAAAAAAAAAAAAAAAAAACYAuFpAAAAAAAAAAAAAAAAAAAAAKZAeBoAAAAAAAAAAAAAAAAAAACAKRCeBgAAAAAAAAAAAAAAAAAAAGAKhKcBAAAAAAAAAAAAAAAAAAAAmALhaQAAAAAAAAAAAAAAAAAAAACmQHgaAAAAAAAAAAAAAAAAAAAAgCkQngYAAAAAAAAAAAAAAAAAAABgCoSnAQAAAAAAAAAAAAAAAAAAAJgC4WkAAAAAAAAAAAAAAAAAAAAApkB4GgAAAAAAAAAAAAAAAAAAAIApEJ4GAAAAAAAAAAAAAAAAAAAAYAqEpwEAAAAAAAAAAAAAAAAAAACYAuFpAAAAAAAAAAAAAAAAAAAAAKZAeBoAAAAAAAAAAAAAAAAAAOD/sXfncVaWdf/AP2dm2BcVUUcFxQ0FFVDALbUsLc29XDO1sszURyuTelq03TSrJx+1tDLLikjNUtyV3EtB0xRQ3EC2EUZA9mWW3x89+csEZYYzc4D7/X69ePHi3Pd1Xd/ruu9zzs3M59wHKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAAqhptIFAAAArI3mvL4sT0ysz7Mvv54lSxtSKpXSs3uHDNqhVwbv2CtdOvvvFMD6bOmyhvxj0tw89dxrWbB4RZJk4eIVufPhaRk6sHd6b9S5whUCtK1Fi1fkyefm5Onn57zpdXDMozOy+4CNs2HPThWuEAAAAACgdfy2HwAA4P9MrVuYq65/NiNvfykvTVuwyv2qq0sZsuPG+cRRO+Sjh22fnt07tmOVALSVhYtX5He3vZhf/HFSnni2Pg0NzW/a/vrCFTn4M3cmSfpt0T3HH7xtPn3MTtmmT49KlAtQdnPnL8uv/vx8rr35+Tz9/Nw0Nb31dfB9n7o9SdJ/6w1y0qHb5VMf3jGbb9K1EuUCAAAAALSK8DQAAFB4U2YsyHmXPpabxkx5S0BkZRobm/P4hPo8PqE+X/yfcfn0MTvmG2funm5dO7RDtQCU25KlDfnWVU/milETMn/hitVqM3nGwlx8zT9yyS//kcPfvVV+eP6e2a5vzzauFKBtvL5geb7yv+NyzZ8mZcnSxtVqM2nK67nwyifyrav/nuPev20uPW8PIWoAAAAAYJ1QVekCAAAAKqW5uTlX3/Bsdv3wTbnxnsmrFZz+TwsXr8gPfv1MBh1zU+4fN7MNqgSgLf31qVez23F/ykW/eGq1g9P/rrk5ufm+VzLowzflf383vlXvJQCVdOfD07LLh/6YK34/cbWD0/+uoaE5v7vtxex89I35zegX0tzsdRAAAAAAWLsJTwMAAIW0fEVjThjxl3z6mw9nwaKWh+X+00vTFuQ9n7gtP/jV02WoDoD28JNRE7Pvqbfmucmvr3Ffi5c25Jzv/S1Hf/aeLF3WUIbqANpWc3Nzvn7lEzn4M3dm2quL1ri/ufOX5+Qv359Pfv2hNDQ0laFCAAAAAIC2ITwNAAAUzooVTfnw5+7NH+58uex9f+EHj+Winz9V9n4BKK8f/+aZnPmdR8p+p+ib73slh//X3Vm2vOV3bwVoT1++bFy+8dO/l73fa26alJO/fH8aGwWoAQAAAIC1k/A0AABQOGd+5+GMfmBqm/X/5cvG5bpbnm+z/gFYMzfc9XI+e8mjbdb/PX+bkY9/7YE26x9gTV3x+wn53i/+0Wb9//6OlzLiR2PbrH8AAAAAgDUhPA0AABTKLfe9kp//cVKL2owdeUSm3n1Cxo48YrXbnH3RXzO1bmFLywOgjb362pKc8e2HW9SmNe8DI29/KX+486WWlgfQ5iZNfj1f+MFjLWrTmtfBH/76mdw/bmZLywMAAAAAaHOFDE/X19dnxIgR2X777dO5c+f07ds35557bhYtWpTTTjstpVIpl19+eaXLBAAAymzu/GX59LdaFphLktreXdNns26p7d11tdvMX7gin/r6Q2lubm7xeAC0jebm5nzm2w/ntXnLWtSuNe8DSXLWd/+aWa8taVEbgLbU2NiUT1z4YJYua2xRu9a+Dn7iggezaPGKFrUBAAAAAGhrNZUuoL09+eSTOeSQQ1JXV5du3bpl4MCBmTFjRi677LK8+OKLmTNnTpJkyJAhlS0UAKDClq9ozB/vmZw/3jslr81bms6dqrPL9hvl08fulG379Kx0edAq/3Pd+Mycvbjdxrvzken5y2Mz8949t2i3MaFcmpub89enZuWXf5qUV+oWpbm5OX1ru+fUw7fPfkNrUyqVKl0itNij/5idm+6d0m7j1c9dmu9f+3S+f94e7TYm5dPU1Jwxj83Idbe8kPq5S5Mk8xYsz7jxszNs500qXB20zs33vZKH//5qu4330rQFueqGZ/P5U3ZttzEBAAAAAN5JocLT9fX1Ofzww1NXV5fzzjsvF154YXr06JEkueSSS/LFL34xNTU1KZVKGTRoUIWrBQConJ+Mmpiv/+SJzJqz9E2P3/bgtHz/2qfzwf365mcX7pvNN2nZXcegklasaMrVNz7b7uNeOWqi8DTrnL8+9Wo+8+1H8tRzc96y7ZqbJmXn7TbMFV/ZJ+8etnkFqoPWu3LUxHYf85o/Tco3z9o9XToX6sdw67w7HpqWcy/+WyZNef1Njy9a0pDhJ96c4bv0ztUX7JshO21coQqhdSrxOviTPzybz350l1RV+eAVAAAAALB2qKp0Ae3pnHPOybRp03L22Wfn0ksvfSM4nSQjRozI4MGD09DQkH79+qVnT3dTBACK6av/Oy5nfueRtwSn/6W5Obn1ganZ++Rb8srMhe1cHbTen/4yJXX1Syoy7vRXF7X7uNBad/91et77ydtXGpz+l/EvzstBp9+RW+57pR0rgzVTP3dpRt35UruPO+f1ZfnDnS+3+7i03sjbXsxh/3XXW4LT/27sM/XZ72Oj2/UOvrCmJk1+Pff8bUa7j/vCK/Nzz9+mt/u4AAAAAACrUpjw9MSJEzNq1Kj07t07F1100Ur3GTp0aJJk8ODBbzz2r7D1HnvskU6dOr3j1xLfdNNN2WeffdKtW7dssMEGede73pXx48eXbyIAAG3ot7e+kO/87KnV2nfKjIU57Oy70tjY1MZVQXnc/tDUiozb2NhckZAKtMbL0xbkQ5+7J0uXNb7jvisamnL8+WPy7Mvz2r4wKIO/jJ2Z5Ssqc91y+8OVeQ+i5Z6YUJ9Tv/pAGhub33HfhYsbcsQ5d6eufnE7VAZr7o6Hp1Vs7NsfqtzYAAAAAAD/qTDh6ZEjR6apqSknnXRSunfvvtJ9unTpkuTN4ekXXnghN954Y2prazN8+PC3HeOyyy7Lcccdl3333Tc333xzRo4cmQMPPDBLlrT/3e0AAFqqubk5F/189YLT//L083Nz24N+Cc664fEJr1Vu7In1FRsbWuKK30/IwsUNq73/kmWNuey3PjDMuuHxCZV7La7kexAt84NfP5MVDasfsp/z+rL87Mbn2rAiKJ/Kvg66HgYAAAAA1h6FCU+PGTMmSXLAAQescp9p0/4Z/Pn38PT++++fmTNn5uabb86BBx64yrYvvvhizj///PzoRz/KJZdckve973354Ac/mG984xsZNmxYmWYBANB2Hny8LuNfnNfidleOmlj+YqDMli5ryPgX51Zs/HHjhUVY+y1Z2pBr/jSpxe2uG/1CFixa3gYVQXlV8rX4hVfmZ978ZRUbn9Uz67Uluf6ul1vc7qrrn01DCwLXUCnjKhhg/vuzc9LU9M53dAcAAAAAaA+FCU9PmTIlSbL11luvdHtDQ0MefvjhJG8OT1dVrd4SXXPNNenQoUM+9alPrWGlAACVcfffZrSy3fQ0N/slOGu3uvolaWys3Hk6fdaiio0Nq+uJia9l7vyWh6AXLm7I3/4xuw0qgvKa9mplX4tnzF5c0fF5Zw88Xteiu07/y/RZi/Psy/PKXxCU2fRZlXsdWrh4RV5f6MNWAAAAAMDaoabSBbSXRYv++QuyJUuWrHT7qFGjUl9fnx49emSbbbZpcf+PPPJIdtxxx/zmN7/Jt7/97UydOjU77LBDLrjggpx44omtqnnYsGGpq6trVVsAgJaa1/WQpPNeLW7X2NicLftum6qsaIOqoDxWVG2cbHjOKrePHXlEant3XeX22t5d3vh76t0nrHK/uvrFGX7izW95fNr0uvTp06cFFUP7W9ph+6THya1qe8JHPp4uKyaUuaK1x8wNP59UbZCZdTML+1xeH9agboPPJtUbrXRbud4HklW/F7znvQelY+O6+3Oe9eEceCeLOu6WdD+qVW0POOjQdGqYWt6C1iJFOP7vZH1Yg9c3+mpS6rDSbW19PZwkA3cenOrmhS2oeO2xPhx/1oxzwBoUneNvDYo+f5wDRZ9/Yg2KzvG3BkWfP84B1l61tbUZN25cq9oWJjxdW1ubuXPn5oknnsjee+/9pm0zZ87M+eefnyQZNGhQSqVSi/ufOXNmpk+fnv/+7//OxRdfnL59++YXv/hFPvKRj2STTTbJgQce2OI+6+rqMn369Ba3AwBolc1eSzq3ol1zU2ZOn5LE3adZi3VYlmy46s21vbumz2bd3rGbmuqq1drvPzU1LHdtz9qva9ekR+uazqmfkSxcj8/xHo1JVdLU2Fjc5/L6sAbdliXVK9/U1u8DSTL71ZnJstZ908daYX04B97JBpsn3VvXtP7VacnS9XRdkmIc/3eyPqzBBiuS6pWHp9vjdbBu5rSkcR39Rpb14fizZpwD1qDoHH9rUPT54xwo+vwTa1B0jr81KPr8cQ6wXipMePrAAw/MxIkTc/HFF+eggw5K//79kyRjx47NySefnPr6+iTJkCFDWtV/U1NTFi5cmOuuuy5HHXVUkuR973tfJkyYkG9961utCk/X1ta2qhYAgNZY0mFe5rSiXceGadlkyy3KXg+UU1M6ZmZzU1KqWun2uvq3/wrz2t5dUlNdlYbGptTVr/zbbN6unw5VS7PplluufsFQAU2lxtQ1L09zqWPLGjY3pHbD5aneYP09x2dWV6cpSVV1dTYv6HN5fViD2VVLs3wV28r1PvB2fdVu0i3Vzevm2iXrxznwThqqluTV5uakhTdWKDUtzuYbV6eU9XNdkmIc/3eyPqxBXRanMSu/u3RbXw+neUW2qO2V0tt9onEttj4cf9aMc8AaFJ3jbw2KPn+cA0Wff2INis7xtwZFnz/OAdZea5KxLUx4esSIEfnd736XqVOnZuedd85OO+2UpUuX5oUXXsghhxySfv365c4778zgwYNb1X+vXr2S5E0h6VKplAMPPDDXXnttq/ps7e3EAQBao7GxKdsden2mzGjZ1yhfc+nJOenQb7RRVVA+Ox1xQ56b/PpKt63qq8X/ZerdJ6TPZt1SV78kfQ/6fYvH/vgJ781VF1zQ4nbQ3k7/xkP52Y3PtajNSYftmN9cNKmNKlo79DlwZKbPWpzNazfPtGemVbqcilgf1uBzl/wt//Ob8Svd1tbvA31ru+WVf6zbz5P14RxYHYeffVdGPzC1RW3O+/ie+f55k9umoLVEUY7/21kf1uCEEWMy6o6XV7qtrV8H99h1izz6u1da3G5tsT4cf9aMc8AaFJ3jbw2KPn+cA0Wff2INis7xtwZFnz/OAdZPK7/t2nqoT58+efDBB3PooYemc+fOmTx5cnr16pWrrroqt956ayZN+ucvsFobnt55551XuW3p0qWt6hMAoD1VV1flsyet+ppmZfps1i3HHLRNG1UE5TV0YO9Cjg0t8V8nDkxN9erfcbWqqpRzPtKy9w6oFO8DrI7PnbxLi/bv3Kk6nzl+pzaqBspr6IBKvg5uXLGxAQAAAAD+U2HC00kyYMCAjB49OgsWLMiCBQvy6KOP5vTTT8+iRYsyefLkVFVVZZddWvYLkn858sgjkyR33XXXG481NTXl7rvvzvDhw8tSPwBAWzvnpJ1z0qHbrda+G3TvmNGXH5ROHavbuCooj/ftuUXFxn7vHpUbG1pi1/698vOv75fSauanr/jy3tlj103atigok/cM2zxVVav/4YByquR7EC3z3j23yMWfXb2f5VVXl/Kb77472/bp2cZVQXlU8rXI6yAAAAAAsDapqXQBa4Px48enubk5/fv3T9euXd+y/YYbbkiSTJgw4U3/7tevX4YNG5YkOfzww7Pffvvl9NNPz2uvvZatttoqP//5zzN+/Pjcfffd7TQTAIA1U1VVyq++vX827901P/7t+KxoaFrpfgO32zB/+P57s/P2G7VzhdB6Jxy8bc679NHMW7C8Xcc9aO8tsv1WQlWsO049cod061KTz3znkdTPXfk3KfXaoFMu+9JeOenQ7du5Omi9PrXdcvi7++bPf3mlXcft1qUmJx/mubIuGfGJQdmwZ8ec/8PHMn/hipXuU9u7S675xn45ZL++7VwdtN7uA3tnj102yWPPzG7XcbfYtGuOeM/W7TomAAAAAMDbEZ5O8vTTTydJBg8evNLtxx577Er/feqpp+baa69NkpRKpdx888354he/mC9/+cuZP39+Bg8enNtuuy3vfe972654AIAyq66uyvfP2yNf+NiuueamSfnjvZPz94mvpbGpOV06VefWK96f9wzfPKXVvS0prCW6dqnJx4/aIT+6bny7jnvWCQPbdTwoh2Pev00Of89WueHul/PLPz2f+8bNTGNjczp2qMrVF+yb4z6wTbp09iMF1j1nHj+g3cPTHz1s+2zQo2O7jsmaO/2YnfKRD26Xkbe9mOtGv5AZsxenuqoq/bbsnk9+aMccdcDW6dChUF/qx3rirBMG5LGvtm94+vQP7+j5AgAAAACsVfymM+8cnm5ubl6tfjbccMNcddVVueqqq8pWGwBApWy2cZf89ycH578/OTh9DhyZ6bMWp9cGnXLAHr5umXXX50/eNb+4adIq7yJZbsN36Z3D9ndHStZNnTpW56RDt89Jh27/xvvAJht1zqlH7lDp0qDVDtxry+y3+2Z58IlX22W8rp1rMuLju7bLWJRf964d8qljdsqnjtmp0qVA2Rx/8La5+Jf/yIQX57XLeJts1NmHCQEAAACAtY7bPeSdw9MAAMD6oU9tt/zo/L3aZayOHapy7bf2T3W1/3YBrC2qqkq55pv7p0vn6nYZ7+LPDc+2fXq2y1gAq6NTx+r88pv7p6qqfb5J6Cdf3Se9N+rcLmMBAAAAAKwuv8VPMmbMmDQ3N+fQQw+tdCkAAEAb+/hRO+TQFt4Nuq5+caa9uih19YtXu823zhqagdtt1NLyAGhj22/VM5d8bo8WtWnN+8ABwzfPmccPaGl5AG1uj103yZc+MahFbVrzOnjiIdvmwwdt09LyAAAAAADaXE2lCwAAAGhPpVIpIy9+T973qdsz9pn61Woz/MSbWzTG6cfsmPM/vmtrygOgHZx1woC8NG1+fnTd+NXav6XvA4P698qNP3pfu93ZFaClvnX20Lw8fUFG3v7Sau3f0tfBdw+rzS++sV9rSgMAAAAAaHPuPA0AABROj24dc9dPD867dtus7H2fdcKA/OSr70qpJDAHsLYqlUr5wRf2zBdOLf8HXYbt3Dv3/uyQbNSzU9n7BiiXqqpSfv2dd+eUw7cve98H7b1Fbr38/enS2b1bAAAAAIC1k/A0AABQSBv27JR7rj44XzptUFnuDLphj4751bf3z//+997uNAqwDiiVSrnk88Pz+0sOyMYbrnnQuVRKPnfyzrn/mkPTe6POZagQoG3V1FTl2m/vn598dZ9079phjfvrUFOVb561e269/APpVob+AAAAAADaivA0AABQWJ071eSic4fnr9cdnt122rjV/Rz9vq0z/qYP5ZQjdnDHaYB1SKlUyvEHb5vxN304Jxy8bVr7Er7L9hvlgV8emh+ev1e6dnGnVWDdUSqVcsZxA/L0jUfng/v1aXU/ew/eNON+f2S+9und0qGDXzsAAAAAAGs3v80BAAAKb49dN8njo47MX5+alSt+PzE33jM5y5Y3vm2bjTfslI8f2T9nHLdTtuvbs50qBaAtbLZxl4y85IBcdO6wXHXDs7nmpkmZNWfp27bpUFOVo9+3dc48fkD2H1rrwzPAOq3flj1y6xUfyMSX5uWnf5iYX9/yQuYtWP62bbp0rs7xH9g2Zx4/IMN32aSdKgUAAAAAWHPC0wAAAPnnXff2GbJZ9hmyWX65ojHPPD83j0+oz7OTX89V1z+bRUsa0r1rTa6+YN8M27l3tuvbM1VVgnIA65N+W/bIRecOz3fPGZYXpy7IExPr89Rzc/L6wuVpbGxO1y416b/1Bhk6cOPsukOvdOpYXemSAcpqwLYb5sdf2js/PH/PPP/K/Dw+oT5PPz83CxatSHNzc7p16ZAB226YoQM3zsBtN3KXaQAAAABgnSQ8DQAA8B86dqjO7gN7Z/eBvZMko+54KYuWNGSD7h1z4ge3q3B1ALS1UqmU7bfqme236pnjPrBtpcsBaHfV1VXZaZsNs9M2G1a6FAAAAACAsnNbCAAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCqKl0AQAAAAAAa6vFSxqyeGlDSqWke9cO6dSxutIlAQAAAAAAa0B4GgAAAADg/7w8bUF+f8dLGTt+dh6fUJ9XZi56Y1uplOyw1QYZOnDj7DVo05x4yLbZpFeXClYLAAAAAAC0lPA0AAAAAFB4dz0yLZf9bkJue3BqmptXvk9zczJpyuuZNOX1jLz9pZz/w8dy3Ae2yWc/ukuGDuzdvgUDAAAAAACtUlXpAgAAAAAAKmX2nCU5/vwx+cAZd+bWB1YdnF6Z5Sua8pvRL2b4iX/O57//tyxe0tB2hQIAAAAAAGUhPA0AAAAAFNLdf52enY/+Y/5w58tr1E9zc/Kj68ZnyHE35R+T5pSpOgAAAAAAoC0ITwMAAAAAhfPHeybn0LPuyuy5S8vW5/NT5ufdH781jz09u2x9AgAAAAAA5SU8DQAAAAAUyt1/nZ4TRvwlKxqayt73vAXLc/Bn7sj4F+aWvW8AAAAAAGDNCU8DAAAAAIUxe86SnPSl+9okOP0vc+cvz4lf/EuWr2hsszEAAAAAAIDWKWR4ur6+PiNGjMj222+fzp07p2/fvjn33HOzaNGinHbaaSmVSrn88ssrXSYAAAAAUGZnffevmT13aYvajB15RKbefULGjjxitds8/fzcfPvqJ1tYHQAAAAAA0NZqKl1Ae3vyySdzyCGHpK6uLt26dcvAgQMzY8aMXHbZZXnxxRczZ86cJMmQIUMqWygAAAAV9/qC5Xng8bq8vnB5unauyW47bZxt+vSodFkAtNIdD03L9Xe93OJ2tb27ps9m3Vrc7rs/fyofPXT79O+3QYvbAqwNlq9ozP3j6jJrzpJ0qKnKjv02yOAdN650WQAAAACwRgoVnq6vr8/hhx+eurq6nHfeebnwwgvTo8c/f+l9ySWX5Itf/GJqampSKpUyaNCgClcLAABApUya/Hp+eN0z+c3oF7JoScMbj5dKySH79sm5J+2c9+/Tp4IVAtAaP/7t+HYdr7GxOT/5w8T8aMRe7TouwJqa9dqSXPa78fnZjc9l1pw3361/j102yVknDMhHD9s+VVWlClUIAAAAAK1XVekC2tM555yTadOm5eyzz86ll176RnA6SUaMGJHBgwenoaEh/fr1S8+ePStYKQAAAJVy1yPTMvSEP+Wq6599U3A6SZqbk9senJYPnHFnLrziiTQ3N1eoSgBa6sWp83PHw9Pafdxf/vn5LFq8ot3HBWitiS/Ny/CP/Dnf+dlTbwlOJ8ljz8zOqV99ICeM+EuWLW+sQIUAAAAAsGYKE56eOHFiRo0ald69e+eiiy5a6T5Dhw5NkgwePPiNx/4Vtt5jjz3SqVOnlEorv4vCe97znpRKpZX+OeOMM8o/IQAAAMru0X/MypHn3pOFixvecd9vXvX3/OBXz7RDVQCUw8jbX6zIuK8vWJ7bHmr/0DZAa0x/dVEOOv32vDJz0Tvue/1dL+e0Cx/0gUIAAAAA1jmFCU+PHDkyTU1NOemkk9K9e/eV7tOlS5ckbw5Pv/DCC7nxxhtTW1ub4cOHr7L/K6+8Mn/961/f9OerX/1qkuSwww4r40wAAABoK5+/9NEsXbb6d8/7yv+OS/3ct96ND4C1z2NP11ds7LHPzK7Y2AAt8d2fP5Xpsxav9v6/vfXFPPz3V9uwIgAAAAAov8KEp8eMGZMkOeCAA1a5z7Rp/7wDzL+Hp/fff//MnDkzN998cw488MBVth04cGD22muvN/158skns8kmm+Tggw8u0ywAAABoK08++1oeeXJWi9osX9GUa26a1EYVAVBOj0+sXHj68QmVGxtgdS1YtDy/vuX5Fre7ctTENqgGAAAAANpOYcLTU6ZMSZJsvfXWK93e0NCQhx9+OMmbw9NVVa1botmzZ+eOO+7IiSeemJqamlb1AQAAQPu5bvQLrWrXmoAJAO3r9QXLM6MFd1IttwkvzavY2ACr609jpmTh4oYWt7vh7slZtHhFG1QEAAAAAG2jMKneRYsWJUmWLFmy0u2jRo1KfX19evTokW222WaNxxs5cmQaGhpy8sknt7qPYcOGpa6ubo1rAQBYUzM3/HxStUFm1s1Mnz59Kl0OtDvPgWKY0+2YpNOuLW434fn1/7wo+nOg6PNPrAHr/jnQWOqRbPSFVW4fO/KI1Pbuusrttb27vPH31LtPWOV+dfWLM/zEm9/y+Kuz566T6/Yv6/rxLwdrUGxFOf4LOu+bdD2oxe1WNDRlu52GpKbp9Taoau1QlHPg7ViDYnP8rUHR549zoOjzT6xB0Tn+1qDo88c5wNqrtrY248aNa1XbwoSna2trM3fu3DzxxBPZe++937Rt5syZOf/885MkgwYNSqlUWuPxrrvuugwYMCDDhg1rdR91dXWZPn36GtcCALDGejQmVUlTY6PrE4rJc6AY+i5OOrW8WXNTAc6Loj8Hij7/xBqw7p8DNRskG616c23vrumzWbd37qa6arX2+0/NTU3r5rr9y7p+/MvBGhRbUY5/79eTVX+O5G29WjczWTG3vPWsTYpyDrwda1Bsjr81KPr8cQ4Uff6JNSg6x98aFH3+OAdYLxUmPH3ggQdm4sSJufjii3PQQQelf//+SZKxY8fm5JNPTn19fZJkyJAhazzWs88+m3HjxuW73/3uGvVTW1u7xrUAAJTDzOrqNCWpqq7O5ltuWelyoN15DhTD652WZWEr2nXI/Gy6np8XRX8OFH3+iTVg3T8HmtIxM99me1394rdtX9u7S2qqq9LQ2JS6+pV/s93b9VNValgn1+1f1vXjXw7WoNiKcvwXd2xKa+LPpebl2XzTnim1Nnm9DijKOfB2rEGxOf7WoOjzxzlQ9Pkn1qDoHH9rUPT54xxg7bUmGdvChKdHjBiR3/3ud5k6dWp23nnn7LTTTlm6dGleeOGFHHLIIenXr1/uvPPODB48eI3Huu6661IqlXLSSSetUT+tvZ04AEC59TlwZKbPWpzNazfPtGemVbocaHeeA8Xw/JTX0//wG1rc7kcXfDhnnfC1Nqho7VH050DR559YA9aPc6DfwaMyZcbKPyYz/MSb37bt1LtPSJ/NuqWufkn6HvT7Fo990L4DcsdP1811S9aP47+mrEGxFeX4L13WkC0P/H3mvL6sRe1O+/Au+dnXJ7dNUWuJopwDb8caFJvjbw2KPn+cA0Wff2INis7xtwZFnz/OAdZPVZUuoL306dMnDz74YA499NB07tw5kydPTq9evXLVVVfl1ltvzaRJk5JkjcPTzc3N+e1vf5v3vOc92WqrrcpROgAAAO1gh603yPv3admn5bt3rcnJh23fRhUBUE7DBvau3Ng7V25sgNXVuVNNTju6f4vbnXXCwDaoBgAAAADaTmHC00kyYMCAjB49OgsWLMiCBQvy6KOP5vTTT8+iRYsyefLkVFVVZZdddlmjMR544IFMmTIlJ598cpmqBgAAoL38+It7ZaOeHVd7/yu+vE96dl/9/QGonD133aSCY29asbEBWuK/Pzk4A7bdcLX3//wpu2TIThu3XUEAAAAA0AYKFZ5elfHjx6e5uTk77LBDunbt+pbtN9xwQ2644YZMmDDhTf8eN27cW/a97rrr0qVLlxxzzDFtXjcAAADltdM2G+buqw/JZht3edv9qqpK+enX3pVTjtihnSoDYE195IPbpbq61O7jbrZxl3zgXS37ZgOAStmoZ6fcfdXBGdS/1zvue+5JO+f7n9+jHaoCAAAAgPKqqXQBa4Onn346STJ48OCVbj/22GNX+u9TTz0111577RuPL126NDfccEOOOuqo9OjRo22KBQAAoE0NHdg7/7jh6Pzsxudy1Q3PZmrdoje2lZKcfuxOOfP4AasVKAFg7bHlZt1y1AFb58Z7JrfruJ/8UP907FDdrmMCrIktN+uWR359WH5z64u54vcT8vTzc9+0/cMH9suZxw/Ie/fcokIVAgAAAMCaEZ7OO4enm5ubV6ufzp07Z968eeUqCwAAgArZdOMu+crpQ/LFTwzKMy/MzUGn3576ectS27tLfvq1d1W6PABa6XMn79Ku4ekunavz6WN3arfxAMqlW9cO+fSxO+X0Y3bMsy+/nv0/NvqN6+Ebfvi+SpcHAAAAAGukqtIFrA3eKTwNAABAMdXUVGXIThunU8d/3jG0qqpU4YoAWBPv2m2zdg0zf/e/hqVvbfd2Gw+g3EqlUgZsu+Eb18PVrocBAAAAWA+483SSMWPGVLoEAAAAAKAdfP/zw3PHw9MyZcbC1W5TV7/4TX+vjnfttln+6yMDW1wfAAAAAADQtoSnAQAAAIDC6NGtY274wXtzwGm3Z+HiFavVZviJN7dojL613fK7770n1dW++A8AAAAAANY2fnoPAAAAABTKsJ03yW1XvD89unUoe999a7vl3p8dkq027172vgEAAAAAgDUnPA0AAAAAFM5+Q2tz/zUfTP+tNyhbn/sM2TQP/eqw7FDGPgEAAAAAgPISngYAAAAACmm3Ab3z5PVH5bxTdkmp1Pp+Oneqzg++sEce+OWh7jgNAAAAAABruZpKFwAAAAAAUCldOtfk0i/smVOP2CFXjpqY60a/kEVLGlarbe+NOueTH+qfM47dKVtv0aONKwUAAAAAAMpBeBoAAAAAKLxd+/fKT772rlz8ueG5+b5XMvaZ2Xl84muZ8OLczJ2/PElSVUoO2GOLDB24cfbcddMcun/fdOpYXeHKAQAAAACAlhCeBgAAAAD4Pz27d8xHD9s+Hz1s+zce63PgyEyftTibb9I19/zskApWBwAAAAAArKmqShcAAAAAAAAAAAAAANAehKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACkF4GgAAAAAAAAAAAAAoBOFpAAAAAAAAAAAAAKAQhKcBAAAAAAAAAAAAgEIQngYAAAAAAAAAAAAACqGm0gUAAAAAAAAAAACsDernLs3jE+ozbnx9xr84NwsXN6S5uTndu3bIzttvmKEDemfYzr2zSa8ulS4VAGgl4WkAAAAAAAAAAKCwmpqac9cj03PF7yfk1genprn57fcvlZJD9u2TM48fkIPf1SfV1VXtUygAUBbC0wAAAAAAAAAAQCE98uSr+eTXH8rEl+atdpvm5uS2B6fltgenpf/WG+TnX983+w2tbbsiAYCy8rEnAAAAAAAAAACgUJYsbch5lz6afU8d3aLg9H+aNOX1vPsTt+bc7/01i5c0lK9AAKDNCE8DAAAAAAAAAACFMX/h8hz8mTvzw18/k+bmNe+vuTm57HcTctCnb8/c+cvWvEMAoE0JTwMAAAAAAAAAAIWwaPGKHHLmnXng8bqy9/3Ik7Ny8Bl3ZsGi5WXvGwAoH+FpAAAAAAAAAACgED759YfyyJOz2qz/x56ZnY999cE0l+OW1gBAmxCeBgAAAAAAAAAA1ns33v1yfn/HSy1qM3bkEZl69wkZO/KI1W7zx3snZ1QLxwEA2k8hw9P19fUZMWJEtt9++3Tu3Dl9+/bNueeem0WLFuW0005LqVTK5ZdfXukyAQAAAAAAAACAMpjz+rJ85tuPtLhdbe+u6bNZt9T27tqidmd996+Z9dqSFo8HALS9mkoX0N6efPLJHHLIIamrq0u3bt0ycODAzJgxI5dddllefPHFzJkzJ0kyZMiQyhYKAAAAAAAAALS7pqbm3PO36bly1MQ88HhdFi5uSPeuNXnP8M1z5vED8r49t0ipVKp0mUALXX3Ds5k9d2m7jTfn9WX56fXP5oIzdmu3MYHyaG5uzn1jZ+bKURMz5rGZWbBoRbp1qcl+u9fmzOMH5P37bJmqKtcCsC4rVHi6vr4+hx9+eOrq6nLeeeflwgsvTI8ePZIkl1xySb74xS+mpqYmpVIpgwYNqnC1AAAAAAAAAEB7emXmwhxxzt156rk5b3p87vzlueneKbnp3inZfcDG+fOPD0qf2m4VqhJoqcbGpvz0+mfbfdyrb3g2X/7k4NTUVLX72EDrzJy9OEede08ee2b2mx6ft2B5brn/ldxy/yvZZfuNcvNlB2WbPj0qVCWwpgr1znzOOedk2rRpOfvss3PppZe+EZxOkhEjRmTw4MFpaGhIv3790rNnzwpWCgAAAAAAAAC0p2l1i/KuU0a/JTj9n56Y+Fr2/djozJy9uJ0qA9bUXY9Mz5QZC9t93OmzFue2B6e2+7hA68x6bUn2+9jotwSn/9MzL8zNu04dnSkzFrRTZUC5FSY8PXHixIwaNSq9e/fORRddtNJ9hg4dmiQZPHjwG4/9K2y9xx57pFOnTm/71TsPPvhg3ve+96V3797ZcMMNs9dee+WPf/xjeScCAAAAAAAAAJTdyV+5P9NeXbRa+06ZsTCnfvX+Nq4IKJf7H68r5NhAy5x24YN5cerqBaJnzl6cj3zpvrYtCGgzhQlPjxw5Mk1NTTnppJPSvXv3le7TpUuXJG8OT7/wwgu58cYbU1tbm+HDh6+y/6eeeioHHXRQqqurc+2112bUqFHp27dvjjnmmIwePbq8kwEAAAAAAAAAyuYfk+bkvrEzW9Tm7r/OyMSX5rVNQUBZPT6hvpBjA6vvhVfmZ/QDLbtT/CNPzvIch3VUYcLTY8aMSZIccMABq9xn2rRpSd4cnt5///0zc+bM3HzzzTnwwANX2XbUqFEplUr505/+lMMOOywf+MAH8vvf/z59+/bNb3/72zLNAgAAAAAAAAAot5/+YWKr2v2kle2A9vX3Z1+r2NhPTHwtzc3NFRsfWD1XXf9sq9pdOcq1AKyLaipdQHuZMmVKkmTrrbde6faGhoY8/PDDSd4cnq6qWr18+fLly9OxY8c37l6dJNXV1enRo0eamppaVfOwYcNSV+erOwCAypu54eeTqg0ys25m+vTpU+lyoN15DlD0c8D8iz3/xBrgHDD/Ys8/sQZF5/hbg6LPP7EGRef4W4OizH9Wz08mNX1b3O6qX92WP15+bBtUtPYoyjmwKkWff7Lur0Fzktd6fWOV28eOPCK1vbuucntt7y5v/D317hNWuV9d/eIMP/Hmtzy+YNGK9OnbL6U0rn7Ra5F1/fiXQ9HXoCjzr+9xStJhuxa3u+76+3LnL05sg4rWHkU5B1j31NbWZty4ca1qW5jw9KJFi5IkS5YsWen2UaNGpb6+Pj169Mg222zT4v5PPvnkXHHFFTnvvPPyxS9+MTU1Nbnqqqvy/PPP58orr2xVzXV1dZk+fXqr2gIAlFWPxqQqaWpsdH1CMXkOUPRzwPyLPf/EGuAcMP9izz+xBkXn+FuDos8/sQZF5/hbg6LMv0talaBYvqJ5/V6XpDjnwKoUff7JerAGVUmvVW+t7d01fTbr9o691FRXrdZ+KzNjRl3SvLxVbStunT/+ZVD0NSjK/LdtTjq0vNmKhqzf65IU5xygUAoTnq6trc3cuXPzxBNPZO+9937TtpkzZ+b8889PkgwaNCilUqnF/Q8ePDj33ntvPvShD+VHP/pRkqRbt265/vrrs//++7e6ZgCAtcHM6uo0Jamqrs7mW25Z6XKg3XkOUPRzwPyLPf/EGuAcMP9izz+xBkXn+FuDos8/sQZF5/hbg6LMf3ZNQ1oTa+zUoSm91+N1SYpzDqxK0eefrPtr0JxkRnNTUlr5t8/X1S9+2/a1vbukproqDY1Nqatf+U0b36mfLbbYNKU0r1a9a5t1/fiXQ9HXoCjzr+/QmGWtaNexuiGbrMfrkhTnHGDdsyYZ28KEpw888MBMnDgxF198cQ466KD0798/STJ27NicfPLJqa+vT5IMGTKkVf0///zzOf744zN8+PCceeaZqa6uzm9/+9uccMIJGT16dN773ve2uM/W3k4cAKDc+hw4MtNnLc7mtZtn2jPTKl0OtDvPAYp+Dph/seefWAOcA+Zf7Pkn1qDoHH9rUPT5J9ag6Bx/a1CU+f/w10/nvEsfa3G773/tpPzXR77bBhWtPYpyDqxK0eefrB9rsP2hf8iLUxesdNvwE29+27ZT7z4hfTbrlrr6Jel70O9bPHbf2m555R9TW9xubbE+HP81VfQ1KMr8r7r+2ZzxrYdb3O4bX/hQvnTaN9qgorVHUc4BimXlH6laD40YMSIbb7xxpk6dmp133jm77rprdthhh+yxxx7Zdttt3wg3Dx48uFX9f/nLX07Xrl1z00035ZBDDsn73//+/OpXv8qee+6Z8847r5xTAQAAAAAAAADK6GNH9k/nTtUtatO1c01OOXyHNqoIKKehA3sXcmxg9Z106Hbp0a1Di9p07FCVTxzVv40qAtpSYcLTffr0yYMPPphDDz00nTt3zuTJk9OrV69cddVVufXWWzNp0qQkrQ9PP/300xk8eHBqat58M+9hw4Zl4sSJa1w/AAAAAAAAANA2em3QKeeetHOL2nz+lF2yQY+ObVQRUE5DB1QyPL1xxcYGVl/3rh1y/sd2bVGbs04YkE037tJGFQFtqeadd1l/DBgwIKNHj37L4wsXLszkyZNTVVWVXXbZpVV919bW5sknn0xDQ8ObAtRjx47Nlltu2eqaAQAAAAAAAIC2953/GppXZi7MyNtfesd9Tz5s+3zjzN3boSqgHI44YKt88X/GVmbs92xdkXGBlvvq6UMyZcbC/OKmSe+47zEH9csln9ujHaoC2kKhwtOrMn78+DQ3N6d///7p2rXrW7bfcMMNSZIJEya86d/9+vXLsGHDkiRnnXVWjjvuuBx99NH59Kc/nerq6vzud7/L/fffnx//+MftNBMAAAAAAAAAoDWqq6vym4vek0H9e+V/fjM+r7625C37bL5J13zuozvnvFN3TVVVqQJVAq2x0zYb5r17bJ4xj81s13H33W2zDOrfq13HBFqvVCrlZ1/fN7tsv1Eu/dXTmT5r8Vv22bRX55zzkZ3zpdMGpbq6qgJVAuUgPJ3k6aefTpIMHjx4pduPPfbYlf771FNPzbXXXvvGY7fccksuvvjinHrqqWlsbEz//v3z29/+Nh/5yEfarngAAAAAAAAAoCyqqkr50mmD8/lTdsmfxkzJJy54MIuWNKRbl5r88lv756gDtk6HDoJSsC468/gB7R6ePvP4Ae06HrDmSqVSPnvyLjn7xIG5+b5XMuaxGbnmT5OyZGljNurZMa/cdUI6dayudJnAGhKezjuHp5ubm1ern8MOOyyHHXZY2eoCAAAAAAAAANpfxw7VOe4D2+bz3380i5Y0ZMMeHXPs+7epdFnAGjj6ff3y7mG1uX9cXbuMt8+QTXPcB7xuwLqqpqYqHzqwXz50YL/8acyUTF+6OF071whOw3rCxyHzzuFpAAAAAAAAAABg3VVVVcovvrFfunZu+3tNdu5UnV9+c/9UV4tmAcDayJ2nk4wZM6bSJQAAAAAAAAAAAG1ou7498+Mv7pVPfeOh1W5TV7/4TX+vjh9+Yc/077dBi+sDANqH8DQAAAAAAAAAAFAIn/zwjnn1tSX56uWPr9b+w0+8uUX9X3jGbvnM8QNaUxoA0E58NwQAAAAAAAAAAFAYXzl9SH54/p6pqiqVrc9SKbn4s8Pz9TN3L1ufAEDbEJ4GAAAAAAAAAAAK5XMn75KHf3VYdtpmgzXua4ete+bBaw/LiE8MKkNlAEBbE54GAAAAAAAAAAAKZ6/Bm+bvfzgqX//Mbtlko84tbt97o8756ulD8uQfjs67dtusDSoEANpCTaULAAAAAAAAAAAAqITOnWpy4Wd2z5dOG5w/3jM5v7r5+Tz2zOzMnb98pftv2KNjhu/SO6ccvkOOOahfOncSvwKAdY13bwAAAAAAAAAAoNA6dazOiR/cLid+cLs0Nzdn8vSFeeaFuTn1q/dn7vzl6bVBx4wdeWS22bJHSqVSpcsFANaA8DQAAAAAAAAAAMD/KZVK2aZPj2zTp0e6dq7J3PnL06VTTbbt07PSpQEAZVBV6QIAAAAAAAAAAAAAANqD8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAjC0wAAAAAAAAAAAABAIQhPAwAAAAAAAAAAAACFIDwNAAAAAAAAAAAAABSC8DQAAAAAAAAAAAAAUAg1lS4AAAAAAABY+8x6bUmefn5uFixenubmpFuXmgzYdsP02axbSqVSpcsDAGhTy5Y35pkX5mbJssYkyZJljXliQn122WGjdOxQXeHqAIC2tnxFY8a/MDfTZy3OkqUNbzy2dFlDOncSu4R1nWcxAAAAAACQxsam3P7QtFz75+fz6NOzM+3VRSvdb5ONOmf4Lr1z0ge3z4cP6pdOHYWHAID1w8vTFuSqG57NXY9MzzMvzM2KhqY3ts15fVmGnvDndKipyq47bJQP7NMnpx+zY/pt2aOCFQMA5fTKzIW5+oZnc+cj0/OPSXOyfEXTm7bPnrssPfb+dXbZfqMctNeW+fSxO2W7vj0rVC2wJoSnAQAAAACgwBoamnL5yAn5n9+Oz5QZC99x/9lzl+a2B6fltgen5XPf75wzjh2QL35iULp28SsHAGDd9PiE+lxwxeO5/aFpaW5++31XNDTliYmv5YmJr+V71zyVw/bfKt84c7fsNqB3+xQLAJTdPybNyQVXPJ5b7p+apqa3vxhoaGjOk8/OyZPPzsn3r306B7+rT77+md2y56BN26laoByqKl0AAAAAAABQGRNenJt9Trkln/v+o6sVnP5Ps+YszTev+nuGHHdTHv77q21QIQBA21m2vDFfuWxc9jzp5tz24DsHp/9Tc3Nyy/2vZI+Tbs6FVzyR5Ssa26ZQAKBNrFjRlG9d9fcMO+HP+fNfXnnH4PTK3PHwtOxzyuh88UePZemyhjaoEmgLwtMAAAAAAFBA193yfHY77k8Z+0z9Gvf1/JT52e9jo3PRz59Kc0tTRwAAFTBj1qLsedLN+e7Pn0pj45pdvzQ0NOebV/09e3/0lrz62pIyVQgAtKXZc5Zk31NH54IrnsiKhqY16qupqTmX/PLpDD/x5kyrW1SmCoG2JDwNAAAAAAAFc/UNz+aUrzyQ5SvW7JeD/665OfnyZePylcseL1ufAABtYfqri7Lfx27NU8/NKWu/T0x8Lft9bHRmzl5c1n4BgPKa9dqS7P/xW/PYM7PL2u8zL8zNvh8bnVdmtvzbvYD2JTwNAAAAAAAFctO9k3PGtx5us/4v+sVT+Z/rnmmz/gEA1sSCRcvz/jPuyEvTFrRJ/89PmZ8PnHFHFi1e0Sb9AwBrZsnShhz8mTvz7Muvt0n/U2YszEGn35HXFyxvk/6B8hCeBgAAAACAgnj1tSX55NcfSnMLvpl+7MgjMvXuEzJ25BGr3WbEj8bmmefLeydHAIByGPHDsZnw4rzV3r8110JPPz83X75sXCuqAwDa2gVXPJG/P/tai9q09Hpg0pTXc96lj7amPKCdFDI8XV9fnxEjRmT77bdP586d07dv35x77rlZtGhRTjvttJRKpVx++eWVLhMAAAAAAMqmubk5n/n2w5nz+rIWtavt3TV9NuuW2t5dV7vNioamfPyCB9PQ0NTSMgEA2sy9f5uRn17/bIvatOZaKEku+92EPDBuZovaAABt669PvZof/PrpFrdrzfXAL26alDsemtbisYD2UVPpAtrbk08+mUMOOSR1dXXp1q1bBg4cmBkzZuSyyy7Liy++mDlz/nknjCFDhlS2UAAAAAAqau78ZfnN6Bcyacr8NDQ0ZdNeXXL8wdtk4HYbVbo0gFa5b+zM3HTvlHYbb9z4+vz6lhfyiaP7t9uYAOU0ZcaC/PbWFzPt1UUplUrZevPu+ehh22WLTbtVujSgFZqbm3PuxX9t1zHPveRveWLUUSmVSu06LlAe0+oW5be3vZB5C5YnSRYsWpFXZi7MVpt3r3BlQGt99uJHW/RtXGvq3Iv/lon7fDhVVa4FYG1TqPB0fX19Dj/88NTV1eW8887LhRdemB49eiRJLrnkknzxi19MTU1NSqVSBg0aVOFqAQAAAKiE1+YtzYgfjc3I21/MkqWNb9r2zav+nvcM3zzfPWdo9h68WYUqBGidK34/sQJjTsjHj9pBYAhYpzz78rx88UdjM/qBqWlqenOy4iv/Oy5Hv69fLv7s8GzTp0eFKgRa44HH6zL+xXntOuaTz87JX5+alX2G+P8jrEtenDo/I344Nn++b0oaG///tcD8RSuyzSF/yBHv2SoXf3Z4+vfboIJVAi01bvzsPPbM7HYdc9KU13PvozNy0N5btuu4wDurqnQB7emcc87JtGnTcvbZZ+fSSy99IzidJCNGjMjgwYPT0NCQfv36pWfPnhWsFAAAAIBKmP7qoux98i255qZJbwlO/8t9Y2fmgNNuy5//0n53bwVYU9NfXZQ/VeB164mJr+Wxp9v3F5MAa+LRf8zK3h+9JTff98pbgtNJ0tDYnOvvejl7ffTmPD1pTgUqBFrrylHt/0GySo4LtM6Tz76WvT56S/547+Q3Baf/pampOX8aMyV7n3xLxo33fx1Yl7gWAP5dYcLTEydOzKhRo9K7d+9cdNFFK91n6NChSZLBgwe/8di/wtZ77LFHOnXq9LZ3x7jnnnuy1157pXPnztl0001zxhln5PXXXy/vRAAAAABoE8uWN+bQs+/K81Pmr8a+TTlhxF/yxIT6dqgMYM2NfmDqSn/x3x5uGuPDJsC6YWrdwhz2X3dn3oLl77jvrDlL88Gz7kr93KXtUBmwphoamnLL/a9UZOw//2XlH8YA1j6vvrZktd/f57y+LIeedVdmzFrUDpUBa6q5+Z8ffKiEWx+YmmXLV36jDqByChOeHjlyZJqamnLSSSele/fuK92nS5cuSd4cnn7hhRdy4403pra2NsOHD19l//fff38OPvjgbLnllrnpppvyne98JzfccEOOOuqoNDf7jxAAAADA2u6P90zOU8+t/t0Dly5rzEW/eKoNKwIon8cr+GGPSo4N0BL/+7sJLQpDT3t1UX5243NtWBFQLhNfmrfKbxdqawsXr8ikKW66BuuCn/5hYmbOXrza+8+aszRX/N4dZWFd8PL0BZk7/50/JNkWVjQ05ZkX5lZkbGDVChOeHjNmTJLkgAMOWOU+06ZNS/Lm8PT++++fmTNn5uabb86BBx64yrbf/OY3s8MOO+T666/PIYcckk996lO5+uqrc9999+XWW28t0ywAAAAAaCut+frEm8ZMcYchYJ1Q6fC0m4wAa7slSxvyi5smtbjdT6+fmMbGpjaoCCinxydW9sNcPkwGa78VK5pydSs+FPXzPz7njrKwDnh8wmsVHt+1AKxtChOenjLln7fd33rrrVe6vaGhIQ8//HCSN4enq6pWb4keffTRHHjggW/a//3vf3+S5E9/+lNrSgYAAACgnbw2b2ke+vurLW7X2Nic0Q9MbYOKAMrrpWkLKjb23PnLM3/hioqND7A6Hn7y1cx5fVmL270yc1H+/mxlgxjAO6vktVDyz7tdAmu3cRNmZ8as1b/r9L/MmrM0f/vHrDaoCCinl6bNr/D4rgVgbVNT6QLay6JF/7wD0JIlS1a6fdSoUamvr0+PHj2yzTbbtLj/6urqdOzY8U2PdejQIaVSKePHj295wUmGDRuWurq6VrUFACinmRt+PqnaIDPrZqZPnz6VLgfanecART8HzL/Y80+KsQYNVb2SDc9tVdvzv/T1fPOzD5W5orVLEc6Bt2P+xZ5/sn6swesbfSUpdVzptrEjj0ht766rbFvbu8sbf0+9+4RV7ldXvzjDT7x5pdt2Gjgo1c0LW1Dx2mN9OP5rquhrUPT5J8VYg8Udd066H9eqtgcfekw6N7xY5orWHkU4/u+k6GuwPsz/9S4HJV32Xem2cl0LJau+Hrr4+/+Tn37z3hZUvHZZH86BNVH0+SfFWIOlHXZIeny0VW0/dOzJ6bLi2TJXtPYowvF/J0Vfg/Vh/vM7vzvp+t6Vbnuna4FkzX82cvmVV+U3lx7dgorXLuvDOcD6qba2NuPGjWtV28KEp2trazN37tw88cQT2Xvvvd+0bebMmTn//POTJIMGDUqpVGpx//3798+jjz76psfGjh2b5ubmzJkzp1U119XVZfr06a1qCwBQVj0ak6qkqbHR9QnF5DlA0c8B8y/2/JNirEHN4mTD1jWdP68+819bT9flX4pwDrwd8y/2/JP1Yw02aEyqV76ptnfX9Nms2zt2UVNdtVr7rUzdzGlJ46JWta249eH4r6mir0HR558UYw169E66t67pa7NnJovX03VJinH830nR12B9mP9mryddVr6pPa6FFs6fl4Wz1tG1S9aPc2BNFH3+STHWoFuPpEfrms6pr0sWrqfrkhTj+L+Toq/B+jD/TeYlq8hHr+61QNL664FFC17Porp1dO2S9eMcgP9QmPD0gQcemIkTJ+biiy/OQQcdlP79+yf5Z8D55JNPTn19fZJkyJAhrer/nHPOySmnnJJvf/vbOeOMMzJt2rSceeaZqa6uTlVVVav6rK2tbVU7AIBym1ldnaYkVdXV2XzLLStdDrQ7zwGKfg6Yf7HnnxRjDZpTlbqmhWmqakFiprk5KZXSu/vSdOq8fq7LvxThHHg75l/s+SfrxxrUZWkaV5EYqqt/+6+mru3dJTXVVWlobEpd/cq/3fFt+2luzBa1G6fU2k+pVNj6cPzXVNHXoOjzT4qxBg1VDXn1/67vWqS5MbW9kuqN1s91SYpx/N9J0ddgfZj/gs41mb+KbeW6Fnq7vjboXpPuHdbNtUvWj3NgTRR9/kkx1qCx1Jy65qak1MKMT3NTNtuoKTUbrJ/rkhTj+L+Toq/B+jD/RZ06ZN4qtr3TtUCy5j8b6dmtJj3W0bVL1o9zgPXTmmRsCxOeHjFiRH73u99l6tSp2XnnnbPTTjtl6dKleeGFF3LIIYekX79+ufPOOzN48OBW9f/Rj34048ePz7e+9a187WtfS3V1dc4666x07NgxPXv2bFWfrb2dOABAufU5cGSmz1qczWs3z7RnplW6HGh3ngMU/Rww/2LPPynOGnzlsnH57s+fWv0GpVJ22maDTPjTg636JrN1SVHOgVUx/2LPP1k/1uDoz96TP42ZstJtK/s62X839e4T0mezbqmrX5K+B/2+xWMP3mmTPHn9ysdeF6wPx39NFX0Nij7/pDhr8MEz78ztD7Vsfh85tH9++71JbVTR2qEox//tFH0N1of5j3l0Rt73qdtXuq2tr4WS5JY/XJH9hq67N09bH86BNVH0+SfFWYNjz7s3N9w9uUVtjjigX/582YS2KWgtUZTj/3aKvgbrw/wf/ces7PXRW1a67Z2uBZI1vx4Yde33c/C+fVrcbm2xPpwD8J9ad0vkdVCfPn3y4IMP5tBDD03nzp0zefLk9OrVK1dddVVuvfXWTJr0zx9qtDY8XSqV8r3vfS/19fV56qmn8uqrr+YHP/hBnn/++eyzzz7lnAoAAAAAbeDTx+6UDjUt+3HZ2ScOXO+D08D6YejAjSs4du+KjQ3QEv914sAWtznrhAFtUAlQbrsPqNy1UKmU7FbB8YHVd3YrrgVa0wZof4P690p1deV+jlvJn8sAK1eY8HSSDBgwIKNHj86CBQuyYMGCPProozn99NOzaNGiTJ48OVVVVdlll13WaIwePXpk0KBB2XjjjfPLX/4yS5Ysycc//vEyzQAAAACAtrLV5t1zzTf3W+39jzmoXz5znLAMsG7Yf/fK3elwv903q9jYAC1xyH5984VTd13t/b999tDsM8RrHKwLNuzZKYP696rI2LvttHG6d+1QkbGBlnn3sM1z4Rm7rfb+XzptUA7ae8s2rAgoly6da7LHLptUZOwd+22QTXp1qcjYwKrVVLqAtcH48ePT3Nyc/v37p2vXrm/ZfsMNNyRJJkyY8KZ/9+vXL8OGDUuSjBs3LnfffXd23333NDQ05J577slll12WSy+9NNttt107zQQAAACANfHRw7ZPTXUpn7jwwSxZ2rjK/U47un9+8tV3parKXaeBdcN+Q2uzY78N8tzk19t13A16dMxx79+2XccEWBOXfH54unauybd/9mSamppXuk9NdSnf++zwfP6UNbspE9C+Tj9mx5z93b+2+7ifPnandh8TaL0LP7NbOneqzlcvfzyNjSu/FqiqKuXrn9ktXz19SPsWB6yR04/ZMX99ala7j+taANZOwtNJnn766STJ4MGDV7r92GOPXem/Tz311Fx77bVJkk6dOuWWW27JRRddlIaGhuy6664ZNWpUjjnmmLYrHAAAAICyO+GQ7fL+ffrkVzc/n5/d+FwmvjQvSVJVSs48YWA+c9xOGbjdRpUtEqCFSqVSzjx+QM69+G/tOu7Hj9whXbv4VQSw7iiVSvnGWbvnE0fvkKtveC6/uvn5TJ+1OElSXVXKBWfslk9+qH+22LRbhSsFWurkw7bPF380NouWNLTbmD27d8hHPuhma7AuKZVK+dJpg/PRQ7fPz258LtfePCnTXl2c5ubmbLlpt3zsyB1y+jE7pm9t90qXCrTQ8R/YNp///qOZO395u43ZpXN1PnbkDu02HrD6/MQy7xyebm5e+SfJ/t2uu+6aRx55pKx1AQAAAFAZvTbolM+dvEs+d/Iu2fJ9v8uM2Uuy+SZd87//vXelSwNotY8duUMu/uU/MuP/QoBtrWvnmpx70s7tMhZAuW29RY9855xh+c45w964Hqzt3SUXnLFbpUsDWqln94455yM756JfPNVuY372pF3SvWuHdhsPKJ8+td3yjbN2zzfO2v2Nb6PwDWSwbuvSuSbnnbJrvnr54+025pnHDchGPTu123jA6quqdAFrg3cKTwMAAABQXKWSX4wB64ee3Tvm6gve1W7jXfy54em3ZY92Gw+grbgehPXHBWcMyYBtN2yXsXbZfqN8+VMyCLA+qKoqCU7DemLExwdlt502bpexdti6Z7551tB2GQtoOeHpJGPGjElzc3MOPfTQSpcCAAAAAABt5tD9t2rx18XW1S/OtFcXpa5+9e9Y/e5htTnz+AEtLQ8AoE117lSTa7+1f6qrVz8E2ZproZqaUq799v7p1LG6NWUCAG2kQ4eqXPvt/dOhpmWxyZZeD5RKyTXf2C9du9S0pkygHXh2AgAAAABAgVzx5X3y0rQFeeDxutXaf/iJN7eo/5222SDXX/ped2YDANZKe+y6SX7x9f3ysa89sFr7t/RaqFRKfv3td2fowN6tKQ8AaGOD+vfKb7/3npww4i9pamperTYtvR64+oJ9s+/uta0pD2gn7jwNAAAAAAAF0rVLTUZfflAOGL552fveZfuNMubnH8wmvbqUvW8AgHI59cgdcs039yv7h72qq0v51bf3z4kf3K6s/QIA5XXs+7fJby96d2pqynstUColV13wrnzywzuWtV+g/ISnAQAAAACgYHp065jbrnx/zjtll5TK9HvCUw7fPg9ee2g236RreToEAGhDHz+qf+766cHZavNuZemv3xbdc8/Vh+Tkw3coS38AQNs64ZDt8peffzDb9e1Rlv76bNYtt1/5gZx+zE5l6Q9oW8LTAAAAAABQQJ071eTSL+yZh351WHbaZoNW97PFpl1z82UH5VffeXc27NmpjBUCALSt9+21RZ6+8UM5/ZgdW/2BsqqqUs48fkCe/uOH8p42+GYPAKDt7Lt7bZ66/uic85GBrf5GilIp+cTR/fPMHz+UD7yrT5krBNpKTaULAAAAAAAAKmefIZvlmT9+KHc8PC1XjpqY2x+alubmd263726b5awTBuRDB/ZLxw7VbV8oAEAb6Nm9Y666YN986RODc9UNz+bnf3wur81b9o7tNtmocz75oR3z6WN3zNZblOeOlQBA++vWtUN+/KW984WP7Zqrb3guP7vxubz62pJ3bNdrg0457ej++fSxO2W7vj3boVKgnISnAQAAAACg4Kqrq3Lo/lvl0P23Sl394ox9pj6PT6jP08/Pza0PvpJly5vSuWN1Pnvyzhk2sHeG7dxbSAgAWK9s06dHvvfZ4fnGmbvnyWdfy+MT6vP4xNcyc/biLF/RlE4dq7J5764ZOrB3hg7snSE79fIBMgBYj/St7Z5vnT00X/v0kDz13Jx/XgtMqM+M2YuzbHlTOnaoymYbd8mwnXtn6IB/Xgt07iR+Cesqz14AAAAAAOANtb275vD3bJXD37NVkqTPgSMzfdbibLxhp1x07vAKVwcA0LY6dazOnoM2zZ6DNq10KQBABXTsUJ3hu2yS4btsUulSgDZUVekCAAAAAAAAAAAAAADag/A0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCEITwMAAAAAAAAAAAAAhSA8DQAAAAAAAAAAAAAUgvA0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCEITwMAAAAAAAAAAAAAhSA8DQAAAAAAAAAAAAAUgvA0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCEITwMAAAAAAAAAAAAAhSA8DQAAAAAAAAAAAAAUgvA0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCEITwMAAAAAAAAAAAAAhSA8DQAAAAAAAAAAAAAUgvA0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCEITwMAAAAAAAAAAAAAhSA8DQAAAAAAAAAAAAAUgvA0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCEITwMAAAAAAAAAAAAAhSA8DQAAAAAAAAAAAAAUgvA0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCEITwMAAAAAAAAAAAAAhSA8DQAAAAAAAAAAAAAUgvA0AAAAAAAAAAAAAFAIwtMAAAAAAAAAAAAAQCHUVLoAAIC1zeMT6nPf2Jl5fEJ9npj4WurnLc2KhqZ06lCdrbfonmEDe2fowN45ZN8+2XKzbpUuFwAAAAAAAAAAWE3C0wAASZYsbcjv73gpV46amHHj61ex14rMnrv0je3V1aUc+Z6tc+bxA/LePTdPqVRqv4IBAAAAAAAAAIAWE54GAArvoSfq8vELHswLr8xvUbvGxub88d7J+eO9k3PY/n1z1QXvyhabuhM1AAAAAAAAAACsraoqXQAAQKWsWNGUz3//b9n/47e2ODj9n0Y/MDU7H/3HjLrjpTJVBwAAAAAAAAAAlJs7TwMAhbRseWOOP39M/vyXV8rW57wFy3PCiL/k1deW5JyTdi5bvwAAAAAAAAAAQHm48zQAUDiNjU056Uv3lTU4/e/Ovfhvuer6Z9ukbwAAAAAAAAAAoPWEpwGAwvn+tU/nxnsmt+kYZ333kTw+ob5NxwAAAAAAAAAAAFpGeBoAKJTxL8zNhVc+0aI2Y0cekal3n5CxI49Y7TaNjc352FcfyLLljS0tEQAAAAAAAAAAaCOFDE/X19dnxIgR2X777dO5c+f07ds35557bhYtWpTTTjstpVIpl19+eaXLBIC1wszZizNu/OyMGz87dfWLK13OGmlubs6nvvFQlq9oalG72t5d02ezbqnt3bVF7Z55YW4u+eU/WtSGtU/93KV5YkJ9Hnt6dl6ZubDS5QAAAAAAAAAAsAZqKl1Ae3vyySdzyCGHpK6uLt26dcvAgQMzY8aMXHbZZXnxxRczZ86cJMmQIUMqWygAVFBjY1NGPzA1V46amLsemf7G46VS8sH9+ubM4wfk4Hf1SVVVqYJVttzf/jErf31qVruOefnICRnx8UHp1LG6XcdlzTQ3N+f+cXW5ctTE3HTv5DQ0Nr+xbd/dNsuZxw/Ihw/ql44dHFcAAAAAAAAAgHVJoe48XV9fn8MPPzx1dXU577zzMnPmzDzxxBOpq6vLxRdfnFtvvTVjx45NqVTKoEGDKl0uAFTEosUrcvRn781R597zpuB0kjQ3J7c+MDWHnnVXPvKlv2TpsoYKVdk6V46a2O5jzpqzNH+8Z3K7j0vrNTY25ezv/jUHnHZbrr/r5TcFp5Pkob+/mo986b6875O3Z87ryypUJQAAAAAAAAAArVGo8PQ555yTadOm5eyzz86ll16aHj16vLFtxIgRGTx4cBoaGtKvX7/07NmzgpUCQGU0NDTluPPH5Jb7X3nHfUfd8XJO+coDaWpqfsd91waLFq/IH+58uSJj//LPkyoyLi3X3Nyccy/+22oF7R/6+6s59Kw7s2TpuvUhAgAAAAAAAACAIitMeHrixIkZNWpUevfunYsuumil+wwdOjRJMnjw4Dceu+GGG/LhD384W2+9dbp27ZqddtopX/nKV7Jw4cK3tH/55ZdzxBFHpEePHtloo41yyimn5LXXXmubCQFAG/jNrS/ktgenrfb+19/1cm66d3LbFVRGf3/2tSxf0VSRsR99evY6EzIvuof//mqu+P3q36H8b/+YnR//dnwbVgQAAAAAAAAAQDkVJjw9cuTINDU15aSTTkr37t1Xuk+XLl2SvDk8femll6a6ujrf/e53c/vtt+czn/lMfvKTn+Tggw9OU9P/D2AtWLAgBxxwQKZNm5aRI0fm6quvzoMPPpjDDjvsTfsBwNpsde62W442lfD4hPqKjT1/4Yq8OHV+xcZn9bXmfL7q+mfT2Oh6DwAAAAAAAABgXVBT6QLay5gxY5IkBxxwwCr3mTbtn3fa/Pfw9C233JJNNtnkjX+/+93vziabbJKTTjopDz30UPbff/8kydVXX53p06fngQceyFZbbZUk6dOnT/bZZ5/cfPPNOeqoo8o9JQAoq6cnzcnYZ1oeMB7z2My8NG1+tu3Tsw2qKp+nn59b0fH/MWlOdth6g4rWwNubN39Zbrh7covbTZ6xMGMem5mD9t6y/EUBAAAAAAAAAFBWhQlPT5kyJUmy9dZbr3R7Q0NDHn744SRvDk//e3D6X4YNG5YkmT59+huPjR49Ovvuu+8bwekk2XvvvbPtttvmlltuaVV4etiwYamrq2txOwBojSUddkx6fKRVbffc99B0ani5zBWV15xuxyaddlnptrEjj0ht766rbFvbu8sbf0+9+4S3HaeufnGGn3jzWx7/5Kf/K+cuf3L1C17LzNzw80nVBplZNzN9+vSpdDltYkX1JlmxwdmtanvcR89Mt2WPl7ki1iZFeA7w9op+Dph/seefWIOizz+xBuZf7Pkn1sD8iz3/xBoUff6JNTD/Ys8/sQZFnz/OgaLPP7EGRef4W4Oizx/nAGuv2trajBs3rlVtCxOeXrRoUZJkyZIlK90+atSo1NfXp0ePHtlmm23etq+//OUvSZIBAwa88diECRNy7LHHvmXfnXfeORMmTGhVzXV1dW8KaANAm+q5WdKjdU3rX5uTLFzL37O2Wpp0Wvmm2t5d02ezbu/YRU111WrttzLz5s3LvLlr+Rq9nR6NSVXS1Ni4/l6fdC4lrbw5+Lx58zNvznq6LvxTEZ4DvL2inwPmX+z5J9ag6PNPrIH5F3v+iTUw/2LPP7EGRZ9/Yg3Mv9jzT6xB0eePc6Do80+sQdE5/tag6PPHOcB6qTDh6dra2sydOzdPPPFE9t577zdtmzlzZs4///wkyaBBg1IqlVbZz/Tp0/O1r30tBx98cIYMGfLG43Pnzs2GG274lv179eqV5557rtU1A0B7WVbTIfVJ0tycvM174Zv8376b9uqUDhts2ZblrbE5nWuy8o9Q/fNu0W+ntneX1FRXpaGxKXX1q+rl7fvaaMNu6dp17V6jtzOzujpNSaqqq7P5luvuPN5OY6lrWvudH716VqdLl/VzXfinIjwHeHtFPwfMv9jzT6xB0eefWAPzL/b8E2tg/sWef2INij7/xBqYf7Hnn1iDos8f50DR559Yg6Jz/K1B0eePc4C115pkbAsTnj7wwAMzceLEXHzxxTnooIPSv3//JMnYsWNz8sknp76+PkneFIj+TwsXLsyRRx6Zjh075pprrmnzmlt7O3EAaI2mpub0P/z6vDh1weo3KpUyeMde+fsfHn/bDx+tDb73i6fy3z9e+Xvr8BNvftu2U+8+IX0265a6+iXpe9DvWzX+fXeMzKD+vVrVdm3Q58CRmT5rcTav3TzTnplW6XLazAfOuCN3PdKyT8r22qBTpo+9I507FebSupCK8hxg1Yp+Dph/seefWIOizz+xBuZf7Pkn1sD8iz3/xBoUff6JNTD/Ys8/sQZFnz/OgaLPP7EGRef4W4Oizx/nAOunqkoX0F5GjBiRjTfeOFOnTs3OO++cXXfdNTvssEP22GOPbLvttnnve9+bJBk8ePBK2y9ZsiSHH354Xn755dx1113ZfPPN37R9o402yrx5897Sbs6cOenVa90NSgFQHFVVpXzmuAEtbnfm8QPW+uB0kgwd2LtiY3fuVJ2B225YsfFZfWce3/LnwGlH9xecBgAAAAAAAABYRxQmPN2nT588+OCDOfTQQ9O5c+dMnjw5vXr1ylVXXZVbb701kyZNSrLy8PSKFStyzDHHZNy4cbn99tszcODAt+wzYMCATJgw4S2PT5gwIQMGtDyEAwCVcPoxO7bo7sh77LJJTj5s+zasqHyGDuydSmW8d9tp49TUFOaya5122P59c/C7+qz2/ltv0T3nnbprG1YEAAAAAAAAAEA5FSrFM2DAgIwePToLFizIggUL8uijj+b000/PokWLMnny5FRVVWWXXXZ5U5umpqacdNJJuffee/PnP/85e+yxx0r7Puyww/LQQw9l2rT/f1v6Rx99NC+++GIOP/zwNp0XAJRLj24dc/uV78+uO2z0jvsO27l3Rl9+ULp0XjfuuNtrg045ZN/VD8WW00mHbleRcWm56uqq/OHSA/K+Pbd4x337bdE9d/304Gy2cZd2qAwAAAAAAAAAgHIoVHh6VcaPH5/m5ubssMMO6dq165u2nXXWWbn++uvzuc99Ll27ds3f/va3N/7Mnj37jf1OP/30bL755jnyyCMzevTo3HDDDTnxxBOzxx575Mgjj2zvKQFAq22xabc8eO1h+dbZu6fPZt3esr3fFt1z8WeH575ffDCb9Fq3QqOfOa79vw2iW5eadebu3PxTj24dc9uV789lX9orO22zwVu2b7JR5/z3aYPz6G+PSP9+b90OAAAAAAAAAMDaS3g6ydNPP50kGTx48Fu23X777UmS733ve9l7773f9OfWW299Y7+ePXtmzJgx2XzzzXPCCSfkk5/8ZPbZZ5+MHj06VVWWGYB1ywY9Ouarp++Wl28/LndddXA27NExSdJ7w0554dZjM+ITg9Kta4cKV9lyh+zbJ9v17dGuY556xA7p2b1ju47JmuvYoTr/9ZGdM+FPH86D1x76xnNg4w06ZerdJ+S75w7Lpu44DQAAAAAAAACwzqmpdAFrg7cLT0+ePHm1+9luu+0yevTocpUFABVXU1OVg/beMt261GTeguXp1LE61dXr7oeCqqurcvUF++Z9n7q9XcbbfJOu+fZ/DW2XsWgbpVIp++5e+8ZzoHOn6nTqWF3psgAAAAAAAAAAaKV1N/1URm8XngYA1i/v3XOLfOa4nVrUpq5+caa9uih19Ytb1O7qC96VjXp2alEbAAAAAAAAAACg7bjzdJIxY8ZUugQAoB1d8vk98tgz9Xl8Qv1q7T/8xJtbPMbnTt45h717qxa3AwAAAAAAAAAA2o47TwMAhdO9a4fc8ZMPZFD/Xm3S/6c+vGMuPW/PNukbAAAAAAAAAABoPeFpAKCQem/UOfdd88EctPcWZeuzqqqUr54+JFdd8K5UVZXK1i8AAAAAAAAAAFAewtMAQGFt1LNT7vzpwfnp196V7l07rFFfO/bbIA/96tB86+yhKZUEpwEAAAAAAAAAYG0kPA0AFFqpVMqnj90p42/6UD538s7ZsEfHFrXvv/UG+dH5e+bvfzgqew/erI2qBAAAAAAAAAAAyqGm0gUAAKwNttq8e354/l759tnD8oe7Xsp9Y+vy+IT6THhpXpqamt/Yr2vnmuw2YOMMHbBxDn/PVnnfnlu40zQAAAAAAAAAAKwjhKcBAP5N1y41+diR/fOxI/snSZYsbci2h/whda8tSW3vLpl29wmprvblHQAAAAAAAAAAsC6S/AEAeBtdOtekuvqfd5aurioJTgMAAAAAAAAAwDpM+gcAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEISnAQAAAAAAAAAAAIBCEJ4GAAAAAAAAAAAAAApBeBoAAAAAAAAAAAAAKAThaQAAAAAAAAAAAACgEGoqXQDA2qihoSkTX5qXxyfWZ9Lk+VmyrCHVVaX07N4xg3fslaEDemfLzbqmVCpVulRoE01NzXlx6vyMG1+fCS/Ny7wFy5Mk8xcuzx/ufClDB/bOtn16eA6w3mpubs7UukV5fEJ9/jFpTl7/v+fA6wuX57pbns/Qgb2zY78NUl3ts4gAAAAAAAAAAOsS4WmA/9Pc3JzHnp6dK0dNzA13T87ipQ1vu/9Wm3fLaUfvmE99eMdsvknXdqoS2tbEl+blJ3+YmN+MfiFz5y9/y/YFixty/Pl/SZL03qhzTjl8+5xx7E7ZYesN2rtUaBNT6xbm6hueyzV/mpQZsxa/ZfvCxQ055SsPJEm6d+2Q4z+wTc48fkB2H9i7vUsFAAAAAAAAAKAVhKcBkjz29Oyc9d1HMm58/Wq3eWXmolx45RP51tV/z8mHbZ9Lz9szvTbo1IZVQtt54ZX5Ofu7j+TOR6avdpv6uUvzw18/kx/++pkc/u6t8r//vVe23qJHG1YJbWfWa0vyue8/mt/f8VKamppXq83CxSvyi5sm5Rc3Tco+QzbNlV/ZJ4N33LiNKwUAAAAAAAAAYE34nnGg0JYua8h//3hs9j75lhYFp/9dQ0Nzfvmn57Pz0Tfm5r9MKXOF0Laamprz4988k0HH/LFFwen/dMv9r2TXD9+Uq294Ns3Nqxc8hbVBc3NzRt3xUgYefWN+d9uLqx2c/k+PPDkrw078c77xkyeyYkVTmasEAAAAAAAAAKBchKeBwpo7f1ne+8nb871f/KPVYbl/V1e/JEeee08uvOIJ4VHWCcuWN+b488fks5c8miVLG9e4vwWLVuTT33w4H/vqA2loEB5l7dfc3Jwv/OCxnDDiL3lt3rI17q+hoTlf/8nf84Ez7siCRcvLUCEAAAAAAAAAAOUmPA0U0usLlueg0+/IX5+aVfa+v3nV3/OVyx4ve79QTitWNOXY88bkhrsnl73vX9/yQj765fvS2ChAzdqrubk55178t/zw18+Uve+/jJ2ZQ868K4uXNJS9bwAAAAAAAAAA1ozwNFA4zc3NOf78MXl8Qn2bjXHRL57Kz254ts36hzX12Uv+llvuf6XN+h91x8v58mXj2qx/WFP/85vx+d/fTWiz/h/++6s5+cv3+yYCAAAAAAAAAIC1jPA0UDhX3/Bc7nxkeovajB15RKbefULGjjxitdt8/tLHMnn6gpaWB23unr9Nz5WjJraoTWueA9+/9uk88uSrLS0P2tyzL8/Lf/+4ZeH+1jwH/njv5PzuthdbWh4AAAAAAAAAAG2okOHp+vr6jBgxIttvv306d+6cvn375txzz82iRYty2mmnpVQq5fLLL690mUAbmDJjQb7wg8da3K62d9f02axbant3Xe02CxevyCe//pC7jrJWWbBoeU678MEWt2vNc6C5Ofn41x7MkqUNLR4P2kpjY1M+/rUHsmx5Y4vateY5kCT/ddFfM3P24ha1AQAAAAAAAACg7dRUuoD29uSTT+aQQw5JXV1dunXrloEDB2bGjBm57LLL8uKLL2bOnDlJkiFDhlS2UCqusbEptz04Lb+46bm8PH1hGhubssWmXXPyYdvn2Pdvk86dCvf0WS9cfM0/snDxinYb795HZ+S+sTNzwB5btNuYlM/0VxflZzc+lzsfmZbXF65I18412WvQJvnMcQOy8/YbVbq8VvnZjc/llZmL2m28SVNez29Gv5BPHbNTu41ZTk8++1p+8oeJmTVnaZJk9pyl+c7VT+aTH94xm23cpcLV0Rq3PjA1f/vH7HYbb+785fnRdc/kks/v0W5jAvw/9u47PIqq/f/4Z7PpISEkAQKEXkML0gSliBRBQBQEVLArCmJFsHcfBcX6oCj2ShHpCIqANAWpghCqtEACBBIS0pPd3x9+5ScPCWQ3uzu7mffruri8zMyZc5/Zmdkzs/ecAwAAAAAAAAAAAAAomalGnk5NTVX//v2VkpKiMWPGKDk5WZs2bVJKSoomTJighQsXav369bJYLGrZsqXR4cJAS9ceVf2+3+maB5Zo7vJD2rr7lLbvS9eS347qlqdWKq7nNH01f4/RYcJBGWfy9dWCfR6v9/3piR6vE2WTl1+ku59fpdq9p+uFDzZr7dYTSvwrXRt3pOq9aYlqPnCWrrp3sY6fzDE6VIfYbHZNnrHT4/W+PyPR50ZgP3IsS1fcsVCXDJmjKTN3qaDQJknKL7Tp6UkbVbPnNN3/6m8qKLAZHCkcZcQ1+dM5u5WbxwjsAAAAAAAAAAAAAAAA3sBUydMPPPCAkpKSNHr0aE2cOFHh4eFnl40bN04JCQkqLCxUnTp1FBERYWCkMNKCFYfUe+RiHTx6psR1Tqbn6ZanVuq/3273YGQoq28W7vPoqNP/mL3soI4e99xIvyibvPwi9Rv9kz6etVtFRSUn/P706xFdfusCHfOhBOql645q76EMj9e7Zecprd163OP1Outwyhl1vHm+VmxIKXGdgkKbJk3doevHLFVhIQnUvmLf4Qz9+OsRj9d7Mj1P3/203+P1AgAAAAAAAAAAAAAA4HymSZ5OTEzU9OnTFRMTo1dffbXYddq0aSNJSkhIOPu3mTNnatCgQapdu7ZCQ0PVpEkTPfXUUzpz5tzE2n+Sstu3b6+goCBZLBb3NQZuc+BIpoaOXa7CCyRM/tuDE9Zq1caSk+vgXZas9XzCnCQVFdkvmIQJ7/L42+v189qjpVp376EMDR27zM0Ruc6S34w5BySVep8azW6367qHlupwSuleeJj3yyG98MFmN0cFV1m6zrjj0FfOAQAAAAAAAAAAAAAAgPLONMnTU6dOlc1m07Bhw1ShQoVi1wkJCZF0bvL0xIkTZbVa9corr2jRokUaOXKkJk+erN69e8tm+/8jTe7du1fff/+9YmNj1a5dO/c2Bm7zwXc7lZ1bWOr17Xbp7a8ZfdpXbNyRasq6UXqnM/M1ZeYuh8qs2JCiDdtPuCki1+IcuLgVG1IcjvW9aTuU48B3B4zDOQAAAAAAAAAAAAAAAAB/owPwlGXL/h4ZtFu3biWuk5SUJOnc5On58+ercuXKZ/+/a9euqly5soYNG6bVq1erS5cukqQuXbooOTlZkvT8889rzZo1Lm8D3Cs3r1CfzN7tcLm5vxxUUkqW4mLD3BAVXOXEqRwdSi7dSLLusDHxpGF1o/S+nL/HoRco/vH+9ER9+mLli69oILvdrk0GHocbtvtG4uj70xMdLpOWka9pi//S7dc2ckNEcCUjz4HE/aeVlV2gsNAAw2IAAAAAAAAAAAAAAACAiZKnDx48KEmqXbt2scsLCwvPJjz/O3n634nT/2jbtq0k6ciRI2f/5ufn+kG827Ztq5SUFJdvF8XLt8YqteJIh8sVFdmV0PE6hRTscENUcJUCaxWp4n3FLls/9RrFxoResHxsTMjZ/x5eckOJ66WkZqvdjfPO+/vqtX8oLm6EAxHDCKfCBktBzR0u9+X3a/XTpze5ISLXscuq9KhnS1x+sfOgrOfAkWOZiouLcyBiYyRHPir5hTtcbvRj7+iZ0XPdEJH3SI58RPKrqOSUZJ/4LIuTUvERyVqx2GXuPgdsNrvqN2klf9tpB6OGtygP5wDKxuzHAO03d/sl9oHZ2y+xD2i/udsvsQ9ov7nbL7EPzN5+iX1A+83dfol9YPb2g2PA7O2X2Admx+fPPjB7+8ExAO8VGxurDRs2OFXWNMnTWVl/jzibk5NT7PLp06crNTVV4eHhqlu37gW3tXz5cklSfHy8a4P8HykpKeckaMPNQkOk4vOpLurU6Wwpjc/KqwVbS/x8Y2NCFVe1dCOH+1v9Sr3uvxUWivPZF9SxS0GOFyuyWb3/8/ULkqJKXlza88DZc0AWq44cOSrJ7nhZT6ro3KjA2TlFyvb2Y6CswoskP8lWVOT9x3tJwi2StfhFbj8HJB07dlLKP+ZUWXiB8nAOoGzMfgzQfnO3X2IfmL39EvuA9pu7/RL7gPabu/0S+8Ds7ZfYB7Tf3O2X2Admbz84Bszefol9YHZ8/uwDs7cfHAMol0yTPB0bG6u0tDRt2rRJHTt2PGdZcnKyxo4dK0lq2bKlLBZLids5cuSInnnmGfXu3VutWrVyZ8iKjY116/ZxrgJrhI47WTaqYqhCQmu4NB64VoE1qsTPNyU1+6LlY2NC5G/1U2GRTSmpxb+EcaFt+ftLVWtwjHi7U4FSyZ9uyax+hYr18s/XLquOXmD5xc6Dsp4DsheqRo3qpYjUWMmWfNkU7HC50GA/VfLyY6Cskq1W2ST5Wa2q5qNtTfGzq6ikZe4+ByRVrRotf5tput/lTnk4B1A2Zj8GaL+52y+xD8zefol9QPvN3X6JfUD7zd1+iX1g9vZL7APab+72S+wDs7cfHANmb7/EPjA7Pn/2gdnbD44BeK+y5NiaJnujR48eSkxM1IQJE9SzZ081atRIkrR+/XrdfPPNSk1NlaQLJkSfOXNGAwYMUGBgoD799FO3x+zscOJwTn5BkWpfNf2CCVHFCfD30/b1cxQbE+qmyOAKp07nKbrz18Uua3fjvIuWP7zkBsVVDVNKao5q9pzmcP1dL2ulnz9KcrgcPGvKzJ2658U1Dpe7+4ZOmvzMY26IyHXsdrsqd/1GJ9Pzil1+sfOgrOdA7RqROrDN+8+Bm5/8RV8v2OdwuY/fHqMbr37fDRF5j7geU3XkeLaqxVZT0p/e/1kWp8OweVq37USxy9x9DlitFu3f/YdCgk3T/S53ysM5gLIx+zFA+83dfol9YPb2S+wD2m/u9kvsA9pv7vZL7AOzt19iH9B+c7dfYh+Yvf3gGDB7+yX2gdnx+bMPzN5+cAygfPIzOgBPGTdunKKjo3X48GE1a9ZMLVq0UMOGDdW+fXvVq1dPV155pSQpISGh2PI5OTnq37+/9u/fr59++knVqlXzZPjwgMAAq+4e1NjhcoN61CFx2gdEVQxS3RrhhtXfpmm0YXWj9G66ur4iKgQ4XG7k0Hg3RONaFotFreONOw7bxMcYVrcjRjnxWVaJCtbAHnVcHwxczshzoFn9SiROAwAAAAAAAAAAAAAAeAHTJE/HxcVp1apV6tu3r4KDg3XgwAFFRUXpww8/1MKFC7V7925JxSdPFxQU6Prrr9eGDRu0aNEiNW3a1NPhw0Puub6JKlYILPX6/laLHrmluRsjgisZmcDcpqlvJI6aXYXQAI2+wbFrfJ9OcWrZKMpNEbmWkcehr7xA0KFlFXVuXdWhMg8Nb66gQKubIoIrcQ4AAAAAAAAAAAAAAADANMnTkhQfH68FCxYoMzNTmZmZWrdunUaMGKGsrCwdOHBAfn5+at783ERYm82mYcOGaenSpZo7d67at29vUPTwhBpVwzT77e4KCbp4EpzFIn38fGe1a17ZA5HBFXpfHmdIvYEBfurWjtHqfcULo1rruu61S7Vui4aV9M34K9wbkAsZdQ4YXbcjLBaLZr7RXY1qVyzV+sP61tdjd7R0c1RwlZ4da8jPz2JI3Vdd5hvnAAAAAAAAAAAAAAAAQHlnquTpkmzfvl12u10NGzZUaGjoOcvuu+8+fffdd3r44YcVGhqqtWvXnv134sSJc9adOXOmZs6cqR07dpzz/xs2bPBYW1B23dpX1y+f9lXzBpVKXKd29Qqa/XYP3TqgoQcjQ1nd2Ke+KoaXfmRxVxncq64qR4V4vF44x9/fTzNev1KP3tpCIcHFv0jh52fRkKvqatXn/VQpIsjDETqvS5tYNa0f6fF6L21RWa19aPT1KtEhWvNlPw3oVkuWEvJsK4T66+kRrfTlf7oalowLx9WqVkH9utT0eL1Vo0NK/VIGAAAAAAAAAAAAAAAA3Mvf6AC8wbZt2yRJCQkJ5y1btGiRJGn8+PEaP378Ocs+++wz3XbbbWf/f/Dgwecs/+f/b731Vn3++ecujBju1r5FZW39/jqt2XxMH8/aramL9im/wKaQIKtmTLxSfTrFyWrl3QNfExrir9sHNNTbX2/3aL2jhsZ7tD6Unb+/n14f015P3Z2gL+bt0eI1R7Rs3VHlF9oUHuqv7XMGqWZsBaPDdJjFYtGoofEa/cpvHq3XF8+BmErBmvNOT+1PytSHM3dq445UZeUUKjI8UP261NTwfg0UUcHzL2Og7EYNjde8Xw55tM67BzVWYMDFZ7UAAAAAAAAAAAAAAACA+5E8rQsnTx84cKDU27Hb7a4KCV7AYrGoU+tYdWodq5/XHtGR49mKqhikfl1rGR0aymDc7S31+dw9Ss/M90h9/brUVMeEKh6pC64XGRGkB4c314PDmyuux1QdOZ6tiAqBPpk4/Y/bBzTSO99s156DGR6pr2WjKN3Qp55H6nKHunHhGv9QO6PDgAv17FhD3dpV0/L1yR6pr2p0iB4a3swjdQEAAAAAAAAAAAAAAODiGDpXF06eBlC+VKscqncf7+CRuiLDA/Xhs5fLYrF4pD6gNEJD/PXZi13kicPS39+iz1/qzIi78Cp+fhZ98kJnhYV45h3CD565TNGRwR6pCwAAAAAAAAAAAAAAABdH8rSkZcuWyW63q2/fvkaHAsADhvdroIHd6zhUJiU1W0nHspSSml3qMu8/dZmqVwlzMDrA/S6/pKrG3tbCoTLOnAPP3nOJLomPcTQ8wO3qxoXrrbGXOlTGmXPglv4NdO2VdRyMDgAAAAAAAAAAAAAAAO7kmSH3AMCLWCwWffVKV6WOytXKjSmlKtPuxnkO1TH+oba68er6zoQHeMSrD7ZT0rFsffvDvlKt7+g5cPegxnp6RCsnIgM84+7rm+hQSpZenrKlVOs7eg5cdVkNTXmukxORAQAAAAAAAAAAAAAAwJ0YeRqAKYWG+OuH93qp12U1XL7tN8deqsfuSHD5dgFX8vOz6IuXu+iO6xq5fNv339RUHzxzuSwWi8u3DbjSi/e11kujW7t8uwO61dKcd3ooKNDq8m0DAAAAAAAAAAAAAACgbEieBmBaYaEBWjipl8Y/1FaBAWW/HNaLC9cvn16th29u7oLoAPfz9/fTx8930hcvd1FkeGCZtxdTKVgzJl6pdx/vKD8/Eqfh/SwWi54ecYkWT75KcVXDyry9kGCr3nmsg2a91UPBQUzwAgAAAAAAAAAAAAAA4I1IngZgav7+fnrsjgRtnnGtenas7tQ2QoP99fDNzbR15nXq2raaiyME3MtiseiWaxpq++yBGtq7rqxWx5Oe/f0turlfA22fNVCDe9V1Q5SAe111eZz+nDVQo4bGKzjIudGir+4cp60zB+qBYc14eQAAAAAAAAAAAAAAAMCLMSQeAEhqWr+Sfvqwj3buT9cHM3Zq2uK/dOxkTonrWyxSi4ZRumtgI93Sv6EqumDUXsBI1auEadprVyopJUsffb9LX87fowNHz1ywTP2a4bptQEPdNbCxYmNCPRQp4B4VwwP13lOX6aXRbfT53N36ZPZu7diXfsEy1auE6sbe9XTvkHg1qBXhmUABAAAAAAAAAAAAAABQJiRPA8C/NKkbqbcf66C3xl2qI8eytTExVbsPnNZLU7YoM6tAFSsEaN67PXVJfLTCw0iYRvkTFxumF+5rrRfua60Tp3K0ccdJbd+XpqycQvn5SWEhAWreoJJax0crOjLY6HABl4uqGKRHbmmhR25podOZ+dq886T+2HVSmdkFstn+nm2gSd2KatM0RtUq89IAAAAAAAAAAAAAAACAryF5GgCKYbFYFBcbprjYMEnSO99sV2ZWgSqEBqhL22oGRwd4RuWoEPXuFKfeneKMDgUwRMXwQF3RrpquaMd1HwAAAAAAAAAAAAAAoLzwMzoAAAAAAAAAAAAAAAAAAAAAAPAEkqcBAAAAAAAAAAAAAAAAAAAAmALJ0wAAAAAAAAAAAAAAAAAAAABMgeRpAAAAAAAAAAAAAAAAAAAAAKZA8jQAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIApkDwNAAAAAAAAAAAAAAAAAAAAwBRIngYAAAAAAAAAAAAAAAAAAABgCiRPAwAAAAAAAAAAAAAAAAAAADAFkqcBAAAAAAAAAAAAAAAAAAAAmALJ0wAAAAAAAAAAAAAAAAAAAABMgeRpAAAAAAAAAAAAAAAAAAAAAKZA8jQAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIApkDwNAAAAAAAAAAAAAAAAAAAAwBRIngYAAAAAAAAAAAAAAAAAAABgCiRPAwAAAAAAAAAAAAAAAAAAADAFkqcBAAAAAAAAAAAAAAAAAAAAmALJ0wAAAAAAAAAAAAAAAAAAAABMgeRpAAAAAAAAAAAAAAAAAAAAAKZA8jQAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIApkDwNAAAAAAAAAAAAAAAAAAAAwBRIngYAAAAAAAAAAAAAAAAAAABgCiRPAwAAAAAAAAAAAAAAAAAAADAFkqcBAAAAAAAAAAAAAAAAAAAAmALJ0wAAAAAAAAAAAAAAAAAAAABMgeRpAAAAAAAAAAAAAAAAAAAAAKZA8jQAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIAp+BsdAAAAAOCt7Ha7ko5lKeNMgWw2u0JD/FUrtoICAngHETCLrOwCJR3LUkGhTZJUZLMbHBEAAADgOfkFRTqU/K/+cJFNdrtdFovF4MgAAIAnFBTYdCjlzNm+QCF9AQAATKWw0KaDyfQFUD6RPA0AAAD8y77DGfp87h799sdxbUpMVVpG/jnLg4OsSmgUpbbNYnRjn/q6rFUVbg6BcqSgwKa5yw9q/opD2rgjVYn7T8v2r4TplNQc1ew5TW2aRqtbu2q6uX9DRVUMMjBiAAAAwHXsdrt+WZ+sGT/u14Ydqdq6+5TyC2xnl6eczFXlrt+oTdMYXZZQRbcNaKja1cMNjBgAALiS3W7Xms3HNG3xX1r/Z6r+2H1KeflFZ5cfO5mr6M5fq03TGHVMqKJbr2mo+jUjDIwYAAC4kt1u1+/bTujbH/Zp/fZUbdl1Ujm55/YFKnX6Wq2bRKtDy7+fCzSqU9HAiAHnkTwNAAAASPp57RFN/Hybfvz1yAXXy80r0rptJ7Ru2wm9Ny1RLRtF6f4bm+r2axvKamVEasBXnc7M15tf/qmPZu1S8onsC66bdCxLSceyNHf5IT3+zgbd2Keext3eUk3qRnomWAAAAMDFCgpsmvL9Tr03LVGJf6VfcN2T6Xn66dcj+unXI3rxwy3q27mmxt7WQp3bxHomWAAA4HJFRTZ9Onu3/jt1h7btSbvgumkZ+fp57VH9vPaoXp6yRVddFqdHb22h7h2qeyhaAADgajabXV/N36t3v92uTYknL7ju6cx8LV+frOXrk/XqJ3+oR4fqeuTm5urTuaaHogVcg+RpAAAAmFpaRp4efm2dvpi3x6nyW3ef0t0vrNZnc3fr0xc6qzHJk4DPWbw6SXe/sFpJx7IcLpubV6TP5uzRtz/8pRdGXaIxt7SQvz8vUgAAAMB3bN19Src/s/KiP44Wx2aza/6KQ5q/4pBGDmmi1x5prwqhAW6IEgAAuMvO/em67emVWrfthMNl7XZp8ZokLV6TpNuvbag3H71UkRHM0gYAgC/ZdzhDdzy7Sis3pjhV/p+Xqm66ur7efbyDoiODXRwh4B78ogsAAADTWvvHcTUfOMvpxOl/+3XLcbUaMkefzt7tgsgAeEJRkU2jX/lVfUb96FTi9L/l5Rfp8bc3qPNtC3TsZI6LIgQAAADc67/fblfbG+Y6lTj9vybP2KkWA2fpj11l3xYAAPCMj7/fpVaD5ziVOP2/PpuzR80HztL6P8u+LQAA4BnfLNyrloNmO504/W/f/rBPza6bpVUu2BbgCSRPAwAAwJRWbEhWjxGLdPR4tsu2mZtXpDufW6V3vv7TZdsE4B6FhTbd9Pgvem9aoku3u3brCXW+bYGOlDEZGwAAAHC3lz7crAfGr1VBoc1l2zxw9IyuuOMH/e6CBCwAAOBeb3yxTXe/sFp5+UUu2+aR49m68q5FJE0BAOADPpiRqOFPrFB2bqHLtnnsZI6uGrlYS3474rJtAu5C8jQAAABMZ3NiqvqNXqKsHNfdCP7bQ6+t0+dzGYEa8FZ2u10jXlytGT/ud8v29xzMUK97Fys9I88t2wcAAADK6t1vtuvZ9za5ZdvpmfnqM+pH7dyf7pbtAwCAsvtk1i49+sbvbtn2mewC9R39E7NRAADgxab+sE8jX/7VLdvOyS3StQ/+rHVbj7tl+4CrkDwNAAAAU8nNK9RNj/+iM9kFpS6zfuo1OrzkBq2fek2py4z6z6/ac/C0MyECcLPpi//SZ3P2OFTG0evAjn3pevj1dc6EBwAAALjVH7tOaswbjvVVHe0Pnzqdp+FPrFChC0e1BgAArrFrf7pGv/qbQ2Uc7QtkZhVo2OO/uHRUawAA4BoHjmRqxItrHCrjaF8gO7dQw574RVkO/CYPeJopk6dTU1M1btw4NWjQQMHBwapZs6YefPBBZWVl6c4775TFYtGkSZOMDhMAAABu8Nz7m7Rzv2NJzbExoYqrGqbYmNBSl8nJLdIdz66SzWZ3NEQAbnTsZI7DPw5Jzl0HPp+7RwtXHnK4LgAAAMBdCgpsuu2ZlSosdOxe1Zn+8MYdqXrts62OhggAANyoqMim259dpdw8x5KanekLbN+Xrhc/2OxoiAAAwI3sdrvuen61QwONSc71BfYdztST725wNETAY/yNDsDTtmzZoj59+iglJUVhYWFq2rSpjh49qnfffVf79u3TqVOnJEmtWrUyNlAAALxATm6hFqw8rKRjWZKk2tUqqG+XmgoKtBocGeCc3QdOa+IXf3qsvtWbj+mr+Xt164CGHqsTcCW73a4VG1L059405eQWKqZSsPp2rqkq0SFGh+a0J9/doJPpeR6rb9R/ftW+y+Lk72/Kd5cBwOedyS7QghWHlPl/Pybk5BWqoMCmgACu6wB80+QZidqy85TH6nt+8mbdek1D1aga5rE6AQBAyb6Yt1e//XHcY/VN+Gyrbr+2kRrUivBYnQBca8P2E2eTLLNyCnXgSKbq1Ag3OCoAzprx434tXXfUY/W9++0O3TWwsVo0ivJYnUBpmSp5OjU1Vf3791dKSorGjBmj5557TuHhf3+hv/baa3rsscfk7+8vi8Wili1bGhwtAADGOXEqRxM+3apP5+xWWkb+OcsqVwrWnQMbadztLVUpIsigCAHnvD890eMjQU+atoPkaficoiKbJs/YqUlTd2jXgXNHag/w99PgXnX1xJ0t1byhbz3oOJmeq29/2OfROg8lZ2n+ikO6rnsdj9YLACibo8ezNP7Trfpi3h5lnPn/o7CcOp2vWldN092DGmvsbS0UHhZoYJQA4Bibza5J03Z4tM6CQpumzNylF+5r7dF6AQDA+ex2u/47dbtH6ywqsuuDGYma+OilHq0XQNnY7XZN/eEvvf3Nn1r/Z+rZv6dn5qve1TPUt3NNPXZHS3VqHWtglACc8d+pnn0uIP39G/3kZy73eL3AxZhqiJQHHnhASUlJGj16tCZOnHg2cVqSxo0bp4SEBBUWFqpOnTqKiODNRwCAOf2VlKEOw+frjS//PC9xWpJOpOVq/CdbdfktC5SUkmVAhIBzsrIL9Pm8PR6vd8P2VK3/84TH6wWclZdfpEGPLNX9r/52XuK09Hfyw7c/7FOH4fP145okAyJ03mdz9jg8JakrvD890eN1AgCcl/hXui4dNl///XbHOYnT/0hJzdFLH25Rl9sX6vjJHAMiBADnLPv9qPYczPB4vVO+36mCApvH6wUAAOdau/W4R2eg+Menc3YrJ7fQ4/UCcI7dbtcD49dq2BO/nJM4/f+XSwtWHtYVd/6gz+bsNiBCAM76Y9dJrdl8zOP1frVgrzLOnJ97AhjNNMnTiYmJmj59umJiYvTqq68Wu06bNm0kSQkJCWf/NnPmTA0aNEi1a9dWaGiomjRpoqeeekpnzpw5p2xp1wMAwJulZeSp98gf9VdS5kXXTfwrXVff9+PZaZoAb/fTb0d0OtOYm7Jpi/8ypF7AGXc/v1pzlx+66HpZOYUa+PBSbdpx/sNTb2XUufjz2qNKTcs1pG4AgGOOnczRVfcuVtKxi78oumXnKfW7/yfl5pEEAMA3TFtkTH84JTVHKzemGFI3AAD4/4zqC6Rl5GvJb0cMqRuA416YvFmTSjEybVGRXXc9v1oLVlz89wQA3mHGj/sNqTcrp1ALVx42pG7gQkyTPD116lTZbDYNGzZMFSpUKHadkJAQSecmT0+cOFFWq1WvvPKKFi1apJEjR2ry5Mnq3bu3bDabw+sBAODNPpix06ERiLbtSdPncz0/ki/gjA3bjUvwNLJuwBGbdqTqqwV7S71+dm6hnnlvoxsjcp28/CJt3e35kXX+sdGHkswBwMze/vpPHXZghp31f6Zq+mJjfnQAAEdtMLBPSn8YAADjGdkXMLJuAKV3/GSOXvn4j1Kvb7PZNfbN32W3290YFQBXoS8AnMvf6AA8ZdmyZZKkbt26lbhOUtLfU07/O3l6/vz5qly58tn/79q1qypXrqxhw4Zp9erV6tKli0PrAQDgrYqKbPrgu0SHy70/PVH33RAvi8XihqgA1zHyh9rNO0/KZrPLz4/zBN5t8gzHvwcWrU7SX0kZqhcX4YaIXOfPvWkqKDTuxdaNO1J11eVxhtUPALi4vPwifTzL8elm35+eqFsHNHRDRADgOrl5hdq+L82w+jcm8iMpAABGKiqyactOBhYAcGGfzN7t8HP0nftP65f1yerWvrqbogLgCna73dDvY/oC8EamGXn64MGDkqTatWsXu7ywsFBr1qyRdG7y9L8Tov/Rtm1bSdKRI0ccXg8AAG/12x/HdSi59COs/SPxr3RDR/IESmvXgdOG1Z2ZVaDkE9mG1Q+Uht1u1zQnRs60242b5ssRu/Ybdw2QjL0GAQBKZ9m6o0pNy3W43O9/ntBfSaWfwQcAjPBXUqYKC40bDY7+MAAAxko6lqXs3ELD6qcvAPiGaYv/cqrc1EXOlQPgOadO5+lkep5h9dMXgDcyzcjTWVl/J4Pl5OQUu3z69OlKTU1VeHi46tate8FtLV++XJIUHx/vkvVK0rZtW6WkpDhVFq6VHPmI5FdRySnJiotjtDgz4hiAGY6BnIB4KfwGp8p2v2qgggv3uTgieJPycA4kRz4q+YUXu2z91GsUGxNaYtnYmJCz/z28pOTzJCU1W+1unFfssjbtOsrfxosGvqo8nAMXY1OAzkQ97VTZlyf8V5OeW+ziiFwrK7C1VGFAscsudg2Qyn4d+G7mHC39YpgDEXsXM5wDF2L29kvsA7O3XzLHPsgKbCVVuM6pspd26qWgwiTXBuRFzPD5X4zZ9wHt9/3251urSRXvLXaZJ/rDf+7Y7bP7Tiofx0BZmX0f0H5zt19iH5i9/eVBgV+MFHl/icvd/Yx8/8EjPn3scA6wD8ziQr+lXchXU+fqh4+c+53ZV5j9HDB7+8uDIkuEVGlMicvd3Rc4djyNYwduERsbqw0bNjhV1jTJ07GxsUpLS9OmTZvUsWPHc5YlJydr7NixkqSWLVvKYil5OvUjR47omWeeUe/evdWqVasyr3chKSkpjFrtLcKLJD/JVlTEZ2JWHAMwwzEQHiM5fi8sSTqZekzKKqf7BX8rD+fA/7WhOLExoYqrGnbRTfhb/Uq1XnGOpSRLBUxH5LPKwzlwMRarFOVc0azM08pK8fL9EllbqlD8otJeAyTnrwM5OVm+feyY4Ry4ELO3X2IfmL39kjn2QWRcid8VF5N6LEXKLaf7RTLH538xZt8HtN/32x/sJ1UsfpEn+sNFBQW+u++k8nEMlJXZ9wHtN3f7JfaB2dtfHgQWSJElL3b3M3JbIX0Bn8c+MIcKBVKg48Vyc86U/+PC7OeA2dtfHvifkSqVvNjdfQG7jWMH3sc0ydM9evRQYmKiJkyYoJ49e6pRo0aSpPXr1+vmm29WaurfiSwXSnQ+c+aMBgwYoMDAQH366adlXu9iYmNjnS4L10q2WmWT5Ge1qlqNGkaHAwNwDMAMx0CBn3Rckux26QIvEp3HblfVKKv8I8vnfsHfysM5cMyvQCVNSpiSmn3BsrExIfK3+qmwyKaU1OJnMrnYdmKrVpLVHlSaUOGFysM5UBopRWkqsl7gyUkJIkPzFebl+yUnIFQljf1+sWuAVPbrQGiwVZW8fB9diFnOgZKYvf0S+8Ds7ZfMsQ/yrXadkJy4JypSbEygrPbyuV8kc3z+F2P2fUD7fb/9hX4VdayEZZ7oDwf4F6mKj+47qXwcA2Vl9n1A+83dfol9YPb2lwdFljBdaM5rdz8j9/crUlUfPnY4B9gHZnHCkq58J0ZZqRCYo4rl/Lgw+zlg9vaXBzYFKvkCy93dF7Ba8hXLsQM3KEuOrWmSp8eNG6dvv/1Whw8fVrNmzdSkSRPl5uZq79696tOnj+rUqaMff/xRCQkJxZbPyclR//79tX//fq1atUrVqlUr03ql4exw4nC9uB5TdeR4tqrFVlPSn+V3ClaUjGMAZjkGOt+6QKs3l/RTWvH6dK6pH97f7qaI4C3KwzkwdOwyzfhxf7HLips66N8OL7lBcVXDlJKao5o9pzlcd/UqoTqydbfD5eA9ysM5UBr/mbJFT0/a6FCZCqH+OvTbdwoPc2I4Cg/aeyhDDft9V+yyi10DpLJfB1578X7dd8Nkh8t5C7OcAyUxe/sl9oHZ2y+ZYx/Y7Xa1GjxHW3eX9LpN8Yb0bqDpr5fvvp4ZPv+LMfs+oP2+336bza7Iy79SZlbBecs80R++bWh3TXnuOYfLeYvycAyUldn3Ae03d/sl9oHZ218e2O12xXb7VsdP5Ra73N3PyAf376BvJzzhcDlvwTnAPjCLqT/s002P/+JwuS3L3lX9mhGuD8iLmP0cMHv7y4v6V8/QX0mZxS5zd1+gb/cEzX2XYwfepYSJy8ufuLg4rVq1Sn379lVwcLAOHDigqKgoffjhh1q4cKF27/77B47ikqcLCgp0/fXXa8OGDVq0aJGaNm1abB2lXQ8AAG81ami8R8oARmgTH2NY3W2bGlc34Ii7BjVWgL9jt4m39G/o9YnTklS/ZrgqhhsXJ9cBAPB+FouFeyIA5Zafn0Wt46MNq78N/WEAAAxlsVjUtpmBz8gNrBtA6Q3sUUdVooIdKtP78rhynzgNlBdG3pvTF4A3Mk3ytCTFx8drwYIFyszMVGZmptatW6cRI0YoKytLBw4ckJ+fn5o3b35OGZvNpmHDhmnp0qWaO3eu2rdvX+y2S7seAADebGjvehrau26p17/zukbq26WmGyMCXKdjQhVT1g04omp0iD545vJSrx9fL1Iv39/GjRG5jsViUceWxpyLIcFWtWzk+FSHAADPc/Qe58FhzdS1rfMzzwGAJ3FfDACAudEXAHAxQYFWff3qFfK3Wkq1ftXoEE1++jI3RwXAVegLAOcyVfJ0SbZv3y673a6GDRsqNDT0nGX33XefvvvuOz388MMKDQ3V2rVrz/47ceKEw+sBAODN/Pws+vI/XTW8X/2Lrjvi+sb64JnLZbGU7uYZMNrll1RVo9oVPV6v1WrRLf0beLxewFl3XNdIHz57uawXeTjaOj5aSz/qo0oRQR6KrOzuvK6RIfUOu7q+QoL9DakbAOAYf38/fTfxSl3XvfZF133kluZ6c+ylHogKAFzj9gHG9IfbNovhZUIAALzArdc0lJ+f53/Tia8XqQ4GDWoAwHE9O9bQnHd6KPQiz7TrVK+g5Z9crTo1wj0UGYCyGnZ1fQUGeD5dtE71CurWjgEo4H1Inpa0bds2SVJCQsJ5yxYtWiRJGj9+vDp27HjOv4ULFzq8HgAA3i4wwKov/9NVKz69WkN715W//7kP0ob3q69fv+qnD565XP7+dCXgO/z8LBo5pInH673uytqqXiXM4/UCZTHi+ibaNe96jb2thaIqnpsc3aVNrKa91k2/fd1f1SqHlrAF7zSgW21Vr+L5mEcNjfd4nQAA54UE+2vmG921ZEpvXde99jnJBcFBVt1+bUP9/u01euPRSw1JPAAAZzWqU1E9O1b3eL30hwEA8A41YyvomitqebzeUUPjGYgH8DF9u9TS3oWD9dLo1oqreu5vXAmNozTl2cu1bdZAxdeLNCZAAE6pEh2iwb1KPxO5q9w7pImsVnJL4H0Y+koXTp4+cOBAqbZR2vUAAPAFFotFXdpWU5e21ZSZla+Gfb/TsVO5qhYToq9eucLo8ACn3Tagof7z8R9KTcv1WJ2P3NLcY3UBrlS/ZoRee6S9Xr6/jWr1mqZjJ3MVGxOiFZ/1NTo0pwUE+OmhYc007q31Hquz+6XVdUl8jMfqAwC4hp+fRT061FCPDjV0OjNfx0/lyGq1qGpUiMJCA4wODwCc9uitLbTkt6Meqy+uaphu6F3PY/UBAIALe/TWFpqz7KDH6qsSFczMjICPqlY5VE+PuESP35GglNQcnckpUGR4oKpGh/BCBODDHrm5uaYu+ks2m90j9UWGB+rO6xp7pC7AUaT068LJ0wAAmF14WODZEaYZVQ2+LjIiSO892dFj9T1wU1N1TKjqsfoAdwgMsMr//94Gt5aD74GHb26uNk09k8wcGuyvKc9d7pG6AADuUzE8UA1rV1S9uAgSpwH4vF6XxenWaxp6rL6Pn++kkItM9w0AADzn8kuqenRWiMlPX66ICoEeqw+A6/n7+ykuNkxN6kYqNiaUxGnAx7VuGqMxHhz8693HOyimUrDH6gMcQfK0pGXLlslut6tvX98dQQ0AAAClM+Sqerq+Zx2HyqSkZivpWJZSUrNLXaZ+zXC98kBbB6MD4G7+/n76/KXOCgxw7HbYmevAhIfbqV5chKMhAgAAAG711rhLVb1KqENlnOkP33ldI111eZyj4QEAADeb8HA71a0R7lAZZ/oCN/Sup4E96jgYHQAAcLcX72utJnUrOlTGmb5A/661NLwfM1DAe/G6PwAAAEzno+c6ae/hDG3ZeapU67e7cZ5D268UEajZb/VgZELASzVvGKXPXuyi4U/+InspZyVz9Dpw24CGHh3FBwAAACitShFBmv1WD3W/e5HOZBeUqoyj/eHLWlXRO491cCY8AADgZhVCAzTnnR7qevtCpWfml6qMo32B1vHR+uAZZmQDAMAbBQf5a/bbPdT5toVKTcstVRlH+wLNG1TSZy91ZrR6eDVGngYAAIDpREYE6acPeqtVkyiXbzs6MkhLpvRRi0au3zYA17mpb3198kJn+fm5/qHNzf0a6KPnOrll2wAAAIArtG9RWYve76WICq5/6feyVlW0cFIvXigGAMCLtWwUpZ8+7K2oikEu33abpjH68YPeqhge6PJtAwAA12hSN1JLP+qjKlHBLt928waVtGRKb0VHun7bgCuRPA0AAABTqhwVol8+6asbetdz2TbbNI3Rmi/6qU3TGJdtE4D73H5tIy34b0/FxoS4ZHsB/n56aXRrff5yF/n7c7sNAAAA79apdaxWfd5PzRtUctk277iukX76oLciI1yfiAUAAFyrXfPKWv1FP7WOj3bZNm+6ur6WfdxHMZVIlgIAwNu1bBSlX7/qrw4tK7tsmwO719GKz/oqNibUZdsE3IVfcwEAAGBaFcMDNfW1bvr+ze5leqs2wN9P/7m/jdZ+3V+N60a6LkAAbtenc01tnz1Iw/rWL9N2WjWJ0oZpA/T0iEsYcRoAAAA+o2Wjv/uxT92dIKvV+X5sjSqh+uG9Xvrkhc6MOA0AgA+JrxeptV9fo5dGt1ZAGQYDqBodotlvd9c3469QRAVGnAYAwFfUrxmh1V/002sPt1NQoNXp7URHBmnaa900880r3TKzBeAO/kYHAAAAABhtYI866tGhur5esFfvT0/U9n3ppSpXNTpEdw9qrBHXN1bN2AruDRKA20RVDNLXr16hh29ursnTE/Xton3KyS0qVdmeHatr1NB49etSi9GmAQAA4JOCAq16+f62uuO6Rvrwu536ZPZunUzPK1XZS5pEa9TQeN3Ypx5J0wAA+KiAAD89PeIS3dK/oabM3KmPvt+l46dyS1W2RcNKGjkkXsP71Vd4GEnTAAD4IqvVT2Nvb6mbrq6vj2ft0pTvd+no8exSlW1St6JGDY3XLf0bqmI4fQH4FpKnAQAAAEkRFQI16oamGjk0Xuv/TNXarce1cUeq/th9Sn/uSVORzS5/q0XXXFFbbZpGq22zGF3RrpoCA5x/AxeAd2nTNEYfv9BZr49pr2XrjmrjjpPasOOEDh7NUm5+oQIDrIqJDFLr+Bi1aRqjrm1jVb9mhNFhAwAAAC5RLy5CEx5urxdGtdby35O1YUeqNu5I1a4Dp5WTVySrn0UVKwSqVZMotWkao8sSqqhVk2hZLMy8AgBAeVCrWgW9fH9bPXvvJX/3BbanamNiqnbuP63s3EJZ/SwKDwtQQqMotW0Wow4tq6htsxj6AgAAlBM1qobpuZGt9eRdrbRi4999gQ3bU5W4P11ZOYXys/zdF2jZqJLaxP/dF7i0ZWX6AvBZJE8DAAAA/2KxWNS+RWW1b1H57N/iekzVkePZqhodou/f6m5gdAA8oVJEkAb1rKtBPesaHQoAAADgccFB/urTuab6dK5pdCgAAMAAgQFWXXV5nK66PM7oUAAAgAECAvzUo0MN9ehQw+hQALdiTmEAAAAAAAAAAAAAAAAAAAAApkDyNAAAAAAAAAAAAAAAAAAAAABTIHkaAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYAsnTAAAAAAAAAAAAAAAAAAAAAEyB5GkAAAAAAAAAAAAAAAAAAAAApkDyNAAAAAAAAAAAAAAAAAAAAABTIHkaAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYAsnTAAAAAAAAAAAAAAAAAAAAAEyB5GkAAAAAAAAAAAAAAAAAAAAApkDyNAAAAAAAAAAAAAAAAAAAAABTIHkaAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYAsnTAAAAAAAAAAAAAAAAAAAAAEyB5GkAAAAAAAAAAAAAAAAAAAAApkDyNAAAAAAAAAAAAAAAAAAAAABTIHkaAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYgr/RAQAAAADwLhln8vXbH8e1YXuqNiamKiU1R/kFNgUG+Ck2JkRt4mPUtlmMOiZUUUSFQKPDBQC4WFGRTev/TNWGHanauCNVew5l6PipXElSanquHnvrd7VpGqPLEqoqLjbM4GgBAADgatk5hfrtj+PauOPv5wKHU7J0/FSOJOlkep5emLzp7/5gq6qKqhhkcLQA3GHf4Qyt3fr388Fte9LO3hOeSMvViBdWq03TGLVrFqNL4qNlsVgMjhYAALjagSOZZ+8J/th96py+wF3PrVKbpn//VtimaYz8/OgLAPBNJE8DAAAAkCRt3X1K709P1NcL9iorp7DE9WYvPShJCgvx1839GmjU0Hi1aBTlqTABAG5y7GSOPpm1Sx/O3KlDyVnFrpOXb9Nrn22TJFksUu/L43TfDfHqfXmcrFYmOAMAAPBluw+c1uQZifp87h6lZ+YXu05ufpGen7xZkhQUaNXQq+pq1NB4tW9RmQRKwMflFxRp9tKDen96olZuTClhHZs++n6XPvp+lySpSd2KGjkkXrf0b6DICF6mAADAlxUW2jTvl0N6b9oOLfs9udh18gts+mT2bn0ye7ckqX7NcI0cEq/br23Ei5UAfA7J0wAAAIDJpablavSrv2r64v0OlcvKKdQH3+3UB9/t1A296+m/T3RUTKVgN0UJAHCXwkKb3vhym557f7Py8otKXc5ulxatTtKi1Ulq2ShKn73YWa2bxrgxUgAAALhDxpl8jX3zd02Zucuhcnn5Rfpy/l59OX+v+nSK05RnOzEzCeCjlv9+VHc+t1r7j2Q6VG7n/tN6cMJaPT1po94Y0153DWrMixQAAPigNZuP6Y5nV2n3wdMOldt3OFOPvvG7nnt/k8Y/1E6jhsYzEjUAn8GQQAAAAICJzVl2QE2v/d7hxOn/NW3xX2p23feau/ygiyIDAHjCrv3puvyWBXr87Q0OJU7/r627T6n9sHl69r2NKiy0uTBCAAAAuNOydUfVYtAshxOn/9ei1UlqPmiWvpi7x0WRAfCE7JxC3fefX3XlXYscTpz+t8ysAo14cY2uunexklKKn8kIAAB4n7z8Io2ZuE6db1vgcOL0v2XlFOr+V3/TlXf9oANl6FMAgCeRPA0AAACY1LvfbNd1Dy3VibRcl2zv+KlcXfvgz3r3m+0u2R4AwL3WbT2ujjfP1+9/nnDJ9oqK7Hrpwy0aMnZZmRKxAQAA4BnfLNyrXvcu1qFk1yQ6ns7M123PrNQzkzbKbre7ZJsA3Od0Zr56j1ys96cnumybS347qstuma9d+9Ndtk0AAOAeWdkF6n//T3rzyz/lqu77ig0p6njzfG3bfco1GwQANyJ5GgAAADCh96bt0IMT1rpl2w9OWKv3p+1wy7YBAK6xaUeqet27WGkZ+S7f9uylB3XjY8sZgRoAAMCLTV/8l25+coWKilyf5PzylC168YPNLt8uANfJyi5Q39E/adWmYy7f9uGULF159yLtT2LUSQAAvFVuXqEGPPizlvx21OXbTknNUfe7F2knL1MB8HIkTwMAAAAms3JDsu5/9Te31jH61d+0ckOyW+sAADgnPSNP1zywRBlnCtxWx+ylB/UCCTMAAABe6c89p3TLUytcNrpccZ6fvFmzlx5wXwUAyuS+V37Tms2uT5z+x9Hj2Rrw4BLlFzArEQAA3ujRN37X0nWuT5z+x4m0XF3zwBJl5xS6rQ4AKCuSpwEAAAATycou0O3PrnLoB9L1U6/R4SU3aP3Ua0pdxm6X7nhuFQ9FAMALPTJxnY4cz3aojDPfBa9+8oc27kh1NDwAAAC4UUGBTbc9s0r5BY7NEuJMf/Del9YoNS3X0RABuNnClYf0xbw9DpVx5hqwbU+a/jPlD0fDAwAAbrb896N6b1qiQ2Wc6QvsOZihZ97b6Gh4AOAxpkyeTk1N1bhx49SgQQMFBwerZs2aevDBB5WVlaU777xTFotFkyZNMjpMAADgBex2u3JyC3UyPVcFDv6oBHijZ97bqL8cnDIzNiZUcVXDFBsT6lC5fYczeSiCcqGgwKaT6bnKyeVlAPi+n35N0mdzHPuRXHLuu6CoyK7bnl6poiL6UAB8W0GBTUW2v98+tLtzmFYA8IA3v9rm1AtuzvQHj5/K1UOvrXW4LgDuk5mVrxEvrnG4nLPPB1/5ZIu27j7lcH0AvMu/74kA+LbcvELd+dxqh8s52xd466s/tW7rcYfrAwBPMF3y9JYtW9SiRQu9/vrrSklJUdOmTVVQUKB3331XQ4cOVWLi32/WtGrVythAAQCAoU5n5mvS1B1qdt0shbb/QjFdvlFgm8/U+97Fmrf8IElA8ElpGXn64LudHq3zgxk7lZ6R59E6AVcoKrJp3vKD6n3vYgW2+UwxXb5RaPsv1PTa7zVp6g5lnMk3OkTAKRM+3erR+v7cm6YfViV5tE4AcAWbza4fVh1Wv9E/KajtZ0pJzZEkHTuVq7e++lNp9HEB+KC8/CK9+eWfHq1z6qK/dPCoYy9xA3Cfrxfs01EHZyIqi8JCu8evOwBco7DQprnLD+qq/3s+evae6GSO3pvG81HAV834cb/2H/Fc/9xul17/fJvH6gMAR5gqeTo1NVX9+/dXSkqKxowZo+TkZG3atEkpKSmaMGGCFi5cqPXr18tisahly5ZGhwsAAAyy/PejqtN7uu5/9Tcl/pV+zrIffz2iAQ/+rPY3zVPyCc89ZAZc4Yu5e5STW+TROrNzC/Xl/L0erRMoq6PHs9T+pnka8ODP+vHXI+csS/wrXfe/+pvq9J6uX9YnGxQh4JzEv9K17HfPH7fvT3dsCkgAMNqJUzm6/Jb56nvfT1q48rD+Pdh0UZFdj7y+TrWvmq7Fq3k5BIBvmfXzAR0/levROm02u6bM3OXROgEUz263G3J/Nm3xXzqZ7tlrD4CyOXIsS+1umqtrH/xZP/3P89HCIrtGv/L389GVG3g+CvgaI/oCc5Yf1JFjWR6vFwAuxlTJ0w888ICSkpI0evRoTZw4UeHh4WeXjRs3TgkJCSosLFSdOnUUERFhYKQAAMAoKzckq/fIH5WeeeE35jclnlTXOxYqNY2HvvAdH88y5sfKKTM9O9o1UBapabm64s4ftCnx5AXXS8vI11X3LtaqjSkeigwou08M+h748dckHUo+Y0jdAOCo9Iw8dbvzB63deuKC62VmFaj//T/pxzUkUAPwHUY9F/hk9m7ZbPaLrwjArdZtPaE/96Z5vN68/CJ9xeAKgM84cSpHXe9YqC07T11wvbSMfPW6d7FWb+L5KOAr/txzSuu2Xfh5hzsUFdn12dzdHq8XAC7GNMnTiYmJmj59umJiYvTqq68Wu06bNm0kSQkJCWf/NnPmTA0aNEi1a9dWaGiomjRpoqeeekpnzpz7o9+qVavUo0cPVatWTUFBQYqLi9PQoUOVmMjoSgAA+Iq8/CINGbtc+QW2Uq2/52CGHpyw1s1RAa6RlpGn7fvSDal7+750pTOtOXzEgxPWas/BjFKtm19g05Cxy5Rf4NkR3QFnrd58zJB67Xbptz+OG1I3ADhq3FvrS91vLiyy68bHlisru8C9QQGACxQW2vTbVmP6ZMdO5mjf4dLdZwFwH6PuCSVpzRbj6gbgmAfGr9W+w5mlWjcv3/Z/v6vxfBTwBYb2BTbzfBiA9zFN8vTUqVNls9k0bNgwVahQodh1QkJCJJ2bPD1x4kRZrVa98sorWrRokUaOHKnJkyerd+/estn+f2JVWlqaWrRooXfffVc//fSTJkyYoO3bt6tjx45KSmL0EQAAfMGsnw/o2Mkch8p899N+HXewDGCETTsuPIqu2+u/yCi+gDdISc3Wdz/td7BMjmb9fMA9AQEuVFho0x+7LzxikDtt3JFqWN0AUFppGXn6eqFjoyKmZeRr2uK/3BQRALjOzv3pysk1LrGJ/iBgPCPPw40GP5sEUDrJJ7I1c4ljz0eTT2RrzrKDbooIgCsZ2xdIld3ObDQAvItpkqeXLVsmSerWrVuJ6/yT5Pzv5On58+drxowZGjZsmLp27aoHH3xQkyZN0po1a7R69eqz611zzTV66623NHjwYHXt2lXDhg3TrFmzdPr0aX3//fduahUAAHClD2fudLhMQaGNaYbgEzbvNPYHii27+IEE3u/zuXtUUFi62Qf+7YPvHP/+ADxt14HTys0zLlnG6O8hACiNrxfsdSqxkL4AAF9gdH/M6PoBGPt8bv+RTGamA3zAZ3N2q7DI8eTGD2ZwTwT4gs07jRtc40RarpJPZBtWPwAUx2I3yWsdNWvWVFJSkjZv3qxWrVqdt7ywsFDVqlVTamqq9u3bp3r16pW4rd27d6tx48b69ttvdeONN5a43smTJxUTE6NJkybpvvvuczjmtm3bKiUlxeFycL3kyEdk86soP9tpVUt/0+hwYACOAZj9GDBL+5Mjx8nmF+ZwuZC8LYrKmu2GiLyHWY6BkpSH9meEXKnMkK7FLls/9RrFxoSWWDY2JkT+Vj8VFtmUknrhkdZTUrPV7sZ55/09PGeFInKWORa0FykPx0BZmKX9p8IGKico4eIr/g8/2xlVS3/dDRF5D7McAyUpD+3P86+p1Ii7il12se8BqfTfBSV9DwQUHlGVjCmOBe1FysMxUFbsA3Mzy+efFtpP2cHtHC5nseeretp/3BCR9zDLMVASs7cf5eMYOBN0qU6HXV3sMk/0B0NzN6hS9nzHgvYi5eEYKAuzt18qH/sgOfJR2fzCi13mqueDJV0DJKlq+pvyt512LGjAS5SHa0BpnAobpJyglg6X87Nlqlr6RDdEBHiP8nAdSKn4gIqs0cUu88RvhVVOT1JA0QnHggaAi4iNjdWGDRucKuvv4li8VlZWliQpJ6f4C/j06dOVmpqq8PBw1a1b94LbWr58uSQpPj7+vGVFRUWy2Ww6ePCgnnjiCcXGxmrIkCFOxZySkqIjR444VRYuFl4k+Um2oiI+E7PiGIDZjwGztL+ic5Ny5OQUlO/9IpnnGChJeWh/1WwppPhFsTGhiqt68RcH/K1+pVqvOJmZWco85qP7Tiofx0BZmKX9NfOlIMeL2ex+5Xu/SOY5BkpSHtofFiZFFL+otN8DkvPfBQUFPrzvpPJxDJQV+8DczPL518iXgh0vZpe1fO8XyTzHQEnM3n6Uj2MgOlMqoRvnif5gdnausn1130nl4xgoC7O3Xyof+yBCJc5L7Ynng8eOnZDySZiCjyoP14DSqMXzUaBE5eE6UMEuWYtf5Im+wPHjqVKuj+47AOWSaZKnY2NjlZaWpk2bNqljx47nLEtOTtbYsWMlSS1btpTFYilxO0eOHNEzzzyj3r17FzuCddeuXbVmzRpJUoMGDbRs2TJVrlzZ6ZjhHZKtVtkk+VmtqlajhtHhwAAcAzD7MWCW9qcoR0UlZZdeQFiwTZHleL9I5jkGSlIe2p8RHKzMEpalpF54mixH3yYvTniFYEX4++a+k8rHMVAWZml/erBdWU6UsypXseV4v0jmOQZKUh7an2+NVEk/UV/se0BybJSx4gQEWFTFR/edVD6OgbJiH5ibWT7/0yHSGSfK+dmzy/V+kcxzDJTE7O1H+TgGsoJClV7CMk/0B8NCA336+Vl5OAbKwuztl8rHPkixFKmopGUuej54oe3EVomW1R5YmlABr1MergGlkRZk18V7Beczw/NRoDxcB45Z7SosYZknfiusUjlKATZ7aUIFgFIrS46taZKne/ToocTERE2YMEE9e/ZUo0aNJEnr16/XzTffrNTUVEkqNiH6H2fOnNGAAQMUGBioTz/9tNh1PvnkE6Wnp2v//v16/fXX1atXL61Zs0a1atVyOGZnhxOH68X1mKojx7NVLbaakv5MMjocGIBjAGY/BszS/nFv/q7XP9/mcLkF37ygK9r57jT0pWGWY6Ak5aH93yzcq+FPrCh2WUlTaf7j8JIbFFc1TCmpOarZc5pT9X/wzou6qW99p8p6g/JwDJSFWdq/bN1Rdb97kcPlxtzVVRMeHuuGiLyHWY6BkpSH9p9Mz1VMl2+KXXax7wGp7N8FN1zbTV++8rzD5bxFeTgGyop9YG5m+fzXbT2uDsPnO1xu5E3tNenJ8rtfJPMcAyUxe/tRPo6Bn9ceUc8Ri4td5on+4MvP3K+Hbv7Q4XLeojwcA2Vh9vZL5WMfdLvzB/2yPrnYZe5+PhgW4q+kzdtltTo3+yNgtPJwDSiNC/UXLmTsiG569cFxbogI8B7l4TrQf/RPWrDycLHL3N0X8Pe36OCejQoOMk2qIgAfYJq7k3Hjxik6OlqHDx9Ws2bN1KJFCzVs2FDt27dXvXr1dOWVV0qSEhISii2fk5Oj/v37a//+/frpp59UrVq1Ytdr3LixLr30Ut1www1aunSpMjMz9dprr7mtXQAAwHXuGdxEF5iAoljx9SLVtS2zRcD7tWkaY3D90YbWD5RGt/bV1KRuRYfKWCzSvYPj3RQR4DrRkcGqXb2CYfXzPQDAF7RvUdmpfvPIIfQFAHi/1vFGPxcwtn4AUpt44+7LLmkSTeI04AO6X1pdjes4/nz0nuubuCkiAK5kZJ+8eYNKJE4D8DqmuUOJi4vTqlWr1LdvXwUHB+vAgQOKiorShx9+qIULF2r37t2Sik+eLigo0PXXX68NGzZo0aJFatq0aanqjIyMVIMGDbR3716XtgUAALhH/ZoRGuHgA57/3N9GFkczrgEDNKpdUeFhAYbUHR4WoIa1HXvgChjBYrHolQfaOlTmnuubqG5cuJsiAlyrrYEPx0mWAeALLBaLXh7dRn5+pb/HG96vvpo1qOTGqADANaIqBqmeQfcuFot0iYFJmwD+1rYZ94QALsxiseg/97dxqMzIIfGqU4Pno4AvMLQvYPDLnABQHNMkT0tSfHy8FixYoMzMTGVmZmrdunUaMWKEsrKydODAAfn5+al58+bnlLHZbBo2bJiWLl2quXPnqn379qWu7/jx49q1a5fq1/fd6ckBADCb/z7eUQO717noehaL9N6THXVdKdYFvIGfn6VUx7Y7DOpRx6EEFMBI13Wvo0lPdizVTASDetTRu493dH9QgItc37OOIfXWqBKqDi2rGFI3ADiqd6c4ffx8p1L1X6/uHKePn+/sgagAwDWM6g/26RSnCqHGvNAN4P/rfXmcQoONGfFxcK+6htQLwHGDetbVu493KNW6g3vV1TuPlW5dAMa7sn11RYYHGlI3fQEA3shUydMl2b59u+x2uxo2bKjQ0NBzlt1333367rvv9PDDDys0NFRr1649++/EiRNn1xs+fLief/55zZkzR7/88os++ugjXXHFFfL399fDDz/s6SYBAAAnBQT4acbEbpo4pn2JU9t3uqSqfnjvKo26oXSzUQDeYtRQY6YTN6pewFn33dBUP7x3lTpdUrXY5XWqV9Abj7bX9Ne7KSCA22r4joE96qhKVLDH671ncBP5+3OuAPAdt1/bSEs+7K0r2lUrdnlc1TC98kBbzX2np4ICrR6ODgCcd8/gJqV6UdTVeC4AeIfIiCAN6+v5Qb9aNorSZa14oRbwJfff1EwL3+ulyy/wfPTNsZdq2mvdeOYD+JDQEH/dfm1Dj9dbv2a4enas4fF6AeBijHm11Mts27ZNkpSQkHDeskWLFkmSxo8fr/Hjx5+z7LPPPtNtt90mSerQoYO+/PJLvfPOO8rNzVXNmjXVrVs3Pfnkk6pdu7Z7GwAAAFzKavXTmFtb6KHhzbR4TZJufOwXZWYVKCIsQKu+6KeWjaKMDhFwSrvmMWrbLEYbtqd6tM52zSt7rD7AVXp3ilPvTnH6Y9dJ/bAqSa98vEVnsgsVXTFIexcOltXKjwLwPYEBVo24volenrLFY3UG+PvproGNPVYfALjKlZdW15WXVteOfWmav+KQ0jLyFRJkVasm0erbuSYJAgB8Ur24CF3duaYWrjzssTrr1ghX78vjPFYfgAsbNTReH32/y6N13ndDvCxGvLkBoEyu7lxTV3euefb5aHpmnsJCAtS2WYyuuqwGz0cBH3Xv4Hi9/fV22e2eq3PU0HhmqAXglUie1oWTpw8cOFCqbYwePVqjR492ZVgAAMBgVquf+nappYiwAGVmFSg8LIDEafg0i8Wi/z7eUZffukA2m/ufivj5/V0f4MsSGkcroXG03pu2Q2eyCxUcZOWHAfi0cbe30FcL9urg0TMeqe/Ze1upWuXQi68IAF6qaf1Kalq/ktFhAIDLvDGmvZauO6rcvCKP1DfpyY7cQwFepFWTaN0zuIk+/G6nR+pr0zRGd1zbyCN1AXCPf56PAigfGtWpqIdvbq43v/zTI/U1rR+p+5jNGYCX4mmFLpw8DQAAAJQnHRKqaMwtzT1S16O3NtelLZmSEwC8SXhYoD55vrNH6modH63HbudZCwAAgDdpXDdSL49u45G6bhvQUFd3rumRugCU3msPt1OtamFurycwwE+fv9SZGTsAAPAyL49uo0a1K7q9HqvVos9f6qKgQKvb6wIAZ3CnImnZsmWy2+3q27ev0aEAAAAAbvfifa3VtllMqddPSc1W0rEspaRml7pMu+YxemFUa2fCAwC4WfcO1TX2thYOlXH0u6BieKC+eqWrAgJ49AQAAOBtHhreTL0uq+FQGUf7g43rVNRbYy91JjwAbhZRIVBf/aerAh24X3Pm+eDrj7RX84bM5AgAgLcJCfbX1692VUhw6ZOanekLvDiqtdo1r+xMiADgEf5GBwAAAADAs4KD/LXo/at05V0/aNuetIuu3+7GeQ5tv0XDSlr0/lUKDuJ2AwC81fiH2unU6Tx9Mnt3qdZ35LugQmiAFk7qpab1KzkbHgAAANzIavXTrDe7q/fIH7V687FSlXGkP1i3RriWTOmtyIggZ0ME4GZd2lbT9Ne7acijy1VQaLvo+o4+H3z2nkv0wLBmzoYHAADcrF3zyprzdg8NePBn5eYVXXx9B/sCY25prifuYlZCAN6N4X8AAAAAE4qpFKxfPu2rzq2runS7XdrE6pdP+yo6Mtil2wUAuJafn0VTnuukR291bATqi4mNCdGyj/vo8ktc+/0CAAAA1woLDdDiyVepf9daLt1uqyZRWv1FX9WMreDS7QJwvWuvrKN57/ZUxfBAl23TarVo4pj2euE+ZqQDAMDb9bosTovev0rRka576dFikV4a3Vqvj2kvi8Xisu0CgDuQPA0AAACYVFTFIC3/5GpNHNNewUGln5qrOMFBVr059lIt+7iPoioyshQA+AI/P4teH9NeP0/po9rVy57ccnO/Bto+exBTMQIAAPiIsNAAzX23hz5+vpMiKgSUaVv+/hY9e88lWvfNNapeJcxFEQJwt96d4rR91kBd3TmuzNtqVj9Sa7/urzEufkkXAAC4zxXtqmn77EG6rnvtMm+rUe2KWv1FPz094hISpwH4BJKnAQAAABOzWv005tYW2jLjWg3vV1+BAY7dIgQG+Onmfg30x3fX6eGbm8tq5RYDAHxN9w7Vte376/TU3QmqXMnxmQO6tInVwvd66ctXuvICDQAAgI+xWCy6c2Bj/TlroO4e1Fihwf4OlbdaLRrUo47WfztAL9zXWoEBZXs5G4Dn1agapgWTeunb8VeodXy0w+VrVQvThIfaaeP0a9W2GS/TAgDga6pGh+j7N7tr5htX6tIWjn+XV68SqpdGt9aW767VZa2YkRCA73DsCQgAAACAcqlx3Uh99coVevPRS/XpnN1a8ttRbdyRqvTM/PPWjQwPVJumMerZsbruuLaRKkeFGBAxAMCVwsMC9fL9bfXMPZdo1s8H9N2S/dq4I1WHkrPOWzcwwE8tG0Xp8lZVddfARmreMMqAiAEAAOBKNWMraMpznfTaw+305fy9+mHVYW1MPKnUtNzz1g0PC9AlTaJ1ZftqumtgY9WoykjTgK+zWCy68er6uqFPPa3/M1WfztmttVuPa/u+NBUW2s9bv0GtCLVtGqObrq6vqzvHMaACAAA+zmKxaFDPuhrUs6427kjVp7N367c/juvPvWkqKLSdt37dGuFq2yxGN/Sup/5daynAwcGZAMAbkDwNAAAA4KzKUSF67I4EPXZHgux2u/YfydSlN81TanqeYiKDtO7ba1S3RjjTbQFAORUUaNWNV9fXjVfXlySdOJWjvYczlJNbJH+rRZERQWpStyIjCgIAAJRTkRFBemBYMz0wrJnsdrsOp2Qp6ViWcvOKFBjgpypRIWpQK0J+fjwXAMoji8Wi9i0qq/3/jTqZm1eoxL/SlZFVIJvNrtBgfzWuU1GREcw6BABAedWmaYzaNI2RJOXlF/3dFziTr6L/6ws0rF2RGQgBlAskTwMAAAAolsViUb24CAUF/p0gFxRoVb24CIOjAgB4UuWoEGYYAAAAMCmLxaJa1SqoVrUKRocCwCDBQf66JD7G6DAAAIBBggKtatUk2ugwAMAtGDMfAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYAsnTAAAAAAAAAAAAAAAAAAAAAEyB5GkAAAAAAAAAAAAAAAAAAAAApkDyNAAAAAAAAAAAAAAAAAAAAABTIHkaAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYAsnTAAAAAAAAAAAAAAAAAAAAAEyB5GkAAAAAAAAAAAAAAAAAAAAApkDyNAAAAAAAAAAAAAAAAAAAAABTIHkaAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYAsnTAAAAAAAAAAAAAAAAAAAAAEyB5GkAAAAAAAAAAAAAAAAAAAAApkDyNAAAAAAAAAAAAAAAAAAAAABTIHkaAAAAAAAAAAAAAAAAAAAAgCmQPA0AAAAAAAAAAAAAAAAAAADAFEieBgAAAAAAAAAAAAAAAAAAAGAKJE8DAAAAAAAAAAAAAAAAAAAAMAWSpwEAAAAAAAAAAAAAAAAAAACYAsnTAAAAAAAAAAAAAAAAAAAAAEzB3+gAAHgnu92uI8eytSkxVSknc5RfYFNQgJ9qVA1Tm6YxqhodYnSIANwsL79I2/ac0o596TqTXSBJys4p1ObEVDVrUEmBAVaDIwQAuJPNZtfeQxnasuuksnL+/h7IyinUL+uT1To+WhEVAg2OEHAvu92uwylZ2pSYqqycQkl/nwM/rklSm6YxiqkUbHCEAAAAcCebza7dB0/rj12nzrknWrUxRZfER6tCaIDBEQJwt9OZ+dqUmKq/kjLPPiPPyS3UnoOnVb9mhPz8LAZHCAAA3CkzK1+bE09q7+H/3xfIzi3Urv3pali7In0BAPBxJE8DOMtut2vN5mOaPGOnfl57RMdP5Za4bo0qoep9eZxGDY1X66YxHowSgDulZ+Tpy/l79dWCvfpj1ykVFNrOWZ6Wma/WQ+cqMMBPlzSJ1q3XNNTwfvUVHkYCHQCUB4WFNi1YeUhTZu7Smi3HlHGm4Jzl6Zn56nbnD5KkhrUjNKhHHd1zfRPVqRFuRLiAy9ntdv2yPlkffLdTy35PVmraufdE6Zn56j3yR0lSrWph6tu5pkYOiVeLRlFGhAsAAAAXyy8o0pxlB/XxrF367Y8TZxMk/pGema8uty+UxSI1rlNRg3vV1YhBTRQXG2ZQxABcbX9Spj6cuVOzlh7QnoMZ5y0/lZGvRv1nKqJCgDpdUlUjrm+ivp1ryt+fCZ8BACgPDiWf0ZSZOzVzyQHtPnhadvu5y9My8tVkwPcKDwtQx4QquntgYw3oVlsBAfQFAMDXkDwNQJI0b/lBPfPeJm3dfapU6x85nq1PZu/WJ7N369IWlTX+oXa6ol01N0cJwF3SMvL0zKSN+mzOHmXnFl50/fwCm9ZtO6F1205o3FvrdfegRnphVGuSqAHAR9lsdr03bYde+2ybko5llarMnoMZGv/JVk34dKv6daml1x9pp8Z1I90bKOAmdrtdM37cr+cnb9LO/adLVeZQcpYmz9ipyTN2qnPrqnrt4fbqkFDFzZECAADAHQoLbXr76+1648ttSknNuej6dru0c/9pvfThFr3y8R+6tlttvf5Ie9WN48VSwFft3J+usW/8roWrDp+XJFWcjDMF+mFVkn5YlaSasWF67I6WGjkknhEoAQDwUfsOZ2jsm79r7vJDstku3hnIzCrQT78e0U+/HlH1KqEac0tzPTismaxWkqgBwFdwxQZM7tTpPA1/4hcNePDnUidO/691206o250/aPQrv543EgcA77dw5SE1HzhL701LLFXi9P86k12gt77arhaDZmvp2qNuiBAA4E57Dp5W19sX6oHxa0udOP1vdrs0f8UhtRoyR298sU1FRbaLFwK8yLGTObr+kWW6YdzyUidO/69Vm47p8lsXaOwbvyvHif4UAAAAjLN9b5ouu2W+xr75e6kSp/9XUZFd3/98QC0GzdLk6YmlSrQA4D2Kimx6/bOtajV4jhasLF3i9P86nJKl0a/8pm53/qB9h88frRoAAHgvm82u/367XS0HzdbspQed6s8fPZ6tMRN/1+W3LNDO/emuDxIA4BYkTwMmtn1vmloOmqVvFu5zyfbem5aoNkPn6uDRTJdsD4B72e12PfbW7+o3eomOHs8u8/YOHj2jHiMW6cUPNsvuzBNmAIDHLVhxSAmDZ2v15mNl3lZuXpEefeN39Rn1Iy/UwWds2H5CLQbO0qylB8q8LZvNrolfbFOH4fOVfKLsfSsAAAC434wf/1LroXO0/s/UMm8rK6dQo/7zqwY+/LNy83ihDvAFmVn56nXPYo17a73y8ovKvL2VG1PUctBs/bDqsAuiAwAA7padU6hrHliiB8avdWqQsf+1btsJtRo8R7N+PlD24AAAbkfyNGBS23afUpfbF+qICxIm/233wdPqfNtCEqgBL2e32/XA+LV67bNtLt/2c+9v0pPvbnD5dgEArjVn2QFd9/DPyskt+4+D/7bkt6O66t7FyiKBGl5u/Z8ndOVdi3QiLdel2926+5Q637aABGoAAAAv983Cvbph3HLlF7h29py5yw+p//1LSKAGvNyZ7AL1umexlv2e7NLtZucWasCDSzRv+UGXbhcAALhWTm6h+o7+SQtXuvalp7z8Ig1+dJmmL/7LpdsFALgeydOACSWfyFavexfr1Ok8t2z/cEqWet6zWBln8t2yfQBlN/6TrZo0dYdbt//fb7e7bfsAgLJZ+8dxDR27XIWF7pkp4NctxzVk7DJmIoDXOnAkU71H/qjMLPck+e87nKmr7l2sHBeMVgIAAADXW7r2qG59eqXcdcvy89qjuu2ZldwTAV7KZrNr8JhlWrv1hFu2X1ho15Cxy/X7NvdsHwAAlI3dbtfwJ1bol/WufYnqHzabXcOf/EUrNrhn+wAA1yB5GjAZu92ue19ao5TUnFKXWT/1Gh1ecoPWT72m1GX2HMzQ2Dd/dyZEAG62ZedJPfv+RofKOHMdGPfWeu3an+5gdAAAd8vOKdQtT69waHQ1Z74HfliVpCkzdzkTIuBWNptddz63yqGXSZ05B7btSdOz721yJkQAAAC40enMfN3+7EoVFZU+sdmZ/uD0xfs1bRGjzQHe6IMZiVq8JsmhMo5eB/Lyi3Tr0ysYhR4AAC/05by9mrX0gENlHO0LFBbaddvTK3WGWToBwGuZLnk6NTVV48aNU4MGDRQcHKyaNWvqwQcfVFZWlu68805ZLBZNmjTJ6DABt/lm4T7N++WQQ2ViY0IVVzVMsTGhDpWbMnOXfl57xKEyANwrv6BItz690uGRRp25DuTmFen2Z1epqMi1U58CAMrmmfc2as/BDIfKONsffPSN33XgSKZDZQB3+/C7nQ5Py+zsOfDGl9v02x/HHCoDAAAA93r0jXU6nJLlUBln+4OjX/1NKanZDpUB4F77kzI17q31Dpdz5jqwc/9pXqoFAMDLHDmWpQdfW+twOWf6AgeOntFjTvQ7AACeYark6S1btqhFixZ6/fXXlZKSoqZNm6qgoEDvvvuuhg4dqsTERElSq1atjA3USxQW2jTr5wO69akVuub+JRo6dple+WiLjp0s/YjF8C4FBTY99rZnO2ZjJv7O1IQ+7FDyGT373kYNHrNUAx5YojufW6XFq5Nks/GZ+qqv5u/V1t2nPFbfb38c1/c/H/BYfYCr7T5wWo+99btO/t/opGkZ+Vq5IZnvNvisQ8ln9PbX2z1W35nsAr3wwWaP1QdcTE5uoZ6e5NgMHGVht0vj3uThOADfdexkjl75aMvZ0fpPZeRp1s8HVFjIS7IAfFPiX+n6eNZuj9V36nSeXv34D4/VB+Dinnt/k7JyPDca9Jtf/akkB1/YAOA9klKy9MLkTWfvidIy8rRgxSEGDgJ82MtTtuh0Zr7H6nt/eqL2HnJsQBsAgGeYJnk6NTVV/fv3V0pKisaMGaPk5GRt2rRJKSkpmjBhghYuXKj169fLYrGoZcuWRodruCkzd6pO7+ka9MhSfTl/r+avOKQZP+7XU//dqJo9p+nmJ39RekbppziGd5j3y0EdPe7ZUS627j6l3/447tE6UXbJJ7J13UM/q26fGXrpwy2aueSA5v1ySJ/O3q0+o35Uo/7facaPTDnpa+x2u96blujxet+f7vk6gbLaeyhDPUcsUuNrZuq1z7YpN69IkpSdW6iud/ygFgNn6adfHZvaE/AGU2bu9PhLUNMW/6WT6bkerRMoyfQf/zr7Y5enrN58zKMvrwGAK6Rl5OnmJ39RzZ7T9NR/Nyrn//rDOblFGvTIUtXpPV0fzdxpcJQA4LjJMzz/nOrzeXuUxVTdgFdITcvVdA//tlFUZNdH3+/yaJ0Ayu74yRwNHrNUdfpM1/OTN5+9J8rOLVL/+5eoft/v9PWCvQZHCcBRGWfy9ZUB5+4HBtyHAAAuzjTJ0w888ICSkpI0evRoTZw4UeHh4WeXjRs3TgkJCSosLFSdOnUUERFhYKTGe+rdDbrnxTU6UkKSbUGhTV8v2KdOty5QahpJEL7EqARGI5I14byDRzPVYfg8zVl2sMTkqn2HMzV07HK9+43nRq5E2f2+7YQ27zzp8XpXbEjR9r1pHq8XcNa23afU8eb5+nnt0RLX2b4vXVff95Om/rDPg5EBZZNfUGTIj3W5eUX6bM4ej9cLFMeoeyJeJgPgS1LTctX51gX6esE+FZQwwgKOuncAAF4OSURBVPSR49ka8eIaPf3fDR6ODgCcdya7QF/M8/y9ScaZAn3D8wPAK3w6e7fyCzw/WuyU73eqwIB6ATjnyLEsXXbLfM1cckBFRcX/Vnrw6Bnd/OQKTfiUGSYAX/LVgr0enYHiH5/O2a2cXM/XCwC4MFMkTycmJmr69OmKiYnRq6++Wuw6bdq0kSQlJCSc/dvMmTM1aNAg1a5dW6GhoWrSpImeeuopnTlz5oL19enTRxaLRc8//7zL2uApn8/drVdKOYXc9n3pGvjwz0xb7yPOZBdo+fpkQ+r+YdVhjhMfUVBg09X3/aRDyaWbQu7BCWv1w6rDbo4KrrJgpXGf1UID6wYckZ6Rpz6jfizVC2JFRXbd+vRKrf/zhAciA8puw/ZUHT9lzMuPC+kvwAscP5mj9X+mGlI3fSEAvsJut2vgwz9r+770Uq3/n4/+0JcGJCICgDNWbzqmjDPGjABNfxDwDgtWHjKk3pTUHG1KNOZ+FIBjiops6n//Eu07nFmq9R9/e4Nm/XzAvUEBcJkFK4zpl6dl5DNjOwB4IVMkT0+dOlU2m03Dhg1ThQoVil0nJCRE0rnJ0xMnTpTVatUrr7yiRYsWaeTIkZo8ebJ69+4tm634t4NnzJihLVu2uLwNnmCz2UudOP2PVZuOafWmY26KCK60ZedJGZW/nJ6Zr7+SSneDCWPNXnZAO0r5A+k/XnXwugHjbNxh3MPZjTwYho/4Yt6eEmffKE5BoU2vf77NjREBrmPk98CmxNQSZ7QAPMXIcyDpWJaOn8wxrH4AKK2VG1O0ysFnff/56A++5wH4BEOfjRlYN4C/2Wx2bd55yrD6uQ4AvmHR6iSHZ3H9z0dbGEgM8AF2u517AgDAOUyRPL1s2TJJUrdu3UpcJykpSdK5ydPz58/XjBkzNGzYMHXt2lUPPvigJk2apDVr1mj16tXnbSMjI0MPPfSQJk6c6OIWeMbSdUe152CGw+WYftg3bEp07CbP1egI+gZnzufVm49p627jHjiidLgZBC7Obrfr/ek7HS43e+kBHT1euhH7ASNt3GFcfzDjTIH2HXb8XgNwJaNf5qI/BMAXOPNcYPfB01r2+1E3RAMArmXkM/Ijx7OVklr6l7UBuN7ug6d1JtuY0eclaaPBv9MBKB1n7ok2JZ40bLYzAKV35Fi2TpRi5ll3Mfr5NADgfKZInj548KAkqXbt2sUuLyws1Jo1aySdmzxduXLl89Zt27atJOnIkSPnLXvqqafUqFEjDRs2rMwxG2HRauemp1i0JsnFkcAdDiWfMbh+ksq8XU5uoVZsSHGq7OLVXAe8XUGhTcdPGXczyDUAvuDAkTPaffC0w+UKi+xauo5kEXg/o/uDh1P4LoCxjO6PHD7GOQDA+y128jnfIp4LAPABh1K4JwLMzPjnIsbWD+DibDa7fvz1/DyQ0nA21wKA5xh9P2D082kAwPksdhPMHxIVFaW0tDT9+uuv6tix43nLv/nmGw0fPlzh4eE6ffq0LBZLidv68MMPde+992rz5s1q1arV2b9v2LBBnTp10saNG9WsWTNZLBY999xzev75552Ou23btkpJcS6R0RlpYQOUHdTaqbLVTz2nkvea70uOfEQ2v4rys51WtfQ3jQ7HKemhVysr+NJil62feo1iY0JLLBsbEyJ/q58Ki2xKSb3wVNMpqdlqd+O88/4enr1UEbkrHQvai5SHY+BiiixhSqk0zqmyFXJWqmLOUhdH5F18/RiwKVDJUU+VuNxV14GSrgGSb39X+Prn7wpm2Af51lidqDjSqbIVs35Qhbx1Lo7Ie5jh87+Y8rAPToTfqfyAWsUu80R/MDrzawUX7HEsaC9SHo6BsigP7T8Vdp1ygloVu8wT50B5/64o78rDOVBW7IPyzy6LjkY971TZ0NyNqpRd/L0gygezXwPM3v7y4ljESBX6xxa7zBP9wZiMTxRUeMixoOE1zH4dKA/tzwlopFPhxQ+AdbFrgFT2Z+SBBQdUOfMzx4IG4FE2BSk56kmnyobl/qbI7MUujgiAK+X511FqxO3FLvNEXyCg8KiqZHzoWNAAgIuKjY3Vhg0bnCrr7+JYvFJsbKzS0tK0adOm85Knk5OTNXbsWElSy5YtL5g4feTIET3zzDPq3bv3OYnTRUVFuueeezR69Gg1a9bMZXGnpKQUO8K121RLk4KcKFeUq6OejNMI4UWSn2QrKvLsZ+JK1U5LwcUvio0JVVzVsItuwt/qV6r1ipN5Ok2ZqT6676TycQxcjF+QVMm5omdOp+rMiXK6X/7h68eAxV+KKnmx268D9kLf/q7w9c/fFcywDwILpYrOFT2ddkyn08rpfpHM8flfTHnYB3VzpIDiF3miP3jyxDEpy0f3nVQ+joGyKA/tr5FR4j2vJ86B0+kndfqUj+47lI9zoKzYB+YQmff38wEHZZ9JU3Yyx0W5ZvZrgNnbX16E5JX4q5gn+oOpx1OkHI4fn2X260B5aH+FSCm8+EWlvQZIzl8H8vOyfXffAabhd8Hf0i4kKyNVWcc4xwGvFhoiRRS/yBN9gYL8HPoCAOBlTJE83aNHDyUmJmrChAnq2bOnGjVqJElav369br75ZqWmpkrSOQnR/+vMmTMaMGCAAgMD9emnn56zbNKkSTp27FiZRpkuTmxs8SMguEt2YLrSnCgXaDuqyjVquDweb5Jstcomyc9qVTUfbWtmsJ8ySliWkpp9wbKOjqpRnMhwq8KCfHPfSeXjGLgYu6TjRcdVaK3iQCG7ZLEoOjRTweV0v/zD148Bu6Rke67sluLfonDVdaCk7fjZc3xyv/3D1z9/VzDDPrDLqhTbGdn8KjhQ6O/rYJXwbAWEls/9Ipnj87+Y8rAPTgYWKreEZZ7oD1aJDlFApG/uO6l8HANlUR7afzrEopImZvTEORAVEaCQEN/cdygf50BZsQ/M4UTRUeX71XW4XKXgdIVyXJRrZr8GmL395UWqNV95JSzzRH+wakyY/G0cP77K7NeB8tD+fGuITpSw7GLXAKnsz8hDAooU5aP7DjCT44VHVeBf3eFyUSEZCuEcB7xagV+ojpewzBN9gWD/QkVznQAAlytLjq3FbrfbXRiLV0pKSlKrVq108uRJ+fv7q0mTJsrNzdXevXvVp08f2Ww2/fjjj5oyZYruvvvu88rn5OTo6quv1tatW7Vq1So1bdr07LLU1FTVq1dPEydO1JAhQ87+vVKlSnrsscf0+OOPKyIiQn5+fh5pa1nk5hUqruc0nUwv6fFh8WZMvFKDezn+o4oviesxVUeOZ6tGlVAl/Xyj0eE45cc1Seo98kenyh5ecoPiqoYp6ViWavac5tQ2/ph5nVo2cvJVXS9QHo6B0vjvt9v1wPi1DpVpWDtCO+deLz+/kkfuLw/KwzHQ9faFWrkxxamyZb0O9O1SUwsm9XKqbm9QHj7/sjLLPnjynQ169ZM/HCrTuXVVrfy8n5si8g5m+fwvpDzsg/Gf/KEn3nFuyqKyfg8EBVqV+dstCgjw/vuikpSHY6AsykP7Z/60X4MfXeZUWVfcE/31wxDVjSthmDN4vfJwDpQV+8AcZvz4l4aOXe5QmZhKwUpacoOCAq1uigrewOzXALO3v7xw5p7/H2XtD0aGB+rU6uEXnP0U3s3s14Hy0P68/CKFd/hSBYU2p8qX9Trw2sPtNPb2lk7VDcBzPv5+l+5+YbVDZWpVC9NfPwyR1eq7zz4BM7DZ7Kp42Vc6k13gVPmy9gWeu/cSPT+qtVN1AwDcwxS9t7i4OK1atUp9+/ZVcHCwDhw4oKioKH344YdauHChdu/eLUlKSEg4r2xBQYGuv/56bdiwQYsWLToncVr6OzE7MzNT99xzjypVqnT2nyRNmDBBlSpV0qFDh9zfSBcIDvLXyCHxDpWpXb2Cru1W200RwZXaNI0xrO7gIKua1os0rH6U3i39G6pSRKBDZR4c1qzcJ06XF22aRhtXd7xx1yDAEfcMbqzgIMeSPh4a3txN0QCuZWR/sGWjSj6dOI3ywchzoFJEoOrUcGBmAwAwyLVX1latao5NPTtqSDyJ0wB8gqHPxprGkDgNGCwo0KoWDSsZVr+R96QASu/GPvVUJar4WVxLcv+NzUicBnyAn59FlzQxbsA/+gIA4H1M04OLj4/XggULlJmZqczMTK1bt04jRoxQVlaWDhw4ID8/PzVvfm7ii81m07Bhw7R06VLNnTtX7du3P2+7DRo00PLly8/7J0m33nqrli9fXqahwT3t2XsuUe/L40q1bkSFAM17tydJED4iplKwmjcw5qFQ59ZV5e/PceILKoYHas7bPRQUWLrPa3i/+ho11LGXLmCcbu0cn2bMZXW3r2ZY3YAjalcP19evdC31SyGP3tpCA3vUcW9QgItc2qKyQoKNSWzq1o7vARivTo0KqlPdmATmbu2qkywDwCcEBlg1792eiqgQUKr1+3SK09MjWrk3KABwkU6tY+Xvb0yfjHsiwDsYdS6GBvurXXMSpgBfEBYaoLnv9FRosH+p1r++Zx09cgsDrAC+wqjfywMD/HRZqyqG1A0AKJnpsxm3b98uu92uhg0bKjQ09Jxl9913n7777js9/PDDCg0N1dq1a8/+O3HihCSpQoUKuuKKK877J0l16tTRFVdcoeBgx95MNFJAgJ/mvNNDtw1oqAv9rtuwdoRWf95PLRsZ91YWHHfvkCbG1DuY5Fpf0qVtNS396GrFVS15pCmr1aKHb26mz1/qQhKID+nTKU41Yx0bQcwVmtStqK5tfedFImBQz7qa924PRUcGlbhOUKBVL49uo9ceaefByICyiagQqJv61Pd4vRaLNOJ6Y/qhwL9ZLBbdM9igeyKD7sUAwBkJjaO1+vN+alg7osR1LBbp9msbavbbPRhYAYDPqBodouuurOPxev39LbrjukYerxfA+Yy6Jxzer77Cwxyb9ROAcTokVNEvn16t2hd4Cd/Pz6JRQ+M1dUI3ZugFfMhdgxoZcs4O7lVX0ZG+kzsGAGZh+ifb27ZtkyQlJCSct2zRokWSpPHjx6tjx47n/Fu4cKFH4/SkoECrPnupi/YuHKxxt7dQ4zoV9U/fITjQqkXvX6Wdc69XCxKnfc7N/RqoQmjpRg5ylepVQnXNFbU8WifK7vJLquqvH4bo+ze7q9dlNWT9v4uAv9Wi50deooOLh+rNsR2YgsrH+Pv76V4DHg6PGhpPkj18Tt8utZS05AZ99UpXdWkTqxpVQlU1OkQJjaP02sPtlLTkBj01ohXHNnyOETNG9L48TvVrlpx8BXjSndc1UqCHk/wa1a6o7pcaNwMIADijRaMo7Zx7vRa9f5WuuaKWalULU+VKwWpcp6LG3d5CexcO1qcvdlFQoDGzWgCAs+67wfP3RIN61FG1yqEXXxGA2zWsXVG9Lqvh8XqZwRPwPe2aV9beBYM1950eZwcnqlwpWPH1IvX0iFY6sHiI3nvqMmZfBnxMzdgKGtDN8/krRtyHAAAurnRzjZRjF0qePnDggNPbtdvtTpf1FvXiIjTh4faa8HB7xfWYqiPHsxUdGaTeneKMDg1OiqgQqDG3NNcLH2z2WJ1P392Km0YfFRDgp4E96mhgjzpnrwFVo0P03MjWRoeGMrh3SLze+Wa7jp/K9Uh9taqF6bYBDT1SF+BqwUH+Gt6vgYb3a2B0KIDLtG4ao/5da2n+ikMeqc9ikZ4e0cojdQGlUTkqRKNvbKo3v/zTY3U+e28rRiAC4JP8/Czq3SmOZ4EAypUubWJ1Rbtq+mV9skfq8/e36Ik7z//9CYBxnhnRSkt+OyJP/ZR77ZW1ldA42jOVAXApf38/XdOttq7pVtvoUAC40FN3t9K8Xw6pqMgznYGeHaurQ8sqHqkLAOAY02c0Xih5GiiPnrw7QS09NGp4t3bVDJsCDUDxoioG6YNnLvdYfR8/35npCAHAy3zwzGWKDPfMtfnhm5vrslZVPVIXUFov3ddGDWt7ZjT0a66opZuuru+RugAAAHBxFotFn7zQSWEhnhlb6Om7W5E0CXiZTq1j9cBNzTxSV1TFIE1++jKP1AUAAEqnTdMYPXZ7S4/UFR4WoI+f78xMtgDgpUyfPL1s2TLZ7Xb17dvX6FAAjwgMsOrzlzorwIHRoFNSs5V0LEspqdmlLhMeFqBPXujMCGuAF7quex0N6+tYEo8z14F7BjdRz46enwIRAHBh1auE6b9PdHSojDPfA43rVNTLo9s4Gh7gdqEh/vrsxS6yWkt/r+LMORAd+fdLazwYBwAA8C714iL0+iPtHSrjTH/wkibRevKuVg5GB8ATXnmgrcMv1TpzHZj0REfFxoQ6Gh4AAHCzZ++9RC0aVnKojDN9gTcfvVS1qlVwNDwAgId45tV6AF7lkvgYTZ1whYaMXS6b7eJTkbS7cZ5D2w8KtGreuz1VNy7c2RABuNlHz3VS0rEsrdiQUqr1Hb0O9L48Tu8+3sGZ0AAAHjC8XwPtPZShFz7YXKr1Hf0eqF4lVIvev0ohwdxywjtdfklVffpCZ9369MpSre/oORAW4q+Fk3qpWmV+JAcAAPBG9w5poj2HTuutr7aXan1H+4N1a4RrwaSeCggw/RhGgFcKDfHX4slXqdOtC5V8onQJUI5eB14Y1Vo3MhMRAABeKSjQqoXv9VKnWxfoUHJWqco42hcYd3sL3TWosTPhAQA8hKc2gEkN6llXM17v5tAI1KVRITRAi97vpSvaVXPpdgG4VkiwvxZM6qUeHaq7fNv9u9bSrLe6KzDA6vJtAwBc57mRl+iFUa1dvt061Stoxad9eZEOXu+Waxrqi5cdG4G6NCLDA7VkSm9d2rKKS7cLAAAA17FYLHrj0Uv16K0tXL7txnUqasVnV6t6lTCXbxuA69SLi9Avn1ytWtVcf66+PLqNnrmnlcu3CwAAXKdm7N+/ZTSo5dhsFKXxxJ0JGv9QO5dvFwDgWiRPAyY2qGddrfmyn5rWj3TJ9to3r6zfv71G3dq7PhkTgOtVCA3Qwvd66Zl7WrkkaSjA30//ub+NZr3VnZFGAcAHWCwWPXvvJfr+ze6qXCnYJdu8vmcdrfvmGrc8bATc4ZZrGuqXT6522THbpU2sNkwboI4JVV2yPQAAALiPxWLRa4+009evdlWliECXbPOW/g3029f9VTOWqbkBX9CoTkX9/u0ADexexyXbqxodotlvd9dTI1rJYnHti7oAAMD16tQI19qv++smF80WER0ZpKkTrtArD7alLwAAPoDkacDk2jWvrI3TBuiJOxMUHOTcKLEVQgM0/qG2WvNlP8XXi3RtgADcKjDAqhfva6Pfv7lGreOjnd5Oh5aVtWn6AD15dyv5u3hEewCAew3sUUc75gzSTVfXl7PP8qpVDtWMiVfquze6q0p0iGsDBNysU+tY/fHddXpoeDOnZ+apGB6odx/voOWfXK36NXl5AAAAwFdYLBYN69tA22cPKlPyZK1qYZr3bk998Z+uqhQR5LoAAbhd1egQzXzzSk2dcIViY5x7pmGxSMP71df22QN17ZV1XBsgAABwq+jIYH0z/grNfru74qo6PyPF4F51tX32IN3QxzWJ2AAA92NYSAAKDvLXKw+21Zhbm+vzuXs0eUai9h3OvGi55g0qadTQeA3vV1/hYa4ZmQOAMVo3jdGGaQO0ZvMxTZ6xU9/9tF8FhbYLlgkKtOqG3vU0ckgTtW9RmbdnAcCHxVT6++Hgy6Pb6MOZO/XJ7N1KTcu9aLlu7app1NB4DehWWwEBvDwD3xUa4q+3xnXQE3cm6JPZu/XhzJ06ePTMRctd0iRa990Qrxt611NYaIAHIgUAAIA7VKscqu/f6q49B0/rg+926rM5u5WWkX/Rcr0uq6FRQ+PVt3NNBhQAfJjFYtENfeprYI86mrPsoN6fnqgVG1IuWq5ypWDdNbCxRlzfWHVqhHsgUgAA4C7XXllH/brU0vwVh/T+9ET9vPboRctEVQzSHdc20j2DmzAjJwD4IJKnAZwVHRmsMbe20CO3NNfBo2e0cUeqNu44qXe++VPZuUUKDbZqzK0t1LZpjNo0jVH1KqEkSwLliMViUafWserUOlYfPddJW3ef0oYdqdq+N01ZOYWyWP4eab55g0pq0zRGLRtVUnAQXQkAKE/qxoVr/EPt9J/722jXgdPauCNVm3eeVFpGvgoKbQoJsqp+zQi1bRaj1vExiqrIiGooX6pEh+iJuxL0+J0t9VdSpjbuSNWmxJM6fipH+QU2BQdaVTM2TG3+756oWuVQo0MGAACACzWsXVFvPHqpJjzUTol/pWtjYqq27Dyl9Mx8FRbZFBrsr4a1ItSmaYxax0crklGmgXIlMMCqIVfV05Cr6ulkeq42JZ7Uxh2p2nc4Qzl5RQrw91OliEC1jv/7nrBR7QhZrbw4AQBAeeHv76frutfRdd3rKC0jT5t2/N0X2HPotHLyiuRv/bsv0KpxtNo2i1GTuhXpCwCADyPjCcB5LBaL6tQIV50a4RrUs66+nL9H2bnZqhQRpBfva2N0eAA8IDTEXx0SqqhDQhWjQwEAGMBq9VPT+pXUtH4l3dy/odHhAB5nsVhUv2aE6teM0JCr6hkdDgAAADzM399PLRpFqUWjKGmA0dEAMEJ0ZLB6dqyhnh1rGB0KAAAwQKWIIHXvUF3dO1Q3OhQAgJvw+gsAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIApkDwNAAAAAAAAAAAAAAAAAAAAwBRIngYAAAAAAAAAAAAAAAAAAABgCiRPAwAAAAAAAAAAAAAAAAAAADAFkqcBAAAAAAAAAAAAAAAAAAAAmALJ0wAAAAAAAAAAAAAAAAAAAABMgeRpAAAAAAAAAAAAAAAAAAAAAKZA8jQAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIApkDwNAAAAAAAAAAAAAAAAAAAAwBRIngYAAAAAAAAAAAAAAAAAAABgCiRPAwAAAAAAAAAAAAAAAAAAADAFkqcBAAAAAAAAAAAAAAAAAAAAmALJ0wAAAAAAAAAAAAAAAAAAAABMgeRpAAAAAAAAAAAAAAAAAAAAAKZA8jQAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIApkDwNAAAAAAAAAAAAAAAAAAAAwBRIngYAAAAAAAAAAAAAAAAAAABgCiRPAwAAAAAAAAAAAAAAAAAAADAFkqcBAAAAAAAAAAAAAAAAAAAAmALJ0wAAAAAAAAAAAAAAAAAAAABMgeRpAAAAAAAAAAAAAAAAAAAAAKZA8jQAAAAAAAAAAAAAAAAAAAAAUyB5GgAAAAAAAAAAAAAAAAAAAIApkDwNAAAAAAAAAAAAAAAAAAAAwBRIngbw/9q77/CoqvyP459Jr7QECJDQW0IJEEBBiigoimBDEFHXsrACiuuq2BYUK7a1oYiK6K5LV4piFBAQENFAQCmhGAg1ARISSG9zf3/wW1bWBDKTmbkzmffreXj2We495/sdmXvmlu89BwAAAAAAAAAAAAAAAAAAwCtQPA0AAAAAAAAAAAAAAAAAAADAK1A8DQAAAAAAAAAAAAAAAAAAAMArUDyNiyovt8pqGJIk4///F4D3MAzj3LHPGABvxDEAAOCaCPBunA8CAAB4N84HAQAAAACoefzMTgDuZ+dv2Vq65qA278rUll2ZOpSef25bemah+t31lbp3iFS/hCgN6dtU/v7U4AM1SVFxmZasPqgftp3Qll2Z2rYnS4VF5ZKkYycL1XrIAiXERap7XKRuGthcrWJqmZwx4Fjl5VYlbjiitUnp2pKSpeSUTJ3JK5V09hiIHjhX3TtEKiEuUkP7N1WX9hEmZwwAcLRtu7P05feHtGVXpjbvzNTREwXntqVnFmrAvV8rITZCA3o20uDLouXryzURUJMUFJbpi+/StHHbcW3ZlaVf951SUfF/r4naDl2o7nGR6t4hUsMHtVDTRmEmZwwAAABHOnmqUAtXHNDPO84+J0s5kKPy8rNF08dOFqrLLYvVPS5Sl3Sqr+FXtVDdWoEmZwwAAAAAAGxF8TQkSVaroYUrDui9+SlatyWj0v0MQ1qffFzrk4/rjX/tVOMGIRpzUzuNGxmrhhHBLswYgKMdSs/Tu/N2adbivcrKKa50v9TDuUo9nKsF3x7QY28m6ere0Zpwa6yG9IuRxWJxYcaAY2XlFGnmwt2auWj3eS8O/a+jJwp09MQhLV1zSFPeTVav+AYaPzJWtw5uKT8/iucAwFOVlVk175v9em9+in785USl+xmGtDYpXWuT0vX6P3eoaaNQ/WV4e/3llvaKqBPkwowBOFrq4TOaPneXPlm6Tzm5JZXut+/gGe07eEZzE/fr0X8k6bp+Mbp/VJwG9WriwmwBAADgaD9vP6m35+zUwhUHVFJqrXS/X/ac0i97TmnW4r168JVNGnVNK028LU7x7ZhkAQAAAAAAT0HxNPTboTO6e/I6bdh63Oa2x04UaOr7W/X2nJ1654leuu3aVhRPAh7GajU0Y0GKHnsjSfmFZTa1NQzpmx+O6JsfjmhIvxjNnHyZmjQMdVKmgPN8vvKAxj2/USezi2xu++MvJ/TjLyf0zpxdmv1cX8W1quuEDAEAzrQrNVt3TV6npB2ZNrc9lJ6vp97Zojc/26kZf++tmwe1cEKGAJypvNyqf/xzhya/m6ziknKb2lqthpatPaRlaw9p+KDmevfJ3mrAy+UAAAAeJa+gVJP+8bNmLNhtc9vConJ9vHivPlm6Tw/f2VHPTuimoEAevwIAAAAA4O6YHtHLfbhotzoP/8Kuwunfyz5Totuf+F43PfSdzuRVPjsTAPdyPKtQA8ck6v4Xf7S5cPp/LV93WB1v+kKLVhxwUHaA8xUUlmnUpDUa/vBquwqnf+/nHSfVbeRSvfXZDgdlBwBwNsMw9NZnO9R1xBK7Cqd/72R2kYY/vFq3PbZGBdU8rwLgOkcy8tX3ruWa9EaSzYXT/2vRyjR1uOkLfb3+sIOyAwAAgLP9vP2kOt30hV2F079ntRp69ZPt6jpiiXbsO+Wg7AAAAAAAgLNQPO3FXvxwm8Y++4MKi6r3cPD3lqw+qCvHJOrU6WKH9QnAOc4WCXylNUnpDuszJ7dEIx5drQ8XVe9GM+AKufkluvq+bzTvm/0O67O4pFx/feUnPfFWkgzDcFi/AADHMwxDT7y1WX995acLLsdsq7mJ+3X1fd8oN5+XSgF3l3r4jPrc9ZV+/OWEw/rMzC7SsIkrNWd5qsP6BAAAgHOs+fmYrvjz10o7luewPncfOK1+dy/Xz9tPOqxPAAAAAADgeBRPe6k3/7VDT72zxSl9b96ZqWvHf6u8glKn9A+g+jKzizRwbKL2HTzj8L4NQxr77A/69/LfHN434ChFxWUaNnFVtVdeqMy0Wb/q+Q+2OaVvAIBjPDdzm17++Fen9L1h63ENm7hKRcXMQA24q2Mn8jVwTKIOOrBQ5j/Kyw3d8dT3WrI6zeF9AwAAwDF++vWEhj6wstorMlYk+0yJBo/7hhmoAQAAAABwYxRPe6Gffj2hh1//2bkxtp/UY28kOTUGAPsYhqGxz27QnrTTTo0zZuoG7Tvo3BiAvZ5+L1lrHTjrekWmvJusNT8fc2oMAIB9Vv90TE+/l+zUGGuT0jX1/a1OjQHAPoZh6K7J6xw6w+D/sloN/env63Q4w3kxAAAAYJ/c/BKNnLTGKYXT/5F95myM4hLHrf4KAAAAAAAch+JpL1NUXKa7Jq+T1WrY1C5p7jAdXnmrkuYOq3Kb9+anaPVPFI0B7mb+N/u1+LuDNrWxZwwoLCrXPVPW2zzeAM626ZcTeu3THTa1secYkKR7pqxnJQYAcDN5BaW69+n1Nrez57fgldnbWaoZcEMffr5HK3+07X6FPWPAmbxSjXlmgwyDayIAAAB3MukfSTavQGLP+eCu1BxNncFLtQAAAAAAuCOvLJ7OzMzUpEmT1Lp1awUFBSkmJkYPPvig8vPzde+998pisWj69Olmp+kUr8zert0HbJ8JNioyRNENQxUVGWJTuzFTN6iszGpzPLiPrJwiFf3/zAhFJeXKzS8xOSNUR15Bqe5/6Ueb29k7BmzYelyzvthjczzAWQzD0JipG2wu6rf3GEg7lqdnmXUUHi7nTPF55wI5Z4pNzgionqkztto126w9vwVWq6E/P7OewknAjWRmF+kRO1bjsvd88NuNRzX/m/02xwMAd7Lzt2wVFZ+9JigptXJuA8CjbfrlhN5fuNvmdvaeD748+1ftSs22OR4AAAAAAHAuryue3rZtmzp16qRXX31VGRkZiouLU2lpqd5++22NHDlSKSkpkqQuXbqYm6gTlJSW6735KS6Nuf9IrpavP+zSmHCM5F2Zuuvv69Rk4Dxl5ZwtksrKKVbjK+dq/PM/aPeBHHMThF3+vTz13L+nq7z17508VIPbWP1Tunb85tqHFR98vkf5zD4ND7R97ymNeWb9H84FmgycpzHPrNf2vadMzhCwXX5BqT508Ytd2/dla21SuktjAqjc7CV7lZvv2nOzt/6906XxAMARysqs+nTpPl1y2zJ1vOkLZZ0+e01wMrtIHW78Qu/M2cm1LgCP9PYc156bWa2G3p3n2mdzAAAAAADg4ryqeDozM1NDhw5VRkaGHn74YaWnpys5OVkZGRl6+eWXtXz5ciUlJclisahz585mp+twi787qONZhS6P6+qCbVTfx4v3qufoZfp02T4V//9Mk/+RV1CmGQt2q+uIJVqyOs2cBGEXwzD07rxdLo+7MzVH67ZkuDwuUBEzfpNO55ZoHrMNwsPMS0xV91FL9dEXe1VQVHbetoKiMn30xV51H7VU8xJTTcoQsM+cr1N1Otf1K6nwoBxwD1aroRkLbJ9lsLo2/XpSybsyXR4XAOyVX1CqYRNX6q7J6/TzjpN/2J6yP0cTp21S/3u+NuV+MwDY63hWoRatTHN53H9++ZvO5LGqJwAAAAAA7sSriqcnTpyoI0eO6P7779drr72m8PDwc9smTZqk+Ph4lZWVqXnz5qpVq5aJmTrHv776zZS4KzYeVUZmgSmxYbuFKw7o3qfXq7z8wjMFFxWXa8Qja7T6p2MuygzV9eveU9q+z5zlAf/5pTnjD/B7Z/JKtHTtQVNicwzAk3z1/SGNfuJ7lZRaL7hfSalVo5/4XsvXHXJRZkD1mXVNtGTNQR6UA25g47bjOnA015TYnA8C8BRlZVaNnLRGiRuOXHTfLbsyde34b5XHDNQAPMT8b/artOzC9zucIa+gVEtWm3NfEgAAAAAAVMxriqdTUlI0f/58RUZG6qWXXqpwn4SEBElSfHz8ub9btGiRbr75ZjVr1kwhISFq3769nnrqKeXl5Z3Xdu3atbJYLH/406VLF6d9JlsYhqGft/9xlhBX2byTGZY8QXFJuSa8sLHK+5eWWTX+hY0yjAsXWsM9mDkGJFUwSxHgaskpWRd9McRZtuzKVHm56x/MALYq+//fdqu1aseK1Wpo/Asb+X7DI5SVWbVlV5YpscvLDW3dbU5sAP9V0eyprpK0k2siAJ5hyeqDWr7ucJX3T07J0vsmzOoPAPYw93yQ52QAAAAAALgTrymenjt3rqxWq0aPHq2wsLAK9wkODpZ0fvH0a6+9Jl9fX7344otKTEzUuHHjNGPGDA0ePFhW6x+LRN599139+OOP5/7861//cs4HstHhjHydzC4yLT7F057h85VpNn9P9qSd1pqf052UERxpS4p5BTs7U3NUUFhmWnxAMve3KL+wTHvSTpsWH6iq5esP63BGvk1tDqXn6+v1F5+VDjDb7gM5Kigy73yEayLAfGYeh9t2n+JlIwAe4b35KTa3mbEgpcovYAKAmcw8H9yyi2tCAAAAAADciZ/ZCbjK6tWrJUkDBgyodJ8jR84Wffy+ePrLL79U/fr1z/3//v37q379+ho9erQ2bNigfv36nddHXFycLr30Ukem7hA7f8s2N36qufFRNZ8s22tXu0+X7dMVlzR2cDZwNDPHAavV0J60HHWNjTQtB8Ds36KdqTmKa1XX1ByAi/l02T672n2ydJ+GXt7UwdkAjrUzNcfk+FwTAWYzcxwoKCpT2rE8tYqpZVoOAHAxh9LztCbJ9kkS9h/J1YbkDPXr3sgJWQGAY5SWWrX3oHmTG3BNCAAAAACAe7EYhuEVU0LExMToyJEj2rp1q7p06fKH7WVlZWrUqJEyMzOVmpqqli1bVtrX3r171a5dO82ZM0ejRo2SJK1du1YDBgzQmjVrdPnllzsk5+7duysjI8MhfRX6x+lU+MgKtyXNHaaoyJALto+KDJafr4/Kyq3KyCysdL+MzAL1GLXsD38fWLJPkXmf2Za0G0mv8zdZfWrLx3pajXL+YXY6TnO89v0q861/8R3/R0DpAdXP/cTxCbmRmvAdOFHrPpX6VfwQ62LjQFXHAKnycSDyzCwFlh2yLWk3UhO+A94uK2yEigI6VLjNFcdAnbzFCi3ZZlPO7oRjwDucqDVWpX5NbG7nX3ZEDc586ISM3AfHgOfLD+iqnLAbKtzmimui4OIdqpe/0Kac3QnHAGqCjNoPqty3XoXbXHE+2OD0e/IvP25b0m6EcQCo+Yr9YpRZ6892ta2bt0ghJdsdnJH7YAwEPJ9VgUqv92Sl2x11PljZuaAMqxpnT5XFpqzdB+MgAAAAAMAdRUVFafPmzXa19ZqZp/Pzzy4/XlhY8Q2N+fPnKzMzU+Hh4WrRosUF+1qzZo0kKTY29g/bRo4cqczMTEVERGjYsGGaNm2aIiPtm2k1IyNDR48etavtH9SKksIr3hQVGaLohqFV6sbP16fK+/5ecXGR4z6LGcLLJR/JWl7u2Z/jYkJKJV/bm5V4+r9vVdSE70BwSaWjflXHAXvHAEnKPHlSKvDQ/3ZSzfgOeLuYAimg4k2uOAZysrOVk+PB3x2OAe8QVPlvxYWUlpTU/O8Fx4Dnq9tcCqt4kyuuiQoLCzz7u8MxgJogtKzSa15XnA+eOHFCKvLg44dxAKj5QgIlOyfIzz51Stmna/DYwBgIeD6fQKni9+gkueJ80NAxTx4/GAcBAAAAADWM1xRPR0VFKTs7W8nJyerVq9d529LT0/Xoo49Kkjp37iyLpfL3vo8eParJkydr8ODB581gXbt2bT366KPq16+fwsLC9OOPP+qll17Spk2btHnzZgUFBdmVs6MU+Ycpq5JtGZkFF8/FhjfqKxIU6KOIJrbPYugu0n19ZZXk4+urRh78OS4m07dAxXa0C/YvVr0a/N9FqhnfgZN+hkoq2XaxccDWWdYqUj+ytgLKPfO/nVQzvgPeLjvYV5V9011xDNSrE6rgUM/97nAMeIcsv0IV2dEuyK/Qo8/1qoJjwPMVBISqskWSXXFNFBLsp7oe/N3hGEBNcMK3XKWVbHPF+WDD+nXkZ/XcBeAYB4Car8wnUMclyTCkC9wjP8//7xtZx1eBYTV3bGAMBDyfIR8dM6ySxafC7Y46H6ysH4tRqsYePH4wDgIAAAAA3FF1amwthmF47lMbG0ycOFHvvPOOYmJitGrVKrVt21aSlJSUpDvuuEP79+9XaWmpJkyYoOnTp1fYR15eni6//HJlZGQoKSlJjRo1umDML7/8UsOGDdPHH3+su+++2+GfyRaHM/LU9Kr59rdfeauiG4bqyPF8xQyaZ3P7Z8Z11dPjutkd32zRA+fq6IkCNWkQoiOrRpmdjtPMS0zVqMfW2txuzaxrdXmPCx8Pnq4mfAfGPfeD3l+426621R0DfH0tyv3xTgUHee47OzXhO+DtXv90ux55/We72lb3GJCkXUtuVmzLOna1dQccA97hy7WHNGziSpvbfTV9kIb0a+qEjNwHx4Dn2/lbtjre9IXd7av7W/D6Iz31tzs72R3fbBwDqAlGP75Wc75OtattdceA0GA/nd54h3x9Ky7W8QSMA4B3GDgmUd/9dMymNq2b1tKeZcPl41PFgmsPxBgI1Ayx1y/S7gOn7Wpb3fPB3l0a6Id/DrUrtjtgHAQAAAAA1DSe+8TGRpMmTVJERIQOHz6sDh06qFOnTmrTpo169uypli1b6oorrpAkxcfHV9i+sLBQQ4cO1YEDB7RixYqLFk5L0nXXXafQ0FBt3rzZoZ/FHtENQ1W/ru2zXztKQlykabFRdTcNbK4G9Wz7nsS2rKP+3R03Szqcx8zjMK5lHY8unEbNYOYxEBrsp7bN7Fz7GHCha/tGq2kj25aebd44TIMvi3ZSRoDjtG9RWyEmno9wTQSYLyEuwrTYXdpHeHThNADvMX5krM1txo1oX6MLpwHUHGZel3FNCAAAAACAe/GapzbR0dFav369hgwZoqCgIKWlpalevXqaOXOmli9frr1790qquHi6tLRUw4cP1+bNm5WYmKi4uDibYluqusShE1ksFl3Sqb5p8bt34KaQJwjw99X7ky+r8qqcAf4+ev/vvd3iO46L62niGNCzo3mxgf/oFhshX19zxqvuHSIploFH8PX10czJfap8rPj6WvT+5Mv4fsMj+Pr6mHZd4udnUdf25hVtAjjrkk4NTIvdsyP3RQB4husHNNX1A6q+qkzPjvV13y22F1wDgBnMfE7GPXIAAAAAANyLV1U5xMbG6quvvlJubq5yc3P1008/aezYscrPz1daWpp8fHzUsWPH89pYrVaNHj1a3333nZYuXaqePXtWOd6yZcuUn59vUxtnunNYG1PiDr4sWlGRIabEhu1uvLK5Pn2+n/wuUjQVEuSnL964Uv26X3wWdriHTm3qKr5dPVNi/8mk8Qf4vVphAbrximamxOYYgCcZ3Cda814eoMCAC18qBAb4aN7LA3Q1s07Dg9w5tLUpcW+8orlqhQWYEhvAf/WKb6BWMeGmxL5zKOeDADyDr6+P5kwboKH9L15AfUmn+vpq+iCFBLPaGADPMPLqlvL3c/2j0fBQf5teTAEAAAAAAM7nVcXTldm5c6cMw1CbNm0UEnJ+ke+ECRO0cOFCPfTQQwoJCdGmTZvO/Tl58uS5/W6//XZNmTJFS5Ys0apVq/Tcc8/p9ttvV5cuXXTrrbe6+iNV6IYBzRQVGezyuPYs9Qhz3TG0jZLn36AxN7f7w9LmtcMD9ODoDtq28AYN6cfNPk9isVhMOR47tq6rPt0aujwuUBEzjoG6tQI08uqWLo8LVMfwq1po64IbNX5krMJCzj8XCAvx0/iRsdq64EYNv6qFSRkC9hl1TSvVCXd9ETPXRIB78PGxaNwI1x+PveIbqAuzzwPwICHBflr85pX690uXq0/XP97T6dSmrt6ffJnWzLpW9eu5/n4zANirQUSwbjHhXsadQ1srPJQXagEAAAAAcCdMCSFp+/btkqT4+Pg/bEtMTJQkTZs2TdOmTTtv2+zZs3XXXXdJkjp06KA5c+bozTffVGFhoaKjozVmzBg9/fTTCghwjxsi/v4+uv/WOP19+haXxWzdtJau7ctshJ6oU9t6+uDpPnrloR7atueU8gpKVSvUXwlxkQoN8Tc7Pdhp9LWt9Pd3tuhkdpHLYv719g6yWC48kzngKpf3aKT4dvX0y55TLov5l1vaMwsXPFJsyzp696nemvbX7kpOyVJufqnCQ/3VLTaCB37wWCHBfvrLLe318se/uixml/b11L97lMviAbiwu65vo2dnbtWZvFKXxfzr7R1cFgsAHMXX10e3DWml24a00p4DOTqYnqfyckONG4Soc9t63OsB4LEeHN1Bc75OdVk8X1+L7h8V57J4AAAAAACgaqjk0YWLp9PS0qrUxxNPPKEnnnjCkWk5xSN3ddK8b/Zrx2/ZLon30TN95OvLBOeerE6tQF3eo5HZacBBQkP89e5TvTXikdUuide/e5TuvqGtS2IBVWGxWPTRM3106e1fqrzccHq8VjHh+vuYLk6PAzhTeGiA+nfnXAA1x+SxXbRwxQHtP5Lr9Fi+vhZ99ExfiosANxJRJ0hvPHqp7n16vUviDekXY8rshgDgSO1a1FG7FnXMTgMAHKJnp/qacGus3p2X4pJ4T9wbr/aMoQAAAAAAuB2qWnXh4umaJjDAV7Of6ytfX9se3mdkFujI8XxlZBZUuc0Dt8VRaAO4oVuuamHzw3t7xoCQID99/Gxf+fhQLAT30r1DfT12d2eb2thzDFgs0uxn+zFbPwC4mdAQf338bF+b29nzW/D4PZ2VEBdpcywAznX3DW00+DLbVsmyZwyoHR6gmZMv4wUKAAAANzPtrz3Uokm4TW3sOR/s1KauJv+li43ZAQAAAAAAV2DmaUmrV7tmBlZ30b1Dfb056VI98NKPVW7TY9Qym2L07tJA0x7sYWtqAFzk/cmXaWdqtnal5lRpf1vHAItF+vjZvmoZXcuO7ADnm3JfV/20/aS+++lYlfa39RiQpBcndlffhCib2wEAnK9/90Z64YEEPfXOliq3sfW3YOCljTX5L11tTQ2AC1gsFs1+rq/6/OkrpR6u2iz0to4Bvr4WffZifzVpGGpPigAAAHCisBB/LXz9Cl1+z9fKKyitUhtbzwcj6gRq/qtXKMDf154UAQAAAACAkzHztJe6f1Scpv21u1P6vqRTfS2ffpVCgqnNB9xVvdqBWjlzsNq3qO3wvn18LJo1ta9GDm7p8L4BRwkM8NWStwaqf3fnFDdP/ksXPXaPbbNbAwBc64k/x+upMc5Zfah/9ygtfnOgAgN4SA64q6jIEK364BqbZxysCj8/i+ZMu1zX9W/q8L4BAADgGAlxkVo+fZDCQx2/alxEnUB9+/5gxbas4/C+AQAAAACAY1A87cUeuydeHz/bV6EOLHIePqi5Vn4wWHVqBTqsTwDO0bhBqNZ/cp0GXtrYYX3Wqx2oz/9xhe6+oa3D+gScJSzEX4nvXa07rmvtsD6DAn01/cleenZCAsuzA4Cbs1gsev6B7pr+ZC8FBTquyPnOoa2V+N7VCgtx/AN4AI7VvEm4Nnw6RH26NnRYnw3qBemrd67SiKt5mRQAAMDd9eveSGtmXavWTR23gmKHVnW0bvYQJcRFOqxPAAAAAADgeBRPe7m7b2ir7Z/fpMt7NKpWP5F1gzT/1QFa+PqVCg8NcFB2AJwtsm6QVswcrJlTLqt2gc/1A5pq5+KbdMMVzR2THOACwUF++ueL/bX0rYGKigyuVl+9uzTQtgU3aMKtcQ7KDgDgChNujdO2BTeoV3yDavUTFRmsZW8P0qcv9FdwEKvwAJ6icYNQfT97iN6cdImCg6r3IsWoa1pq15KbdfVl0Q7KDgAAAM6WEBepXxbeqAdHd1B15kLw9bXoyT/Ha8v8GxTXqq7jEgQAAAAAAE7BE12oRXS4vvvwGi1dc1DvzkvRdz8dq3LbmKhQ3XdLe40d3l6RdYOcmCUAZ7FYLBo7vL2G9I3RjAUp+vDzPTpxqqhKbX18LLquX4wm3BqrQb2aMNMuPNawAc3UNyFKH32+RzMW7NaBo7lVbtsvIUrjR8Zq+KDm8vXlvTQA8ETtWtTR+k+GaNHKNL03P0XrtmRUuW3L6HCNGxGrP9/UlhV4AA/l42PRg7d31A1XNNO781I0a/FenTpdXKW2vr4W3TCgme4fFVftF9MBAABgjpBgP7352KW6c2hrTZ+3S3MT96uouLxKbUOD/XTHda11/6g4dWhN0TQAAAAAAJ6C4mlIOvug8MYrm+vGK5trz4EcLVt7SFtSMrVlV5b2H8mV1WpIkurVDlTX9hFKiItQv4QoXd07Wn5+FIoBNUGThqF6/oHumnJfV3259pB+2HZcW3ZladueLJ3JK5V0tjCgTdNaSoiLVEJcpG66spmaNQ43OXPAMerWCtSjd3fWw3/qpJU/HtXazelKTslSckqWMrPPvlDg42NRs0ZhSoiLUEJcpK7rF6OObeqZnDkAwBF8fX00cnBLjRzcUjv2ndJX6w5ry66z10QH0/POXRNF1g1St9gIJcRG6vIeURp4aRP5+PACGVATNGscrlf+1lNTx3fTsrWHtHHbcSWnZOmXvaeUm3/2msjfz0dtm/33mujmgc3VpGGoyZkDAADAEbrFRerjZ/vptYcv0ecrDyhpZ6a27MrUztQcFZecLaYODvJVx9Z1lRAbqZ6d6uvmgc1VK4wVWQEAAAAA8DQUT+MP2rWoo0db1Dnv70pLrfLzszCrLOAFAvx9dfOgFrp5UItzf2e1GiovN+Tvz8sSqPl8fCy6+rLo85ZbNwxDZWUGv4UA4CU6tql33ssx/A4A3iU4yO/cyxT/YbUasloNXiAHAADwAvVqB2rM8PYaM/y/f1dWZpXFIlaeAwAAAACghqB4GlVCwSTg3Xx8LMyoCK9msVjk788xAADeit8BAFwTAQAAeDdeogMAAAAAoGbhSh8AAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFegeBoAAAAAAAAAAAAAAAAAAACAV6B4GgAAAAAAAAAAAAAAAAAAAIBXoHgaAAAAAAAAAAAAAAAAAAAAgFfwMzsBwB0VFJbpl71Z2rIrS9v3ndKp08WSpOwzxXrtk+1KiItQt9hI1Q4PMDlTAM5gGIYOZ+Rry65MbdmVqcMZ+efGgdO5Jfr38t+UEBepts1qy8fHYnK2gHMczyo8dwykHs49dwzk5Jbo48V7lRAXobiWdeXvz7t4AFAT5RWUatvuLG3ZlamdqTnnXRO98a8dSoiNUNfYCIWHck0E1ESGYSjtaN7Z88GUTB09XvDfa6K8Es1LTFVCXKRaxdTimggAAKAGKi+3aveB09qyK1Nbd2edOxc8daZYU97dooS4SCXERqpJwxBZLJwPAgAAAAA8j8UwDMPsJAB3YBiGft5+Uu/NT9H8bw+ouKT8gvv7+Fh0Xb8YTbg1VgMvbcLDwhoueuBcHT1RoCYNQnRk1Siz04GTnMkr0Wdf/ab35qdoZ2rORfdv0iBEY4e315ib26lR/RDnJwg4WXFJuT5fmab3FqToh63HL7p/3VoBuvuGtrrvlvZq06y2CzIEzMO5ALyBYRjakHxc781P0eer0lRaZr3g/r6+Ft14RTONHxmry3s04oE5UAPknCnWp8v2acaC3dqTdvqi+zdrHKb7bmmve29sq/r1gl2QIQCYg+sBAN7iUHqePli0Wx9+vkcnThVddP+u7SM0fmSsRl3TUqEh/i7IEAAAAAAAx6B4GpC0KzVbY6Zu0MZtJ+xq375FbX0wpY/6JkQ5ODO4Cx6Q1Gzl5Va9+dlOPTNjq/IKSm1u7+dn0X23xOqlB7srjBvE8ECGYWjO16n626s/VemhSEVGXN1C7zzeSw0iKJpBzcS5AGq6bbuzNGbqBm3emWlX+85t6+mjZ/qoR8f6Ds4MgCuUllr18uxf9OJHv6iw6MIvk1ckwN9HD47uoKnjuyk4iIXuANQ8XA8AqOlyzhTrkdd/1uyl+2S12v7ouE54gF54IEH3jYhlsiEAAAAAgEdgnXV4tfJyq17++Bd1HbHE7sJpSdp94LT637Ncf315kwoKyxyYIQBn23MgR33vWq5HXv/ZrsJpSSorMzR97i51vnmx1ialOzhDwLkyMgt0w4OrdPsT39tdOC1JC749oA43faEF3+53YHYAAGcrLbXqmfeS1eO2pXYXTkvSr3tP6dLbv9QTbyVddBUfAO5l+95TuvT2ZZo8PdmuwmlJKim16tVPtqvriCX68ZeLr2ACAAAA9/HNhiPqeNMXmrV4r12F05KUk1uiCS/+qIFjEnXgSK6DMwQAAAAAwPEonobXKi4p14hH1ujxNzerpPTCy1FXhWFIb/17p64c87VOnS52QIYAnG39lgz1HL1MP/5i/8sTv3fgaK6uHJOojxfvdUh/gLPtPpCjHqOWadnaQw7pLzO7SCMfXaPJ07eIxU0AwP0VFJZp2MSVmvr+VpWVVX/ctloNTZv1q64Z961y80sckCEAZ/v2hyO65PZlSk7Jckh/e9JOq9/dyzX/G16oAwAA8ARvfbZD14z/VkdPFDikvzVJ6f//cu5Jh/QHAAAAAICzUDwNr1RaatWIR1bri+/SHN73pl9PatDYRJ3Jo1gAcGcbtx3X4HHf6kyefbNNV8ZqNXTv0+spoIbb++3QGQ2492sdOZ7v8L6f/2CbJk/f4vB+AQCOU1RcpusfXKlvfjji8L7XJKXr2vErWJUHcHOrNh3VsIkr7Z5tujJlZYZGPbZGC1cccGi/AAAAcKy3Ptuhv77yk8P7zcop1pVjErU1xf7VjQAAAAAAcDaKp+GVHnvzZ4fNslmR5JQs3fb4WmbdBNzU0eP5uu7+FSoocl5Bz5ipG7R+S4bT+geqI7+gVNdO+FYZmYVOi/HCh7/on8v2Oa1/AED13P/ij1q16ZjT+t+w9bj+/Mx6p/UPoHpSD5/RDQ+ucshKXBUxDGn042uVvIuCGQAAAHf09frDTimc/o8zeaW6dsIKZeUUOS0GAAAAAADVQfE0vM76LRl687OdNrVJmjtMh1feqqS5w6rcZvm6w/qUojHA7RiGobHPblD2Gdtmh7d1HLBaDd09ZZ3yCxw7szXgCE++vVn7Dp6xqY09v4UTX96ko06Y2RoAUD1frz+sWTaukmHP78DcxP36YlWajdkBcDar1dA9U9Yr38bZ4W0dB0rLrLpr8jqVlDp2ZmsAAABUT/aZYo2ZusGmNvZcE2ZkFuqBl360NT0AAAAAAFzCK4unMzMzNWnSJLVu3VpBQUGKiYnRgw8+qPz8fN17772yWCyaPn262WnCCQqLynT3lHWydULoqMgQRTcMVVRkiE3t/vrKTzp2gqIxwJ38c9lv+nq97cvT2zMOpB7O1VPvbLE5FuBMG5Iz9PacXTa3s+cYOJ1bor8894PNsQAAznMmr0RjbXxILtl/TXTfcz8w0xjgZt6bn6J1dqySY884sH1ftp7/YJvNsQAAAOA8D7/2k46dKLCpjb3XhHMT92vJ6jSb2gAAAAAA4ApeVzy9bds2derUSa+++qoyMjIUFxen0tJSvf322xo5cqRSUlIkSV26dDE3UTjFnK9TlXo412XxTueW2FWgBvdw9Hi+nnkvWbHXL9Kxk2dvJJ7MLtK/vtynomLbZuiCe7BaDT07c6tLY85YkKITWYUujQlcyHMuLl5Zvu6wtrBcOzzU8axCvfDBNnW48fP/ngucKtLsJXtVYONsnYC7mLV4r47a+JC8Ok5mF+n9BbtdFg/AhZWWWvXCh9tcGvONf+3UmTzbVv4BAHdgGIa+35yukY+uVnrm2Xs7GZmFumfKOq5zAXistKO5+mSpa1dNnfr+Vhm2zmoEAAAAAICTeVXxdGZmpoYOHaqMjAw9/PDDSk9PV3JysjIyMvTyyy9r+fLlSkpKksViUefOnc1OFw5mGIbenZfi8rizFu+l0NbDWK2GHn8zSc0Gz9fU97dq94HT52YrLym16s6n1inmqvlasdH22YthrhUbj2r/Ede9QCGd/c58vGSvS2MCldl38LRWbDzq8rgz5rv+9xeoDsMwNHVGsmIGzdPfp2/RrtSc/54LlFl1z5T1ih40V8vWHDQ3UcBGVquhGQtcPybPXLRb5eVWl8cF8EdL1hxURqZrX+7MKyjVZ1/95tKYAFBdhzPy1GPUMl1+z9da8O0BWa1nLwjKrYZmL9mn7rcu1aCxiTp1utjkTAHANjMX7bZ5ddbq2rb7lDb9esK1QQEAAAAAuAivKp6eOHGijhw5ovvvv1+vvfaawsPDz22bNGmS4uPjVVZWpubNm6tWrVomZgpn2LwzU1t3Z7k8bmZ2kT5flebyuLCPYRj6y7Mb9PLHv6q8vPI7iJnZRRoyYYWWrzvkwuxQXTMXmTPr4fsLdzOzBtzCB4v2mBJ3TmKqTucy2yA8g2EYeuiVn/TMjK0qLau82DP7TIlufOg7LVxxwIXZAdWzNild+w6ecXncwxn5+no9Lx4C7uB9E16gkKQZzEAPwIMcychX7zu+uujs0qs2HVO/u75SzhkKqAF4htJSqz76wpyJPliRCAAAAADgbrymeDolJUXz589XZGSkXnrppQr3SUhIkCTFx8ef+7tFixbp5ptvVrNmzRQSEqL27dvrqaeeUl5eXoV9LF68WL1791ZoaKhq166tyy67TDt37nT8B4LN1vycblrstUnmxYZtPlm6r8o3D8vKDY14ZI0yMl237DnsZxiGacfiwWN5Sjta8e8G4EprTDoGCovK9fOOk6bEBmy1aGWa3vp31c7frVZDdzy5VmlHXbuqAWAvs34HJGntZq6JALOVlJZrw9bjpsTe8Vu2snKKTIkNALa69bE1OnI8v0r77kzN0X3P/+DkjADAMXamZisz25xzMq4JAQAAAADuxmuKp+fOnSur1arRo0crLCyswn2Cg4MlnV88/dprr8nX11cvvviiEhMTNW7cOM2YMUODBw+W1Xr+THRvv/22RowYoT59+mjZsmWaO3euBg4cqMJC1y6HioptSbnwTCFOjb3L9TNew3aGYejNz2x72aGgqEyzTJqpAbbZfyRXOSbOfHux2YoAZysuKdeve0+ZFp9jAJ7izc922LR/cYnVtFndAVuZORbzOwCYb+dv2SoprXxVBWdjHADgCZJ2nNQPNr5osmhlmo5kVK3YGgDMZOb52KH0fJ08xfNSAAAAAID78DM7AVdZvXq1JGnAgAGV7nPkyNllhH9fPP3ll1+qfv365/5///79Vb9+fY0ePVobNmxQv379JEmpqal69NFH9cYbb+j+++8/t/+1117r0M8B+yWnmFfAvP23UyopLVeAv69pOeDifvzlhF2FhTMX7dbj93aWr6/XvI/ikcwcA/4Tf/hVLUzNAd5tV2q2SsvMK5Yx+xgEquKXPVnauO2Eze0++mKPnh7XVYEBnOvBvZk5FienZMkwDFksFtNyALzd1t3mvUgnnX2x/Kre0abmAAAXM2NBis1tyssNffj5Hk2d0M0JGQGA42zdbf498qsv43wQAAAAAOAeLIZhGGYn4QoxMTE6cuSItm7dqi5duvxhe1lZmRo1aqTMzEylpqaqZcuWlfa1d+9etWvXTnPmzNGoUaMkSU899ZTeeustZWVlKTAw0CE5d+/eXRkZGQ7pC9KxOo/L8AmucFvS3GGKigyptG1UZLD8fH1UVm5VRmblb8ZnZBaox6hlFfeR/bJ8jQLbkoZL5QVeotOh9r3wEJX9qnyNPAdnBEfKC+yh06HXVbjtYmOAVP1xIKRos+oWfGlb0oADFfm1UlatOyvc5opjIKB0v+rnfmpb0oCL5Qd0U07Y9Xa1bZjzlvys5halARdiSDpW92nJUvELf664Jmp86llZVG5T3gAcJzeoj86EDKpwmyvOB8MKN6p24be2JQ0ALna81jiV+UXZ3C6wZK8i8/7thIwAwHFOhd6iwsCOFW5z1DWhVPn5YN28RQop2W5b0gAAAAAAXEBUVJQ2b95sV1uvmXk6P//ssnmFhRVf0M+fP1+ZmZkKDw9XixYXnhl0zZo1kqTY2Nhzf7dx40a1a9dOn332mZ5//nkdPnxYbdq00ZQpU84VWNsqIyNDR48etastKlCn8lmBoyJDFN0w9KJd+Pn6VGm/imRknJDKTtvVFi5Sv1Cy759XGSeypRLbZ6qEC0W0r/Tft6pjgGT/OFBQWKwCxnSYKbyeVKviTa44BkpKyjmvgfuLaCeF2df0+MlsqYjvONyZRapn7jXRsfTjkrXYrrYAHKB+nlRJPYwrzgfz8guVl85vJQA3F+pj11OT4hKDa14A7q9piVTJ/E+uuCbMzslVdjZjJQAAAADAPXhN8XRUVJSys7OVnJysXr16nbctPT1djz76qCSpc+fOF1xG+OjRo5o8ebIGDx583gzW6enpOnr0qJ544gm9/PLLiomJ0axZs3Tbbbepfv36GjhwoF05w3GOqVyVTbOekXnhGaFtmV2p0j6i6svXsLMaBy6RFxgoe8vboxrUlq/h79B84Fj5gWHKqWTbxcYAqfrjQEhwgOo2aVKFTAHnKPKrrcoW5nTFMRAY4KNIjgG4uYKAIGXb2sgwJItFDevXkp+V7zjc21GjXLL4VrjNFddEjRs1kEXWqiULwOFyg0J1ppJtrjgfDAsNUm3OBwG4uRO+ZSq1o11QgFURjHEA3NypIH9VdhbnqGvCC/VVt06YQkIYKwEAAAAAjlOdGluLYRiV1ZPWKBMnTtQ777yjmJgYrVq1Sm3btpUkJSUl6Y477tD+/ftVWlqqCRMmaPr06RX2kZeXp8svv1wZGRlKSkpSo0aNzm1r27at9u3bp8WLF+uGG26QJBmGoS5duqhOnTr6/vvvnf4ZcWFdRyzWtt32LaV+eOWtim4YqiPH8xUzaJ7N7cNC/HV64x3y8am8MB/m23/kjFoPWShbR8UeHSP185zrnZMUHCZx/WFdO2GF3e2rOw688ECCnhzTxe74QHXtO3habYcusrt9dY+Bu29oo4+f7Wd3fMAVjp3IV7Or56us3LaTgbhWdbTji5su+BIm4A5aD1mg1MO5drWt7u9Ao/ohOvadfasyAXCM+d/s162T1tjdvrrjwDtP9NL9o+Lsjg8ArjB5+hY9/8E2m9vNnHKZxg5v7/iEAMCBHnvjZ70ye7tdbat7LihJP/zzOvXu0tCutgAAAAAAOFrla/bWMJMmTVJERIQOHz6sDh06qFOnTmrTpo169uypli1b6oorrpAkxcfHV9i+sLBQQ4cO1YEDB7RixYrzCqclqV69epJ03gzTFotFAwcO1I4dO5z0qWCLhNhI02J3i42gcNoDtIyupWv6RNvcbvzIWCdkA0dLiDNvDHCH+ECrmFqqFWbeDPkcA/AEjRuE6sYrm9vcbvzIWAqn4RHMHIsTYiNMiw3gLLPPxxLiGAcAuL+xw9vZfB+3Vpi/bru2lZMyAgDHMfN80MfHoi7tOB8EAAAAALgPrymejo6O1vr16zVkyBAFBQUpLS1N9erV08yZM7V8+XLt3btXUsXF06WlpRo+fLg2b96sxMRExcX9cZacDh06VBq7qKjIcR8EdjO1UIAHhB7j8Xvi5etb9QckrZvW0sirWzoxIzhKg4hgRTcMNS2+2YUKgI+PRd1MfJHIzJeYAFtMuruTAvyrfpnUtFGo7riutRMzAhzHzLGYcyHAfK1iwlU7PMCU2D4+FsW35d4IAPcXExWmu69vY1Obh27vqLAQ815WBoCqMvO6LLZFbYUE+5kWHwAAAACA/+U1xdOSFBsbq6+++kq5ubnKzc3VTz/9pLFjxyo/P19paWny8fFRx44dz2tjtVo1evRofffdd1q6dKl69uxZYd/XX3+9JGnFihXntV25cqV69OjhvA+FKru2b7TMmhDwun5NzQkMm/VNiNKsZ/pWaYaZJg1ClPje1QoO4oafpxjaP8aUuJd0qq/IukGmxAZ+z6xjICoymKI5eIzuHerrs5cul18VXqZqUC9Iie9drVph5hSiAba6zqTfAbNjAzjLYrHoun7mHItXXtKIYhkAHuPdp3rrqt5NqrTvHde11pT7ujo5IwBwjJbR4YptWceU2Nf15zkZAAAAAMC9eFXxdGV27twpwzDUpk0bhYSEnLdtwoQJWrhwoR566CGFhIRo06ZN5/6cPHny3H5Dhw5V3759NXbsWH344Yf69ttvNXLkSO3cuVNTpkxx9UdCBZo1DjeliLl9i9oa0LORy+PCfn+6vo2+fGeQOrSqU+F2Hx+Lrh/QVJs+G6bWTWu5NjlUy7gRsabEnXCrOXGB/3XX9W0VFOjr8rhjb24vfxtm8gXMdstVLfTNjMHq0r5ehdstFumaPtHa9NkwxbWq6+LsAPvFtaqr/t2jXB63R8dIde9Q3+VxAfzR+JFmXRP9cRU3AHBXgQG++vKdQXrkT50UHlrxjNKRdYP04sTu+uT5flWahAEA3IHFYjHlfNBike67pb3L4wIAAAAAcCFM+SJp+/btkqT4+Pg/bEtMTJQkTZs2TdOmTTtv2+zZs3XXXXdJOnvDYdmyZXrsscf05JNP6syZM4qPj9fXX3+tK664wrkfAFU2fmSsvvz+kEtjjhsRK4tZU17Dbtf2jdE1faK1fkuG5n97QCdOFcrfz0dtm9XWPTe2VdNGYWanCDt0altPfbo21Iatx10WM6JOoG65qoXL4gEXUq92oEZd01Kzl+xzWUxfX4vG3NzOZfEAR7ny0sZKnn+DNv16QnO+3q+MzAL5+/moZXS47rmxrVpG8wIVPNP4kbH6fnOGS2Oa9QIbgD/qFd9A8e3q6Zc9p1wWMyYqVEP6Mvs8AM8S4O+rVx/uqafHddW/l6dq47bjyisoU60wfw28tLGGD2qhwADXv5wMANV1x3Wt9fibScovLHNZzGv6RKt5k3CXxQMAAAAAoCoontaFi6fT0tKq3E+dOnU0c+ZMzZw501GpwcGuvqyJrurdRCs2HnVJvPYtamvscArGPJXFYlG/7o3Urzszh9ckr/6tpy7701eyWg2XxHtpYncFBfJzC/fxzLhuWrQyTbn5pS6J9/CdHRUdFeqSWICjWSwW9YpvqF7xDc1OBXCYmwc2V+8uDbRx2wmXxOsWG6Hbh7R2SSwAF2exWPT6w5do4NhEl8V89W895efHKiQAPFNYiL/+ckt7/YUZUwHUELXDA/TMuG569B8/uySev5+Ppj3YwyWxAAAAAACwBU8udOHiadQsFotFHz7dp9LlFh3Jx8ei2c/2o2gScDOXxjfQw3d2dEmsQb0a68/MuAs307RRmF5/uKdLYrVvUVtTx3dzSSwAQNX4+vro46l9FRTo/JkS/f189Mlz/eTvz60HwJ1ceWljly2bfvPA5hpxNSvxAAAAuJOH7uigSzvXd0msp+/rqk5t67kkFgAAAAAAtuAJpqTVq1fLMAwNGTLE7FTgAk0bhWn6E71sapORWaAjx/OVkVlQ5TZP/jlel8Y3sDU9AC7w7IRu6tLethu2to4DkXWD9NEzfWWxWOxJEXCqP9/cTkP7N7Wpja3HQFCgrz59vj8vEQGAG2rXoo5es/FFGnuuiV54IIGH5ICbeuVvPdS2WW2b2tg6DjRuEKJ3n+rNNREAAICb8fU9+6JrrbCqTzRkzzVh7y4N9Ng9ne1JEQAAAAAAp7MYhmGYnQRghlc+/lWPvZnklL7H3NxOM6dcxgNCwI0dzypUv7uWa+/B0w7vu3Z4gFZ/eI26xUU6vG/AUQoKyzR43Ddan3zc4X37+/noizeu1HU2FmgDAFxr8vQtev6DbU7p+293dtRrD/fkmghwY4fS89Tv7uU6eCzP4X3Xrxuk72cPUWzLOg7vGwAAAI6xITlDg8d9q/zCMof33bltPa39+FrVrRXo8L4BAAAAAHAEZp6G15p0T2e99dil8vFx7MP8v97eQe9PpnAacHcNI4K17pMh6to+wqH9RkUG6/uPr6VwGm4vJNhPie9drWv6RDu039BgP335ziAKpwHAAzw7oZteeCDB4f3+fWwXCqcBD9C0UZjWf+L4AuemjUK1zgn9AgAAwLH6dIvSqg+uUb3aji1w7t2lgdbMonAaAAAAAODemHkaXm/TLyd01+R12pNWvdlnoyKDNXPyZRo2oJmDMgPgCsUl5Zo6Y6tenv2rrNbq/SSOuqal3nmilyLqBDkoO8D5rFZD0+fu0uNvJamwqLxafV3Rs5FmTe2r5k3CHZQdAMAVvt+crnumrNf+I7nV6icmKlSzpvbVoF5NHJQZAFcoKCzTU+9s1lv/3qnq3iW858a2ev3hnqpDoQwAAIDHyMgs0H3P/aClaw5Vqx9/Px9Nua+LHrs7Xv7+zN8FAAAAAHBvFE8DkgqLyvTSrF/07rwUnTpdbFPbkCA//WlYaz3/QHeHv50PwHWSdpzU428mafXP6Ta37dy2np4Z11U3Xtnc8YkBLvLboTN67I0kLV17UOXltp0etmgSrsfv7aw/39TO4Ss6AABcI7+gVM/O3KqZi/bodG6JTW3DQ/11741tNXV8N9UKC3BShgCcbUNyhp58e7PWJx+3uW1CXKSem9BN1/SNcUJmAAAAcDbDMDQvcb+e+2CbUvbn2NTWYpGu7h2tlx/qoc5t6zknQQAAAAAAHIziaeB3CovKtHDFAc1euk9JO04qv7Cswv0C/H3UpV2ERg9ppT8Na6Pa4RQIADXF7gM5mjE/RcvXH1bq4cpnX2zcIEQDejTSuBGx6t2lAcvSo8Y4kpGvDz/fo89XHVDKgdOVzsher3ag+nZrqLHD22vwZdEUTQNADZFfUKq5ifv16bJ92pKSWemqBEGBvuraPkJ3Dm2t0UNaKTyUayKgpti+95RmLEjRNz8c1YGjlV8TRTcM1cBLG2v8yFj16FjfhRkCAADAWQzD0NqkdL2/cLe+35yh41mFle7btlltDe0fo3EjY9UqppYLswQAAAAAoPoongYqUV5u1Z6009q+L1t5BaWyWg2FBPsprmUddWhdVwH+vmanCMDJcs4UKzklS4cz8lVcWq4Afx/VrxukbrGRalQ/xOz0AKfLLyjVtj2nlHr4jIpKyuXv56M64QHq2j5CzRqH8dIAANRwZWVW7T6Qox2/ZSu/sExWq6HQYH91bFNXsS3qsAwz4AWycoqUnJKlYycKzl0TNawXrIS4SDWICDY7PQAAADiRYRg6erxAySmZyjpdrNIyqwL9fdW8SZi6to9g5SEAAAAAgEejeBoAAAAAAAAAAAAAAAAAAACAV2CaKAAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABegeJpAAAAAAAAAAAAAAAAAAAAAF6B4mkAAAAAAAAAAAAAAAAAAAAAXoHiaQAAAAAAAAAAAAAAAAAAAABe4f8AcChtMFY8KMYAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 3733.98x2290.94 with 1 Axes>"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Parameters\n",
|
||
"width = 27\n",
|
||
"num_circuits = 5\n",
|
||
"seed = 42\n",
|
||
"\n",
|
||
"# Set random seed\n",
|
||
"np.random.seed(seed)\n",
|
||
"\n",
|
||
"\n",
|
||
"# Function to generate permutation circuit\n",
|
||
"def generate_permutation_circuit(width, pattern):\n",
|
||
" circuit = QuantumCircuit(width)\n",
|
||
" circuit.append(\n",
|
||
" Permutation(num_qubits=width, pattern=pattern),\n",
|
||
" qargs=range(width),\n",
|
||
" )\n",
|
||
" return circuit\n",
|
||
"\n",
|
||
"\n",
|
||
"# Generate random patterns and circuits\n",
|
||
"patterns = [\n",
|
||
" np.random.permutation(width).tolist() for _ in range(num_circuits)\n",
|
||
"]\n",
|
||
"circuits = {\n",
|
||
" f\"qc_{i}\": generate_permutation_circuit(width, pattern)\n",
|
||
" for i, pattern in enumerate(patterns, start=1)\n",
|
||
"}\n",
|
||
"\n",
|
||
"# Display one of the circuits\n",
|
||
"circuits[\"qc_1\"].decompose(reps=3).draw(output=\"mpl\", fold=-1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3de10fba-9321-4d74-ab54-644bc3204a1c",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 2: Optimize problem for quantum hardware execution\n",
|
||
"In this step, we proceed with optimization using the AI synthesis passes.\n",
|
||
"\n",
|
||
"For the AI synthesis passes, the `PassManager` requires only the coupling map of the backend. However, it is important to note that not all coupling maps are compatible; only those that the `AIPermutationSynthesis` pass has been trained on will work. Currently, the `AIPermutationSynthesis` pass supports blocks of sizes 65, 33, and 27 qubits. Thus we will select `ibm_cario` as the backend for this example, as it has 27 qubits.\n",
|
||
"\n",
|
||
"For comparison, we will evaluate the performance of AI synthesis against generic permutation synthesis methods in Qiskit, including:\n",
|
||
"\n",
|
||
"- **`synth_permutation_depth_lnn_kms`:** This method synthesizes a permutation circuit for a linear nearest-neighbor (LNN) architecture using the Kutin, Moulton, and Smithline (KMS) algorithm. It guarantees a circuit with a depth of at most $ n $ and a size of at most $ n(n-1)/2 $, where both depth and size are measured in terms of SWAP gates.\n",
|
||
"\n",
|
||
"- **`synth_permutation_acg`:** This method synthesizes a permutation circuit for a fully-connected architecture using the Alon, Chung, and Graham (ACG) algorithm. It produces a circuit with a depth of exactly 2 (in terms of the number of SWAP gates).\n",
|
||
"\n",
|
||
"- **`synth_permutation_basic`:** This is a straightforward implementation that synthesizes permutation circuits without imposing constraints on connectivity or optimization for specific architectures. It serves as a baseline for comparing performance with more advanced methods.\n",
|
||
"\n",
|
||
"Each of these methods represents a distinct approach to synthesizing permutation networks, providing a comprehensive benchmark against the AI-powered methods.\n",
|
||
"\n",
|
||
"For more details about synthesis methods in Qiskit, refer to the [Qiskit API documentation](https://docs.quantum.ibm.com/api/qiskit/synthesis)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "240196a2-0382-4f67-9dc7-9184d69c134f",
|
||
"metadata": {},
|
||
"source": [
|
||
"Define the coupling map representing `ibm_cario`, a 27-qubit device."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "172ad2e3-5703-44d2-a2a1-567f64630c94",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAQnAuUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorF1/xJbaEsEIhlvNSuiVtLC3wZJmHXrwqjux4A/KslfC2peIR53i6/Z4W5GkWMjR26D0dxh5T9SF/2aAL19468N2Fy1odSS5vB1trJGuZQfQrGGI/HFVv+EyvJ/8Ajy8HeIp/RpIYoAf+/kikflXQ6fptjpVqttp1nb2kC9I4Iwi/kKtUAcp/wlOupzL4F1gJ6pc2jnH082g+PrC351TStc0tO8l1p7tGPq8e9R+ddXRQBQ0vWtL1u3+0aVqNrexd2glD49jjofY1frA1bwZomr3H2t7U2moD7t/ZOYLhT/vrgn6Nke1ZbavrPg9gviGT+0tFzgatHGFlt/T7Qg4K/wDTRePUDrQB2dFNjkSaJJYnV43AZWU5DA9CD3FOoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnq2p22i6ReaneMVt7WFppCOuFGcD39KuVynxAHmaHYWr/6m61axhmHqhuEyPxwB+NAEnhLRriJJdf1hAdc1JQ82efs0fVIE9FUdfVsk9q6eiigAqGW8toJYopriGOSU4jR3ALn2B61NXE+PvC+jaloGqTXGnRXWrXcfk2UjKDMs2MRLG3VQG+Y44HzE8ZoA7YkAZJwBUcM8NzH5kEqSpkjcjBhke4rz/VZdUvPE2leExGuoRWOlrfXyyT+Wt3Jny0V2wcqSrMRggnbnjNdV4W8QW3ibQ47+2gkttrvBLbyY3QyIdrIcccEdu2KANqkdFkRkdQysMFSMgj0paKAOO0RD4T8T/8ACNZP9kX0b3OlAnPkMuPNgH+yAQ6+g3DsK7GuU8bjy5fDVyvE0Wt26oR1w4ZGH/fLGuroAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArE8XaRNrnhe9sbVgl2VWW2Y9FmjYPGT7blWtuigDL8O63D4h0O31GFTGzjbNC33oZV4eNh2KsCK1K5PVNH1LRdXm1/w5EJzcEHUNLLBVucDHmRk8LKBxzwwHOCAa1dD8S6Z4hic2U5E8RxPazKY54G9HQ8qf0PYmgDXrlNS8P+JrrXn1Gz8S2VtEF2W8EulGXyR3IbzRknucdMCurooA5s+GruPVLDWIdTRtVhszZ3U01vlLlCd2dgYbSHyRg9CR7jQ0DRIdA0w2kTmV5JpLieVhgySyMWdsduTwOwxWpRQAUUEgAknAHUmuQvfFNzrdxJpXg8Jczg7LjVGG61tPXB6SyDsi8Z+8RQAahINf8fafp0Pz2uhk314w6eeyFIY/qFZ3Pp8vrXX1maDoVr4e0xbO2MkjMxlnnlO6SeVvvSOe7E/0HQVp0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXHXmo6j4q1O40jQrl7LTbVzFf6pGBvZx1hgzxuH8T/AMPQc9ADT1fxhpWkXf2DdNfamRkWFjGZp8epUcIPdiB71RF3441Tm307S9FhPQ30rXU312RlVH/fZrb0XQdM8P2f2XTLRIEJ3O3LPI3dnY8sfck1o0Acp/wjnieb/j58b3SeotNPt4x/4+rn9aP+EW1xOYfHWsBv+mlvauPy8oV1dFAHKfYPHFjzb65pOpr/AM872yaBv++42I/8cpp8aTaVx4o0S60mPobyJvtNr9S6Dcg/31Ue9dbQQCCCMg9QaAIra5gvLaO4tZo54JF3JJGwZWHqCODUtcfe+GLrQbiTVvB4SGQnfc6Szbba79do6RSejDgn7w71v6Hrdp4g0qO/sy4ViUkikXbJDIpwyOvZgeCKANGiiigAooooAKKKKACiiigAooooAKKKKACuN8fWmiLYxXt1YyTayziDTWs5DDdPMfuqsi4IHUnPAAJIrqNR1G00nTrjUL6dYLW3QySSN0UD/PSud8N6fd6rqR8V61A0VzKhj06zk62dufUdpH4LHsML2NAFbTtJ8faVp1uv/CQabqs4jHmx39qyYbHIWWM5I92QmrX9t+MIPluPB0U5HVrPVEYH6CRUNdXRQByn/CR+J24XwLeg+smoWoH6OT+lH2vx3e8Q6Voulr/furt7lh/wBFUf+PV1dFAHJf8ACEyaod3ifW7zV072iAW1r+Macv8A8DZq6i2toLO2jt7WCOCCMbUiiQKqj0AHAqWigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOe8a6ldad4bkTT32aheyx2No/wDcklYIG/4CCW/4DWno+k2mh6Ra6ZZJst7aMIg7n1J9STkk9yTWF45PlJ4eun4ht9btmkPYBt0YJ/4E611dABRRRQByGseOv7DvFe70O/Gi/aBbPqgZCiOW25Kbt+zccbsfTPGdPxb4otPCPh+41W6jkm8sHZBH96Q4zgegABJPYA1Q8QXema1MdHuL61jsbaaOXUHklVQSjB1iGT3IUsewGOrcch8SLjW5PDXia5n0FpLNrUw214LuPbFBlSWCfeyxAJ9go7ZIB60DkZoqtp81zcWEMt3aG0nZcvAZA5Q+m4cGrNABXISoNA+IttJD8tn4gjeOZB0F1Eu5X+rRhwfXYtdfXKeLD53iLwfZp/rjqj3H0SO3l3H83UfjQB1dFFFABRRRQAUUUUAFFFFABRRRQAUVzvjnxMvg/wAHajrW1HlgQCGN+jyMQqg45xk5PsDXEaT4/i+K8NtoOmeZp3mxmTVy0gDrECAY4j1beTgtj5Vz3IoA6O3/AOK81xbxufDOmzf6Ova/uFP+sPrGh+72ZhnoBXbVFa2sFlaQ2trEkMEKCOONBhVUDAAFS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1bWtM0KzN3ql7DaQZwGkbG4+ijqx9hk1neI/EM2nS2+l6Vbrea5egm3gYkJGo+9LKR91F/MnAHPRmjeEYLK8Gq6pO2q62w+a9uF4i/2YU6Rr9OT3JoAqjxNr2rf8gDwzMID9281aT7Kh9xHhpCPqq07+y/G1381z4l06y/6Z2Oml8f8AApHOf++RXV0UAcp/wjfibr/wnd/n0/s+1x/6L/rR/ZXjW1+a28Tafe4/5Z32mbc/8CjcY/I11dFAHJHxL4g0n/kO+GZHgH3rvR5ftSj3MZCyAfQNW7pGuaXr1p9q0q9huogdrGM8ofRlPKn2IBrQrnda8I22o3f9qafM+l62gwl/bAZb/ZlXpIvs34EUAdFRXJ6d41t7VLmy8VTWmkapZAGbzJQsMyH7ssTN1U4PHUHg+4fHK3/y+HdE1PWCfuzrF9nt/wDv7LtBH+6GoA6w9OOteLT/ALRWlWd3Na3fh6/imhdo5EEqEqwOCPzrvPsHjTV+b3VrLQ4D1h02L7RNj0Msg2g/RPxrx7xB8DdW1X4l3UNnNKukTKlzLqN2d7bm++OMb3LBjjjAIzjjIB1C/F3RviFbz+GbXw5rk8t9GU/cLGTH6PkuAu04OTwMCvQvCevT38MmlauBDr+ngJdxdBKOizJ6o/X2OR2p/hHwXovgrSxZaRbBSwHnXD8yzEd2b+g4HYVNr/hq31wwXMc8tjqlrk2t/b48yInqDnhkPdTwf1oA26K49fFWpaB+58W6cyRLwNWsI2ltnHq6jLxH6gr/ALVdLp2qafq9sLnTb63vID0kglDr+YoAzZPBXhSWZppPDGivK7F2drCIsWJySTt61r3VpbX1rJa3lvFcW8o2yRTIHRx6EHg1NRQAUUE4GTXNX/jnRra5aysZJNX1Ef8ALnpq+c4P+0R8qD3YigDoLi4htLaW5uZUigiUvJI7YVVHJJPYV5naeOPD6+K5vEHiDUBpyvb+RpFvcxOpNsTlp/u/8tGAx6Ko9TXQp4f1TxNcR3XizyorGNg8OiwPvjyOQ07/APLQj+6PlGP4utaXivwho/jLR203VrcOg5ilTAkhb+8h7fToe9AGavxT8DN08S2X4lh/Sui0nWNO12wW+0u7ju7VmKiWI5Ukda+Q/HHwz1vwVrEdrLE13aXMgS0uol+WUk8KR/C/t+Wa+iPDT614B8OWOjah4ce5srSPaLzSH88kk5JeIhXySSTt3UAehUVk6P4n0TX9y6ZqUE8qf6yDO2WP/ejbDL+IrWoAKKrX+oWel2Mt7f3MVtaxDdJLKwVVH1Ncyuv+IfEIz4c0tLOxb7upasrLvHrHAMMw7gsU/GgDr6CQBknArkx4Lnvfm1zxNrN+x+9FBP8AY4foFhw2Pqxpw+Gvg4nMmgW07f3rktMfzck0AdSCGGQQR7Utcqfhr4MzlfDljE396FPLP5rg00+BILT5tG1zW9LYfdWO9aeIH/rnNvGPpigDzH9orWpriTRfCtkryzSsbqSKNSzMeUjAA65+fj6VW+GfwP1O3vrTXvEN1NpzQsJIbS2k2zE/7bD7o9hzzzivQItK1rwzr9zr9/pFt4ilmVUfULJPLvIowMYELEqR67GBPoa7LRtc03X7L7Xpl0k8YYo4wVaNh1V1PKsPQgGgDRooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkZlRSzEBQMknsKWqmqQSXOkXsEX+slgdE+pUgUAc54EhOoWdx4quVJu9afzYy3WK1BIhjHoNvzH1Lmuurn/AALPHc+APD0kX3f7OgXHoVQAj8CCPwroKACsnXNWutMijWw0m41S7kyVghdI8KOrMzkADkD1JPTrjWrO1fWLfSLdGlZDPM2y3hZwnmPjpk9AOpPYUAZmkeL4tc8PHU9P029kuFna2ksSFWSOZThlYkhRjrkn9SBVnwz4iXxHZ3UjWM9jdWdy9pc205BMcigEgMpIYYYEEetReHraxstKmtLfU4ZbuaeSW5uIHU5uJSXYgHIHXhTnAAzms/wPHf2N94h0m7uvt0Npehor0xqjymRBIyvtABZSwGfQjpjFAHYUUUUAcf8AELT410qDxLHbpJe6DJ9sTKg74R/rk59UyR7qprrYpUmiSWNgyOoZWHcHoayPGFxFaeCtcnnI8tLCctnv8h4/HpVnQLeW08OaXbTAiWK0ijfPXcEAP60AaNFFFABRRRQAVz2oeBvDWpXJupdKiiuz1ubVmt5T/wADjKk/nXQ0UAcp/wAIS8XFr4r8S26jov21Zsf9/UY/rR/wh1+/EvjXxGy+ivbp+ohzXV0UAcp/wrzRJznU5NS1Y+moX8sqf98bgn6V0Vjp9lplsttYWkFrAvSKCMIo/AcVZooAKKKKAI5oIbhAk0SSqGVwHUEBlOQee4IBH0qSiigDI1jwvomv7W1PToJ5U+5PjZLH/uyLhl/A1z+pWOueEdOudSsPEwn061jMkltramUKoHO2Zf3g9tweu3rkvFqjUtf8NaDJzbXFy95cL2dLdQyqfUeY0ZP0oAh0TRrzxJPbeI/FVuFkGJLDSmO6OzGOHYY+aU+pHy9Bg5NdnRRQAUUdq4a91LxboniDRpr24sbvTtVvBaPZRW5R7UsrMpD7jvwFO44HQ4A7AHc0VwOpeK7m+8bv4e0vxFp2lzwbUMF5ZtI9yxAYmNiyrwCBgZOQe2K76gArmdf8MyyXh13QHSz16NeWPEV4o/5ZTAdQegbqvUeldNRQBleHtch8Q6Ql7FE8EgZori3k+/BKpw8be4P5jB71q1yVuv8AZXxPuYI/lt9Z0/7Uy9vPhZUZh7lJEz/uV1tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcZpMw8I+I5tAuvk0vUp3uNKmP3VkclpLcnsdxZ19QxHauzqlq2k2OuabLp+o26z20o+ZTwQexBHIIPII5Fc1Hc+I/CX7q8huPEGjr9y7gAN5CvpInHmgf3l+b1U9aAOyrO1Pw/outPG+q6Rp9+8YIRrq2SUqD1A3A4qPR/Eui6+jHS9SguGX78QbEiezIcMp+oFatAGR/winh0WC2A0LTFs1l89YFtECCTGN4UDAbHGetaVta29nbrb2sEUEKfdjiQKq/QDipaKACisvV/EejaBGH1TUre1LfcR3+d/ZUHzMfYA1gve+IvFo8rTYLjQdJbh765Tbdyr6RRn/V5/vPzzwvegBNcmHi3XovDVp8+n2cyXGsTD7vykNHbg92ZgrMOyjH8VdnVHR9HsdC02Ow06AQwJk4zlmY9WYnlmJ5JPJq9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcn4lb7D4x8KanJxAZZ9Pdv7rTICmfq0QX6sK6ys/XNHttf0W50y6LLHOuA6HDRsDlXU9mUgEe4oA0KK5jw54guGuT4f1/bDr1uvXGEvYx/y2i9c/wAS9VOe2K6egBHYIjOckKMnaCT+AHJrg7XxTHqWvw3Vx4f8ReakhgsYpNJmRItx2mV3ZQoJHcn5Vz6nPe0UAcT4oS18YWFzosen36ajb3S+RcTWTxrA6uD5ySlduMAng5I4xzXbUUUAFFFYfiPxJFocUVvBCb3VrvK2VhGfnmb1P91B1ZjwB78UAZ5Yah8VE8v5o9J0pxKR/DJcSKVX67YSfxFdZWJ4X0OTRNOkN5Otzqd5Kbm+uAMCSUgDC+iqAFUegFbdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc34w8caJ4I037Xq1ziRgfJto+ZZj/sj09zwK6J1LRsqsUYggMAMj35r5C+J3hTX9P8AFWqXF5qE2uJBsa4vlQnyd+SiSDohwOg4wR0yBQB6z4Alj+Leo6x4h8Q6VaizgZLaxiRcNEfvMfMGGLY2c5HU4Aru/wDhBhBxp/iXxFZKPuot956r7YmV+Kzvg5ov9ifDDSUZdst2pvJOOvmHKn/vjZ+Vd5QByv8Awi+v9P8AhO9W2en2S0z+flUn/CD+fxqHifxHeKfvIb0QKfb9yqHH411dFAGNpHhPQdCkMum6VbQTt96fbvlb6yNlj+JrZoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAzNb0DTvEFmtvqEJby23wzRsUlhcdHRxyre4rDV/F3hwBHiXxLp69JEZYb1F9wcJKcdwUJ9DXX0UActD8Q/DfmCG/vH0m4PBh1WJrVgfq4Cn8Ca3bfVtNvFDW2oWk6noYplYfoasywxTxmOaNJEPVXUEH8DWHceB/Cd2xafwzo7serGyjz+eKANabULK3XdPeW8S+ryqo/U1h3XxA8LW0phj1iG8uO0FgDdSE+m2MMfzp8PgHwfA26Pwvo4YdCbKMkfmKp/D9FsNMv8AQmULNpF7JbE4wzxH54mPrmN1GfY0ADap4r175NJ0oaJat1vdVAabHqkCnr/vsPpWnoXhiy0OSa6DzXmpXAH2i/um3zS47Z6Ko7KoAHpW3RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRUV1cwWVrNdXMqxQQoZJJHOAqgZJP4UAY/inXZNF06NLOJbjVr2T7PYWxP8ArJT3PoijLMewFSeHvD0Gh6J9hkb7VNMWlvZ5FybmV/vuw9+mOwAHasnwtbT63qMni/UYnja4QxaXbyDBt7UnO4js8mAx9BtHY119ADIoo4IkiiRY40UKiKMBQOAAOwp9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVyU/wDxJ/ibbTdLfXbMwP6faIMuh+pjZx/wAV1tcv4/gl/4RhtTtkL3WjzR6lEB1PlHLr+MZdfxoA6iio7eeK6toriBw8UqB0YdGUjIP5VJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVm6vr+kaDCJdW1K1s1b7omkCl/ZR1Y+wrGHjqK550rw/r+pKfuyR2Rhjb6NMUBHuKAOrorlP+Ej8Ttynga7A/6aahbA/o5o/4SvWLfm98E6yi/wB62lt5/wBFkz+lAHV1xeqn/hMvEh0GP5tF011k1Rx0nm+8lv7gcM//AAEdzVXXfiVYx2AstPaWz1u7kW3t4tUt3thCzf8ALRjIACqjJ4JycDvXV+H9GtdA0WCwtWaRVBd5nOXmkY5aRj3LEkn60AafSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmyIksbRyKGRgVZSMgg9qdRQByngB3t9Cn0OZiZtEupLD5upjXDQn8YmT9a6uuSb/iT/ABORulvr1ltP/Xxb8j8TG5/7911tABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMlljhieWV1jjRSzuxwFA6knsK49dU1rxkSNClbStCzj+1HjBnuh/0wRuFX/powOew707W0PivxQvhok/2TYxpdaoAf8AXsxPlQH/AGTtLsO4Cjua7BVVFCqoVQMAAYAFAGJo/hDRdElNzb2nm3zf6y+umM1w59TI2T+AwPatyiorm5gs7WW5uZo4YIlLySSMFVFHJJJ6CgCWisrRPEmi+I4pZNH1K3vVhbbJ5TZKHtkdR3/KrNlq2n6lNcw2N7BcyWrhJxE4by2Izg47+1AE11aW19bvb3dvFcQOMNHKgdW+oPFctJ4PudEJuPB999gIOTptwWks5fYL1iPunH+ya6+igDC8P+JYtZknsrm2k0/V7UD7TYTEFkB6MpHDoezD8cHit2uc8WaHPf28Wq6ViPXdOzLZydBJ/ehf1RwMH0OD2rU0TVrfXtDstVtciG6iWQK3Vc9VPuDkH3FAF+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPB/jB8TdQ0XX7XSYNENvdafcx3ttfTyblk4I+VQPukMynn1HGK6H4I+MNd8Y22uXmt3n2ho5oliUIqLGCGJAAA9uvNdD8TfANv488ONAoSPU7YGSzmPZu6E/wB1sD6HB7Vxn7O9lcafpXiK1u4XhuYb1YpY3GCrKpyDQB7TRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcp4LHmXviq4fmZ9alRyeuEjjVR/wB8gfnXV1yFvJ/wjvxBu7eb5LHxAFnt3PCi6jQK8f1ZFRh67Wrr6ACop7eG6i8ueMSJuVtrdMggj9QKlrP1rSzrWkz6f9uu7JZhtaa0ZVkx3ALKwGenSgDF0jTIrrx1qfia3QJbyWkdijLx9oZXZnk9wMqgPfae2Mw+FgF8eeOQBgfa7T/0ljrQ0Xwu2j3azvr+sagiRmOOC7kj8pOnIVEXkAYGc4BNT6X4di0rWtV1RL27ml1N0eZJvL2AooRdu1AR8oA5JoA2aKKKACuU8BDy9O1e2T/Uwa1exxDsq+aWwPoWatfxDrcHh7RLjUZ1MhQbYoV+9NKeEjUdyzECoPCOkTaH4YtLO7YPendPdOOjTSMXkx7bmOPbFAG3RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY2t+KNJ0Bo4by4Zrub/U2duhlnl/3Y1yT9envWfrmtahd6sfDnh1kXUAge8vXXdHYRt0OOjSNztX8Tx10NC8M6d4fSR7ZHlvJ+bi9uG3zzn1dzz+AwB2AoAyxqXjPVvmsNGstHtz92XVZTLKR6+VEcD8XqGDwZrQurm6m8X3MM12Va4On2EEAkKjAPzq5zjjOewrs6KAOU/4Q29HK+NfEob1Mluf08mj+w/F1p81n4wW5x0j1HTo3B9i0RjP4811dFAHJHxF4j0f/AJDvhw3FuPvXmjSGcD3MLAOP+A7q3tI1vTNes/tel3sV1DnaTGeVPow6qfYgGr9c3rXhKK8vDq+kTnS9dUfLdxL8swH8EydJF+vI7EUAdJRWF4b8QPq4ubK/thZ6zYsEvLUNkDP3ZEP8UbYyD9QeRW7QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGdrei2ev6XJYXqt5bEMkkbbXiccq6N2YHkGuetvEt74akTTvGBCxZCW+touLef0Ev/PJ/r8p7HtXZUyWKOeJ4pY1kjcFWRxkMPQjvQAqOksayRurowyrKcgj1Bp1cm3gaGwdpfDWqXuhMTkwQESWxP/XF8qP+AbaoXWu+LtF1ew0mc+H9Wur3f5EaSS2crqilmYjEigcevU0Ad3RXKf294tXhvBQJ9Y9ViI/UD+VH9q+Nrj5YPC+nWpP/AC0u9VyB/wABjjOfzoA6usfXfE+l+H1jW7mZ7ubi3s7dfMnnPoiDk/XoO5FZZ0TxZqnGqeJYrGE/eg0e22MR/wBdZCx/JVrU0XwvpGgGSSwtALmX/XXUzmWeX/ekYlj9M4oAy9L0bUtY1aHX/EsawvBk6fpatvS1yMGRz0eUjjI4UZAznNdZRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUda1OLRdDv9UmGY7O3knYZ6hVJx+OKvVzXxCtpbv4eeIIYV3SGxlYL/e2rnH44oAl8GaRJpXh2Frs79SvT9sv5ccvO/LfgOFHoFFdBUNpdRX1lBdwNuhnjWVGHdWGQfyNTUAFYPiDxBeaQdun6Deas6R+bMLd0Ty0/4ERuY4OFGTx24zvVj65rCWKrZQXEEeo3KnyfOYBYx0MjZ/hGenc4HfIAKI8YLf8Ah7T9V0HS7rVjfxmWKCNkiKqPvF2cgDB4xk5PTIyau+GPElr4p0j7fbQzW7JK8E9vOuHhlQ4ZGxxkf1qnZ3ujeGPDFlY6dcw3EcQ+y2y+cv76QDnLdOuSx7c/SrPhe1s7HTpYLa8gu7hp3uLyWFgQ08jF26E4HPA7ACgDcooooA5Hxig0m+0rxVD8slncJa3hH/LS1mcIwPrtco49MH1rrq5T4kHd4GvbZeZbuSC1hXuzvKirj88/hXV0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFNkljhQvK6og6sxwBQA6ist/EmhRttfWtOVvRrpAf51atdSsL04tL22n/AOuUqt/I0AWqKKKACiiigAooooAKKKKACiiigAooooAKKKKAMfxR4l0/wloFzrGpSbYYR8qD70jnoi+5/wDr9BXzz8N/FGoeMPj1aaxqL5llScJGD8sSCJ9qL7D9Tk9TXr/xX8HaR4k8NTahq99e2yaXBJOnkSDaSBnlSMEnGB0PNcN8OPg/r/hPxro2vXM1rLaeQ5nRWIkhZ4iNpBHOCcZB/AUAe8UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIyh1KsAVIwQRwRS0UAcZ4auD4X1H/hD79isGWfRp3PE0HXyc/wB+PpjuuD612dZ+s6LYa/pzWOoQ+ZESHVlJV43HR0Ycqw7EVzyXniXwqBDqNtP4g0tOEvbVAbuNf+msX/LT/eTk/wB2gDsaytQ8L+H9XuvtWpaFpl7cbQvm3NpHI+B0GWBOKbo/inQ9eyumanbzyr9+HdtlT/ejbDL+IrXoAxpvCPhq4t7e3n8PaTLBbgrBG9lGyxAnJCgrgZPPFXtO0rTtHtjbaZYWtjAWLmK2hWJSxwCcKAM8Dn2q3RQAUdK5/U/G2g6XcfZDefbL8/dsbFTcTk/7iZI+pwPesx9N17xh8usq2jaI33tPhlzc3K+ksinCKe6oST3btQAlvMPGnimC8g+bQNGlZoZf4by7wV3L6pGCwz0LHj7tdpUVtbQWdtFbW0KQwRKEjjjUKqqOgAHQVLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXP6z4sttNvRpdlbTaprDLuWxtcFlB6NIx+WNfdj9Aai8T6vfC7tfD+hsq6vfKzmdl3LZwDhpiO5yQFHdj6A1o6F4fsPDtibayRiztvnuJTuluJD1eRurMf/1YFAGKNG8Va18+sa4NKgb/AJctHA3AejTuCSf91VqWL4deFQ4kutKTUJu8uoyPdMT6nzC1dTRQBkJ4U8OxrtTQNLVfRbOMD+VVbrwH4SvB++8N6UW/vpaojD/gSgGuhooA5M+B/sPzeH9e1bSmH3YjObqD8Y5d2B/ulajbxLrPhzjxVYRvZDj+1tNVmiQessRy0Y9wWX1IrsKCAQQRkHtQBHBcQ3VvHcW8qTQyKGSSNgysD0II6ipK4e9tv+Ff3h1WwBXw1PJ/xMLMfds2Y/6+IdlyfnUcYO4dDXbghgCCCDyCKAFooooAKKKKACiiigAooooAKKKKAOS8Zf8AEz1DQvDa8rfXYubof9O8GJGB9i/lL/wI11tcloH/ABN/Guv62eYbQrpNqf8Ac+eY/jIwX/tnXW0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZOr+GND17B1XSbS7dfuySRAuv0bqPwNZX/CA2EPFhq+v2Cdo4NUlZB9FkLCurrk/iV4m/wCET8BanqSPsuWj8i2x181+AR9OW/4DQBzXhFI/F02tx23i/wASbNNv2tQBdxfOgAw+RHnBO7HsK6b/AIV7os//ACErjVtUH92+1KaRP++AwX9K8I/Z617+zvHU+lSPiLU7cqo9ZI8sv/ju/wDOvqKgClpukabo1v8AZ9MsLWyh/uW8SoD9cDmrtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHJ+EVF7rfifWpOZZNQaxjP8AdigAQKP+BmRvxrrK5Pwkwsdc8TaLLxLHfm/iB/jhnAYMPo4kX8K6ygAqK4jea3kjineB2XCyoFLKfUBgR+YqWmTO0cLukTysoyI0IBb2GSB+ZoA4/wAJz6t4k+FulzHVJIdRvLdTJe7QXXLfMQMYzjIHYcemKTQ9O1Kx8bS2r+JNU1K0trESTpdmPaJJGwgGxF6Kjkj/AGl/G78PNOv9H8B6Tpmp2j2t5aw+VJGzo/IJ5BUkYq74dsriBNQvbyIx3V/eSTMhIJVBiOIcf9M0U49SaANqiiigCK5t4by1mtriNZIJkMciN0ZSMEH8K534fzSt4QgtJ3Mk2nTT6ezt1byZWjUn/gKrXRXVzDZWk11cSLHBCjSSO3RVAySfwFc78P4Jk8IW93cRmObUZptQdG6r50jSAH3CsKAOnooooAKKKKACiiigAooooAKzPEWrpoHhzUNVdd32WBpFT++2PlX6lsD8a065LxV/xNfEPh/w6vMbznUbsf8ATGDBUEehlaP/AL5NAGn4S0h9C8Lafp8zbrlI99w/9+ZyXkb8XZjW1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzXjHwPpXjmyt7TV5LoQ28hkRYJdmWIxk8HOBnH1NdLRQB4t8PvhFoAnj8QQ3mpxXVjqtwsASZNpWGd0UMCmTkLg8jOT0r2muU+HPPgyJ+8l5ev+d1Ka6ugAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5rxPo9891a6/ogU6xYKy+SzbVu4Dy0LHtyAVPZh6E1oaD4hsPEVk1xZuyyRt5dxbSjbLbyDqki9VI/XqMitWsDWvClrql4upWtxPpmsIu1L+0IDkdldT8si+zA+2KAN+iuRXV/FmiDZq2irrFuv/L5pDASEerQOQc/7rN9KkT4jeFwwjvNROmzdDFqUD2rA+n7wAfkaAOqorFTxf4ZkXcniLSGX1W9jI/9Cqtc+P8AwhanEniTS2f+5FcrIx/4CpJoA6OkJCgkkADkk1yh8bSX/wAvh/w9qupsfuzSwm0g+u+XBI/3VamN4Y1fxEQfFmoR/Y85/snTiyQN7SyHDyfT5V9jQBjeI9VvvGQFpoWmS6n4ct5x/aMsMqxm9CnJihLEBlBA3HIB+6D1rp9L8aaHqV2NP89rHURx9gvozBN+Ct976rkVuwQRW0EcEESRQxqFSNFCqoHQADoKq6po2m63aG11Swt7yA/wTxhgD6jPQ+4oAvUVyH/CJ6to3zeGNfmiiHTT9TzdW/0VifMQfRiPal/4TK60gbfFWi3GmqODfW2bm0PuWUbkH++oHvQB11FeWa18b9C0fxxbaSXiutIkt1aW/tn8zypGOR0yGXbjOOefbFenW1zBeW0VzbTRzQSqHjkjYMrKehBHUUAS0UVzV94302G9k0/TIbrWtRjOHt9OQSCM/wDTSQkIn/AmB9qAOlorkxL471H5o7bRdGiPad3vJR9QuxQf+BGl/wCEf8Vycy+N5EPpb6ZAo/8AHtx/WgDq65Lwv/xNvE3iHxA3MfnDTLQ/9M4M7yPYys//AHyKcfD/AIrQHyvG8rH/AKb6ZAw/8d21Q0fTfGPhHSLbTba20fWbO2XaNkj2k75OSx3b1LEkk8ryaAO6ormbLxvpst5Hp+qQXWi6hIdqW+ooEEh9I5ASj/g2faumoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKRmCIWPQDJoA5X4bc/D/AEtv74kf/vqVz/WurrlvhqpX4beHs9Wso3P4jP8AWupoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAprosilXUMp6gjINOooAzn0DRpG3PpFgzerWyE/yqzbWNnZjFraQQf9cowv8AKrFFABRRRQAUUUUAFIchTgZOOnrS0UAfLut/BHx5qer3upPbaeZLqZ5ikVyAqliTgZA4Ga6r4eaT8TPh5Kbe+0hbzw/kvNH9uhBgHUuhZxj1IPB9jzXvFcj4wB1nU9H8KgkW9+z3N/g9baHaSn0d2jU+26gCrCL/AOIH79pbjT/Cx/1UcbGOfUR/eZhzHEewGGYckgHFdfp+nWWlWUdnp9rDa20YwkUKBVH4CrCqqIERQqqMAAYAFLQAUUVjW/iGOfxZdeHzZzxTW9ql15rldkiMxUbcEnqp646UAbNFcxd+MobaLU7xbN5dO0u4+zXc4cBlYbdxVP4gu4Z5B64B79PQBWv9Ps9UspLO/tYbq2kGHimQMp/A1yMq3/w//fxy3F/4WB/exSMZJ9OX++rcl4h3U5ZRyCQMV29IyhlKsAVIwQRwRQA2KWOeFJoZFkikUMjqchgeQQe4p9cj4RU6Lq2seFcn7NZMl1YA/wANtNuwg9kdXUe22uuoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqUnlaVeSf3IHb8lNWqy/EknleFtXk/uWUzfkhoApeA4/K+HvhtPTS7Yn6+WtdDWR4Uj8rwfokf9ywgX8o1rXoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuUuD5PxXsGk4W50aeOInuyTRsw/Jgfwrq653xfpV5eWdrqWlKG1bSpvtVqhOBKMFXiJ7B0JH1we1AHRUVnaHrVn4g0qLULFyY3yrI4w8TjhkcdmB4IrRoAK4+Ej/hcl7/2L9v/AOlE1dhVNdI01NSbUl060W/ZdpuhColI9N+M4/GgDy3XrWYX/iDxdpiItvpl8qajpErN5d+IVVjKRnAkwwKjGDtUnOa9dU7lDYIyM4I5qnLo+mT3n2yXT7V7nKkytEpYlfuknHOO3pV2gAoorP1vWrLQNKm1C+crFHgKqjLyOeFRB3YngCgDEhPnfFe8aPkW2iwpKR2Z5nKg/grH8a6uuc8IaXeWlpd6nqqBNW1Wb7TcoDnyRgLHED32IAPruPeujoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKhu7u3sbSa7u5kht4ULySOcKqjkkmgCauc1Hxto1hevp8Dz6lqKfes9OiM8i/72PlT/AIERWZFDqvjtftFxLc6V4bfmK3iJjub5f70jdY4z2UYYjqR0rq9N0qw0aySz02zgtLZOkcKBR9eOp96AOfGq+NL/AJs/Ddjp8Z6Pqd/ufH+5ErD/AMeqtqOkeOdX0y7sLnVvD9vDdQvC/k2EzMFZSDgmUc4PpXaUUAcfaWPjzTbOC2hu/Dl1HBGsaB7eeEkAYGSHf09KkPiXxDp3/IY8JXDRDgz6TcLdL9dhCSfkprrKKAMrRvEuj6+JBpt9HNLF/rYCCksX+/G2GX8RWrWLrfhbSteZJrmFor2L/UX1s3l3EJ/2XHP4HIPcGsvT9a1LQdUt9F8TSJOly3l2GrIgRZ27RSqOEl9McN2weKAOuooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5fVPDN3BqcmueGrmKz1KTH2m3mBNtegdPMA5V/R157EEU228dWUM6WfiK3l0G/Y7Ql4R5Mh/6ZzD5G+hIPtXVVFcW8F3A8FzDHNC4w0cihlYe4PWgB6OkiK6MrIwyGU5BFOrlW+HugxO0mmC90d2OSdMvJLdf++FOz/wAdpP8AhE9Zh4tfHGtovpNFazfqYs0AdXTXdY0Z3YKqjJZjgAVyx8J61MpFz451th/0xhtYv1EWaw/B/hXSdf0OO58QpdarqdtNJbXaX93JPGs0blWxGzbADgMOOhFAG7deOrGWdrLw9by6/fg7SlkQYYz/ANNJj8ifmT7U7S/DV3canFrfia5ivNRiyba2hBFtZZ/uA8s/q7c+gAro7e2gtIEgtoY4YUGFjjUKqj2A4FS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXH65H/wAJJ4ws/DsnzabYxLqOoJ2mYsRBE3tlXcjvsWuwrlNC+X4g+LVf/WFbJ1/65+WwH/jwegDq6KKKAEZgiljnAGTgZP5VmaV4h03WNPub+1mZba2lkhleZDFtaM4fIbBGOeuOlalee+HdK/tzwb4x0kS+Sb3VtUtxJjO3dIwz+tAHUWHijTr+8tbZPPie8iM9m00RRblBgkp9AQcHBwc4xW1Xl7Jrl54l8E6Le2MEV3pRa6u57acyKI0iMYP3RtEhOADzwfTNeoUAFUdZ0i013SLnTL5C9vOm04OCp6hlPZgcEHsRV6igDnvBmp3d/oj2+ouH1LTbh7G7cDHmPH0f/gSlH/4FXQ1ynhf5/FvjKSP/AFJv4EyOhcW0W7+ldXQAUUUUAFFFFABRVDVtb0zQbP7Vql7DaQ5wDI2Cx9FHVj7DJrBHifXdV/5AHhifyT9271aX7JGfcJhpCPqq0AdbRXKf2b44u/muPEWlWP8AsWemtJ/49JJ/7LR/wj3inr/wnE+fT+zbfH8v60AdXRXKfYPHNpzBr2j6gP7l3p7wn/vuOQ/+g00+K9W0r/kYvDVzBCPvXmmv9shHuVAEij/gB+tAHW0VT0vVtP1qyW80y9gu7ZukkLhhn0PofY81coAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArktP8A+JN8RtSsT8tvrNuuoQjoPOjxHMB7lfJb8662uT8eA2Nlp/iOMHfot2lxIR1Nu37uYf8AfDFv+ACgDrKKQEMAQQQeQRS0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXIeJy/h7XrPxaiM1mkX2LVAoyVgLbklx38tic/wCy7HtXX0jKroUdQysMEEZBFACRyRzRJLE6vG6hldTkMD0IPcU6uKbTtV8EGSbRITqPh/JeTTC4WW0HUmBmOCnU+WSMfwntWx4d8Y6B4pgWTSNShmcqGaAnbKg90PIHv0PY0AbjAMpU5wRjg4rM0vw/p+iwXUOnJNCt1K88pNxJITI5yzAuxwSTnitSigCnYaXaab5xtoiJJ23zSu5d5GxgFmYknA4HoOlXKKKACsrxFr1v4d0h72ZWllYiK3t0+/cStwkajuSfyGT0FZ2o+NrCK7fTdHik1rVhwbWyIKxn/prJ92MfU59AaTRvDl2+prr3iO4jutWVStvDFnyLJT1WMHkse7nk9BgcUAcZquifEvw74bE/hu+sbi7nZ7vUIBbqZTO53OUZiVYD7oGAcKMZrxHVPih8QZJ5be+1+/t5kYq8aKIGQ9wQoBBr7IrkfGnw38P+OICdQtvKvlXEd7BhZV9AezD2P4YoA5/4e+N9J07wRpNt4h1m6h1B4zJLPqqSx7y7FgRLINrDBABB6AV6LZajZalD51jeW91F/fglV1/MGnQWkFvYxWaRgwRRrEqEZG0DAH5Vh3vgLwrfTefJodpFP/z3tlMEn/fce0/rQB0dc94i8Qz2NzBo+j26XeuXaloonJEcMY4M0pHRAe3VjwPajN4UutKt5LjTfF+tWccSl2S6kS8jVQMn/WqW/JqT4d2Vw+gjxDqb+dq2tKtzNKU24jx+6QD+EBMHHqzUAXdF8I21hd/2pqU76rrbD5r65Ayn+zEnSNfZefUmujoooAKKwfEHiC80g7dP0G81Z0j82YW7onlp/wACI3McHCjJ47cZit/GenahpOj3unK9xJrGRZwEhGYgEvu/uhQDk8+gySMgHR0Vm6NrUGswXDRo0U9rO9tcwuQTHIvUZHUEEEHuCK0qAOZ1fwhFNevq+hz/ANk631NxEv7u4/2Zo+kg9/vDsaseHPEL6sbiw1C2FlrVlgXdruyMH7skZ/ijbBwe3IPIrerkPHEf9lpZ+LbcbbjSZB9oI/5a2jsBKh9cA7x6FPegDr6KAcjI6UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5aQ39jcWdym+C4jaKRfVWGCPyNT0UAcz4Cu5pvC8VjdvuvdKkfTrgnqWiO0N/wACTY3/AAKumrkoP+JN8S7mD7ttrtoLhPT7RBhHH1MbRn/gBrraACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqK5uYLK1lubqZIYIlLySSMFVVHUknoKh1PU7LRtOm1DUbhLe1hXc8jnge3uT0AHJNctbaXe+M7qLUtft3tdGicSWWkSDDSkdJbgdz3EfQd8noARrFd/EJxLcJNaeFAcxwMCkup+jP3SH0Xq3U4HB6DVfCug61BFDqGlW0ohAWFgmx4gOgRlwy/gRWxRQByY8H39kMaP4u1m1QcCK5KXaAen7xS/8A49S/2X43j4TxRpUo9ZtHYH/x2YD9K6uigDlP7G8Zzf67xfaQj/p10hQfzeRh+lH/AAgdref8hzWNY1kH70VzdeXCfrFEEUj2INdXRQBWsdPstLtEtbC0gtbdPuxQRhFH4CrNFFABRRRQAUUUUAZXieCW68JazbwAmWWxnRAOu4xsB+tJ4XuIrrwlo1xAQYpLGFkx6FBWtXGeHZv+EW1mTwndnZaTO8+jSn7rxklngz/eQk4HdSPQ0AdnRRRQBj65rCWKrZQXEEeo3KnyfOYBYx0MjZ/hGenc4HfI5BLCy0vxf4Fi02ZZ9Ktbe8sY5VcMPO2K3LDgswR/xBrstQ8L+H9XuvtWpaFpl7cbQvm3NpHI+B0GWBOKnTRtLj01NNj060SxQ5S2SFRGpznIUDA55+vNAHNeC4S/iXxpfp/x7T6oscfoWjiRXI/4FkfVTXZ1Hb28NrAkFvDHDCgwscahVX6AVJQAVznxAljh+HfiIyDIbTp41HqzIVUfiSK6OuM1WYeLvE0Gh2vz6Xpc6XOqTD7ryod0duD3O7Dt6BQO9AHV2MTwafbQyHMiRKrH3AANFWKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5Tx9G9totvr0Kkz6JcpffKOTEMrMv4xs/wCQrqY5EljWSNgyOAysDkEHoabPBFc28tvMgeKVCjqejKRgiua8ATyr4dbSLly11o076dIW6sqf6tvxjKH8aAOpooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCvf39rpdhPfX06QWsCGSWVzwqjqap6t4i0zRtIXU7m4DQSbRAIfna4ZvurGB94t2A/lXi/wC0N412RweELKXlttxfFT26oh/9CP8AwGsP4E63cz+J4LG/0+81KGCIx2V1hpE07OS3HRQ2cbuvQdCaAPatM0O+1zUYde8TxhHhbfYaUG3R2no79nl9+i9vWuuoooAKKKKACiiigAooooAKKKKACiiigAooooAKz9a0Sx1/TWsdQiLxkh0ZWKvE4+66MOVYdiK0KKAONTU/EHhQeTrVvPrOlrwmp2ce6eNf+m0I5OP76Z6cqK6HSNe0nXrfztK1G3u0H3vKcEr7MOqn2OK0aw9W8H+H9buPtN9pcDXQ6XMWYph/20Qhv1oA3KK5T/hC7i3/AOQf4u8Q2oHRXuEuVH/f1GP60v8AwjfiXp/wnV/j1+wWuf8A0X/SgDqqy9Y8R6PoEQfVdRt7Xd9xHbLufRUHzMfYA1kf8ITJcf8AIR8VeIrsH7yC6W3U+37lUP61paR4T0HQpTNp2l28Nw33rgjfK31kbLH8TQBjPdeIvFw8mwhudA0duHvLhdt5MvpFH/yyB/vN83oo610uk6TY6HpsWn6dbrBbRD5VHJJPUknkknkk8k1dooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr39xLaafcXEFq91LFGzpBGQGkIGdoJ4ya+WNa+NXiA6/qt7olsmjNfLGk6MBK4aPcob5hgMQQDx/CPSvq+vn/AOOnwzx5vjDRoPfUYEH/AJFA/wDQvz9TQB7N4Pup77wToN3dStLcT6dbyyyN1d2jUkn3JNbVYHgbj4f+G/8AsFWv/opa36ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqOeeG1t5J7iVIYY1LPJIwVVA6kk9BSzTR28Ek0zrHFGpd3Y4CqBkkn0ri7Cxk8eTx6zrEbDQVbfpumuMLOB0nmH8WeqoeAME5J4ALA8Vapr5K+E9LWa26f2pqBaK2PvGoG+X6jav+1Tx4R1O/8Am1vxZqk5PWHTyLKIe3yZc/i9dWAAAAMAdAKWgDlP+FbeEW/1+kLdHu13PJOT+LsaP+FaeDB9zw7ZRn1iUofzUg11dFAHKHwFaW3OkaxrmlsOiw37yxg/7ku9f0qKSfxroKM8kNp4ktVGd0AFrdD/AIASUf8AAqfQV2FFAHjfhP4a+FPE+oXmv6zqM2uatJOXu7aZGtxbyHnY0X3xjoAxwQOmK9dsrG0061S1sbWG2t0GEihjCKv0A4rF8Q+GF1OZNU02cafr1uuIL1B94f8APOUfxxn0PTqMGp/DWvHXLGX7Rb/ZdStJDb31oTkxSjng91IIZT3BFAG1RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcS09748uZYbK5msvDETmOS6gbbLqDA4ZY26rEDkFhy3IGBzQBpah410+3vpNN02C51nU4+HtbBQ/lH/AKaOSEj/AOBEH2qq8XjfWI2SX+xdFtpAQYyjX0uPQ8onP/Aq6PTdLsdHsY7HTbSG1tox8sUS7QPf3Pv1NW6AOOs/BOpW9lBaN4z1lIII1iijtIraFUVRgAfuicADuam/4Q/UI/mg8beIlft5jW8g/Iw11dFAHKHTfG1j81r4h07Ux/zz1Cx8on/gcRAH/fBpv/CaTaUQvinRbjSUzj7bE32m0/GRRlP+Bqo9662kIDAggEHgg0AMguIbq3jnt5o5oZFDJJGwZWB7gjgipK4298O3fhqaTVfCMYCEl7rRc7YbgdzEOkcn0+Vu4710mjavZ67pUGo2LloJhwGG1kIOCrDswIII7EUAXqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlPHmbyx0vQgSE1jUI7WfBwTCA0sg/FYyv/Aq6pVVFCqoVQMAAYAFcp43b7FL4d1luIdP1WMzt2SOVHhLH2BkWusoAKKKKAOa1HV9RtPH2iaUrwHT7+3uZGXyz5gaIJj5s4x8/oOnWo9X8VxQ+Il0K3vLS1kjjWa8u7pwFhVjhEUEgNI2GI5wAM4PAMGtiVviZ4XlS0u3ggt71JZktpGjjMgi2BnA2jO1u/as+fS47HxT4vfU9Onu7XW7aJoHitmm3BYvLeE4B2nIDDPBznsaAO9iUpEqtI0hA5dsZb3OAB+Qp9YXgvTb7R/Bej6dqT77y3tUjl+bdggfdz3x0/Ct2gArkr5BpXxL0q6i+VNZtpbO4UdGkiHmRt9Qvmj6Yrra5PWG+2/Ebw3ZR8tYxXOoTf7KlPJT8y7/APfJoA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5fx1PO+lWmjWkrRXGtXaWPmIfmjjILSsPcRo+D2JFdFaWkFhZw2lrEsVvAgjjjQYCqBgAfhXNeKz9n8S+D72T/AFKalJAx9Glt5FT/AMewPxrq6ACiiigDGuvEMdr4q0/QXs5/MvYpZY7jK+XiMLuHXOfmHYdaj1zxBcaXcRWtho13q1yyeZJFbPGvlJnAZi7AckED/dPpWZrhH/C0fCH/AF6aj/KGoPGnhbR9Uivtbgu3sNfsIMx39vcFXhKgsqsucFTnkEcg+9AHZW0kk1rFJLC0MjoGaJiCUJHKkjg46cVLVPSpLubR7GW/jEd49vG06AY2yFRuH55q5QAVyNsg0D4jS2kXy2OvW73aoOi3URUSEem9GUn3QnvXXVymtHz/AIieFrePmSCK8upMfwpsWMZ+rOPyoA6uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqvfX9pplnJeX1zDbW0Yy8szhVUe5NADdS0+11bTbnT72IS21zG0UqHupGDXN+HdZuNKvY/CviCY/b0UixvH4XUIR0IP8Az1UYDL1/iGQeG/8ACQa34l/d+GLL7JYt/wAxfUYiFI9YYThn9i21frUkfw70OaGZtXWbV7+dQJL68fMowcjyyMCIA8gJjFAHWUVx4h8W+GhttiPEunL91J5BDexj03n5Jfx2n3NTRfEPw8siw6nPPo1wTjytVga2/wDH2+Q/gxoA6qiqdrq2nXyhrTULW4U9DFMrg/kanlureBd0s8Uaju7gCgCWiuevfHfhawk8qXXbJ5u0FvJ58p/4AmW/SqTeIPEWtjy9A0KSyibj7frKmJQPVYQd7f8AAtgoA2PEHiGz8O2Kz3O+WaVvLtrWEbpbiQ9ERe5/QdTxVPwto13Zi71bVyjazqbiS5CHKwoowkKnuFBPPclj3p2i+FLfTL1tUvbqbVNZkXa99cgZVf7sajiNfZfxJroKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAyvEeip4g0G505pWhkcB4Z16wyqQyOPcMAfwqr4X8QNrFtLaX8a22t2JEV9a5+63Z19Ubqp/DqDW/WFr/AIYh1mWG+t7mXT9XtgRb38AG9R12MDw6E9VPHpg80AbtFcgvizUdC/deLdMeGNeP7UsEaa1cerKMvF/wIEf7VdHp2radrFsLjTb+2vIT/Hbyq4/Q0AE2kabcX8V/Pp1pLew/6q4eFWkT6MRkfhUb6FpEmq/2o+l2TahgD7UYFMvHT5sZ4rQooAKKZLLHDG0ksixxqMsznAA9zXMXHjzTppmtPD8E+v3oO0pYAGFD/tzH5F/Mn2oA39T1Kz0fTp9Q1C4S3tYF3ySOeAP6nsB1JrB8KWd3eXt74o1SB4LrUFWO2tpPvW1quSisOzMSXYdiQO1NsvDV9qmoQat4rnhuJ4G8y1063z9mtW7NzzJIP7xwB2A611dABRRRQAUUUUAFFBIAJJwB3rmLnx7oiXL2unm51i7Q4eHS4DcbT/tOPkX8WFAHT0Vyn9ueL7rm08IRW6no2o6miH8VjWT+dL53j/r9h8Mj2+2T/wA/K/pQB1VFcp/bHjO1/wCPnwnZ3QHVrDVASfosqJ/Olj8f6RFKsOsQ32hzOcKNTtzEjH2lGYz/AN9UAdVRTY5EljWSN1dGGVZTkEeoNZviHxDp3hfRLjVtUnEVtCP+BO3ZVHcmgDUpskiRRtJI6oijLMxwAPUmvlrT/jbrjfEZtcnCtYzIbZLB5ikUUZPyktg4IOCWwSRntgD3iLwhca26XXi+/XUhkOmnW4KWUfplesp934/2RQAsnjC51mR7bwfYrqJBKtqU5KWUZ9mHMp9k4/2hUtj4Lhe8j1LxFdvrmpId0bXCBYID/wBMoR8q/wC8ct7108caRRrHGipGgCqqjAAHYCnUAFFFFABTZI45o2jlRXRuCrDIP4U6igDAuvA3hO8YtceGtIkc9WNnHk/jjNQxfDvwZC25fC2kZ/2rRG/mK6WigCrZabYabH5djZW1qn92CJUH5AVaoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuf1HwP4Z1S5NzcaPbrdHrcW+YJT/wOMhv1roKKAOU/4QWKPi18R+JLdeyrqTSAf9/A1H/CEu3EvizxNIPT7aqfqqA11dFAHinxDi0HwDrvhy+1DTZdZ066aaO8Go3El24I2FXUSMRkZbjGD+RHr2kXWnXukWt1pLwPYSoGgaAAJt9gOn07V5L+0jb7vBulXOP9Xf8Al/8AfUbH/wBlrivgR4g8UWWs/wBm2Wm3WoaFNJi42jCWzH+MMcAH1XPI6c0AfTlFFFABRRRQAVma7r1n4e0/7Xd+Y7O4igghXdLPIfuoi92P/wBc8CtOuO8ORDxJr934quRvggkkstJQ8hI1O2SUf7TsCM/3VA7mgBI/DWpeJ8XPi6UpatzHoltKRCg/6bOMGVvUcJ7HrXWWtpbWNsltaW8VvAgwkUSBFUewHAqaigAoqtf6hZaXZyXmoXUNrbRjLyzOFUfiamhmjuII5omDRyKHRh3BGQaAH0yaGK4heGaNJInGGR1BDD0IPWoLPUrPUHuks7mOY2sxt59hzskABKn3AYVaoA4+bwjc6G7Xng64WybO6TS5iTZz+oC/8sm/2k49Qa4fV/B998XtSkl1PXX0mLTX8p9EFvukt3I+87FgGLDkMAQR0717RXIeM7dtHeHxjZKRc6aMXqqP+PizJ/eKfUp99fTaR3oA5TT/ANnjwfakNdXGpXrdw8yov5KoP616lYWUGm6fb2NqrLb28axRhnLkKowBkkk8etTI6yRq6MGRgCrA8EGnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBma54e0rxJaRWmsWSXdvFMs6xSE7d4BAJA69TweK5820HhLxzaPawx2+la5GLV441CpFdRqTGQBwN6Bl+qLXZ1j+KNFOv+Hbqwjk8q5IEtrN3imQho3/AAYD8M0AbFFZHhjWh4g8PWmomPypnUpcQnrFMpKyIfowIrXoAKKKKAI7jeLaUxf6zYdv1xxXOfDkR/8ACuPDvl9DYRFv97aN3/j2a6euP8Lyjw/rN74SufkTzJLzS2PSW3dtzIPeN2Ix/dKmgDsKKKKAOe8eAH4eeJcjP/Equj/5Cas7UPEVtoXhPRIZrwWcl7BHEtwULCJQgLPwDyBwB6kZ4zXR63pUeu6LeaVNPNBDdwtBK8G3fsYEMBuBA4J7VNp1mNO063slmlmWCMRrJLt3EAYGdoA/SgDgvhZqWjS3Xiix0udWQaq80SANzF5UKhsnryD15r0as3SdEttHm1KW3eVm1C8a8l8wghXKqpC4AwMIOue/NaVABWfroibw9qYnx5JtJRJnpt2HP6VoVyPja5fUo4fCNk5+26uCtwV6wWmcSyH0yPkHqW9jQBp+DTKfA3h8z5846bb789d3lrmtumxRpDEkUahURQqqOgA6CnUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTZJEiQvI6oo6ljgUAOoqgdd0hW2nVbEN6G4TP86tw3EFym+CaOVfVGDD9KAJKKKKACiiigAooooA5Cz/AOKe+IFzYn5bDXlN3b+i3SACVf8AgSbX+qvXX1xHxI1LTbbRkU6hBFrlrKl5psGS0skychQi5YhhuQ8dGNLp/ijxF4ssIbvw7o8NhYzpuW+1WUMT2O2GMknnP3mXp0oA7VmVFLMQqgZJJwAK8S+NXiG21TQY38M6xeS3umzE3Laa0hiWJhg+ZInyAhguATnrXoS+BYL9xL4l1O811+vkzny7UH2gTCn/AIFu+tbt1oun3eh3GjG2jjsJ4GgaGJQqhGBBwBwOtAHyB4T07xj441hdP02/v5MYM08lw/lwr6sc/Xjqe1fSel/CzSdN8OJYC6un1JHE66sXPnpMBwyZztUZI29CCQc5zXSeHPDWleFNHj0zSLVYLdOWPVpG7sx7k/8A1ula9AHHweK7vQHWy8ZRLbc7YtXhU/ZJ/Tef+WLeob5fQ11sUsc8SyxSLJG4yrochh6g0skaSxtHIiujDDKwyCPQiuXk8A6bbytNod1faDKx3EadNtiY+8LBo/8Ax0UAdVRXKf2d44s+LfX9Jv1/6fdOaN/++o5AP/HaN/xA6eT4ZP8AtedP/Lb/AFoA6ukZgqlmICgZJPQVyv2Lx3d/LNrWiWC+trYSTP8Am8gH/jtcd4/t4fCVtpuseJZ9S8TadJc+Rdw3EwRIyRlXWGMLGQNpGGBzkcigDr7vxi2ozyaf4Rt01W8U7ZLskiztj6vIPvEf3EyfXHWtLw74cTREnuJ7l77Vbxg95fSgBpSOgA/hQdAo4H1yak8M6xomt6HBdeH5reSwA2osChRH/sleNpHpgVr0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYGpeNvDWk3BtrrWLb7UOtvCTNL/3wgLfpQBv0Vyn/CdQyc2vh3xJcp2ZdMeMH3HmbaP+E2deZfCniaMev2JX/RXJoA6uiuWj+InhoSLFe3k2mSk42anay2vP1kUL+tdLBcQ3UKzW8scsTjKvGwZWHsRQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzWqeL44dQk0nRbKXWdWj/wBZBAwWOD/rrKflT6ct7VDr9/favrI8L6LcPbSCMTalfx/etYm+6idvNfBwf4QCfSt3SNHsNC06Ow022S3t052r1Y92Y9WY9yeTQBgDw/4l1f59b8RvZxn/AJc9FXylHsZmBdvw2VJH8OfCYcSXGjx30veTUHe6Yn1JkLV1NFAGIPBvhdV2jw3o4X0FjFj/ANBqpP8ADvwfO+8eHrGCT+/ax/Z2/wC+o9prpqKAOSPhPVNN+fw/4nv4cdLXUj9shPtlj5gH0eiLxfc6Vcx2fi3T101pGCR6hC5ks5WPQbyAYyfRwPYmutqK4toLy2ktrmGOaCVSrxyKGVgeoIPUUASg5GR0qC7vLWwtnuby5ht4EGXlmcIq/UngV5/fWuueEb+x0fTdXW08PahOIbe5ng+0SWEhB2wqWYDYx4UsG2n5e4roLTwJo8dyl5qX2jWr5DlbjVJPOKH/AGU4RP8AgKigCE+OBqR2eGNIvNaPQXIHkWo/7av97/gAaj+wPEus867r/wBigPWy0UGP8Gnb5z/wEJXWgADA4FFAGTo3hnRfD6t/ZenQW7v9+UDdLJ/vOcs34k1jeH/+JB4s1Tw43y2t1u1PTh2AZsTRj/dkIbHpJ7V19ct45tZo9Nttfsoy99okv2tEXrLFjE0f/AkJx7qtAHU0VDaXUN9ZwXdtIJIJ41kjdejKwyCPwNTUAFFFFABRRRQAUUUUAFcn8TdE/wCEg+HOt2KrulFuZ4gOu+P5wB9duPxrrKQgEEEZB6g0AfFfgDVvFOm+KbaPwm0r39w2z7MOUmA5IcHjAGTk4xycjrX2bYPdvp9u1/FFFeGMGaOFy6K+OQCQCR+Fcp/wrTQrDw22maHbrp10kgube9UbpY51yVcseSOSCOmCR3rX8L682uaa4uoRbapaSG3v7XP+qlHXHqrDDKe4IoA3KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArD1/xNBojw2kVvLf6rdA/ZrC3x5kmOrEnhEHdjwPc8VZ8Q61F4f0G71OWNpfJUeXEv3pZGIVEHuzED8ao+FvD8mlwS6hqbrca7f4kvbjsD2iT0jToB+PU0AUF8Lapr/73xZqbtE3I0rT5Git1Ho7jDyn6kL/s10emaPpmjW4t9M0+2s4R/BbxKgP1wOau0UAFFNd1jRndgqKMlmOABTYLiG6hWa3ljlib7rxsGU/QigB0kcc0bRyorowwysMgj3Fcvc+A9Nime70GWbQL4ncZNPIWNz/twn92/wCWfeuqooA5O08S3+kX8Ol+LIIYXnYR2up2+RbXLdlYHmKQ/wB0kg9ieldZVbUdOtNW0+ewv7dLi1nQpJE4yGH+e/aue8K3d3p+o3nhXUp3uJ7FFms7mQ5a4tWJClj3dCChPf5T3oA6qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOT+Hii58Oya2/NzrF1LeyN/slisa/QRqg/Cusrk/h2wt/DLaO/FxpFzNYyr7K5KH6GNkP411lABWD41uLuz8E63eWN3Ja3VrYzTxyxqpIKIWA+YEY4rerE8Y2t3f+DNasLG2e5uruxmt4o1ZVyzoVGSxAAyfWgCzp5nvPDdmftMkc8trGTOoUsGKjn5gRn6isv4eajd6t8P9F1C/nae7uLcPLK2MsSTzxWnpP2m28N2SzWcq3MNsiNb7kLbgoBGd23t61l/DzTr/AEfwHpOmanaPa3lrD5UkbOj8gnkFSRigDp6KKKAMrxNpCa94a1HTH6zwMqMOqOOUYe4YAj6U3wrqr654S0jVJP8AWXdnFLJj+8VBb9c0/wASatHoXhvUdUkP/HtAzqO7PjCqPcsQB7mo/CelvonhDR9Ll/1trZxRSf74Ubv1zQBsUUUUAFBAIIIyDRRQByPg4nRr7U/CUnC2D/aLDP8AFaSklQPXY29PoFrrq5Hxop0ifTfFsQP/ABLJDHehR9+zkIEn12ELJ/wA+tdarBlDKQVIyCOhoAWiiigAooooAKKKKACiiigArkPFFrPoepJ4v02JpDDGItUtoxk3FsOd4Hd4+WHqNw9K39Y1vTtAsDealcrDFkKowS0jHoqqOWY9gBmufWXxd4lG6FV8N6a33WmjWa9kHrtPyRfjuPsKAOpgvLa5sor2GeN7WWMSJKG+VlIyDn0xWXc+MfDFmxW58R6RCw/hkvY1P5FqydP+F/hazt4obiyk1IRfcF/KZUXnPEf+rXknoo610NtoOj2ahbXSbGBR0EVuij9BQBQh8c+Ep2CxeKNGZj0UX0Wfy3Vs291b3kQltriKeM9HicMPzFRTaVp1wpWawtZFPUPCpH6isS5+H3hW4lM0ejw2Vx2n08tayA+u6MqfzoA6aiuRbSfFWhfvNI1cazbL1sdWIEuPRJ1Gc/76t9a0tC8U2etTS2bRTWOqQAGfT7pdsqD+8Ozr6MpIoA3KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlPF4+0a34Rsn/1Murea/uYoJZFH/fSqfwrq65jx1a3DaJBqlnE011o91HqCRL96RUyJFHuY2cD3xW/Y3ttqVhBe2cqzW1xGskUinhlIyDQBYooooA4/wCIRuY7PRrhbea406DVIZdRjhjMhMADclRksofYxAB6VS8LX8Nx8SvE8OmFv7ONtazyr5bIq3DBgSAQOWQKSe+Aa7a7W7aArZyQxyk/flQuFH+6CM/mKp6LolvotvKsbNLc3EhmurmQDfPIerNjj2AHAAAFAGnRRRQAVymvDyfH/hG4TiSU3dq5HeMw+Zz/AMCiWurrkYpBr/xHM0XzWWgQPCXHRrqbbuUH/YjAz7yYoA66iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKRmVFLOwVR1JOAKyvEWq6TpekTHWNQWzgnRogwkKyMSMYTHzFueNvNfGOv2msL4hl0y8fUbm4EoWFbpXEsgb7h2NyCwIOOvNAH1F4h1nTtA8Sx69pepWNxPcBLfUNLjuU866QH5HiXOWlTJGP4lOOoFdtpeq2Ot6dFf6bcx3NrKMrIh/MEdQR3B5Fea/CT4UReEbZNZ1iNJNdlT5VPItFP8I/2j3P4DuT2Go+EcahLq3h++fR9TlO6Yom+C5P/AE1iOAT/ALQw3vQB01FckPE2vaT8mv8Ahq4kQf8AL5o/+kxt7mPiRfphvrU9v8QvCNw/lnX7O3l/55Xj/Z3H/AZNpoA6aisseJdBZdw1vTSvqLtMfzqjdePfCVmdsviPTC/Ty4rhZHP/AAFST+lAHRUyaaK3heaeRIoo1LO7sFVQOpJPQVyp8ZXeo/J4d8OalfE9Li7jNnbj33SAOR/uoaRPCV7rUyXHi+/jvkRg6aXaqUs0I6FgfmlP+9x/s0AV7dpPHmr218EdPDNhKJrbeMHUJ1+7Jg8+Uh5X+82D0Az21IqhVCqAABgAdqWgAooooAKKQkAEkgAdSa5B/EeqeJZpLbwkkKWSMUl1q6QtFkHBEKceaR/eyF46mgDp9QNn/Z9wuoNCtm8ZSYzMFQqRggk9sV594Q8faLp2kyaJcX8t/NpczWkEtlbyXX2iFcGJgYlYZ2kKeeqmuhtvAOkGZLvWTNrt8vPn6m3mqp/2I/uIPotdNFFHDGscSLHGowqqMAfQUAcv/wAJ3bnlPD/iZl9f7IlH6EA0f8LC0SL/AI/oNX0/3vNKuI1/762Y/WurooAzdK8Q6NrqFtK1WzvQBkiCZXK/UA5H41pVi6t4R0DXHEl/pdvJODlbhF8uZT6iRcMPwNZD2Pifwx+9027l8QaavL2V64+1oP8ApnNwH/3X5P8AeoA7Gis3RNdsPEFh9rsJSyqxjljdSkkLjqjqeVYehrSoAKpavqlromk3Wp3z7La2jMjkDJwOwHck8Adyau1yfi5ft+ueFtHf/UXF+1zMOzLBG0iqfbf5Z/CgBfD2h3N5eL4m8RRhtWlU/ZrVjlNOiP8AAo/vkfefqTwOBXV0UUAFFFcpql7f23xI8PWcd9L9hvLW7aS2wu3dGI9pzjd/GepxQB1dFcN8QprvT7Jb218UNpt+ZY00+1Z4khmcsAVcMMsDk5OQAMccEnuR0GaACsXxF4bt9fgjdZXtNStiXs7+IfvLd/6qehU8EVtUUAYXhfXJ9WtLi21GJINX0+X7PfQofl34yHXvsdSGH1x2NbtcneL/AGf8UNMnj4XVdPmt5wOMtCyvGx9SA8g/GusoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuKktr7wLdzXOnWst74bncyz2UC7pbFycs8S/xRk5JQcg5K5GRXa0UAU9M1Ww1qwjvtNu4rq2k+7JE2R9D6H2PIq5XN6j4L0+6vpNS0+a50fVH5e709whkP/TRCCkn/AgT71XH/CdaXxjR9dhX+Is1lMfrw6E/980AdZRXKf8ACV6zBxeeB9ZU+trNbTL/AOjQf0o/4TG/fiDwV4jZ+29LeMfmZqAOroJAGScAVyh1TxrffLaeHLDTR/z01G/8wj/gEQIP/fYph8GXOrHd4p1u41OPqbGBfs1r9GRSWcf7zEe1ADL7xJd+IZ5NI8IOrsCUutYK7re19Qh6SyegHAPU9q4Xxjd+OPhVp6voAtL7w6rEmSa3LzROxyTKQRu3Ek7/AFODjjPs1tbQWdtHbWsMcEEa7UjiUKqj0AHAFOlijnheGaNZInUq6OMhgeoIPUUAfMkH7RfjEuqHTdGlJOABBLkn8JK+ldOa8fTLV9QSJL1olM6RZ2K+PmAyTwDmvJZfgNpUfxCs9VthE2gFmluNPl52vj5VX1QnGQemMc547b/hEL7Rzv8AC+uXFmg6WF9m6tfoAx3p/wABbHtQB1tFciPF+oaQdnijQrizjHBv7HN1bH3O0b0H+8uPeuj07U7DV7RbvTr23u7duksEgdfzFAFuiiuc1Txha2l+2l6Zaz6xqy/etLPBEWehlkPyxj6nPoDQB0dFckNO8Zav81/rNrosLf8ALvpkImlA9DNKMZ+iD607/hX+lTc6hf63qLetzqk4H/fKMq/pQB1dFcp/wrfwn/0C3B9RdzZ/PfR/wgNhBzpura9px7eRqcrr/wB8yl1/SgDq6K5I23jbR/mt76y8QW46w3UYtbjHtImUJ+qr9av6N4tsNWvG06WOfTtWRdz6ferslx/eXkh1/wBpSRQBvUVQ1fW9M0Gz+16pew2sOcAyNyx9FHVj7DJrnv7V8T+JPl0Wx/sWwb/mIalFmZx6xwdvrIR/umgDoNX1zTNAs/tWq3sNrDnCmQ8ufRVHLH2AJrn/AO1PE/iT5dHsv7E09v8Al/1KPM7j1jg/h+shH+7WjpHg/TNLu/7Ql87UNVIw2oXz+bN9F7IPZQBW/QBgaR4P0vSbs6g4mv8AVWGG1C+fzZvopPCD2UAVNN4V0a48Uw+JJrJH1SGDyI5m52rknIH97kjPXBxWzRQAUUUUAFRXFrb3abLmCKZP7siBh+tS0UAZJ8K+HWbcdB0st6mzjz/Krtrp9lYjFpZ29uOmIolT+QqzRQAUUUUAFFFFABRRRQBx2u+Z4q8QnwtFI8emW0azavIhIMgb/V24PbcAWbH8OB/FXWwQRW0EcEESRQxqESNFCqqjoAB0Fcx4EHm2uuXzczXWtXZcnriOQxKPwWNa6ugAooqK4t4bu3kt7iJJYZF2ujrlWHoRQA5JY5I/MSRWj/vKcj86ZbXdteRmS1uIp4wdu6Jwwz6ZFcZ8O7C31P4RaFZ3Sb7eW0USR9nXcSVPqD0I7gkU/wAOeHrPTvH2tX2i28dnpRtYraWGBQkUl0GYsyqOMqpVSR3JHUGgDtqKKKAOP8U2Euh3TeMNIiP2i3Uf2lbRji8th1yO8iDLKevBXoayviX49XQ/Bf8Aafh/WbD7cHikjiZ0dpY2ODhDz0IPHOBXojKHUqwBUjBBHBFeV6L4J07XPhNf6TaWFhDeu93aR3RhUEmO4dULMBk8IuTz0oA4DTf2kdehwNS0XT7oDvAzwk/mWH6V20Hju58SHw/4ql8N3+m6fp97tnup2UxGKZTEWU8MQGZDkLjAPNX/AAX8EPDnhny7rUVGr6ivO+dB5SH/AGY+n4tn2xXpF5ZW2oWE9jdQrLbTxmKSNhwykYI/KgCeiuL0nVp/Cd1D4d8QzM1sT5emarIflmX+GKVv4ZQOATw4GRzkV2lABXKaxY6jP8QvDl/Bp8sljZwXcc9wJIwFMoj28Fgx+4c4FdXRQBy3ieO613TtW0BvD000c8Jihupni8gll4c/PvG1j2XPGRXQafamx021tDK0pghSLzG6vtAGT9cVZooAKKK5zxD4nNhcLpGkQrf6/OuYbUH5Yl/56zEfcQfmegoAqyN/avxQgSPmHRLCRpmHaa4K7V+oSNj/AMCHrXW1j+G9BXQNMMLztdXs8jXF5dMMNPM33mx2HAAHYACtigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5zUvBGjX121/bpNpepN1vdNkMEh/wB7Hyv/AMCBro6p6vqCaTot9qUgylpbyTsPUIpY/wAqAOFjfxXqetXnhWPXYp7O2CG91iG38m4iDAnyRglPNIwdwA2g5xkiu40jRtP0LT0sdMtUt7dedq9WJ6sxPLMe5PJrM8Eaa2m+ErETnde3Sfa7yQ9Xnl+dyfxOB7AV0NABRRRQAUV59pfjG+1J7SSK4jkvn1RrK70jywGtowzAsf4gVUBix+U5wAMivQaACsvXfD+neIbMW9/ES0bb4J422SwP2eNxyrD/APXmtSigDz3wppdvpPiy4sNfj+2+IdrT2erXLGRrmDPITcSI2TIDIuByD0PHoVcn8Qozb+HV16EYu9EmW+jYdSinEq/Roy4I+npXVqwZQwOQRkGgBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkfDjjR/Fmu6BN8ouZjqtkT/y0jkx5oHusmSfZxXXVieJPD/9t20EttcGz1SyfzrG8UZMT4wQR/EjDhl7j3Aqronitbm8Gja3ANM11Rzbu37u4A/jgc/fX2+8OhFAHS0yYStC4hdElI+VnQsAfcAjP5in0UAcppfhbVdG8AweHLDXIYrqCPyo7/7ETtXP9zzPve+78KsaBomu6XPGt/r1tdWUURSO2ttO+z/Nx8xYyMTxnjjJOTXR0UAFFFZ+s65pugWJvNTu0t4s7Vzy0jdlVRyzH0AJoAZ4h1qHw9oN3qc4LCFPkjH3pZDwiD3ZiAPrVfwhpM2h+E9OsLkhrpI99wR0MrkvJ/48zVladp+oeJtXt9d1y2ezsbVvM03S5Pvq3Tz5h034Pyr/AA59enYUAFFFFAEF7ZWupWctne28VxbTLtkilUMrD3Brlh4e1/w8uPDGpx3FkvTTNVZnVB6RzDLqOwDBx9K7CigDkx40nsvl13w1rFgR96WCD7ZD9Q0WWx9VFPT4keDWO1/ENnA3924Ywt+TgGuppGRXGHUMPQjNAHMP8R/Bkf8AzM2mOfSO4VyfwXNMPj6wueNH0zWdWY9DbWDomf8ArpLsT9a6hIY4v9XGif7qgU+gDkWg8Za+Ns8tv4csm+8tu4ubth6byPLj/AOfetrRPD2m+HrZ4dPg2NK2+aaRi8szf3nc8sfrWpRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWX4l099W8K6vp0X+su7KaBPqyFR/OtSigDI8K6jHq3hPSb+PpNaxkj+620BlPuCCPwrXrifO/wCED1uf7R8vhnUpzKs38NhcOfmV/SNzyD0ViQcAiu1BBAIIIPQigBaKKKAPLINIvpNR07Wkgvbfxeuo+XqDCJ1hntjLhlZsbDGIgChHOQP4s16nRRQAUUUyaaK3gkmnkSKKNSzu7AKoHUknoKAOZ+IspXwJqdqnM9+gsIF7tJMRGAP++s/hXTRRiKFI16IoUfhXH6YZPGmv2+uvG6aDp5ZtNV1wbuYgqbgg9EAJCeuS3pXZ0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1fRdN16yNnqlnFdQZ3BXHKnsykcqfcEGr9FAHJDQPE2jcaFr63lsPu2etIZdo9FnXDj/gQenf8JJ4ks+NR8GXcgHBk0y8hnU/QOY2/SurooA5T/hOAOH8MeJlPp/Zxb9QSKrS/ECY6hb6da+Etde9uVd4EuEit1cJjd8zydtw7V2lcn46/wBBt9J8QLwdJ1COSVv+mEn7qX8Asm7/AIDQAH/hOdW4xpWgQHqwLXs4+nCoD/31VzSfB+nabfDUp3uNS1XGPt1+/mSKPRBgLGPZQK6CigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCOeCK5gkgniSWGRSrxuoZWB6gg9RXJLoGt+F+fC9xHd6aDn+yL+QgRj0gl5KD/AGWDL6YrsaKAOTT4gaXbMItet7zQZ84I1CErET/szLmMj/gVdFZanp+pR+ZY31tdIed0EquPzBrA8c3cz6ZBoNi5W/1uX7JGw6xRYzNJ/wABTOPcrUknw98ITQxRyeHNNby0CK/2dQ+AMDLAZP1zQB0tUb/WtK0pC+o6lZ2ijkm4nWP+ZrC/4Vr4Q/6AkRHoZHx+W7FXrDwV4X0xw9l4e0yGQciRbVN3/fWM0AZ7ePLW+/d+G9OvtdlPAkt4zHbg+8z4XH+7uPtTV8L6l4gmS48X3UMtujB49HtM/ZlI5BlY8zEccEBf9muv6UUAIAFUKoAAGAB2paKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqjrOmRa1ol9pc/wDqru3eBj6BlIz+tXqKAMDwVqcureDtMubn/j6WLyLkHqJoyY5P/HlNb9cn4a/4lvi3xNop4R5k1S3B7pMMPj6SRuf+BV1lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXN+NdSubXR49O019uq6tKLK0I6xlgd8n0RAzfgPWgCp4b/4qDxPqfidvmtYd2m6b6GNG/eyD/ekGM+kY9a6+qml6bbaPpVpptmmy2tYlijX2Axz71boAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDk/EH/ABLPG3hvVxxHctLpVwfaQb48/wDA48f8DrrK53x1YTah4N1AWo/0y3QXdt6+bEwkTH1KgfjWxpl/DqulWeo25zDdQpNGf9llBH86ALVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFchov/ABUXjPUNeb5rLTd2m6f6M+R58g/4EAgP+wfWr/jHVrjS9CMen4OqX8i2diD/AM9n4DH2UbnPsprR0TSbfQdEs9Ktc+TaxCME9WI6sfcnJPuaAL9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcn4B/0PTL/QW4bRr6W1QHr5JPmRfhskUfhXWEgAknAFeX6r4+8MeEviFeXdxq9u9rqGnoJ1tm85kuIXIUEJnaWSTvj7lAHqFFZHhnxFZ+K/D1trdgkyWtyX8sTKFb5XZCSAT3U9+la9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVx/xQ1+88M/DzU9V06byb2LyhC+0NgtIoPByDwTXYV5T+0FO6fDuC1iVnku9QihVFGS3yu2AO/KigDiPCvxph1bxfp134utmVrWBoLRrKEsolkIDSMmS2SoCjbnq3HNfRgIZQRnBGeRivH/AIRfCJPDccWv6/Cr6w43QQNyLUHuf9v+X1r2GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBGVXQo6hlYYIIyCK+SPi/8PG8FeIvtVlGf7GvmLW5A4ibqYz9Oo9vXBr63ZgqlmICgZJPauC8aa14J8SaLeeHr7U0vHlXhNPja6lhkH3WAjDYIPrjuDwaALPwjh+z/AAq0BPWBm/76dj/Wu1rzvwj4gl0LwjpWk/8ACM+I7iS0tkid0sPLVmA5I8xlOPwrZ/4TjZzP4W8TRL6/YPM/RGY0AdXRXNW3xA8L3Nwtu+qpZ3DcCG/je1cn0AlC5/CukVldQykMpGQQcgigBaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKCQBk8CgArlrrxrDNdy2Ph2wn128jbbIbYhLeJvR5m+UH2XcfaqA+0fEKeTbNLbeE43MY8pikmpkHDfMOVhzkccvzzjr2NnZ22n2kVpZ28VvbxLtjiiQKqj0AHSgDmhp3jXUvmvNdsdIQ/wDLHTbXznA95ZeM/RBS/wDCDiTm58T+Jp27n+0TD+kQUV1dFAHKf8IHarzHr3iaM+v9sTN+jMRVS78D6qbm0ubXxVc3ElnIZbePVrWK5RHwRkFQjZwSM5OM121FAHIt4j1/RP8AkYtC861H3r/Ry0yKPV4SPMUf7u+uj03VLDWbGO9027huraT7skTbh9PY+3UVbrldX8LzW17Jrvhdo7PVz800B4t78D+GVR0b0kHI75HFAHVUVl+H9dt/EOlreQxvDIrtFcW8vElvKvDRsPUH8xg9DWpQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFc3rPiiSDUf7F0Oz/tLWioZ4922G1U9HmfnaPRRlj2HepfFusXWl6dBbaaqvq2ozC0slYZVXIJMjD+6ihmP0x3q14f0G18O6YtpbFpJGYyXFxIcyXEp+9I57kn8ug4FAGNH4I/tRhP4s1CXWZc5+ycxWcZ9BED831csfpXT2lna2FutvZ20NvAv3Y4Ywij6AcVPRQAUU3zE83yt6+Zt3bM849celMa5gSdIHmjWaQEpGWAZgOuB3oAS6s7a+t2t7u3huIW+9HMgdT9QeK5eTwQumMbjwnqEuizZ3fZRmWzkPo0JOF+qFTXXUUAc3o/iiWTUl0TXrMabrJUtGofdDdqOrQvxn1KnDD0I5rpKy9f0G08Q6Y1ldbkYMJIJ4ziSCQfdkQ9mB/w6GqfhLV7vUbC4s9U2jV9NmNrebRgOwAKyKP7rqVYemSO1AHQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXL+PJpn0W20i3kaKbWbyPT/MQ4ZI2y0pHv5aP+NdRXKeND9mvPC+ov/qbXWI1lJ6KJY5IQT/wKRfzoA6a2tobO1htbaJYoIUEccajAVQMAD8KloooAKrahf22l6dc393II7a2iaWVz2VRk1ZqjrF3ptjpM9xrDwJp6gCZpxlACQBuz2yRQBkeF9X1zWt13e2+kJprpuglsb03DMc9CdoXgZzgnmulriPDGkaZZ+Mr6/8ADLwrol1ZqbiO0INu1zv+Vkx8udmdwX/Zz1rt6ACiiigDkZk/sX4lWssXy2+v27xzIOn2iEBkf6mPeD/uL6V11cpr5Fz498JWkfMkDXV7IB1VBCYsn6tKPyrq6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDlLsfafirpkcnKWmkXE8Q/wBt5Y0J/wC+Rj/gVdXXI+LX/sXXNE8UNxa2zPZX7f3IJiuHPssiJn0BJrrgcjI6UAFFFFAHF2dvDB8ZtSaGJEMuhQSSFVxvbz5Rk+pwAPwrmppX1L4e+OtbkbF/Ff3UlvMR88ItiPJAPbGzP1Ynua7qLw/dJ44m8RNfxGKWxSy+yi3IIVXZw2/f1y5/hqleeCUuLfVtPivfJ0rVrn7TdwCLL7jt8xUfPyh9vPBIy2OowAdFplxJeaVZ3Mq7JJoEkdfQlQSKtUiqFUKoAAGAB2paACuUgH2f4rXqR8Ld6PDLKB3eOV1U/XDkfhXV1yPhV/7b8Q614nX5rSXZp9g/9+GEtucezSO+PUKDQB11FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVQ1rSbbXdFu9LuwfIuYyjFThlPZgexBwR7ir9FAHM+F9duJZJNA1srHr1kv7zsLuPos8fqD3H8LZB7V01ZGveHbHxBBEtz5sNzbtvtru3fZNbv6o38wcg9waxl1fxL4cHl63pz6zZrwuo6ZHmUD/prB1z7puHsKAOwoIBGCMg1jaT4t8P642zTtWtZpgcGAvslU+hjbDD8RWzQAAAAADAFFFVb7UrHTIDPqF7b2kQ/jnlWNfzJoAtVS1fV7HQ9Mm1HUZ1gtohlmPUnsAOpJPAA5Jrn38cpqWYvC2mXOtSngXCgw2i+5mYYP/AAxqXTvC1zPqUOseJrxNR1GE7reCNStrZn1jQ8s3+23PpigA8Lafe3F5eeJdXgaC/1BVjhtn62lsuSkZ/2iSWb3OO1dRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUARXNvDeWsttcxJLBMhSSNxkMpGCCPTFcZBeXfgDFlqfnXfhpeLbUAC72S9o5x1KDoJOwwG9a7iggEEEZB7UARW9xBd28dxbTRzQSLuSSNgysPUEcEVLXKzeB7e2uJLrw5f3Og3DtudLXDW8jerQN8v4rtPvTRdeOdO+WbTdI1mMcCS1uGtZD7lHDL/AOP0AdZRXKf8JdqkPF14I19G/wCmLW0q/mJf6VHD42vr4ONP8G65MyOY28x7aNVYdQSZuCPpQB19Rz3ENrbyT3EscMMalnkkYKqj1JPAFcubvxzqPywaZpGjoeDJd3LXUg9wiBV/8fpYfA8F3Ol14k1C516dDuSO5AS2jPqsC/L+Lbj70AU7i+vPH2bHSDNa+HG+W61PBR7te8cHfaehk9Mhc9a7K1tYLK0htbWJIbeFBHHGgwFUDAA/CpAAoAAAA4AFLQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAZmq+HdF1xcarpNle8YBngVyPoSMj8K8zFt4Vb4rR+D9NS9tVjspJLhrTU7iICb5WVAFkwMJuJ4/iHpXdePPFtv4L8JXery7WmUeXbRN/y0lP3R9OpPsDXzB8MNanHxg0fUruZpJ7q7dZZGPLtKGUk/i1AH0z/wAK+0d+J7vXLhf7sus3RB/8iVZsvAfhXT5xPBoVk046TTJ50g/4E+T+tdFRQAAADAGAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCK5uIrO0muZ22wwo0jseygZJ/IV4L8DPHkt/4u1zSr6TB1WeTUIFJ6S5y6j6rg/wDAK9U+JUeq3Hw/1az0W0lur67jFukcfXa5Ac/987q+b/Cvw+8faf4tjudO0Yrf6TLFNKklzEm0NyActyGAIOM8ZoA+u6KajFo1ZlKMQCVJyR7cU6gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAKGq6LpeuW4t9V061voVOVS4iVwp9RkcH3FeZeCfhf4U1TTbPxL9hkt7xr+W8tngmZQiLOxiAXJGAoXtXonizUv7H8IaxqIOGt7OWRP94Kdo/PFS+HNN/sfwxpWm4wbW0ihP1VQD+ooA06KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5TTf3HxQ1+M/8vGm2Uw/B50P8hXV1yn+r+LI/6b6Gf/HJ/wD7ZQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcp8QP9I0Sx0v/oJ6na2p/wBzzA7/APjiNXV1ymt/6b8QvDFkPmW1jutQkHphViQ/nM35V1dABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXKan+5+J3h6Uf8ALfTr6A/g0Dj+Rrq65TxH+78b+DpuzXF1AT/vW7t/7JQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWdq2v6RoMIl1XUrWzU/d86UKW+g6n8KANGiuUHj2zuOdM0bXtSTtJb6c6Ifo0uwH86P+Er1luU8Da4V/wBqa1U/l51ABpn+m/EzXrk/dsLK1sk/3mLyv+jR11dedeH9eu9Fn1m41fwx4ghkv9Qe63x2guAse1UQHymY8KgzxXUaX4z8O6zcfZrLVYDdf8+0uYpv+/bgN+lAG7RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXKeM/3d94UuB1j1uNc+zxSp/7MK6uuU8ffu9I0y57W+s2EhPsbhFP6NQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3V1b2NpLdXU0cFvCpeSWRtqqo6kk1NXGXMQ8ZeLZrKb5tC0SRBNF/Dd3eAwVvVIwVOO7MM/doAI73X/GWH02SXQ9Bb7t40Y+13S+sasMRIezMCx4IA61r6R4Q0PRJjcWtir3rcve3BM1w59TI+W/XFblFABRRUTXVutyts08QncFliLjcR6gdaAJaoaromla5b+Rqmn215H2E8Ybb7gnkH3FX6KAOObQ9d8MZm8OXkuo2K8tpGoTFiB6QzN8yn0V9w9xW7oWv2XiGyae0MiSROY7i2mXZLbyDqjr2P6HqMitSuP8W2cmi3A8Y6ZGftNmgGowp/y92o+8CO7oMsp9iOhoA7Cio4Jo7mCOeFw8Uih0dejKRkEVJQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRVbUdQtdJ0641C9mWG1t4zJLI3ZR/npQA69vrXTbOW8vbiK3tol3SSyuFVR7k1y6+JNc1//AJFjSVjsz93U9VDRxuPWOIfO49zsHvTNK0W58T3UPiDxNAwQHzNO0mT7lsv8Mkg6NKRzzwucDnJrsqAOTHhDUr35ta8W6tcE9YrFlsoh9Ng3/m5pT8NvCjj99pslye7XN3NKT+LOa6uigDlP+FbeEh/q9J8k+sFzLEfzVhSHwXcWfzaN4o1uyYfdjnnF5F9CswY4+jCusooA5FtY8U6BzrWlxatZL1vdIUiVR6vbsST/AMAZvpXQ6Vq+n65YJfaZdxXVs/AeM9D3BHUEdweRV2uV1vw3cW99J4g8M7LfWAMz25O2HUFH8Eg6B/7r9R3yKAOqorN0LWrbxBpEOo2odFfKvFIMPDIpwyMOzKQQfpWlQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVynw6G/wAJC6bma6vbyeY+rm4kz+WAPwrq65DwzINE8R6x4an+QSTvqWnk8CSGVt0ij3SQtkejLQB19FFFABXnfjuz0jT9W0PULjR5oguqRXE+tQxqxiOcBXbO/ax2qeNoUj0Ar0SuevNB1LV0mstW1G1m0x7gS+TDaGORkVw6xs5cjGQASFBI9KAOhooooAKbJGksbxyKGRwVZT0IPUU6sHxfrUmjaBK1qN+pXRFrYRd5J34X8B94+gU0AVPhw7P8PdGVmLeVCYVJ7qjFF/RRXU1naDpMeheH9P0mJtyWdukO7+8VABP4nn8a0aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5LxWg1TxH4b0F+baaaS/uU7OkAUqp9vMeM/8AAa62uT19vsPj3wvqD8QzLc6cznoHkVJE/MwkfUigDrKKKKACszXI9Zms0i0Oe2trl5BvnuYzIsaYJOFBG4k4HUdSe1adNkkWKJ5GztRSxwMnA9qAOX8L3HiB9b1iz1fUrS+gsvKjWS3tDBiVl3sp+Zs4Uxn/AIF7V1VYfhO1mg0CK4u42jvL53vbhGHzI8h3bD/ugqn/AAGtygAooooA5LT0Gk/ErUrGLi21WyXUQnZZo2EUhH+8GiJ9xXW1yaN9u+KztH8yaXpBilPYSTyqwX67Yc/8CFdZQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVjeI/D6a9awmO4ez1G0fzrK9jGWgkxjp/EpHDKeCPwrZooA5bS/FrRXkej+JoU0zV2+WNif9HvP9qFz1/3D8w9D1rqaq6hptlq1lJZ6jaQ3VtIPmimQMp/A1zg8I6lpP8AyLXiK5tYR92y1BftkA9lLESKPo+PagDraK5T+0fG9n8tx4f0vUB/z0stQMRP/AJE4/76NH/CTeIxw3gTU93+zfWhH5+bQB1dFcp/bfjC4+W28Hw25PR77VEAH1EauTWVpB8TeLZNQg1PXV0g2Ny1tcWWlwBZOMFW86QsdrKQwKqpwfWgDpdd8U6doJjglaS51Cb/AI97C2XfPMfZR0HqxwB3NUtE0O/udVHiLxH5f9pbClpZxtujsIz1AP8AFIf4n/AcddLRfDWk+H1kOn2gSabma5kYyTTH1eRiWb8TWtQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVl+IdEh8Q6LPp00jRM+HinT70MqkMjr7hgDWpRQBzfhrxFLeySaNrKJa+ILRR58I4Wdegmi/vI35qeD79JWTrvhzT/EMMS3ayR3EDb7a7gfZNbt/eRxyPcdD3BrmJfEuveFdWtdG1SEeIftCM8MunptuxGvVpYfukcgbgwyeAueKAO9ormrTx/4YupvIk1WKyuu9tqANrKD6bZApP4ZroYbiG5TfBNHKn95GDD9KAJKKZJLHCheV1RR1ZjgVg33jvwvp8nlS63aSTnpBbN58p+iR5b9KAOhrD8R+JItCgiiiha81W6JSysYz887/APsqDqzHgD8BWa2teJte/d6Jo7aVbNwdQ1dcOB6pbg7if98r9DXL+L/CviLwxpsnifwpq1zd63EmdQa6jSZ7uIckKCvyBeyJgY9xyAd14X0OXRNNkN5Mtxql5Kbm+uFGA8rY4X0VQAqj0Arcr5t0n9pHWoAF1bRLK8A43W7tC3453D9BXufg3xOvjDw3BrKafcWUczMEScglgONwx2zkc46UAb9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcf4g/4pvxTZeJk+Wyu9mn6p6KCf3Mx/3XJUn0f2rsKq6lp9tq2mXOnXkYktrmJopUPdSMGgC1RXM+C9QuZLC40XUpC+qaPJ9lnc9ZkxmKX/gaYP1DeldNQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVma9rtp4e0tr273uSwjhgjG6SeQ8LGg7sT/j0FAEHiTxCmg2kQiga71K7fybGyQ4aeT+ijqzHgD8Ki8NeHn0lZ77UJ1u9bviHvLoDA46RoP4Y16AfieTUHhvQrtLuXxBr2x9buk27FO5LKHqIYz+rN/EfYCumoAgurK1vofJvLaG4i/uTRhx+RrAm+HXg2d97eGdLVvWO3WP/wBBxXTUUAcvH8OPBkbhv+EZ01yP+esAf/0LNb1lplhpkfl2FjbWif3YIljH5AVaooAKKKKAPC/F3wKGp/ECzvdL2waLeyl79FIBtyOW2D0boPQn0wK76Bdc8C20VsIZdb8PQIEjaFALy0QDABQYEqgd1w3s1dtRQBS0rV9P1ywS+0y7iurZ+A8Zzg9wR1BHcHkVdrmtV8IRzX76vol02kaw3354VzHce00fRx78MOxqGy8XyWV5Fpniq1TSr6Q7IbhWLWl0f+mch+63+w2D6ZoA6uiisXWPFmh6FMtvfX6C6f7lrEplnf6RoCx/KgDaorlB4p12950rwbftH2k1GeO0B/4Dln/NRR9p8fSfMul+HIQf4Xv5nI/ERAUAdXRXKfb/AB3b8y6Dol2PS21ORG/8fhx+tIfG0lh/yHvDmsaYo+9OsQuoR7loSxA+oFAHWUVS0vV9N1q0F3pd9b3kB/jgkDAH0OOh9jV2gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOP8AFI/4R/XLDxbHxboBZaoB0NuzfJIf+ubnP+6zV2GcjIqG7tYL6zntLqNZbeeNo5I26MpGCD+BrzOP4laT4A0m50LxFdTT6lpUn2eBIl3yXUOAYnz0B2kA5PVTQB6lRUNrcJeWcFzF/q5o1kX6EZH86moAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivKPjb8QL3wfY6XaaPcCLUribz2bAOIk7EHsxIH0BoA9L1XVLLRdMn1HUJ1htYF3O5/QAdyTwAOSTXPaDpV5q+qL4o1+BorjaV06wf/lyiPVmH/PVh949h8o754/wB4ttfinrSXmrSwQzaWFe20hWJUyY+a5OfvYJIUc7Op5INeu0AFFFFABRRRQAUUUUAFFFFABRRRQAVV1K2sbzTriDUooJbJkPnJcAFNo5Oc8Yq1XH+JEPiPxJZ+FMn7AsX27VAD/rIw22OE+zsGJ9VQjvQBg+H9M1jWGuItE1nUdP8GNgWzyndcyAdRA7DckJ4wWy3Hy4BzXdaL4c0jw/C0emWMcBfmSXlpJT6u5yzH3JNaaqqIERQqqMAAYAFLQAUUVFc3MFnbSXF1NHDBGNzySMFVR6kmgCWiore4juoRLFv2N03oVJ/AgGpaAOc1bwZp1/dnUbJpNK1ftf2JCOx9JB92QezA/hUOk+Ib601SPQfE0cUWoSA/ZLyEEQXwHXbn7kgHJQ/UEjp1NZmv6HbeIdHl0+5LJuw8UycPBIOVkQ9mU8igDTorB8Iavc6voQN+FXUrSV7O9C9POjOCR7MMMPZhW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAVtRshqOnXFk09xAJ4ynm28hjkTI6qw6EV8d/EPwDq/gfWmS+L3NncOWt77BxL3w3o/qP519m1x3i/WPCeoWlz4d1UHVJpVw2n2UTXE6nscIDsI7E4oAs/Di+/tH4ceHrjduP2GONj6lBsP6qa6ivM/BNv4t8O+GIdD07w2DawSSm3uNWvkhfy2cuNyRCQ5G4jqPoOldD/AMXAbn/imY/9n9+/6/L/ACoA6uiuU8/x9B8zWHh28UdVjupoGP0yjCkPjK80/wD5D3hfVbFB1uLZVvIQPUmLLgfVBQB1lFUNK1rTNdtPtWlX9veQ5wWhcNtPoR1B9jzV+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiorm5gs7aW5uZkhgiUvJJIwVVUdSSegrkUv9e8Y4fSZH0XQm6X0kYN1dL6xIwxGh7MwJPUAdaAOj1XXdJ0KATarqVrZRnoZ5Qm76A9fwrEHj/T7jnTNK1zU07SWunSBD9HkCqfwNXdI8HaFo05uoLITXzcve3TGe4Y+pkfJH0GB7VvUAcp/wAJdqrcp4H18r6s1qp/LzqP+E48nm98L+JLVR1Y2ImA/wC/TOa6uigDD0rxj4d1qf7PY6tbvc97aQmKYf8AbN8N+leB634T8S/GHx/farZRfZ9ER/s9te3ORGYkOMoOr5O5uOMnkivojVtC0nXYPI1XTra8jHQTRhivuD1B9xXPNoeu+F183w5dyalYJ10jUJizBfSGY/Mp9FfcPcUAVfA/wo8O+CCl1BG15qgGDezjlcjB2L0UdfU84ya7usvQtfsfENk1xZl0eJzHPbzLslt5B1R17H+fUZFalABRRRQAUUUUAFFFFABRRRQAUUUUAFcpoXPxB8XFv9YFsgv/AFz8tsf+Pb/1rq64/wAQSf8ACN+KrPxM3Gm3MQ0/Um7RDcTDKfYMzKT2Dg9qAOwooBBGQcg0UAFcFrp1DWPidZ6TbvbrBpunf2kiXKMyNO0hjRioI3bQGxyMFs8kCu9rKv8AQYb3VbbVYria0v4ImhE8G3LxMQSjBgQRkAj0P1IIBV8H+IZfEuhG7ubUWt5BcS2tzCrblWWNirbSeo4z+lb9UtJ0q10XT0srRWEaszszHLO7MWZmPckkk/WrtABRRWdrms2nh/R7jUrxj5UQ4RRlpHPCoo7sxwAPU0AYvhfjxb4zEf8Aqft8B46eZ9mi3f8Asua6uuf8HaVdaZoRk1EAanfzPe3gU5CyyHOweyrtT/gNdBQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBeXltp9nNeXcyQW0KF5JXOFVR1JNT1x+rRjxP40i0OQbtK0qOO9vY+08zE+TG3qq7S5Hc7KAIoo9Y8cjz55bnR/Dj/6qCImO6vV/vO3WJD2UfMR1I6V0+laPpuh2a2ml2UFpAP4IkC5PqfU+55q9RQAUUVh+IPFdh4cC/aoL6dthkdbO1eYxoON77R8q/Xrg46GgDcoqrp2o2mradb6hYTrPaXCCSKRejKf89KtUAc9q/g7TtSu/wC0bVpNM1cD5dQsiEkPs46SL7MD+FQaP4gvrbVU0DxLHFFqLgm0u4QRBfKOu3P3ZAOqH6jI6dRWV4j0KDxFo0tjK7RSgiS3uE+/bzLykinsQfz5HegDVorE8JaxNrfh2C5u0WO+iZ7a8jXok8bFHA9sgkexFbdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBxl3F/wmXiybTpvm0HRXT7TH/Dd3ZAdUb1SMFWI7swz92uzrlPh2N/hQ3bf667v7yeY+rm4kH6AAfhXV0AFFFFADJJo4VDSyIilgoLMBkk4A+pJAp9eV+NdasdWm0i7Gp2wtbTXrNIIhOuXInAklYZ6DBC57bm5DDHqSOsiK6MGRhlWU5BHqKAHUUUUAch4ts5NFuB4x0yM/abNANRhT/l7tR94Ed3QZZT14I6GurgniubeOeFw8Uqh0dejKRkEU6REljaORQyMCrKehB7VzHw4dm+H2jqzFhFE0KE90R2Rf/HVFAHU0UUUAFFFFABRRRQAUUUUAFFFFABUdxBDdW8lvcRJLDKpSSNxlWUjBBHcVJRQBxMSat4FHkxQXOr+Gl/1ax5e6sF/u46yxjtj5lHHzAV0+k63pmvWn2rS76G7hzgmNslT6MOqn2ODV+sDVfBuiatd/bpLZ7bUMcX1lK1vP+LoQW+jZFAG/RXKDQfFVjxp3i4XEa/di1WxSY/QvGYz+JzRn4gJxt8My/7W6eP9MN/OgDq6K5Ty/H83ym48N2gP8SwzzkfQFkpD4R1S/wCNb8Walcx94LFVsoz7EpmTH/A6AL2teLtL0a4Wy3SXuqOP3WnWa+ZO/wDwEfdH+0xA96paZoOo6rqsOu+J/LE0B3WOmRNvisyf42b/AJaS443dF5x61s6PoGk6BbtBpWnwWiMcuY1+Zz6sx5Y+5JrSoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuU8L8eK/GYf/AF/9oQn/ALZ/ZYtv4fe/WurrjtZk/wCEX8YQ+IJPl0rUY0stQftBIpPkyt6KdzIT2ytAHY0UUUAFZ+q3gsoD5ECTX1wPLgh6eY3ONx7KM5J7DPfg6FYGr+DNE13UFv8AUIbt7lY/KVor+eEBc5wAjgdfbmgCz4Y0SHw34bsNGgk8xbOIRs+Mbm6scdskk4961qpaVpNlomnR2GnxNHboWIDSNIxJJJJZiWJye5q7QAUUVkeJNei8PaO920ZnuXYQ2lsv3riZuERfqevoMntQBl+C/wDj98VlP9V/bkuz6+VFu/8AHt345rq6xfCmjSaF4et7S5kEt65ae7lH/LSeRi8h+m5jj2AraoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOQ8MyDRfEmseGp/lEk76np5PAkilbMij3SQtkejrXX15/wCM9UsdZkTTtBW5v/EtjJ5lrLp+CLKTGP3sh+RVI4ZCckdula2keLnS6h0jxPbppWssMJls292fWFzwf9w/MPQ9aAOqooooA5XXfAGiaxFaLFp+n2jw3sN07pZITKqOGZD04bGD169DXURxpFGscaKiIAqqowAB0AFOooAKKKxdd8UaboASOd3nvpv+Pextl8yec/7KDnHucAdzQAzxdrT6JoEslsPM1G4ItrCHvJO/CD6A8n0AJq34f0iPQfDunaTG25bS3SHf/eIGC34nJ/GsjRNE1C81ZfEfiMIL9VKWdjG26OxRuvP8UjD7zfgOOvU0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVFc20F5ay2tzEk0EqFJI3GVZSMEEelS0UAcVEms+B/3McFxrPhxf9WI/nu7Ff7uDzNGO2PnA4+bFdJo+vaVr9r9o0q+huowcNsb5kPoynlT7EA1o1hat4O0PWboXlxZ+VfgfLe2sjQTj/tohBP0ORQBu0Vyg8NeI7LjTfGVy0Y6R6nZx3OP+BLsY/iTR5Pj9OBfeGpR/eNpOhP4eYaAOrorlPsPju54l13Q7NfW202SRvzeXH6Uh8ENf/wDIf8Q6vqqn70HnC2gPsUhC5HsSaALGqeNLC0u203TI5NY1fp9isiGKH1lf7sQ92P0BrL/4QnUtYuY9a1vWri31yIk2n9nsPJsQRgoquCJM/wATMOegwBXW6bpWn6PZraabZW9pbr0jgjCL9cDv71boA5D+1vFPh/5dZ0xdZs1/5ftJTEoHq9uTk/8AACfpW5o3iHSPEEDS6Vfw3IQ4kRTh4z6Ohwyn2IFadYes+EtH1ydbq5tjDfoP3d9auYbhPo64OPY5HtQBuEgAknAFHWvGvilrviTwN4RnspNYt9Sg1JWtYJpk8u8iBHzE7BtcbeN2FILA81yfwk+MjaSYPD3ia4LafwlreOcm39Fc909D/D9OgB9I0UisroHVgysMgg5BFctceM/tl1JY+F9PfWrmNtks6yCO0hbuGmIIJH91Ax+lAHVUVyY0DxPqfzax4oa0Q9bbRoFiA9vNkDOfqNtL/wAK68PSc3q6hfyd3vNSuJSfwL4/SgDq6K5T/hW3hD+HRY1Pqksin8w2aD4Cs7fnStY13TCOgg1GSRAf9yUuv6UAdXRXJEeNdE+YPZeI7UdVKi0usexGY3P4JWpofijTdeeWCBpYL6D/AF9jdJ5c8P8AvIe3+0Mg9jQBs1mab4g0rV9Q1CxsL2O4uNOkEd0iHPlsRkD36EfUEdRXlnxi+LQ0CKXw5oE4Oquu25uEP/Hsp/hB/vn/AMd+vTxL4fatLp/i23iluNQSwvXEF+LKRkd4ye5XkAHBOOcZGeaAPrHVfGVhY3zaZYxTatq4H/HjYgOye8jE7Yx7sR+NUf8AhH9d8SDf4mv/ALHZNz/ZOmSMqkeks3DP7hdo+tdFpWj6dodktnpdlDaW452RLjJ9SepPueavUAVdP06y0myjs9PtIbW2jGFihQKo/AUajpljq9lJZajaQ3VtJ96KZAyn8D396tUUAckPCeqaR/yLfiK4t4R92x1FftcA9lJIkUfRyPanDU/G1n8tz4c02/H/AD0sdRMZP/AJUGP++jXV0UAcp/wlGvrw/gTVt3+zdWhH5+bR/bvi6f5bbwasBPRr7VI1A+ojDmurooA5M6P4v1XjU/EFtpsB4aHR4PnI/wCu0uSPqEBrV0XwxpPh/wAx7C1xcTf666mcyzzH/bkYlj9M4rXooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA53xN4F8OeMXgfXdPN21upWI+fImwHrgKwHYflXI3PwB8DTgiOC+t/+uV0Tj/voGvUK5/xvqNxpfg3UbizbZdui29u392SV1jQ/gzg/hQBxvhvw0+oQz+H7HWNTl8G2EphZ55VMl268NCjqqkQKeD3JyoIANemWlpbWFpFa2kEcFvEoWOKJQqqPQAdKg0jS7bRdHtNMs1229rEsSD1AHU+56n3NXaACiiigAormvDur6jfeJPEunX7wOmm3EMcBhjKfK8Syc5Jyfmx+HQV0tABWJ4h8MWfiCKORnktNRt8m0v7c7ZoG9j3U91PBrbooA868IeHfDhubvTdV8M6UniGyIa4ka3En2hWztnRnycNg55yGBB9/QILaC1jEdvDHCg/hjQKPyFcv4tQadrXh3X4vlkjvUsJyP44Lg7MH6SeWw+h9a62gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuX+IcUkngi/mhQu9m0N6FHUiGVJSB+CGuopGVXRkdQysMEEZBFADIJ4rq3iuIHDxSoHR16MpGQR+FSVxOj3R8FahH4b1JiukzORo945+VQefsznsy87CfvLgdRiu2oAKKKKAOP8AC4lHjjxjK9pdxRXFxbvDLNbSRpIFt0RirMADhgRxXYUUUAFFFVNT1Sy0bTptQ1G5S3tYV3PI54HsPUnoAOTQBz3jg/af7B0lOZr3Vrd9o6+XC3nOfoBHj8RXWVyfhyzvNX1iTxXq1u9s7xGDTbOUfPbQEglnHaRyASOwCj1rrKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAK2oafZ6rYzWN/bRXNrMu2SKVcqwrmE0zxL4XG3Rphrelr92xvptlxCPSOY8MPZ+f9quwooA5WP4haHE6w6wbnQ7gnHl6pCYV/CTmNvwY10FpqVhqCB7K9trlT0aGVXH6GrDxpKjJIiujDBVhkEV5/8RfCnhuDwVrN/H4f0tb5bZhDMtqiuJG+VTkDOckUAehEgDJ4FY+o+K/D2kKTqGt6fbEfwyXChj9Fzk/hWXH8M/BqRor+H7KQqACXQtn8CcVsad4b0LSCG03RtPs2H8UFsiH8wKAMY+MbvVf3fhjQby/3dLy7Q2lqPfc43uP91T9alsPCc1xqEOreJr0apqELb4IVTZa2p9Y48nLf7bEn0xXUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVynxB/e6BaWP8Az+6pZW5+nnozfoprq65Txb/pGv8AhCx/v6o07fSKCVv57aAOrooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5TU/9J+J3h+Af8uun3ly34tDGP/Qmrq65S2/0n4rai45Wz0e3iPs0ksrH9I1oA6uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDkPihJqVv8O9Wu9Iu5rS9tUW4SWFsEKrAt+G3dXzr4O8fePr/AMXxWum6uZL/AFWSKGV5oI5MqucE5XICgsTjtmvrDUbKPU9Lu7Cb/VXMLwv/ALrKQf514f8As/8AgiSzutS8R6hDtlikeytlYdCDiRh+I2g/71AHu6Aqihm3MBgsRjPvTqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvfX9ppllLeX1zFbW0Q3PLK4VVHuTVTX9ctvD2lte3CySsWWKCCIZknlY4WNB3JP9T0FYumeF7jUbuLWvFhju9QU77exB3W1j6BR0d/WQ856YFACL4s1TWh/xTGgyXFu33dQ1FzawH3VcGRx/wED3p40Txfe/NfeLI7MHrFpdgi4/4HKXJ+uBXV0UAcp/whUzcyeLvEzt6/a41/RYwKjh8E3lhGV0zxhrlt8zPtkFvMm5iWYkNF3JJPPeuvooA5Mx+OtL+ZJ9J12EclHRrOY/RgXQn8Fqxp3jSwub6PTdSgudH1R+Etb9Qnmn/pm4JST/AICSfaukqnqelWGtWEljqVpFdW0n3o5VyPqPQ+hHIoAuUVxcNzfeB76Cy1G6lvfDtxIIra9nbdLZOThY5W/iQnhXPIOA3Y12lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHIwINc+JF3PN81toEKQwIen2mVd7v9RGUUem5vWuurlPDB+z+LfGFk/wDrDew3a57xyW8ag/8AfUbj8K6ugAooooA5q/8AEl1/aOrWelW0U76RbpNdeaxXezKWWJMdDtGSxyBuXg5ONjSNUtta0ez1SzYtbXcKzRk9cMM8+9cXDPH4a8UeNptRYIt6kN5aFus6iHYUUfxMGUDaOfmX1rf8BaTPofgPRNNulZLiG0QSo3VXIyV/AnH4UAdFRRRQBW1HT7XVtNudPvYhLbXMbRSoe6kYNYfga9ubjw8bO+lMt7plxLp88p6yGNsK592TY3410tcp4HPnHxJepzDda3O0TDowRUiJHtujagDq6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5PxRbXWlara+LNOge4a1iNvqFtGMvPak7sqO7xnLAdwWHcV0dhf2mqWEF9Y3EdxazoHjljOQwNWa5O68M3+j302p+E54YGmYyXOl3Gfs1w3dlI5ic/3gCD3B60AdZRXKQePdOglS18QwT6BeE7dl+MQuf9iYfu2H4g+1dRDNFcRLLDKksbDKujBgfoRQA4gHGR06UtFFABRWbq3iHRtCi8zVdTtbMHoJpQGb6L1J9gKwW8Qa74iHleGtNksrVuDquqQlAB6xQnDufQttH1oAt+KtduLcx6FoxWTXr9SIR1FtH0aeT0Ve395sAd61tF0m30LRbPS7Td5NtEI1LHJY92PuTkn3NVtA8N2mgRzPG8tzfXLB7q+uG3TTsOm49gOyjAHYVsUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADJoYriJopo0kjcYZHUEEe4Nc1L8O/C7ytNb6Z9glY536dPJanPr+6ZRRRQAz/hBo14j8SeJkHp/abt+rZNH/CA6fLxe6rr94ndJtWnCn6hGUUUUAaOleEfD2hy+dpuj2cE/ecRgyn6ucsfzraoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z",
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAQnCAIAAADTqIUsAAEAAElEQVR4AeydeeANZfvG25MlbUQhKltZiqKFKBSSLKVERGQLiYQICVmTPVmylZQtZUuWiBAJJRJlSWQJqbS8/T5v8+u8xznne75neWbOzDnX+YP5zsxzP/dzzTkz99zLdZ/5999/n6GPEBACQkAICAEhIARcjMBZLtZNqgkBISAEhIAQEAJC4L8IyF7R90AICAEhIASEgBBwOwKyV9x+haSfEBACQkAICAEhcI4gEAJCQAgIASEgBGJD4Pfffz9w4MDBgwd/+ukn8kGtfzNnznzuuedmypTpoosuypUrV5YsWWITrlH+CMhe8UdD20JACAgBISAE0kTg+PHja9as2bRp05dffrl58+bdu3djrKR59r8HMFxy58593T+fokWL3nTTTVdfffW/B/V/pAicqfqgSKHSeUJACAgBIZB6CPzxxx/Lli1bsGDBRx999Nlnn/311185cuQo8s8HswP3CX9efvnlF198MdhkzZr1rLPOOnHixJ9//vnLL78cOXJkz5492DTffvstJs6WLVt27NjBIUaVL1/+zjvvrF69+mWXXZZ6oMayYtkrsaCmMUJACAgBIZDcCPznP/9ZuHDhtGnT5s6de/ToUewTzIs77rijbNmyWCcxr/23335bt27d8uXLsX5WrlxJOAmBtWvXrlevnmXxxCw56QfKXkn6S6wFCgEhIASEQBQI/Pjjj+PGjRszZgxOkVtvvbXWP598+fJFISKyU0+ePDl//vxZs2ZhEuF0eeihh1q0aFGqVKnIRqfcWbJXUu6Sa8FCQAgIASEQEoFDhw4NHz785ZdfPvPMM7EennzySdJNQp5pdifxozfffHP06NHEm26//fZevXrhyzE7RRJIk72SBBdRSxACQkAICIG4ECBM069fv/79+1944YXPPPNM8+bNM2bMGJfEmAZ/+OGHPXv2XLFiRdWqVYcMGZI/f/6YxCTnINkryXldtSohIASEgBCIEIFFixa1atXqhx9+6NatGz6VhFgq/qpitTz99NPbt2/v2LFjly5dzj//fP+jKbstvriUvfRauBAQAkIg1RE4derUU089Vbly5eLFi2/duhX7IOHGCpekQoUK69ev79OnD5GpW265Zdu2bal+nf5Zv+wVfQ2EgBAQAkIgFRGw0mknTJgwefLkd955hxpj96BwzjnntGvXjnQWeOfgayG7xT26JUoT2SuJQl7zCgEhIASEQMIQ2Lhx42233UbR8oYNG6glTpgeYSe+5pprPv744yZNmqAhuTVhz03+g+K3Tf5rrBUKASEgBISAPwIYASS03nzzzTNnziTB1v+Q27bxrxAVgpiOuBWF1gMGDHCbho7pI3vFMag1kRAQAkJACCQeAUhm77vvvrvuuuutt94677zzEq9QBBq0bt0aGtz69etfcsklnTt3jmBEEp4ieyUJL6qWJASEgBAQAiER2L9/v5VdS0aIV4wVayF169almSJ1TOTZPProoyFXl9w7Vc+c3NdXqxMCQkAICIH/R4B+eRgru3btghGfRj9exAVuGGjlqB4qUKCAF/WPR2fZK/Ggp7FCQAgIASHgGQRgYKNimeQVMlc8o/TpitJ8EQJc0oQ/+eQTaohOP5jkf6k+KMkvsJYnBISAEBACIECyavfu3aFf866xwipIv50yZcrmzZvHjx+fapdV/pVUu+JarxAQAkIgFRGAuJbOgpDGZsqUyevrb9u27dtvv/31118nwVoivxbyr0SOlc4UAkJACAgBTyJw9OhRWi537do1OR7w9A0g93bq1KmevBixKi3/SqzIaZwQEAJCQAh4BIGRI0eSufL999+bZVv57rvvMBoOHjx4ww03QOlGsCYYDyqS6Ae0Z8+eOnXqwP8WfEJse6ht3rFjB1kssQ334ijZK168atJZCAgBISAEokCgXLlyV1111aRJk6IYk96pX375ZalSpS6++OIDBw6QBluiRInly5dnzpzZf9yYMWMmTpw4ePBgzjzzzDP9D8W5vWTJEtoMffPNN1DJxSnKK8MVD/LKlZKeQkAICAEhEAsCNDVcu3ZtpUqVYhmc9hgCTIsXL8ZxQoH0Qw89BK9/7969fadTO12jRg0o6XCulC5d2qyxwixUCWXIkGHlypW+GZN+Q/ZK0l9iLVAICAEhkNII0DXwt99+u/XWWw2iQPpImTJlaJ6MzCuvvLJfv35YJGvWrPFNMXDgQII1RIuwKnw7DW6cf/75JUuWXLVqlUGZLhcle8XlF0jqCQEhIASEQFwIkGVy9tlnm42bXHTRRTVr1vSpRbDp+uuvz58/v7UHX8tzzz3Xvn37HDly+M4xvgFlHEszLta1AmWvuPbSSDEhIASEgBAwgMChQ4dou3PWWTY+7yBwIyp0zz33WOrSoZB4UL58+R577LHy5ctjuBw7dszASk4XQUehw4cPn74vmf9KLXa8ZL6SWpsQEAJCQAiEQuDXX3/NmDFjqCPG9r377rtFihTxeVxIl8mePTtGzPDhw5cuXUp2C1ksn376qVlGWmqzf/75Z2NrcL0gG+1N169dCgoBISAEhEDyI0AJz5EjR+xbJ8VBffv2pQ7ISqoltQUmN/o/U8BMuRC9oFu2bPn555/TYdGsDizq0ksvNSvTzdJkr7j56kg3ISAEhIAQiBcBHuonTpwg5TZeQWmMf+qpp2D6L1iwoHUcbjqCQQRrfKeTmcv2xo0bfXuMbMD7InvFCJISIgSEgBAQAkIg8QgQqUEJ4+aCtbBXXnmFhkRVq1b1rTNv3rxZsmSBm863xypNMk6tS1Zv0aJFfbMk/Yb8K0l/ibVAISAEhEBKIwCrLNkkdpT+0nSQGBBJtRa+uFW++uor9txxxx0UUftAh6OFbXb69sS/QRIxUSezRdrxa2WrBNkrtsIr4UJACAgBIZBgBDAgyCaZPXu2WT1Gjx49duxYCP5ff/31CRMmDBs2rFq1anSBZha2f/jhB19/n/fffx+2uooVKxpUYM6cOVCwwBpnUKbLRYmP3+UXSOoJASEgBIRAvAgsWLCgSpUqW7duLVSoULyy/hmPjdKoUaMAURQwQ5BvZd2+9957dCzC9UJgCF8IxPxma5Ruu+02Ak9vvPFGgA5J/KfslSS+uFqaEBACQkAI/BeBv/76C744/B8jRoxwDJHff/+dloRQyRnPXIFIF2pdaqTxGzm2nIRPJHsl4ZdACggBISAEhIDtCNDup3nz5ps2bSpcuLDtk9k8AWYKFhjtFW2ex13iZa+463pIGyEgBISAELADAR7wN9xwQ65cuebNm2eFbOyYxQGZ8LjUq1dv9erVtFF0YDr3TKF8W/dcC2kiBISAEBACdiFACyHKeYihkAxr1xz2y6XU6Mknn2zVqlWqGStAK/+K/d8vzSAEhIAQEALuQODFfz5LliwhX9UdGkWhxS+//HLnnXfSXgC+f5vaPkehjeOnyl5xHHJNKASEgBAQAglCgKhQ7dq1V6xY8dFHH9FROUFaxDItrP81atRYt27dypUr6cwciwiPj1E8yOMXUOoLASEgBIRAxAgQFSL/A8Zbeil/8cUXEY9L8ImnTp0iZwUbCyqX1DRWuACyVxL8LdT0QkAICAEh4CQCF1xwAe2UIb0tW7YsFoCTU8c2Fw0UK1euvGjRorlz58L9H5uQJBgleyUJLqKWIASEgBAQAlEgkDVr1oULF1aoUOHuu+8eOnQoPPpRDHb2VBo7Q7UC9T4xrPLlyzs7ubtmk73irushbYSAEBACQsABBMhXfeutt5577rn27duTF2Lx6Dswb+RT/Oc//6GUCWMlR44cEMSlVGvDkCjJXgkJi3YKASEgBIRAkiNw1llndevWbenSpbRuhqeffkCYCC5ZM+0S6Q309NNPd+rUiRrsK6+80iWKJVAN2SsJBF9TCwEhIASEQIIRKFOmDIm3jRs3btOmTalSpWCTS6xC3377bdOmTclTOeecc9avX9+9e3dyhBOrkktml73ikgshNYSAEBACQiAxCGTOnHnAgAG4NK644gp6DEHFRjNnKp8d1oZ2jFgqlP9AD0M/RXKBixUr5rAObp5O/CtuvjrSTQgIAS8hAJHX4cOH6XIHrxcFqKhOXidBhwsvvPDSSy/1NAe8ly5DfLpu2LChZ8+edFfOmTNnkyZNaMJMw8L4RKYzmm8L5tGrr76KgXLttdd26dLl0UcfxbmSzrDUOyx7JfWuuVYsBIRA3AicPHmSwo0tW7YQSvjqq6/27t37/fffU3ealuBzzz338ssvz507Nw8/Eievu+46Xp3pGJzW+dqfWAR27tw5ZswYbAiu6U033QTFXPXq1blqBrXCtKVEecaMGfPnz8fGRf4TTzxRqVIlDFyDsySTKNkryXQ1tRYhIARsRICHCrmZfHgPhmb0zz//zJIlC88waFIxRHgdJ5qQLVs2TJOMGTOef/75qMLTjlrZ48ePY8388MMPmDXffPMNVg45Cuzn/HLlyt1xxx1VqlSx+yXeRlySVDSWKLU50Mpdcskl+D8oIMqePTuULXywNfngM4tq6bjciPhw9WlVyFcI+ThR4NfHGKJACeFRSUvBk2WvpOBF15KFgBCIAgHMFKIDvAdDLXrs2DEMFCwM7AweZhgZsUV5fv75502bNvHQ4gO9+okTJ0qWLFmzZs2HH34YHrMolNOp9iDAFSGL5aKLLlq2bNl5551HLgtxIi7W8uXLV61ahWuEaSkz5mJhdPLBeUbsD/uDVBgMVr4nlBrx79GjR/ft27d///7du3djqmLjIu3GG2/E6OFbxIdR9qwgCaXKXknCi6olCQEhYAQBvCAEBWjqe+jQIapIsCf45MmTx4hwnxD6wuCzmTlz5pw5cw4ePFixYsVmzZoRHVAGgw8ihzdwfT344IPYkZTnhCwkxluGd2Tz5s3fffedZY4cOHAAE4dLyb8YJWQsUdSDucNGrly5sGzwwBUuXJg+AKTT6srGdkFlr8SGm0YJASGQzAjs2rXrpZdewlIhvtOgQYPmzZvnzZvX7gXzRk5hCBYStgsPuXbt2jGvFVeye2rJ90eg1z+fxYsX4//w36/txCIgeyWx+Gt2ISAE3IUAWSYwdE2ZMoX34K5du9apU8f5t2ECB1hLEydO5KW8f//+5De4C6Ok1gYzhWY9Q4YMefLJJ5N6od5bnOwV710zaSwEhIAdCJCjMGrUKGwU3Ph9+/Z96KGHElupQTSqR48ekyZNoscNvOz58+e3Y9WS6Y8A8R2qgQB86tSp/vu17QYEZK+44SpIByEgBBKMAPkHxH3II2nRokXv3r3JmkywQv9OTxZFq1attm/fjselbdu2/+7W/+YR+O2338hSIgeF+h0qvMxPIInxIaA67/jw02ghIAS8jwAU7NQkU8Gxdu3aV155xT3GCtDyBCXr86mnnqKVDNVD8L54H2+XrqBly5bQrpA8JGPFnVdI9oo7r4u0EgJCwCEEyG+lGAcW9k8//fSGG25waNZopiGBhvjUwoULcf9A10ENUTSjdW5ECBBxI2GIvCXVk0eEVyJOkr2SCNQ1pxAQAu5AgEIQanBoKUe7lkyZMrlDqdBaUOf88ccfHzlyhLa9uIJCn6S9MSFAAKhDhw7Q8FetWjUmARrkBALKX3ECZc0hBISACxEg9EPNMJzrNJlzoXohVcK5AmU7FHYrVqy47LLLQp6jnVEhQOoSZH0lSpSAxDaxGdZRqZ2CJ8teScGLriULASFwxvTp0+vWrduvXz9erL0FB2SpuFigb4d6NUOGDN5S3m3akl2L4wpISV2iLsxt6kkffwQUD/JHQ9tCQAikBAIQnNB6l7obzxkrXB4aFZHLQpPFjh07psTVsnORZDGTzkyOrYwVO2E2I1v+FTM4SooQEAJeQQCeFfwThFTIWvAue+y0adMeeeQRGhsp5SLmL94bb7xRv379N998E66dmIVooGMIyF5xDGpNJASEgCsQoCCodevWGzdupJ+LKxSKVYl69eqtWbPmyy+/pIVerDJSdxz9Jm+99VZqmAcMGJC6KHhq5bJXPHW5pKwQEALxIUBjZIj2YdmHcD0+SYkfTac91gK7HewsidfGUxrQNvnmm2+mdeWiRYuc77fgKahcpKzyV1x0MaSKEBACdiNA3TIddCHdt3siB+TTOthyD9AQ2IHpkmYK+koSBvrll18g3Zex4qHLKnvFQxdLqgoBIRAvArRcxrlithKYpjN9+vTByYExRL1JSBVhTHn88ceNGxbYKzRoJP025KTaGRIB6HY++OCDt99+m8zlkCdopzsRUDzInddFWgkBIWAeAVI94N2HuQSSe1PSkVmqVKmLL74YGg+MFWg8li9fHsDozwt9hQoVKD+mQ43xDN+77rrr8ssvJ2nU1IqSW87cuXNr1KgxevRoD5HuJPcViXx18q9EjpXOFAJCwNsIYElceOGFZFkaXMa4ceMWL168Z8+eXbt2UWayYcMGEkoC5A8ePPjHH38M2Gnqz3vuuQdLyJS05Jbz9ddf09WSPGUZK1680LJXvHjVpLMQEAKxIEABc+nSpc8+++xYBoca89NPP+GqueWWWzhINgnsc2eeeSY1O/7nUoeCEUPtsf9Og9u33XYbIaFvv/3WoMykFEWqda1atfLlywejcVIuMOkXJXsl6S+xFigEhMD/IwBN3HXXXWcQDkjGatas6RN41VVXEW/Knz+/b8+pU6eeeeYZeulhx/h2mt1gRgTu2LHDrNjkk0b+0Pfffz9jxowLLrgg+VaXCiuSvZIKV1lrFAJC4L8IHDp0yGymbQCs5KkQFSJA49vfpUsXKHQvvfRS3x7jG6TOUOTC0oxLTiaBAwcOxFKBIA7/SjKtK6XWInslpS63FisEUhoBIgJZsmSxD4J33323SJEiPo/Lhx9+yFy0J7RvRiTjuSG99/jx47bO4iHhwUVYS5cu7dy5c9++ff1NSQ+tSKpaCMhe0TdBCAiBVEEga9asZJzYtFqKg3giTpw40Qr9wEg2aNAg6pxtms4nlvYCGCt4WXx7UnkDKGi2/MUXX/hAIBX64Ycfrlatmhd7RflWoQ0QOEcoCAEhIARSBAHiMocPH7ZpsfCvQOxRsGBBSz4v9Bgu/Gv9SftfNuhQeMMNNzRq1MigDhhGxKFsDTkZ1NZuUbNnzybBGe7aKVOmkF2LEUkXbow5nx1ptwKSbx8Cslfsw1aShYAQcBcCGBObN2+2Q6dXXnmFZ6R/60EMCHJgeXZa01HCwwazG+8D/PnnnyPZZyfZsToPyYSylvoveG5q16797LPPYp5yCT755BPq2D20CqkaEgHxxYWERTuFgBBIQgQgt33yyScJCZltEIhYMmPatGljQfb3339v27atUKFC/ggSKiL31g6+uF69eqEAeb7+06XmNknHOXLkIEBmLf+ss87C8wTpcMOGDVMTkCRbtfJXkuyCajlCQAikiUC5cuV+/fVXWOPSPCP6AzCljh07ltd3nosTJkygdJlUCfvY4YIVnDdvHusK3p+Ce6gA8l81xgq+lk6dOlnBOP9D2vYiAooHefGqSWchIARiQeCaa66BXQ2rwlTNDjZKixYtUAUmOp9CVMwa5Pv3iQ25QWIpwY5gRt2QJyf9ToJBOLf8l4mvBacLl2PkyJFNmjTxP6RtzyGgeJDnLpkUFgJCIHYECJ20atUKXvZcuXLFLsU1I5s3b07rPhJlrKIk1+iVAEX279/PNcWnktbc7dq1ozFCWke13/0IyF5x/zWShkLAIQTgdOd9fcuWLXv37qUKlAZ+Bw8ePHbsGM8AykR5VbWKZskY5QP9PO1tc+fOXbhw4aJFi+K6gLXMIUXjmOb333+H4vaOO+7AcIlDjCuGbt++HboX2OXNFhy5Ym3RK0Ek7umnnw4mX0ESxhxNo/CrFShQIHrBGuEWBGSvuOVKSA8h4DwCVHsS2iefgw9hBYtzDBMkb968/EvXXz5wlpC3CM0aqQAWeQkWzJEjR/bt2we7+e7du3fu3IkpQ9vhm266CTuAD+73gAbFzi8tzIy0Mq5fvz7rpaInzGnuP0SizHfffbdx40aDHZHcv+q0NORqrl+/PiAedO6555JbTbysdevWfI3TGqv9nkBA9oonLpOUFAImEfjll18WLFgwa9as9957DxMETwkJmxgZxYsXpxkNBkpUk5HBunXrVip1V61a9dFHH3311VcZMmQgQQSa1+rVqzvAC0KCAg8kDCYeTthJvEzj/mEJ2Fi4fGgWgz5sWMy2uIh4pJHKgL1FG0I321XhrwIJGVQkwdxatmzZ8GemwlHcgTRv8jdWrOIgKszxPyVH7C8VrmM6a+QC6yMEhECKIECsh4Jey2XCc45wPpkcZtcO0QiO9/vuuw8rARsCatFly5aZnSJAGuEqHkg8n5iOD+/TGC580rr3wdi2cuXKbNmy0TOZsQHSPPHnp59+ih32/PPPe0JbB5SkM7Z/OJJtGkW98847DkytKRxDQP6VtO5p2i8EkgoBIj4QddDRhu7BTzzxxKOPPkqsx9YVQknCA4Ny3zVr1pBm8dxzz9WpU8cmnzyplPgbyE1Jd0VNmzYdOnQothRpqvfeey+ktP379093lKtOwMTEGVasWLEbb7yRlCN0Yzm+nsOWV4mdQO1zlVknwCmXrJXPoIEtzoOT0Bg2KP4zGhyKI85V31sDyjhmGWkiISAEEoIAiRrWU+quu+7iIe28R4GwC54MHp8kusKQYQcIWGPh74ZWYMiqd/UpwJ9o9cILL/j2uH/jm2++oV6aXI0TJ07A8nL77bezcEJglkuJf3EvWX4m/38t3wMU9a5dIFFFkqII7fEvS4tKT/KOrauPsYJNRlwyquE62SsInOEVRaWnEBAC0SIAGTnuBB7J2CtklkQ73Oz55LjQyYUnKz1yjQehSPi95JJL0jJZeFpTGGK9fwcsiuQGHnItW7akriTgkAv/JAyEV6xEiRJYKpZ6ZExTnp3Wwv33Z8yY8eTJk4ldFJeJ0mta/JBvhIevQoUKmLA+J5C/tmzjMaLoDE/SQw89RBumN954g84Dp06dCl4CjkPOx1bD9Ax5QvAQ7fEiAooHBfxG9KcQSBIE3n//fcpceVTTJRhDwSWrInEE4wB75aWXXiJdFPMlTsV4L1+8eDGJw5MnT+bhHbKctV69emPGjOGBHXIu8o45oXz58rTEI6kl5Dlu2Ik3CLYVHCpE2QLShFkdqPIEwnkWUlWe5dgH48aNC3nU1p1oRdkOOUz4wLj65Hdz0SlAowyerKMr/vmQH+0f0uI6EkzkylJXTzoU//KFocUB+3EalSpVCvubDwlY/InyRBsxeihQVxMlWy9l4oV70ciSzkJACIRBgFdM0jJ4KjRo0IDHQ5gzE3KIpw4vxBhS5OTi/49NB1xHmBc1atTACsGBxFv4448/HnA/ZQre0QNiQCGnI2TGE5RHJ/k9IU9I7E7iI5ieXNC2bduSoxNSmUWLFvkyVwJwsP502MGGKwUw8f1YtTnZs2d/4IEHyBwimSnacI+1XhZODRoXnQtNDhaLIj2FbO5Ro0aNGDHC+ShnyKugnbYioHiQrfBKuBBwGgHIUchT4dGFv8HpuaOZj1ftPHny8OAhISPycfDX8cSCd4QsDeI4OBuGDBlCZTISaCXo70EJEwMKOR24WeEq/BAQ5YU8JyE73333XSp1KQtnI7wCOCGuvfZaXCnB9gomHUnWK1asCC/ByFHQw3l29dVXowZEgt27d4chxohkfyEQ/0AQx1edrwE16lhyX375pf8J2k4+BGSvJN811YpSFwEoyeFQwU9gxxPCOKy4+kuWLElCBgm54YVDSYddgnWCjwGXCfYKVkuw6+jBBx/ETLGe1lSIEFAILzb46Ntvv40/gFQYKr1hqQk+wck969atI9eHJdNeGKwimRrGv8qVK/MI9zdZsGB4rls+CQwICmcg+otEWrTnQF5HNyViNE4aEP7mEWwr+G+iVVvnewUB2SteuVLSUwikg8DRo0d5GhHCp8Y1nVNdc5jQAMxyUGWQjRusFBmyvJ1j0/D0xYbA8zF9+nQyG4LPtPZAXMuZGDTkZqZ1Trr7UYmOvpkyZcqRIwdWCxZAukOMn0CFCzYZlkrp0qWjdYqQwfPss8/62yvIIcsVJUnXJWcItHG3VKxYEZsvDJhRLYq4HpYKTi/CaqQwO2/qEX4ih+mWW25h4VgttJWISn+d7AkEZK944jJJSSGQDgL4EsjhgEQfP3k6p7rsMEUr9Ewm5EFaJarx4OEJzRPX8gewIgIZhELSytvwXw2mBrUzIeuA/E+LZJu39meeeQarhcxWaqx40kcyKs5zsI2gq4FVhYculsq8efNiFkgGLq4mHC2YJjzF/eUQOANPfFH4XUhTxQqMp8qdxJGxY8cSrsKrx6SRXCZ/ZYxvQ9yMgcvSOnbsaMoaM66kBMaGgOyV2HDTKCHgLgRgraXIwqOvlSTPFipUiLqPxo0b8/bP05oy1y5duhAQiTaPEnPH4IXBZfXKK6+gDCpREY3fJQaV0tUHxhFcHffffz+eIT5Ef4wwiFCPY/UlwJ4IqQOw4wvBwmN15BJhI1pumJAnh9xJXImaZAwj8rtJAAp5jvM78TCRgcvayaFReMh5/O2bUfaKfdhKshBwCAFexPH5xxMEcUjRtKfBKUJFK7kjffv2pQNR2icm5ggGRPv27SFq49GORUVd0ssvv8zO2B7SGFVYBuTKkCVKcwC8IOR8QLZLvTG2i8EV4mzDd4XVFV4m4GOskEiEM4YkIYyYSKJg8+fPp/wbNxg2XHj5CTlKLhfZPzhaBgwYEK3VmxCFNWm6CIh/hfuPPkLAwwiQK0DOCq+5r7/+uoeXccYZeDIIweAisiJB7lwLicwWlQhBK/wTKEnGBg4Y4lY5c+akcyQRFt7sMR/5lyAdteVcIAITBJgsNhHIWEnWIQqGmUJyNO2soRIhH9Ym8nhso4D027SA5Uy6J06aNAkOYh7wVJsTKqpSpYovhdl/IDYNtcpUVNEGwWok6X/UJds8/zBWaARBYT8Kh1yIS1SVGpEgIHslEpR0jhBwLwIvvvgizd6oZSU/1L1aRqAZz0ucDQSGcDxEcHqCT+FZSF4zngkMLCppqanmhZ5/8UwEa8aTEu8F1gzXCM5WmmCTGY2VE0D7FjwwIXsovCLBhXp4CFTISqlduzZxOkwrnzI9evSASbZnz57dunXz7XTtBt5HGlfBBwjPHj481+opxdJFQPZKuhDpBCHgXgR4TecpSKjCE0+OdHGcO3cuaRzQrvM4T/dk155AkAj/BFEYklF4QMIKY9GwulbhtBSDUpaSKzwuu3btIokVdwt9oHDjkcdDam0wQV9achK+f+3atZR5Y7JgCkfobUq4zlIgGAHZK8GYaI8Q8AwCPDyaNWtGoMEskTxEGtDCQs6GwwOuepIAfIhgIWFVkLJw0003wS5K4MN3KP4NnBbEtqhHhW0lfmmSYAQBbK8lS5ZgtcycORM+uk2bNhG5a926tRHhjgn5+OOP77777vr16xMYcmxSTWQYgXQzXHSCEBACrkXgzjvvpDDVrHoEOKjjJfXVMlOoH/ERqBPyoEwGe8LqUcdDy+zUSOvTpw/FsXD2G5csgXEiQK0N7iLqhOOUk6jhc+bMwbymFCtRCmjeOBE4y7D5I3FCQAg4hQDpnLw1UqtidkKqVOgguGfPHqIAtMaFfJZuutYUsIPAREInRQyXYsWKcWbIdI149GE55LESEopHiMYaR4DEYXhoMF59XwbjU9gtsHr16k8//TSV/xRn2T2X5NuBgOwVO1CVTCHgBAKYDtBzUbBqcDJyLeGds3hCyYwhk5dXUl6srSk6d+5sFYOQmUHNBYegNDU4O6LIt4XKFjvMrFhJixMBYkB0eiJK6OkqG7x3kLK0a9cuTjQ0PCEIyF5JCOyaVAgYQICyFIpmqac1IOtfEQisWbPmv3+dAe0sxSy+AmP/vNEff/wRljDjBRfYQCTNEJPy6aCNhCMA3T5PeqrNzX7ZnF8X5jWpUTD3U/rk/OyaMU4EZK/ECaCGC4GEIcBTxGyabfBKyLUkKgTvVsAhXDvwiPTq1Stgv5E/s2fPztKMiJIQIwjQCRlTlTI0I9ISK4QqIRJvMb8Sq4ZmjwGB/+9lGsNIDRECQiCxCBC7wR1iqw7wcBQpUsTf4wL1GRmX1CWRPUM2AAEj4yEhuvvCqGbruiQ8cgSwWbncULCYZYsJU4OGbljDFCFbSsK6Sx6VwTpk8sTJZSG8BRdO5DjozMQjEGe+roYLASGQKAToXUywxr7ZSY6hp08wOz4PMOqZb731Vu5fsIoZVwCeD8hVjYuVwNgQoJiZCx38NYhNmjUqTA2adQKcv76nI/Vo8cwVPJYGQ/DgwXoXfEh73IyA4kG+H4U2hIDHEKDu16KEt0lv0lMwiSBECZBPignkK7SPQQFSAQKOxv8nwSCr62H8oiQhfgQg6aeIPfhrEI/kMDVoiP3oo48gDPzs3w/enXjmCh6Lq4Y+A/RVCD6kPW5GQPaKm6+OdBMC4RAgGRZKN6JC4U6K9Rj1IDfffDOvtmkJgIKFl2B8MGmdEPN+egvQLjjm4RpoFgFqtZysQUN5el7SnZu0a+tjR5IW3kGq3uz49poFX9L8EZC94o+GtoWAlxDgKYLz9pNPPjGu9Pjx43GiPPbYY5ZkZiEcEDwLPfz8/fbBJ8SwBwsMegyzD8gY1NAQHwKkkpDD5Psz/o3wNWiYRwsWLKCsnb5FhB3jny6kBNiDSMCCGDrkUe10JwKyV9x5XaSVEEgfAYImOOqNV2ZCCjd27FjaBeOHnzBhArUh1apVo3qZqP8bb7zhu8XjTqfzcIsWLdJXNJozoKqD4aN06dLRDNK5NiJAzNEOD4dP44AatCNHjtDngX7Xs2bNwmwdOHCg70yDG9aKVIZmEFIHRKl/kAMgawohYBcC5AxiXsBF69/iJ57JsFEaNWoUICFfvnwUU2CyFC5cGG5+gkR4X3iiUBwEcVzAyXH+WbFiRboBQJ0epxwNN4IAERMqmTEdjNMo+9SbPXv2Sy+9tHr1ar5Uvp1s0FcZTkKspUWLFlWqVMn/UPzbRFEpQ1u4cCG1zfFLkwRnEJC94gzOmkUI2ILAt99+S03mW2+99cADD9gywelCCQxhuPAAw1g5/YiZv8hcIRDA05FyUzMSJSVuBDBJX3vtNToFxi0phAAaRcGnTDPFkPm8GOKEoog5UlcfYnAcu6imhvuOWKo8eXGg6PRQxYOcRlzzCQGDCHDPxVJ5/vnnCdYYFJuWKN6A6dBrk7HCpF27drX6M6elgPY7jwDtEeyLm6RVg2Ytk28afp1t27YZX7VVWEeBm3HJEmgfArJX7MNWkoWAEwjA1InPY8yYMU5MZuccRATefvttQgOe7lBjJ0KJkY0Dzyb6vnRr0Fhw5cqVQ7pe4sSCXha4CWlCHqccDXcSAdkrTqKtuYSAeQR4nNC/7dlnnyWYYl66UxJJiyFZgTQFRYKcgjzSeUh6XbVqVaRnR3xehDVoGBa1atWKWGqkJ7KikiVLGu9+Fen0Oi8mBGSvxASbBgkBNyHwwgsvkPZRt27d3377zU16RaFLy5Ytjx8/bpwZLAoNdGoaCJQtWxajgVSSNI7HsjutGjRqheiqOHfuXDaQSw3azp07fXX1scwUagxpWOTwkjcT6qD2uRgBrpw+QkAIeB0BSDKodyDYTyKL59bSrVs3YkCwbnhO81RQ+NSpU3SgpLelqcVSJB/8SKQGDRvlr7/+shh94MvnywxxnB3fZxh7UWDjxo2mViQ5ziCg+qDgH472CAFPIgDRFsWZcFdQzUGLOK+sgSQG4lkwvtBRzys6p5qedGaeMWMGNrHx3pYhkdy/fz+2y5VXXhnyaPw769SpQ2Gdr59i/AIlwRkEPHNTcwYOzSIEvIvA7bffTr4qlG7cjj0RGOKdDM8Kxkr//v1lrLj5i0cjbth3Ro0a5YySOXPmtM9YoSsRtlfnzp2dWYtmMYiA/CsGwZQoIZB4BFasWHH//fdfd911kLLYd9OPf50nT55s3rz5tGnTqGwKZqiLX74kmEWgU6dO+MBoy+DpVpS4be68805iTDgjzeIjaQ4gIP+KAyBrCiHgHAJkR65cuRLCDHrFvf/++85NHM1MmzZtopkiHZ5p7yxjJRrkEnYuDonMmTPjBsMrljAl4p540KBBcMQNHTo0bkkSkAAEZK8kAHRNKQRsRQDnyqeffnrvvffed999PGDw5Ns6XVTCCVTRQwBSUV7TSXi85557ohqukxOFAO24p0yZAke+dx/2EPw899xzL774IpXMiYJR88aDgOJB8aCnsULA1QgQp4c/lK6EFHc0adLEmWTJtBDhvZyuQB06dKADc/fu3VHs7LPPTutk7XcnAnSM4pFPqJHmye7UMC2tiGTheoRLhm4PHspGT2s5qblf/pXUvO5adUogwEMFZtLHH3+cfMn8+fO/+uqrtK9zfuVYKvS046UW4q9SpUqhEvUmMlacvxDxzwgtIUw59erVo/g8fmmOSYAAGk8ezczffPNNGSuOwW58ItkrxiGVQCHgIgTIOaD6hu5usMlRiZMnTx4SJ7l9O6MiXXBJpy1atCiWCsm/69ato3zJzVnAzsDi6VmGDBnCdwkaYpoUemIhxEYpncuWLRs0dBkzZvSEzlIyJAKKB4WERTuFQBIi8P3332M9UOUBvwW+cbwvNWvWtKOFCmYKibREo8iohfKc1r6UAtFoNwkxTckl4TAjKkSnpy5dupCN5OZ+T9OnT8e/iL3yzjvvYLun5OVKnkXLXkmea6mVCIFIEKCYk7ohUhD4l649JUqUuOOOOyAV5Z4eT6nqzz//TOUF1dTLly8nsRFNKlas+OA/n0yZMkWimM7xFgIYvm3atCHMN3XqVPx2blP+119/bdu2LdyJTz755ODBg88991y3aSh9okVA9kq0iOl8IZAMCBCaoeFctWrVaKSChbF582aLUfT6668nfJM3b178Ljly5ICIHZp/Fmz9i32DucO/1EvjreFDpOmLL77YsmXLrl27kHDttdfiucFSoTqJipJkQEprSBsBUpHgUya8CO8fOUnucbR8+OGHmCn4EcnZeuihh9JegY54CQHZK166WtJVCMSPAFbFwIEDLX8+zxhL4NGjR9esWYPVYhkfNLejiifdubBIcufOTfk0Jg6GDlXKtH1Jd5ROSCYEcGP06dNnwIABdNzkXzpsJ3Z1tGbku01+NyzPuFWULJXYy2F2dtkrZvGUNCHgagTgYqG444MPPkBLSNuwM9JSl0qiH374gfMxZchXICWFM7NkycI79IUXXoi7hSeBshfTQi/V9tNaiBo0IowUDFOsjtVy5plnOgwCTr7evXuTsILp/PLLL1eoUMFhBTSd3QjIXrEbYckXAm5BgNAPlR1Ec/744w9SVfCgOP9QcQsW0sMGBD7//HMsBjJbKZ6HqJBE13gyoiJUEMMaXh8SyYkB4err2LEjFrmq5SNEz1unqZ7ZW9dL2gqBWBAg6YS33sqVK+MmwVjBR1KlShUZK7FAqTFpI1C8eHHcGzQUxLdBkIgUKBiWJ0yYcOTIkbQHxXgEomSrmQPNER955BFqf+DexWXYoEEDGSsxYur6YfKvuP4SSUEhEB8Cu3fvpkxn/fr1f/31lyUJyqyJEydSZhyfYI0WAmkiQL0YjhZq2hcvXoy5bJWhUYkGYeDll1+e5rCwB44fP04PB9LDKUNbtWoVqTOkTFGWT86v8lTCIpckB2WvJMmF1DKEQEgEZs6c+dhjj3Fn55nhOwHPyr59+3gx9e3RhhCwCQHijwsXLly2bBl2Btnc5EIRJCJxqnDhwhgZfPgeXnrppTSL8NW9nzp1iiYSdPDeu3cvSVT8S34MY7/99luUJMWb8ntMn6pVqzLcJrUl1oUIyF5x4UWRSkLAAAI4zInlDxs2DOuEh4S/REo5qET136NtIeAAAgSGiBZZNWg09LFK4jGm05oa0hScMRSdkaRCkTw2CiEnF3K9pKW/9ptF4Byz4iRNCAgBNyCAOYKf/Ouvv0aZAGOFF1loV9ygpHRINQQuueQSUlv4+C+cAjQ+WCQ4VPiuYl6ff/75lJ7xwVjhTyrwSYW56KKLyIbxH6jtVEMg8MUr1dav9QqB5EOApm6NGjUiAORLWAlYI83qaP8WsFN/CgHXItCiRQv4gTZs2OBaDaWYAwioPsgBkDWFEHAUAdgvKP/BWOHdNHhifOz41YP3a48QcC0COAsJJDnWp9O1OKS4YrJXUvwLoOUnIQLkM86aNYvKUujdAtqmYMHQJ+iCCy5IwmVrScmLwJ133kmDZaqNkneJWln6CMheSR8jnSEEvIgANczbtm2jAZC/l8ViXvHicqRzKiMApUr16tVlr6Tyd4C1y15J8S+Alp/MCNAwmRKMZs2akcBoOVogi0t4h5dkRlxrsw0BQkI06aS/pm0zSLDbEZC94vYrJP2EQGwIQLePpdKkSZNRo0bB+0khKHLo+3PDDTfEJlCjhEACEaCemW8vfEIJ1EFTJxYB1QclFn/NLgTsQoDiT4guaOlCFgtzUC7Uv39/eLdef/11u6aUXCFgJwIwH+7YsWPlypV2TiLZ7kVA9op7r400EwIxIzB27FicK0uWLIEJ1F8I8aCADFz/o9oWAm5GYO7cuffffz8hIShu3ayndLMJAcWDbAJWYoVAwhCAtrz9P58AYwWFZKwk7Kpo4rgRuPvuu3EWzp49O25JEuBJBORf8eRlk9JCIC0EIAOFP5TkFRocZsiQIa3TtF8IeBGBevXq0fqKbkReVF46x4mA/CtxAqjhQsBdCAwePJgAP+2XZay468JIGxMIUCVEc+b9+/ebECYZHkNA9orHLpjUFQJhEKBt0PPPP9+jR4+bbropzGk6JAQ8ikDlypVhO5wzZ45H9Zfa8SCgeFA86GmsEHARAlQA3XbbbcSDVq9erTwVF10YqWIUgTp16tAf8YMPPjAqVcI8gID8Kx64SFJRCESCQM+ePSlgfuONN2SsRAKXzvEoAoSEli5d+uOPP3pUf6kdMwKyV2KGTgOFgIsQILu23z+fAgUKuEgtqSIETCNw7733nnfeee+++65pwZLndgQUD3L7FZJ+QiBdBH755ZcSJUrkypULJ7l/t6B0B+oEIeBFBGrWrHnq1Kl58+Z5UXnpHDMC8q/EDJ0GCgG3IPDss8/+8MMP48ePl7HilksiPexEgJDQ4sWLjxw5Yuckku06BGSvuO6SSCEhEBUCH3744YgRI4YPH54nT56oBupkIeBRBGC5pWPze++951H9pXZsCCgeFBtuGiUEXIHAsWPHihUrRjBo1qxZrlBISggBRxCoVq0aJosKmx0B2y2TyL/ilishPYRADAi0bt36119/ffXVV2MYqyFCwLsIEBJauHDh8ePHvbsEaR4tArJXokVM5wsBtyDAy+XkyZNHjx6dPXt2t+gkPYSAIwiQcvv3338rJOQI2G6ZRPEgt1wJ6SEEokIA/omiRYved999r732WlQDdbIQSA4E4LrNlCnTjBkzkmM5WkW6CMi/ki5EOkEIuBGB5s2bQ0w+aNAgNyonnYSA/QgQElqwYMHJkyftn0ozuAIB2SuuuAxSQghEhcC4ceNmz549YcKECy+8MKqBOlkIJA0ChIR+//13sbAkzQVNdyGKB6ULkU4QAu5C4Ntvvy1evHjTpk0HDhzoLs2kjRBwFoEKFSpky5Zt2rRpzk6r2RKDgOyVxOCuWYVAbAjQzpB79IEDByDgJx4UmxCNEgLJgcDIkSMhSzx48KB+C8lxQcOvQvGg8PjoqBBwFwJDhgxZuXLlxIkTdYN214WRNolAgBQW6vkpbE7E5JrTaQRkrziNuOYTAjEjsHXr1q5duz7//PM333xzzEI0UAgkDQKXX375bbfdphKhpLmg4ReieFB4fHRUCLgFgT///JNbM/Gg1atXn3vuuW5RS3oIgYQi8Morr3Tr1o2QUIYMGRKqiCa3HQH5V2yHWBMIASMI9OrVa/PmzUSCZKwYwVNCkgOBBx544Oeff6aLVnIsR6sIg4DslTDg6JAQcAsCGzZs6Nu3b//+/a+//nq36CQ9hIALELjyyitLly6tkJALLoXtKigeZDvEmkAIxInAb7/9dtNNN+XIkeODDz4488wz45Sm4UIgyRCgsL93794UzZ133nlJtjQtxx8B+Vf80dC2EHAjAlRs7t27d/z48TJW3Hh5pFOiESAkRKPyZcuWJVoRzW8vArJX7MVX0oVAnAgsWbJk2LBhQ4cOzZMnT5yiNFwIJCUCefPmLVGihEJCSXlx/ReleJA/GtoWAsYQ4IUPp8i+ffv279+Pp5rqnuPHj1Pdg4+ET9asWUmbpa/yFf98sEUyZ84cPDdCihUrduONN8K+H3xUe4SAELAQILtr8ODB/NbOOeccYZKsCMheSdYrq3U5jQBGyUcffbR27VqqeL744guMFUsDiN1giSCyniVLFiyVv//+m/0YIn/88QdDyE2xTuMd8brrritSpAhFy2XKlLn00kvZ37Bhw/nz5yMQCdZp+lcICIFgBL7++usCBQpQJXTXXXcFH9We5EBA9kpyXEetIjEI/PXXX8uXL8f5sXjxYsjczj77bNwhRYsWpYoHy+Oqq66ieOGiiy4Ko9zhw4d5Kdy1axcmDnYJHzY4Hwnly5d/7733eGusUaNGGAk6JASEAAjccMMNt99++4gRI4RGsiIgeyVZr6zWZS8Cn3766ZgxY2bOnInBgYFStWrVcuXK4RfBiRLnxEePHoVxHzMIY2Xbtm2UBT344INPPPEEBlCckjVcCCQxAhAU0U4IvyavDUm8zFRemuyVVL76WnvUCBDEeeONN4YPH469ggHx6KOP1qpV69prr41aUGQDvvzyy1mzZk2aNGn79u28Oz755JN16tQ56yylyUcGn85KJQQw7gsVKkRMtmzZsqm07hRaq258KXSxtdR4EMBSGTt2bMGCBXF1cFtcsWIFsZuOHTvaZ6ygLRktzz333FdffUW8KWfOnPXr18dIwmAiDhXPWjRWCCQfAvw2+b34VwnxUsGPJflWmrIrkr2SspdeC48CAaIzRMdbtmxJxIf8ksmTJ7MRxfj4TiVLt0KFCm+//TZJhbw7koQLfdyqVavik6rRQiDZEICI5Z133qHBVocOHUgdoy0oP9VkW2QKr0f2SgpffC09AgRIT6lXrx6pr/hRcDgTmrHVoRJeo3z58r366qubNm2iegjDBU/PiRMnwg/RUSGQCgjAFIDLc8eOHTAIUGEHZdH333/Pws8///xUWH6KrFH2SopcaC0zFgSIheNW4T747rvvzpkzB3MhFimmxxQuXJjw0NSpU1EJmiyc3qZnkDwh4BkE+JG2atWKtPQ77rgD54ql9++//25tiKHfMxcyAkVlr0QAkk5JSQRoSgKXA5GXjRs33nfffW7D4OGHH/78889hbSEPl8Qat6knfYSAMwisWbOGsqAff/yR6XxmijU1melqZu7MVXBmFtkrzuCsWbyEAL7lp556iq499EOmPOeSSy5xp/a8Uy5cuBA9CQz17NnTnUpKKyFgKwKkqtx///0h7RISv+RfsRV8h4WLuthhwDWd2xGAf/bxxx9/8803p02bBvGJy9XlDfKFF16Azr9Fixbw/Q8aNMjlCks9IWAWAYyS119/vXjx4iSs0PXCXziHQtox/udo20MIyF7x0MWSqk4gQIkyNZCkhlSuXNmJ+UzM0aRJE3jqHnnkERoS4W4xIVIyhIBnEIBCeu7cuVQDBWgseyUAEK//qXiQ16+g9DeJAJS18N9PmDDBQ8aKtf6HHnrolVde6dy5sz//hEloJEsIuBgB+mBQExSgoOJBAYB4/U/ZK16/gtLfGAI0AGrXrl2XLl1wVBgT6qAg2G+bNWvWtGnT3bt3OzitphICrkCALK4GDRr492eWf8UVF8acEuLjN4elJHkZAXJs8SfD1kB5pP8tz1tr+vXXX1kFzZxpVOstzaWtEIgfAev7D0+SlcjCz7l9+/a9e/eOX7IkuAEB+VfccBWkQ+IRmDhxIjxs48eP966xAogXXHDBuHHjli5dCmFM4jGVBkLAWQT4/lPQR00QnhVrZuXbOnsF7J1N9oq9+Eq6JxD47bffunXrRiSFxkCeUDiMkqVLl6asqVOnTniMwpymQ0IgKRHInz8/+WdU+Vmrk72STFdZ9koyXU2tJUYEZs+efeDAga5du8Y4Po1h3333XZ8+faByod6SdonBZy1atOj9998P3h/nnu7du5OLs2TJkjjlaLgQ8CIC9DAnl+vss88mKiR7xYtXMC2dZa+khYz2pxACvJBVrVr1iiuuMLjmL7/88vrrrx81ahTkm40aNbrlllt+/vlnn3wI9e/552MHmz5dammhQmzLN502hEBKIUCVH8zUtDEXX1wyXXfZK8l0NbWWWBCAZo3sVJoaxjI47THkkWCU7NmzZ9euXRQbb9iwwT/vj/bOdC5Me3S8Rx599FFSWALos+IVqvFCwCMI4FZ56623YKaWf8UjVywiNcUXFxFMOimJEfjkk094D6NZmsE1/vTTT1gk+FSQSV/7fv36TZ8+nUYnvikyZMjAft+fxjdYzsmTJ2kwVLJkSePCJVAIuB+Bq666CpOFmCyJXER7Yb/94Ycffvnll1OnTvEv+pNZD8siYSNYFnPmzIl7lXRd968rlTWUvZLKV19r/y8C69ato/EyvXgMwgHhZs2aNX0CuXUSGyIT0LeHDW6U/n+a3aaHMzqsXbtW9opZYCXN/Qhgo3z88cebN2/+4osvKPpr3ry5v6ORCFGmTJlYBTtPnDjhv5xLL72UHw4/1aJFixJO4rfj6WpB/6Ulx7bsleS4jlpF7Ajw4kX/ndjHRzCSNzyiQgEtCa2SS1/hZQRiojgFsblz596/f38UY3SqEPAsAseOHZs3b96CBQuWL1+OvYJRQq0fiVyQyF199dX4MvGg8G+wBwXfquV94ccC0SImDp+33377yJEjmTNnJg+MJu28exQoUMCz2CSP4rJXkudaaiWxIXD48GHeq2IbG+EoUkmKFCni73GJcGA8p1122WWHDh2KR4LGCgGXIwATAZFWWpNSDcdbAUHYxo0blytXjqp+Qq6RKI+bk0gQn4CTv/rqK6gj+dBDFHYAnC61a9dGOL7SgDP1p2MIyF5xDGpN5FIEuM3ZGpqhkrlv376TJk2yyZWSFqy4sv3d4Gmdpv1CwIsI7Ny5c8SIETAFENOhuI/OX/fdd9/FF19sai24Z/jgnsEBQ3Rp5syZY8eOffHFF+ks1rJlS2Z0+Odsal2elqP6IE9fPilvAAGcK7hYDAhKQwT8KxCiFCxYMI3jdu3+8ccfs2XLZpd0yRUCCUJgx44dEATwg8KGgG6fIA78SXQOMmis+K+Mlxmy14cMGUKYCV/O77//jmFEaguT+ljp/M/Xtn0IyF6xD1tJ9gYCPNTty/OgZzINfXgbcx4LFiV7xXnYNaN9CFB217p1a1JiV61aBb0QhgvdSc1myodRHoclIaEPPvjgs88+I0O/Vq1aRJ3I1g8zRIfMIiB7xSyekuY9BEqUKEGDtKNHjxpXnVsqTuPHHnvMkszbGEFx3yzWy5lNr2jffvstWYQqDvKhrQ2vI/Dmm29iqVCiDHERZIwwDNkaxg0DV/HixWfMmIHVQp0RnAUtWrQg2zfM+TpkCgHZK6aQlByvIkAJAEaDPzmKkZWMHj2agPeFF15IiB3+3GHDhlWrVo0YjU84jmW2YUnx7TG4QcSdEglqMg3KlCghkBAEYHSsX78+jI73338/Fj9Jr4myVPyXj9VCki99UumwyDsP3AH+R7VtBwJn2vR6Z4eukikEbEKAkA35/xgWpuQjihB7gDR8yN98842Vprd69eopU6ZA1X/ttde2a9eOtD6zTA+E2LGHFi5cGKCD/hQC3kKA6uIaNWpgsmAZkOvqQuVxZDZs2BDbZeDAgW3atHGhhkmjkuyVpLmUWkjsCGA3dOzYESIW3CGxS3HNSBZC1SX2EH0AXKOUFBECUSOwYsUKfCpwAZDo6lieStRannEGr/0vvfTSc8899/TTTw8YMEClQzFgGMkQxYMiQUnnJDkCjzzyCB5mcmOTY539+/eHfIW30uRYjlaRmghA/nb33XdXqFCBNuZuNla4OhgonTt3njp1KmFfwlWKWtj0jZW9YhOwEuslBKCux7/CY54OI17SO5SuEOmSOtOjR4/zzz8/1HHtEwIeQICuXg888MDDDz9Mgm2EzG8JX1XdunVhhnzjjTc6dOiQcGWSUgHFg5LysmpRUSNACzQYHW6//Xa4MqMe7JoBcN9VqVKFptC0TTGbEOOaJUqR5EeA6jZSxfkxUobjua8xBhb+2pdfflm5LMa/qeK3NQ6pBHoSgYwZM06ePBnn8z333BOcKuuVJcEdTt4fUX/P3eW9grD0tBsBSJkpBaLXD28OXvwakzRGWj3+2rJly9544412w5VS8uVfSanLrcWmg8Czzz4LyffixYuhVUjnVPcdJsxPyTSU4dwr3aedNBICESHQq1cv+lfAw0bJXkQD3HcSbs5KlSqR9r5x40aFZQ1eH9krBsGUKM8jQK+QOnXq0OKVPmc0d/XQeri/00iWYgq8RCpP8NCFk6r+COzbt49OyHQy93oKCDFZ2g9he1Ex5L9AbceDgOyVeNDT2CRE4Ndff6UqAY/u+++/7xV3rlX2eeutt9LT5Nxzz03Cq6IlpQYCFNcsW7Zs69atSeCWoLyZzHeaBtjU2Cg1vhGnrVL1QafBoT+EwAUXXDBv3jwoH+hKT4TF/YC88847GFh33nknyYkyVtx/vaRhWgjA/kxJcLdu3ZLAWGGNBJfpzU5j9rTWq/3RIiB7JVrEdH7yI5AlS5b33nsP/hL6FFIYTJDInWuGwZb+tASwmjZt+vbbb3ul7NOdYEqrhCMAwyHfYeMkh/RV7tOnD23SYZ3GgPBfZphD/qfFtg35JGuhKUdswzUqBAIw2+gjBIRASASGDx/ODZRu8l9//XXIExK4c/PmzdR8Zs6cmRe4BKqhqYWAKQQIaD7++OOmpFlyoPOnK2GuXLks1yONfk6cOJHuIVM60MaLhy7dGU0JTHE58q+EsOG0SwhYCLRq1QreKrrYFy1atHv37qS2uAEZbrhkI3LnPeuss9avX0+jWjdoJR2EQDwI8OPiy0zOeDxCgseOGzeOcj+yX+FRxNuxYcOG3r17W6eFORQsJ7Y9pUqV4o3Cslpik6BR/gjIXvFHQ9tCIBABurByG6U5yJAhQyCUg7P/t99+CzzJqb8htUMB6g7Gjx9Pm5JVq1ZRTOHU5JpHCNiIAJYE8U1cLAbn4E2jTJkyFjcBhC79+vWjdM7qxB7mkEEF4I+hlyrNTQ3KTGVRsldS+epr7REhwE2nbdu2NLIno6VTp06YCDRiPXToUESDDZ20f/9+iFXo8Ny1a9f69esTn0Ileh4ZEi8xQiDBCOAC4YeWN29eg3rQZ6NmzZo+gTQBhdMlf/787AlzyHe+kY1rrrlm7969RkRJiOwVfQeEQEQI5MyZc+jQodQ5165dG9OBiDgsnLRk46UwovExnYQvZ+7cuTRS4VaLg4dqz507d/KaeOmll8YkT4OEgEsROHz4MHW/tlIHQeNGVAgC62AIwhwKPjmqPXQedfjdJir1vHWy7BVvXS9pm2AErrjiCjqDwGoFDS62C816Lr/88gYNGtA0BBeIKeV416RWgmZv2bNnx6lDneeECROYFN7PbNmymZpFcoSAexA4deqU3QVuNCOEp8Df4+JbfphDvnNi22BRLsl7i01/V41S/yBXXQ4p4w0EqDigkIEP9ZAzZ86cNWsWMRr6nuBqpkkbybncFvE8EzKPZD3k/GOgUMhAyQ+flStX0u/tvPPOo/8IeTPYKxhJkcjROULAuwjgXDly5Ih9+lPJjLlPMV2wCyfMofj1wW+EiyV+OZIAAuK31ddACBhA4Oeffyb7FZ5Z6om2bNnyww8/IBSbI0eOHESO8MEQmydkbt0rcT4fO3aMu+SBAwewVPjXooXgTAwd0gOpoOZfmOsMaCYRQsALCBD3rF69Or8jXgbs0Jdav3vvvRdGpWDhYQ4FnxztHrykuI54pYl2oM4PRkD2SjAm2iME4kIAR0vnzp3vu+++3bt3EyQijoNFAukcJQm4UhBNHXLWrFkhhCDckzt3bqwZEmkLFy4s3u64cNdgLyOAq5JkW1p3YawbXwdVdfziHnvssWDJYQ4FnxzDHvJtYRyAdjKGsRoSgIDiQQGA6E8hEC8CdDj77LPPqDeOV5DGC4GUQYCMcuKnOCmN2ysU/+PX9BkrvDNs27YNUgCgDXPICPC8qJAgf9tttxmRJiHKt9V3QAiYRIA82WHDhtlaNGRSXckSAq5BoFKlSvTAMqsOHQdhxIcaHzJ+ktb5bVarVo0EdmYJc8iUDiyH8JbsFVN4Kh5kCknJEQJnbNy4kbwTwtWQRK1du1aICAEhEDkCBIPKly/PjwiSxshHhTkTG6VRo0YBJxB7pbJv4sSJaR0KTsgNkBD5nyVLlixWrBh2UuRDdGYYBGSvhAFHh4RAFAhQ3XDDDTeQsEL+iuyVKIDTqULgHwSI1JDFVbp0aYyJJIBk6dKltBeAjF/+FVNXU/EgU0hKTkojQMlP3bp1KQvCWAEIK682pRHR4oVAlAjg2OjZsycRVTpgRDnUdadzB+jYsSP8TDJWDF4b2SsGwZSo1EXgueee+/DDD62yZFCQvZK6XwWtPA4E6tSpg2+SXhPU08UhJvFDX3vtNToiwZ+UeFWSSAPZK0l0MbWUBCEwZ84cOPL977CyVxJ0KTSttxHAxULbZJ70tLzw7kpo79W+fXt6jZG84t1VuFBz5a+48KJIJS8hQG1kiRIloNz2t1FuvPFG7rleWoZ0FQKuQWD48OHt2rWDI594imuUilSRo0ePwkydJUuWjz76CI6lSIfpvAgQkH8lApB0ihBIA4ETJ07AC0f1sr+xwrkBf6YxWruFgBAIgQCEs3CsPfjgg7BFhzjs4l28t8DSe/z48enTp8tYMX6hZK8Yh1QCUwUBjBI6HdLrx8qx9V+27BV/NLQtBKJCgKjQmDFjKK6BQR8GuajGJvBk3l7uv//+L7/8krbt8FYnUJNknVr2SrJeWa3LdgQIseOy9uXY+s9HuZD/n9oWAkIgKgTot0XPcwIrFStWJD8sqrEJOZnaQMhjNm3a9MEHH1x33XUJ0SHpJ5W9kvSXWAu0BYH58+d37949LbtE/hVbQJfQVEKAfp/ww8LqVrNmTSqGQr4YuAQPmO5uuukmmpjS8ZRsNpdolXxqyF5JvmuqFTmBQLZs2Vq2bHnJJZcwWXCgWvaKE9dAcyQ7AmefffaIESNGjRpFefCdd95JLx63rZjcNd5bKlSoUKpUqXXr1uXPn99tGiaTPrJXkulqai3OIcDrFFUMBw8eXLhwIaQRtFwm6O4zXGSvOHclNFOyI9CsWTO6W+C9KFKkSK9eveh34ZIVQ7lE64CBAwfS5HnmzJnqr273dZG9YjfCkp/MCPD+d/fddxNiJ9w+adKkGjVqnH/++cm8YK1NCCQCASwVCAJgv+3fv//1118PYX9wkruTetHkiCgVP/yCBQt+8cUXFDQ5OXvKziV7JWUvvRZuDIFp06ZVrVq1fv36FDEeOnRo6tSp/GlMugQJASHwT9T1mWee2bp1K2mtTZs2pdMQQaKTJ086jA2sKryWkKSyZ88ekthmz56dN29eh3VI2enEF5eyl14LN4MAvemvuOIKmp489NBDZiRKihAQAmER2LVrV58+ffjRnXfeebwnPPbYY7D4hx0R70Eiv7yWvPrqq5Qrk6rStWvXatWqEQKOV67GR4OA7JVo0ErcuXAm8mKxb9++7//5/PTTTxAT/fbbb4RyrQAEoVN+ujly5MiVKxf/XnPNNbRNJ1qROJVTZeaRI0fS2OzAgQOZMmVKlTVrnULABQgcPnyYwBA2xPbt26+66qpatWpBf0J75wwZMpjSDvZqEtTITVm5ciX1So888gjJNKoAMgVvtHJkr0SLmEPnQz1EI3J8j59++inxUawUJiap8/LLL8+ZMydlKRkzZsRSIcHTKvPDoMF2gQMAm+aXX37hZH5d0AAULVq0TJkyd9xxhxLXbbpyYAs3FDEgm+RLrBAQAuERoJ8zJgWfr776CmMFXwu/SjJhyXrhvkduWfjh/ke5hW7ZsmXz5s2rV6+mOJk/s2bNiisFY6hy5crcdf1P1rbDCMhecRjwdKbDnJ81axb8SJgpJJQVKlTolltuIb8Ms4N4LXGHSH57eF927NjBTw7XJUlqcFpjwTCWpApyxCi9U05oOpch4sN79+7lxY4YNqz8EQ/SiUJACNiCAGTTvOPBhgIrLk0HaUGK1xlPs+V45mUPgyNz5sy85rGf3BeqkfmXnDPsEn7LfPDZoFn27Nktowe7h0rASO66tqxHQk9HQPbK6Xgk6C+8Izg2aUyKaQ+xB17NSpUqlStXjh9Y/BrhgIEYYNmyZZhBbNCI64EHHsCrSRQ2fuEpLmHQoEGw3HKzkwmY4t8ELd9tCOBv5oWNzzfffMMvFMczQVti6LiuMVP4YLhgtRDGxV2N0/rKfz68FvJyyE3YbcuRPiAgeyXBXwMcKv369SOTCxOe4OjDDz8MBbV9eSe8QOA1xTCCN5oewjRBZVL7pkswuPZPz7vXDTfcMHbsWPun0gxCQAgYQAAel9dffx3CXAOyJMJZBFTP7CzefrMRaq1Xrx6xnjVr1rz88suY/6NHj6ZUz1brgWzcNm3afP755yTHkN3SuHFj3icgDsFx6qeaNiNCgPc2AueYmBGdrZOEgBBwAQKTJ09+4403XKCIVIgaAdkrUUMW/wCySXr06EE6GKRD48ePx9VBdIYwTfySI5dw2223UQ1IiBeW68cff5xgLfllkQ/XmSDAXY84Nyam0BACQsArCMDuT1h8//79XlFYevoQkL3ig8KhDarjyKIdOnTokCFDSIlt0KCBrQ6V8KuC6YhqQAymiy66iDIiWBqt2qLwo3TUQoD+sXCuKBdP3wch4BUE4PUnowVt33vvPa/oLD19CMhe8UFh+wYZXvAzVqlS5fbbbycY1KJFC+qTbZ81ggkICdEIg6jQm2++SRIuOb8RDEr1UzDyqDNXMCjVvwdav6cQGDNmDMVB3HhJ4/OU4lL2vwgo39ah7wFlctWrV+chN2zYMNgYHZo1yml2795NSg05GYSK4BuIcnRqnd65c2fiQdRPiuMytS68VutZBH7++WcCuDBtsgKsFu7JDkfhPYucWxR3xfu9W8CwTQ+eakRb4HzDG+laY4XV58mTZ+nSpSTh0nCYNu624ZEMgt9+++26devKWEmGa6k1pAYC+I99vZ1ht/rggw9SY93Js8ooiP+SZ9HOroS2WJAOXXrppUuWLKHK39nJo56NbIzhw4dTRtS6dWuIW5566qmoRaTAACj4KA5SMCgFLrWWmDwI0DrDtxiyBuGjkhfZB4gnNmSv2HuZcDnC4gyjMwkisBLZO5k56Z06dYJMicpn8nDd7BAyt+LoJMGXQ9I0zCvRDdPZQkAIJAgBihuox/RNjn8Fe4V/lS/vw8T9G4oH2XiN/vOf/1A/QsUNNUEeMlYsRJ588skOHTpQaE1nABsx8qBoLus777wj54oHL51UTl0ErExb//VDHAdtv/8ebbscAdkrNl6gAQMG0MyCqld699g4jW2iId6tWLEiD+bjx4/bNon3BNPZAHI/Uny8p7o0FgIpiQA5tjQ8sVrD+gCAjP/dd9/1/akN9yMge8Wua7R169Zu3br16dPHu216SCaFuZ92G126dLELJg/KJRhEQ3mKwD2ou1QWAqmIAA5RioMCVg7BxPTp0wN26k83I6B6ZruuDg17ybSlPbJLSFZiXueECROaNm1KJTb8/TELSZqBvKKRNP3ss89CpZM0i9JChEByIwCdN7WZIbuOwKKkO5tXrr78K7ZcKbrzwJ9IPMjrxgrowMBLk6Pu3bvbgpTXhJKKdOTIkQcffNBriktfIZCiCNBTloK+kMYKLCxk3aYoLh5ctvwrtly0Rx99dPv27TQyNC590aJFvOLfe++9PslHjx59//33fX9aG8X++QTsjPlPeAuwWnAX5ciRI2YhyTGwfv3633333YoVK5JjOVqFEEh6BHCFDhw4MK1llixZUiUFaYHjtv2qZzZ/RUg7h+x58ODBZkUvXrwYhw32Cr0S/e0VGgDBtRowF2xmWCwBO2P+s2bNmhdeeCGE/R07doxZSBIM/O233+bOnUtOUhKsRUsQAimCwPnnn9+wYUPqNKkbIPGWGojcuXNT5Uf+Cn/SfuSHH37Qm5gnvgyyV8xfJihiebAZrx+BIffaa6/Nly+fv8Z///03/kyyxooUKXLBBRdw6Mcff7zrrruqVq3qf1qc2xkyZMBkIcKV4vYKxsrJkycfeOCBOPHUcCEgBBxD4MUXX/TNxcsknFKvvfbaPffc49upDa8gIHvF/JUieaVo0aIXX3yxWdEYDVdeeWWATGITo0ePLl68uG8/Dhi8LxkzZvTtMbKBtTR16lTeSCgCNCLQi0KIi2ELXn755V5UXjoLASFg9Z83fnsUsM4goHxb8zjTL9CmGmY4pAPUzZs3r7+xwlEiQcZdO4gtXbo0TiNy6QMUSJ0/cSYvWLBANHGpc8W10uRDwLJXLFd08q0u6Vcke8X8JT5w4ECwI8TINFZ3vTA99g4dOkTuWJUqVYxM5y/EWhFL89+ZUtuzZs2ixKBGjRoptWotVggkEwLyr3j6aspeMX/5qHdNFPs+z1TaFdnx9kC+LZEg2iGZx8sjEqGJwxBM1JX1CEhSUwi4GgESbNFP8SBXX6S0lZO9kjY2sR7B/0Hyeayj4xpnUzAInUjs5ZMEdDKx4Yvjio6VCgbFhp5GCQGXICD/iksuRGxqyF6JDbdwoy699NKE+CGY1KZgEKv96aef4H257LLLwq08eY9hCEItVa1ateRdolYmBJIfAdkrnr7GslfMXz5K+ffu3WtebnoSCQYRsKCMKL0TYzlurShlWQoIBt1///2ZM2eOBTuNEQJCwB0IKN/WHdchRi1kr8QIXJhhFAdB/xzmhJgPEZFhrPVvsBB6etlRGWRNtHr16kyZMqVmk7/vv/9+5cqVCgYFf+W0Rwh4CwHsFejjggstvbWKlNVW9or5S09vra+++urgwYPGRUN/gkwoy4Ilk+RLMIhk2+BDRvbwwKak+ZxzUpGwB9oV0o1FMGXkiyQhQiCBCGCvKNk2gfjHObXslTgBDDG8fPnyWbJk4SEX4lgcu/BwtG/fHgHEfUaOHPnnn3/6C5s9ezbBIF4d/Hea2sZCQj4BEVMCvSWHYFDt2rVtwtZbUEhbIeBpBKgPkr3i3Suofoe2XLsnnniCkNCmTZtskR5KKO0VidfYxPsybty4Vq1a7du3j1TiUJMn875vvvkmf/78sAZXrFgxmdeptQmBFECgd+/eEydO5G6ZAmtNwiXKv2LLRW3RogVttOh6aIv0UEILFChgk7FCEOqll14ieyMFjRWQfuONN6iKwmcWCnXtEwJCwEsIyL/ipasVpKvslSBITOy48cYbecDTNpkaYBPyEimD/s8UB/Xs2TORSiRu7rfeeuuhhx5KzcSdxKGumYWALQiQv2IHnaYtukpoEAKyV4IgMbQDx2MSPOZ37drVrVu3tm3bXnXVVYaA8ZIYInq0TKpbt66XlJauQkAIpIGA8m3TAMYbu2Wv2HWd8uXLN2jQoL59+y5ZssSuOWyWS0pvvXr1cufO3b17d5uncql4Mm1Z/q233upS/aSWEBAC0SAgeyUatFx3ruwVGy9J8+bNaY/H2/nXX39t4zT2iIblhaxhHAzTp09PWQ8qtLZcvjANJu3BXlKFgBCwBQHZK7bA6pRQ2Sv2Ij1p0iQcLVB3wDlm70ympZN8M2XKlIsvvnjIkCGff/65afEekLdmzZodO3aIJs4Dl0oqCoHIEFC+bWQ4ufQs2Sv2XhhqjN977z048u+44w6veFlo1tiuXbsBAwaMGjWqTZs2S5cuveGGG8qUKYPtZXU3tRcy10iHQadgwYKkTrtGIykiBIRAXAjIvxIXfIkeLHvF9itANezy5cspBr799tvhfLN9vvgm4PdMBARLhTrexx9//JlnnoGrAObc66+/vlmzZjlz5uRfJ3ll4ltN7KMx2uhvIOdK7AhqpBBwHwLc31I2uu2+qxG1RrJXooYshgHZsmUj6/aWW24pV65c//7902oAFINks0OohaH50eLFixcsWEARr094yZIlqWr+9ttvCRJ9+OGHxYsXv+mmm8aMGcOP33dOkm1gYsKPZ18/piSDS8sRAp5AQP4VT1ymtJSUvZIWMob3ExiaM2cORc5du3YlnQXWVMMTxCeOUiDyVG6++eaLLrros88+C0mPdvnllz/77LO4Wz744IOrr776ySefhKEOd8vmzZvjm9yNo6kMIhJ03XXXuVE56SQEhEBMCMi/EhNsbhkke8W5K0GZCeEVGgeSe1u0aNEXXnjht99+c276tGdCJTwonTp16tix47Jly/LkyZP2uWecddZZMNNTNLR7926G4IwpVqyY5W5JmuwWWP5mzJihYFCYr4EOCQEvIiD/ihevmk9n9Q/yQeHcBs6MESNGPP/88+ThPv300+S0JiqkSuEPLh8SNe68887hw4cXLlw4WhTI8yDURWyIhoj4kAigsBySXdKVw0BMn3RPi/+EAwcO0Bvhyy+/JJ7F9p49e2idTZMB7lynTp1C/nnnnYfm5557bvbs2XPlypUjRw7azQ8bNuyjjz4iOha/ApIgBISASxDAf0wlQdOmTV2ij9SICgHZK1HBZfLkH374gVwW8kL4CcHUQnLrFVdcYXKCtGVhMFG1RJNnIjuQoUEHR4gq7dMjOrJ//34KiFgOlLh4a+BuefTRR8PYYZDp/fjjj/DpGWc3+euvvzZs2IC1QQ4KCc6HDh1iAWQ9E8PCFrEsEmwU2rRaLZexXWhAjU8FawZKYq7Lzp07sWkYdckll5B1RG0XH4JlYuWP6Kugk4SAWxHghz9hwgRoMN2qoPQKiwC5n/okEAEe8ySFkJDLs/D+++8nbeLEiRP26bN+/fouXbqQd4Jvo3LlyuTVmp0LWwEb6MEHH2Q5cLfga4HCJHgKnCtYD3wxGzZsiLkQfEIMe4hGzZ07t3HjxpgmSAbS2rVrv/zyy0SsMESiFYiVg99o6NCh5B1TFYVAloMFRg9LHDPRStP5QkAIJBwBbjX8kPkJJ1wTKRAbAmfENkyjzCJAIgv1w+SFEIkgSFS9enWiM+Sx8lyPfyIevQRrnnrqKZjr+LnSCYgyH1wI8UsOI4EcHbo6M5cv38XfLsEUQBM+rJdQ1LFjx8KISvfQ1q1bWR32BK6a0qVL9+vXj0InI9D5pt62bdvgwYPLli3Lci688MKWLVtS1O07qg0hIATcj8BPP/3EPWf+/PnuV1UahkRA8aD/PjXd8zl8+DBlRHyIZfAUh7WFMATJuUWKFKFWhVgGRTrhAyiENghq4NUgaYPPxo0beXgzBCFVq1bF5UCwxrH1YjRY2S2zZs3C7YE3hTgRnhXSXDChrObVJI6wZ9GiReHzfEPqTKZwr1698OjkzZuXmHSDBg1wHYU809ROXDVTp04l7EWdFEEimkFiZZoSLjlCQAjYhwDObGLu3Fr55do3iyTbh4DsFfuwjUsygRWSYUnCIIKDwUG6qJUcytMdk4XMUF70SXyx5sA9QzSEOAWWCuEkayePf/JeKd6Bpw52WtwPcSkU32CKicaOHTtu3DiyQyiW5pbBAn0iWRRrWbhwYeRkspDlE9jCGILShjKlu+++G0B8Au3ewPZnatKPMLOAt0+fProD2o255AuBOBHAqXzNNdesW7eOesY4RWl4QhCQvZIQ2KOelKc7eawEWbBIeMXnwyPTcm8iixASma188C6QbMG/hH6yZs0a9TQ2DyDPlxQTolG0JsD14j8bgSFS4agirlKliv/+4O0jR44gAesHI4yacOyV4HMc20M+b48ePXDw1K9fn7oDTEnHptZEQkAIRIUA/mbczLz+iVcpKtzcc7LsFfdci5TQBDOL6A+lxcGrJWjFh1YAxIyCj1p7KGsio5Zk3oEDBz7yyCNpnebwfmJbbdu2PX78+OjRo/15gR1WQ9MJASEQBoG1a9eS38aLH+HjMKfpkGsRcM6F7loIpJiTCBBGCWmsoAOmDE4XCHOJ77AdoBXhMJJqyUS+9957SbB1j7GCnjVq1CBgh4uF1ktNmjQhMBegvP4UAkIg4QhYP0yIDBKuiRSIDQHZK7HhplExIoD7hGyV8IMJrJCZa2XjWmcS+YIhBuKEKVOm8K8LQ10wzkExR1oxHyqeoJYJv0YdFQJCwGEELHuFuLnD82o6UwgoHmQKSclJHwHSbnLnzk0uDtkqvvRYfCrktQQ7VHjqE2eheJi+g1DFYLJQiEidVPrTJPQMKrPQlsAW6cMWx0xC1dHkQkAI/D8CEHlDDcXdhvuPQPEiArJXvHjVvKoz9goVT7zlUM1EtTal12xT0MSHbfZglHCIbXJB8K8UKFCA4mGKn3n8Q22HreOJlbNMglbkBX/88ccW15wn1JaSQiC5EYCAm9w4l3RtS26obVqd7BWbgJVYAwhguFixFR78jjUrMKD3GWfAowO5HJEv7DMXRq+MrFFChIC3EIA2idJCXiS8pba09SGg/BUfFNpwHQIU3UCZAMeJt4wVcIToD4cQzMKk37oOVikkBFISAby5Srb19JWXveLpy5fMysPFMn78eCjm8ufP78V1wtf35ptvkn4LVYwX9ZfOQiDJEMBeUbKtp6+p7BVPX76kVZ78lRYtWlDbTA9I7y4S0ttnnnmmffv2Vrdn7y5EmguBJECA3Dj5Vzx9HWWvePryJa3y9Eokjb93795eX+Hzzz9P/go8vF5fiPQXAl5HQPEgr19B2Stev4JJqD8JcUOGDOnatesll1zi9eXhf+7evfuYMWNopOD1tUh/IeBpBGSvePryobzsFa9fwSTUnxpm2Fnot2zH2sjeff/99wMkU4g0cuTIDh060O1527ZtAUfj/PPRRx+lm+PEiRPjlKPhQkAIxIOA7JV40HPDWNkrbrgK0uE0BHi004UnS5Ysp+2N+4/FixdDksvn008/9RcGF23x4sUhpsNYoc9zzZo14anzPyHObfo4QtX/+uuvxylHw4WAEIgHAeWvxIOeG8bKXnHDVZAO/0Pg6NGjGzZsoCPP/3YZ2qKfMwQMwcL69etHCRImBbEb2qHhDiFJNvi0ePZgA8F7m1bjpHgka6wQEAIRIqD6oAiBcu1psldce2lSVLFVq1ax8ltvvdX4+jNkyHDllVcGiyWzZP/+/b6GAHQC4szg0+LZc9NNN+FlsZYWjxyNFQJCIGYEFA+KGTqXDJS94pILITX+H4EtW7bAXHLZZZfZgUjIviF33XXX559/TiEPM1KURPYMjaDNzo7npnDhwps3bzYrVtKEgBCIHAHZK5Fj5c4zz3GnWtIqZRGAEzZ79uw2LZ8+REi2/vVN0ahRo2nTpr344ot79uzhEIy0jz/+uO+oqY3LL7+cpZmSJjlCQAhEi4DslWgRc9v58q+47Yqkuj7kr1x88cVOokCXHyqGaFREnu+mTZtsYqijNluNS5y8rJpLCIAAzJPcUnbv3k1nD2K+eFj5k8RbgeNFBORf8eJVS2adIaB0/m6ydu1aWhSRZjtgwABSbmlSaLwXNCXTVDUn85XT2oRA4hD4z3/+Q0o7Idcvvvhi69atJKV9/88noBszR3v06IGa/Bj5yfPJmzfv9ddfX+SfT44cORK3As2cPgKyV9LHSGc4iQCdAh2Om3zyyScNGzbEs0JJ81VXXfXkk0+2bNly7ty5ZlfNoq699lqzMiVNCKQ4Ap999tmSJUuWL1++YsWKn376Cd6mq6++GvujRIkS9957L+YIcVh8KpAjnHPOfx92vAthwfCxrJl9+/bt2rXr3XfftTpmXHPNNfTQKFeuXKVKlRib4ti6cPmyV1x4UVJaJZJtv/vuuz/++IMwjTNAjBgxolSpUhgrTNeqVStcxy+//DLmhdmc32+++ebBBx90ZkWaRQgkNwIff/wx/VBpJgpHQLZs2TAyaHlx2223XXfddbF1NOT3jumzcuVKTB/alP7++++33HILNAR16tThjpTcYHpodcpf8dDFSglVqWQmLY6CHTtWaxUt+0qXrSkOHDjgXzdEk0WsJbMdCr/++msE2lGkbQdKkikE3IkAHpRhw4bhPoFLaf78+XXr1l23bh2/33feead169YlS5aMzVhhsbyc4FPp2bPnsmXLSHCBMbJgwYJ0McuXL1+1atXwtv7111/uxCSltJK9klKX2wOL5TbBvePDDz+0Q1demxBLKom/cAqC3nvvPV/SDK9Z0N0WKlTI/5w4t3FZcye98cYb45Sj4UIgNRE4fPgweSfkmnTs2BG7ZP369SSp9OnTB2ajgHK/+PGBfum+++4bP3487xgLFy5EPjn4BHPpAgbfQfzyJSFmBM4MeNeMWZAGCgFTCBCUwV7hfmT2TrR69eopU6bQJ4hbT7t27Z544gkrpM2bU7du3ebNm0fHIojjCNxwH+S9ytRykINvmUmZ3aBMiRICqYAA3lZ+j6+88gqZ+HT4wv1phW6dXPv27dvxtfD7Jb+tb9++DzzwgJOzay4fArJXfFBowy0I8PLEaxOBZMLSjul06tQp6gugfiEcbnbSjRs34lnBAoOYzqxkSRMCyY0AmbBt27YlQPPcc8+RBQ/3dALXS0U0AaPJkyfTZYywFE08EqhMak4teyU1r7vbV12+fHncHuT8u13RCPQj/o3bhiaLZt1FEcysU4SAVxE4ceIE3hRCMPx88Ika5xeIGRd+yC1atICGG48LtlTMcjQwBgRkr8QAmobYjgBpdPCgkEZXq1Yt2yezcwLcKhUrVvzggw/41855JFsIJA8CuCQpzCG7dsKECZQlu21hZLHgaCFKxd1p3Lhxzsen3AaIY/rIXnEMak0UHQKPPfbYggULKBSCQSG6ka45mxvuDTfcQDCIwkvXKCVFhICrEVi0aBEJIkSEyRdxMwnK0qVLH3nkESjmSH3LmTOnqzFNFuVkryTLlUy6dUCkDekTaaqQ5fvXG3tloWSy845IT2ZMLrNULl5BQHoKgWgRgPsE8kYKlceOHesYA1O0SvrOh/2lSpUqsM/hQOVO5duvDZsQUD2zTcBKbLwI4GV94403yLqFcDZeWYkY36lTpzlz5vCOKGMlEfBrTu8hAK1AgwYN2rRp8/rrr7vfWAFf6quhmCND/5577iFHzXuIe01j2Steu2KppC+0s3ROfu2116g39ta66UPEBwoH2ih6S3NpKwQSggBtMfBH0iydH46HMtPpH0I86LzzzsPR8vPPPycEutSZVPGg1LnWXl0pOXcwozRv3hwOBvcHhggDde7cuX///pD6q3zAq9856e0sAlamFz0HcUm6/zcejA0tRG6++eaqVaviGQo+qj2mEJC9YgpJybERAfJV69WrB+3BxIkTs2bNauNM8YmGORcaurfffpvoO57t+IRptBBIFQQefvhhyAs8nelFmh2suISwWUuqXDbH1yl7xXHINWFMCNDhjH6B559/Phl50MXGJMPeQdxtuVXROI17Fr1I7J1M0oVAsiBAsiqvIjDf86+n1wQx98yZM2kWljlzZk8vxLXKK3/FtZdGip2GwO233w4rQ+HChSG9ffbZZwN6AJ12quN/UCAAHwNWFKXXtB+SseL4FdCEXkXgP//5D5np1atX97qxwgV48cUX6VA2cOBAr14M1+ste8X1l0gK/osAZPk4XcliIQMXw2X69OkJ736FAlCGE3cfNGhQr169YIfLlSvXv/rqfyEgBNJBgJog3kNoypPOeV44fPHFF8PJS+Kaq96mvIBcpDrKXokUKZ3nBgQoHIAM+6uvvqpQoQIkDTRShgOXVzTndcNSocs8SXY1atTgX7ozcqvyYqqg89BpRiHgQ4AaOvpqXXfddb49pjbgneP1JkAabdinTp3avn37UaNGHTt2LOBo/H+SvkYnshkzZsQvShKCEZC9EoyJ9rgdARwtFA1t3rwZ9lhSRgoWLNivXz+avzujN7c52ppgKuHE5o1q7dq1pNRceeWVzsyuWYRA0iBAI0OKgalhNruixYsXQ4jCh14//pIPHz7MTjLMeLXYtWsXdAnU9fifEP825c3cFiZNmhS/KEkIRkD2SjAm2uMNBHgn475A4zGYD+g9lidPnpo1a8LPRm2kHQugAdtbb7310EMPwb3N/e62227Dj02qIMThdkwnmUIg6REgiZ5ePJUrVza70jJlyrz66qvBMnGr4AGFZYCfMHeMDBkywE0XfFqce7gdwWpNIkuccjQ8GAHZK8GYaI+XEChUqNDQoUP37ds3evRo8l4ff/xxkl6JFpEAu2zZMty/8SwG1y5llr179+a1DKdO/fr1jxw5QgKNNR0ulniEa6wQSHEEeK7z+73kkkvM4oAhEuzvxC3Kyww/ZGuus846C78OyWeU9ZmdnTcZbju8zJgVK2kgcI5QEAJJgEDGjBnpj8gH5wpBa0LXEDf16NHjnHPOoa9H0aJFr7/++nz58tE+jQ8GDXe0TJky+Rb+yy+/YOscOHAAUm1skd27dxNswnOzffv2P/74gxTacuXKEfCGXwF/r2+UNoSAEIgHAUp/yVWPR0JaY4Mzyfgt//XXXxdccIFvCDn7bFPQZ/bFo0CBAtDdMh3xJt9c2jCCgOwVIzBKiFsQuOiii2CW44NCe/bsWb16NZbHl19+SZIdf2KU+CvKbYXXrICdULzQ8QczpXHjxtzISpcujaHjP0rbQkAIGEGAVBLLaDAizV+Ixejvz+tPPzJOwIzwnWbZLryc+PYY2WBSbiAszYi0hAgh9s09kxoC7pm8xe3duxfvFDsx+GhDS2snCGZ4FYS6E68zwTW8WbRSwvTkVskd1T6dZa/Yh60kJxiB3P98aEri04NoDh4UfoHYKNQcEu6htojbFu4ZPC74XegOz73mm2++yZ8/P2ULYlLxQacNIWAcAR6BlhlhXHKwwGuuuYYUN7gcCe/yVsMJP/zwA//yqw8+Oc49PMjtKD6KU6sww7kN4k6muSyf9evXk4ZM/SM3Ru6g3BL5F4skS5Ys2CIsjdQcbp4kHrFG7qWYNd9//z1gMoQbKVYLXFk4pMuWLWs80id7JcxF1KFkQ4DfDx9iQ+EXxq2tZMmSZNfKXgkPlI4KgXgQwFjhfT0eCZGPxR8Ab1Pt2rXJ0yfxFlOJvhkMT/duEPkUvjOJSlsmkW+POzd4YaOWim4n5PH8+OOP6IyRQUk2mFjOEn8HVfgl0OsRlwzObPKBlixZQpIf5xMRowaiVq1aBOXDD4/wqOyVCIHSaamFAGXSsFWOGDGC8FBqrVyrFQJOIUA2mJNxEyh0eaDOnz+fHzUPUWqIcKPiDDC7XNwM+HFdnuiGN4UCBRKQsRehj8KAIxO5WLFiMUdziBBhnfCxwKRS/aOPPsIMots2dOTsb9asGTdVHDDxoG1jqCketTRWCCQWAeqW+SWTt5tYNTS7EEhiBHjt/uKLL5xcIGkWEE6SmkbxILEM3kkidyFEqCdJxPgtsIQiPN/h0+jTRLCGEgRubl27diV9Z82aNZgUcFnFbKwELwFiqvvvv3/cuHHEiWD9Bo2WLVtS69CxY8d4iLJkrwRDrT1C4AxqgnjxmjZtmrAQAkLAJgQo/SX7AW+Ecfk4OZBp/RssnMQLGCZHjhzpn9wWfFpseyCVIfPjxhtvjG24faMgi7r11lthu8EXwva2bdvgkbK7fwiFWiQC4sghabdz584wZl199dXPPPNMbBdd9op9Xw9J9jYCuFjmzJmjViDevorS3sUIYK/wPLPDi2nRtYX88ZKoceeddzZp0qR58+Z2YLNgwQJan1J7GIlwEl2pwbE7iQdb4YEHHiAcRpQKPm4YHypWrGjcsRR+vdQx4MXZuXMnfdYmT54MKTmtGNIyKNMSdWa0A9ISpP1CIMkQ4L6GA5NCaDtewpIMKy1HCMSGAOz1FOuZNVlgMeCFHvcJ8aZ27dqRQEqyLerxqCYMBAMkryJwP8amcPhRUP5TSgNXU0CTAZ6zVCZ+++239AHgXz47duygDpGdFNpQZW1f/IjmIaSnUOYzbNgw41TC4dFI6yj22fPPP092IIYdV+qqq65K68yA/bJXAgDRn0LgfwjwRkIVn7qX/Q8RbQkBowjgwiT1lSwWiG6NCg4UhsVApIb8FewJ+1wLhJnIiaETKskxll2CRwHTBA+H5fIhRwT+EtwqMDxZKlIkRT2RHSohtmnTpjNnzsSxgX0AZUMgKAn9GwrgRx99FGTGjh1L3VYkusheiQQlnZOiCOCxbNWqFSljsA6kKARathCwEwGe3HTg4g2bqlo753FCNkUxeHQwEbBFaBKC4wTrhAWGmRszhdCMWfeSNR3WEt4UTJaJEyf6uhCE0SQhh3CtYUuBFf/27ds3XaNN+SsJuUya1BsI8ObHaxmvgN5QV1oKAa8hwBO9T58+s2fPhrTDa7oH6tu9e3cCT126dBk0aBAFw5ThcPcI/wzG12K8oBq1aDJAai0tR/BhuNZYQU9cPjC14F8BMew8LLxATE//W/bK6XjoLyHghwAESvzaIY7z26dNISAETCKAGwBWMZp/xVYzYlKVOGRRJzx8+HDoRizGXvJJly5dShczKnsxStISTJCI4mf4ZNM6IYb9BNfw2VCxTLIOaSsxSHB4CE1qMVjffPNNMo2w8MLMrnhQGHB0SAicAYF3w4YNaYJIpwzBIQSEgB0IYKnQqwtSaZItDLKA2KFqSJkkYRDVwkogezTgBCIyVm4plVC+nBX/c3DJ4FegLQCkanQr4wOBW8wBaPhUcNhQM0yZktUgyX8uN2/D4wdly9NPP/3SSy+lpafslbSQ0X4h8F8EKInkVoK7En5GISIEhIBNCKxcuZL2FzC5UTZi0xQ2icXYgsYeM4t83rTaIW3YsIEKarjqA9JZaGkEjT3hG7r2WB/+RE+aCJYpUwbLAxsO8yVClm3sIYaQFEINVMwWj00oRSIWa69BgwY4WijgCnm+7JWQsGinEPgfAvx4qG1Ogvj6/5akLSHgPgQICkATAgUqLQnDp324R3dybKtWrUpZMsYKlUdhFMNS4XncunXrX3/91XK04HHh3gJjgv8osvvXrVtn2S6rVq3CGCKcBFO+ZbtgvtD/KC1wOnXqREyKsUSj/GV6aPvJJ58EJdJuqOQKVlv2SjAm2iMETkMAH/WDDz6IozX8/ei0MfpDCAiB6BGA/5RsBiKwdLexSFOil+HcCKjeqlSpApsIdLERmgiYI4Q8cCFYqxs4cGDbtm3DaEw5NJ4ny3z59NNPSXbBcYLHxTJfSKqFh80ajguH/bCtAGAYgS4/hHOIuBh3WsJDwarKXgnGRHuEwGkI8BMiba1nz57h7yynjdEfQkAIxIQA7Kt4HaC+hQWVUGxMMpwYRMylbt269HufN29etKz2pOJSDgNfHNR2cKZFqO4vv/yCUQLrHR1/+JCli6MFO4kHPB/KAsjeRWBa3pcIZ0n4aTRKpLSKGm/igwHKyF4JAER/CoEQCFC8AAcl7tkQx7RLCAgBowjgToBUmscz7pbgh5bRqWIR9tdff1GD/cILL9x7771UAFFFGIMUbIuXX36ZV6CYadzI5MXjYnlfeMbj5mEbv0sMyrhtyH333UcI/pNPPglQTPZKACD6UwiEQADnJPcmfLMho6ohBmiXEBACcSDA05dGysRNIM4naOKe6jw8HLQaJsECKts2bdq4xJnx8MMPE5wihyYOyAOH4r8ht4Z2yrRurlevXkBVNjnCEH+TL/zII4/QQDFwcHx/L1++vHz58kzB1KdJotxZHyEgBMIjQH4cd0wK7cKfpqNCQAgYRODtt98m1ELMZciQIaSpGpQcgyie39T4UAdEu0Q4TmKQYNMQcnJx0sC6ZlA+C4RuDvAtM6VEiRInTpzwyYf4m8QdKHQhzyUFGF+I75CRDXKTaaiE8ylA2n87busjBIRAughQz4yxn+5pOkEICAGDCPCYhKyd5zE5ZFgtP//8s0HhEYrCscrPn5bLuFdx+UQ4yrHTIODGisJqMTgjScGkwiAQahmrupjiI0s+pgxd1b7//nvrT5qs4QkzOLUlqnPnzoULFw4QK37b07xN+kMIpIUAP1qcwBY7QlrnaL8QEAJmESDWQNkLL9xFihSBeI2W6ZgO/BLNzhJSGpMuXryYTJoCBQoQEe7fv/9XX31F5CXkyQncSdrK9ddfD5GuKR3IjIH9xUoEplSHyBdhLzJ8LfkdOnTA+QFDjPXnXXfdNW7cOKJRpma35JBwDdqHDh3yFyt7xR8NbQuBNBEgZZ2f7vTp09M8QweEgBAwjQChB0wEqmkgvCciA+E9ae833ngjT2je+HlUm57wDNJpEUswgmgI7ThgWIHkmh7L7ImQt824SuEFbtq0iaBM+HOiOkoGMR0SfEPoRgna2CjWHjJ4MOB8R/E5kTtMRbdvj5EN+IJxrmzevNlfmuwVfzS0LQTSRACPK2RW06ZNS/MMHRACQsAoArzZkzLy3HPPQYPGD5DnKC1meDzTGYfXeojFIJbFqiAbFL4W2GN5cMY2Px4FcjxffPFFDBRmQSxWEem0X3/9NU9i6JcCsk1jm8WmUaSPECyzSThi8TPt2rXL6puIw+PAgQOXXnqpbzqrBIETfHuMbJAvCJ8eS/OXdo7/H9oWAkIgDAK859FNFF90YNZ6mDE6JASEQPQI4ORo1aoVOaSvvvoqzhV/AcQmcHbyGTp0KGQkH374IVQosOKS6QIJG6/+RI4wYvjwFM+WLVvGjBnxi/AvWfN8yIAhdZeHLpkZsLdhkZCQwTZTMISyFJpv8GzGqeA/qZu3yVwxGAwKXum7774LpJbHxXJ4+NsrIMwQ4/Egyzw9fPiwvz6yV/zR0LYQCIcArcjy5csHL5PslXAw6ZgQiA8BWFwpY37vvff4rdWuXTstYRgu/20PWLo0J9AykHQHLA8eqFu3bqWyFxMEo4T9IYdjvhDexaDhF42rhm7GPJJz584d8mSX78QaAzGblMTC69u3L0Q4VuU2MRom8vc2Yfyxxw4HD0SdAeQ0sldsusoSm4QI8Isl65ZgNmxR1q83CRepJQmBhCJAvgh9erds2UIghqzPCHXBs4LBwccqZrFGEcg4duwYvHM8zmlcylOWGh9qW3gK8m+Ekt1/Gt6OAD+EQZ2feuqp7t27+7oN4IJCONfINwXAsg3yvj1GNjBWkOzrNmDJlL1iBFsJSRUEuBvCwkKqfOQs2qkCjdYpBOJGgCpZiD1IkiCbBJ9HnPKIKRAosTVWEqeGRoZjQxhPH7EUI/xNcRYNHX16kq0CHQ79HX17SIJmm4Rc3x4jG9aK8IH5S1O+rT8a2hYC6SBAJIj+qMq6TQcmHRYC0SMAWQAN/IjgQMQev7ES/fxeHUFEjOxgK1JjcA1UZuFFphWJJRP5RNxwUEFoS8KQbyLSn0lh4a7o22Nkg4gehHU0pvaXJnvFHw1tC4H0EaBYgLA6+YDpn6ozhIAQiAwBfJak0EKvQiscj+aRRLZQ82fRMwiPFLk7BkVTb0Wy84UXXkiDpAkTJgwbNqxatWpWtQ70fdiUlslC8jIdoamrMl7pjYONJo4BPbrVP8jgJZaolEBg27ZthQoVWrJkCbTcKbFgLVII2IzA3LlzKb6rWLEinssLLrjA5tmSTTyej2uvvRa2Bcq/jawNG6VRo0YBokhMpqG0lbdHWVaXLl2ooqJYEqsCZpqAk+P8k+5RWK5w7cCc6y9K9oo/GtoWAhEhAF0VPlheQSI6WycJASGQNgI8HalYpiDotddeC3ifTnuQjpyGQI8ePSj8pqGPcT/HadOc/gcpJlR9kyR0+m4Df40aNap9+/YkMwX0vjY/kwFlJUIIuBsB3gXpxBYzOZW7FyfthIBzCOASaNy4MQ8ngg4yVmLGHYMPnwSsejFLiGEgHhc7jBUKpCnAbNiwYYCxgoayV2K4TBqS6gjUrVuXij6IqlIdCK1fCMSKgMUIB3ftyJEjqbmLVYzG/RcB6mgoPO7duzfccV5HhK6W0A1TRB28EMWDgjHRHiGQPgK046KhBu3U0z9VZwgBIXA6AhCiNGjQgMbCkydPJoH99IP6KxYE8K9QpEOBFa7fWMa7Ywx0fyTEdOvWjfyYYI1krwRjoj1CIH0EYCbgRwWBptID0wdLZwgBPwQoKqlVq9a6deuwV+644w6/I9qMCwGKACpVqkReXUAHg7iEOjgYZj+MFfhy6A9F86DgmRUPCsZEe4RA+ghAHMeviy7z6Z+qM4SAEPgXAVr20E0Q+tqlS5fKWPkXFTP/01gAt8STTz65ePFiMxIdlEKNNDdV3gCnTp0a0lhBF/lXHLwgmiq5EODuAFESXCzJtSytRgjYhQAFsZUrVyavduHChXny5LFrmhSWS22zFWjDZMFX4RUk6JxA2vU777xDUqDVECqk5vKvhIRFO4VA+ghQJURLNpzb6Z+qM4RAyiNAAIjsCtjcYYSTsWLT1wF+FHhpYd6DzGbRokU2zWJWLK2C8KxAvYO9EsZYYVLZK2aRl7QUQoA8QXyYNFtPoTVrqUIgJgR43a9QoQLtLNjAKxmTDA2KCAHaOs6cObNmzZow0kJpE9GYxJ1EAOjuu+/mW4HLDd9beEVkr4THR0eFQJoIkBfGS4ziQWkCpANC4B8EKAKiZx5P0Pfffz+ZGiO79vJissDC16lTp2bNmtWrV4/SIXeqipmCCbtv376VK1fiE0pXSdkr6UKkE4RAmgjgxlywYEEScB6kuUIdEALxIUAlHT3zIFbnCcpzND5hGh0pAgSGXnjhBQoCyAiBj9ttlQHHjh2DxR9Gf3KuN2zYEGF7Z9krkV5+nScEghHglZFU9lmzZgUf0h4hkOIIkPvZsWPHdu3aQWKL1WK1nklxTBxevtXip2TJkvi3ateuDWG/wwoET0dqLf42WrC9+eabpNrgn86aNWvwaSH3yF4JCYt2CoGIEMC5XaVKFYWEIgJLJ6USAnSrIBKBmfLGG2906NAhlZburrXmyJFj+vTp5N7SwLlAgQJPPPFEoqwWLBWSaosWLUozRd70aBwL6X5UYMleiQounSwEAhEgJARNE1ljgQf0txBIAQQsuwQuIv+1UjR3//3303XZarzsf0jbCUEAHjk4b+iJyM0Kq6VOnTrEiXCAOaPMoUOHBg4ciE+FrpYEp7CcaMJA/l+0s8teiRYxnS8ETkOgevXqmTJlohLvtL36QwikBgIjRozAg0JtP/2ArBVju5M7uXHjxuXLl1P6kRoweGCV0N7g2Pjqq69oLUnrY2oFChYs+Pzzz3OlbNIesxXXDm90uXLlevHFF/kyYKlMmTKFeWObUXxxseGmUULgfwjw0rB7925YJf63S1tCIAUQoC9d3rx5yZ0kiwu+rzFjxuzatYucCWwX8tBpsJUCGHh1iXTqGTduHJXPe/bsueaaa6zUV7Jfc+bMGc+SoHhYv379ihUr4NTHl/PHH39gvD7yyCNYLbzXxSOZsbJX4gRQw4XAGTi98X5zp77qqqsEhxBIHQSeffbZwYMH84hiyWeddVaTJk1oCZQ7d27qlrNnz546OHh3pYSE4PGjYoD2CNgZXEpuYkX++dA9ke3LL7+cCxrS1CAfBV/a/v37KUjesWMHvhNsIP49efIko+i6QG4fN8ZLL73UFD6yV0whKTmpiwDvECS10bmjffv2qYuCVp5iCPCU4r2cTsv+6y5cuPDatWszZ87sv1PbnkCA8M2qVauwWsh0wezYunUryUmW5ueddx4mi/UvZgoeNetf37owUCwrh3Ta22+/nVQV3yGDG7JXDIIpUamLAG+Wn3/+OW8qqQuBVp5iCNCnhnIPjHX/dVO0TMrCAw884L9T2x5FAPcJ/Sn37t2LgYI1g/mC7wRHGhXIRAD5FzOF+NGVV17pTJt62Sse/SJJbXch8MEHH5BNtn37dsXs3XVhpI09CGzatAlm0uACE+wVnmSwk5HOac/Mkpq6CKg+KHWvvVZuEAF6NfOqISIWg5BKlJsRIPRJvUmwhlgwRApg1yCVIfio9giBeBCQvRIPehorBP4fAd4p8YFT2ClEhEDSI0DbFz4BkSBr1fwQ2Dj//PPpCJP0OGiBDiOgeJDDgGu6pEWAGzQp8bxWkneWtIvUwlIeAdwnJUqUIB/TKgvy4UFvICyY4sWLt2zZktSWDBky+A5pQwgYQSCEQ8+IXAkRAqmGAFnxlP8REpK9kmqX3iXrJS/yyy+/xGLeuXMn22RKUsID8+yvv/7622+/WUrSQYI4ziWXXGKlSV5xxRWQd/GNpeHcRRddFMlCpk6dSvKKf+aK1cUQgg2CRCS1RCJE5wiBGBCQfyUG0DRECIRG4JlnnoHJ4Ouvv7Zau9F3lJ5eNHsjoz70AO0VAnEggKvDopGFSRb33uHDhxGGIULSN5wZJFTxb8aMGXF1+Mo3Tpw4gV+EMy3aDAwaylaPHz/OwKuvvhq6MNi9ypcvDwtcSL2oELn22msZxdTYPYhiilatWlEfZ5BmI+TU2ikEZK/oOyAEjCHw6aef3nzzzdRz8o5LD1Krrxh3dnWmNQaxBJ1xBlYC5KFYxrNnz4ZY/bLLLiMQiZ1BZxY8JfhOogXpu+++I74Dbwp2z5o1a/DHENYhZ7ZWrVrQafhLGzRoEM0Lsb/xr1AQ99RTT/GvzHF/iLRtHwKyV+zDVpJTCwGc8ASDevTowTsoxEo+qiV/z3lqIaLVmkYAx8bYfz6EezApsCfgDy1WrJhBgxj+N1w1ljHEdNjfzZo1oz0QdGFHjx6FIA6ufXr8tmjRAn+M6fVJnhAIh4DslXDo6JgQSBcB/OqwZhHUhxfS30yxBvIgwb+SrhCdIATCI0Cbut69e/NNw31C17rHH3/cbqYf7GwMFzr60suTcFLr1q0J/VD+U7duXV90KbzOOioEzCIge8UsnpKWcghAa3vLLbfwVhrSj4Kr3Ne3NuWg0YJNIECwhlYPuO5IjGXjwQcfxCw2IThSGYcOHRo9evTLL79MHKpdu3YdO3YkJybSwTpPCJhDQPaKOSwlKVURIKmWBqQhV8/7KHf5kIe0UwiER4DyYPJFXnzxRfjOe/bsWadOnQRmipCoO2zYsP79+1988cVDhgwhDhVeeR0VAsYRkL1iHFIJTEUE2rZtO2LEiGBXCjUUIWm1UhEjrTkaBKhMJvJCrdlzzz1HiisMbNGMtutcaqRRBl5E3Dxjxoyhg4xdM0muEAhCQPZKECTaIQSiRwAnClWgVFgEWCdQU/gSb6OXqhEpigA5tVjAZNROmTLFhWmtdMtq2LAhZdJ4FkuXLp2iF0nLdhwB0UI4DrkmTEYE8KPMmDGDXEiLj9y3RIOFGz6Z2khiBMjOfvrppynJwV756KOPXGisAH6lSpXgfSGfBhudr30SXw4tzVUIyF5x1eWQMh5GAHquOXPmBGQYyF7x8BV1XHWcc/Xq1Rs5ciQBlz59+mAEO65CpBNmz579/fffhyaOrBoUjnSYzhMCcSDg3t9DHIvSUCGQGATwjQ8dOhRqCt/0sld8UGgjPALUlzVu3BgjYP78+XfeeWf4k91wFNOcDFwY/Z988kkqhh577DE3aCUdkhgB2StJfHG1tAQg0Lx5c7JYJk2aZOXeyl5JwDXw5pTkscKMjL3iCWPFh3Hnzp1pUdS0aVNodqtVq+bbrw0hYBwB5dsah1QCUx0BesvdeuutW7ZsIQmX986TJ0+mOiJaf3oIwMlGYIUwEEyy6Z3rxuPw182cOZOkFlp+ulE/6ZQUCMheSYrLqEW4DAE4vmhUe+zYMeyVn3/+2WXaSR13IbB7926+LVgq3k0EwUYvVarUhRdeSGMjN6fduOvCS5soEVC+bZSA6XQhEAECvGXyxkwwSPGgCNBK9VMoCCJZG2o47wJh1TavW7eOSmzvrkKauxwB2Ssuv0BSz6sIVKhQoW/fvvCveHUB0tsRBFavXk0kZfDgwV5vynP99de3atWqe/fux48fdwQ5TZJyCCgelHKXXAt2DAEqPriD4+SnuxBtEel2e/DgQTznUJuTjQuPHI8oeEuJGUHckjNnTmjXRRjq2NVxyUR33303X4YPP/zQJfrEo8bhw4dp4Awh7zPPPBOPHI0VAiERkL0SEhbtFAJxIUA33VWrVpFyu2nTpq1bt37//fc+cXhcMmfOTC0oXeuwXTBlKK/wHeVQ4cKFixYtytvqzTffTE6AS4jYfRpqwyAC5DnBCDdr1qzq1asbFGuJWrRoEYQu9957b0jJGNAYSXv27CHPFyMj5Dkx7KS2GfZbvv+KhMaAnoaER0D2Snh8dFQIRIoAbWzffffdhQsXLl++/MCBA3hNsDmKFCnCv9dee22OHDly5cpFmkLIbETG0pll7z+fL774AkNn8+bNCMEBA6cLoaUaNWogKlJVdJ5HEKCXIW2nMBpCfitiXsTixYsHDBiAvdKjRw8CNMFyaP0zceJEglAYxGYNi88++6xEiRIEuWhaHjyv9giBeBAQ/0o86GmsEDiD8h/KUKdNmwZ7Or4TyDNInyxXrlzJkiUjfwjBXcEnwCLZuXMnMrF+Ro0a1a1bt/z58z/wwAMUjhp8G9b1SywCeDiqVq0a+fckQm3LlCmDiZwvX77g84lR1qxZk4gkU5MkG3xCnHtuvPHG3LlzL1myRPZKnEhqeDACsleCMdEeIRARAgR64PecOnUqmSj3338/vd+qVKlCQCeiwRGcRKSAD7Sh9JRZs2YNUQO63/Xr169ixYpQ6BJBCOD+j0CkTnERAtDzfPrpp/Xr1zeuE4YIuVAhxQ4cOPCTTz6BKMUOY8Wa8bbbbiMYGnJ27RQC8SCg+qB40NPYFEWAkA1sGbhDeI/E5U4iLf6VBx980KCx4o8sdgkEdP3799+1axdWCy0Va9euDWMHJdOYMv5nattDCJC8gnOOJsx26BzQd9OaYsOGDSTDtm/fnuikHZNaMvlmfvnll/bJl+SURUD2Sspeei08FgRINCEiU6xYMe7Ib731Fv+2a9eO6p5YZEU/hocQbpV58+aRxnvdddc99NBDN910E6/L0UvSiMQjwHcJJWgcaIcqVlZKQG7Kyy+/TDyIOBFOO1orY7hAaWh89mzZsllLMy5ZAlMcAdkrKf4F0PKjQGDcuHEFCxYko5YY0Oeff042SaIiMuTw4tHBasFUuv322+ne8tNPP0WxEp3qAgSsS+ZkBTudrTCP8MkNHz4cY4W8KBKtCEuZBYPvJPkxlCaZFStpQkD2ir4DQiB9BI4cOVKrVq1mzZo1bNiQtBWCQQFvrumLsOEMrBYqQTCeaJJHniNFGTZMIpF2IWBFDx1rL4V59PXXX991110UMDP1fffd17JlS8xu8q7MrhBjheQYMSWaRVXSQED2ir4GQiAdBIj6E5KHa5ySCkpAs2TJks4AZw9jPPHUITx0xx13DBkyxNnJNVvsCFx66aUMhmMtdhHRjDx69CjBIMrQfIMoI2Kb3FvfHiMbBIP8ZzEiU0KEAAjIXtHXQAiEQwASCyL9cLhxW8d5Hu7UxB0jY+C9997r3bs3Tn6qqZWEm7hLEcXM8PFQybxt27YoxsRxat68eTG1/akLSeJGXqZMmeKQGmLo9u3bmSvEAe0SAvEhIHslPvw0OqkRoBinWrVq8FVgDVhvw65dLvGpjh07wgQD/X+jRo14k3atqlLMQoCgDETGNpX+Wl8A/68B3xA8cPC5+fCHp45tdvr2GNn4+OOPKWk2IkpChIA/ArJX/NHQthD4HwLLli175JFHSGV9/fXXvRKMp2IIjl0Kl/Cy/G8l2nIrAmXLloW93g7t4ARCbEByDHRB0CiT8GTNSNpTpUqVoPMxqAD+G4rmrEiTQbESJQRAQHxx+hoIgRAI4KWHAo4Pt3g3pNaGUDGNXfTPmzRpUt26dSlbbdOmTRpnabcrECD3aOjQobDGUZduUCEyr6EWRCAOQkIzTzzxhEWhy1cCDxx+OBiDMCxINJk9e7bBeRGFcX/xxRfzJTQrVtKEAAiof5C+BkIgEAHeTQntQ3aycuVKuhIGHvbC33369HnhhRd4blE35AV9U1dHirz4so0dO9YxCPh679ix46qrrjKeuUINc6FChag8Ut63Y1czpSaSvZJSl1uLjQiBLl26QFBBWRBNWCIa4L6TSLnF1c87NGnC6vDsvuvzP41wSBBzpL0lT/r/7fXmFoQuTz31FAX/9JHw5gqktasRkL3i6ssj5ZxHAM57qoEGDRrUqlUr52c3OCPZlLDbUTQEA69BsRJlFgEsS3xgefLkmTt3rlnJDkuD3wWTi0AkLLoOT63pUgQB2SspcqG1zEgRIMcWzwrvu17JsQ2zMBxFr7766jfffHPRRReFOU2HEosAmd0VKlTgSjVp0iSxmsQzO7k4tBPnh+PySrp41qixiUVA9UGJxV+zuwsBAijTp0/v3r17EhgrIPvss8+SrDB58mR3oSxtTkcAgh9yYImk0Efz9COe+eu11157++23SfSWseKZa+ZBReVf8eBFk8q2IdC3b18iQVRP2JHzAfUcCYn33ntvgPrwa9HYxdpJQyJqkkM21w0YFeGfdGek/AQC3AjP12kJQYAvBkz5u3fvhrwEHrmE6BDzpPPnz6eSrlOnTqR4xyxEA4VAugjIv5IuRDohhRB45513MBeMGyt0+bnnnw+mQzCalJs++u8HbgyDxgpz0YmXtoiYRMHzao97EMCfB3HOhRdeyNfkwIED7lEsXU1WrFjx4IMP1q9fv2fPnumerBOEQDwIyF6JBz2NTSoEfv75Zx7tvOYaXxX0WWQnhBRLyB+SU1hHrQ/VIiFPi3nnLbfckjFjRt7aY5aggc4gAG3JggULcLRADktjQmcmjXMW+F0wsCpXrjxmzBhv0RTFuXANTwgCslcSArsmdSMCdDT8888/raYqZvWjXe2VV14ZUiYRKLJi6adofegEFPK0mHfy4l6yZMlPPvkkZgka6BgCfEmg/CEmyJeQ5pqOzRvDRDD9Dxw4EM8KDjz4lC0+uhjkaIgQiBwB2SuRY6UzkxwBCoAxLK644go71hkyyoPbg1dqqkBr166NtWTHvMi85ppr9u7da5NwiTWIwNKlS0lv2rlzJ5cMitjnnnsOA9qgfFOifvzxR/pqde7c+aWXXqJfVcjvtqm5JEcI+BCQveKDQhupjsDhw4ftq26wvOUBPvMjR45QBZo7d2786kQBeGG14xpcdtllMK/bIVkyTSEAx1qdOnWIRVJ5TpLTmjVr4F6DyKR06dJsm5olfjm4VSgCIoJJkyBCmR06dIhfpiQIgQgRkL0SIVA6LfkRoPTXeKZteNRgLn/zzTe3bNlC/+esWbM+88wzdnS/Y1G//fZbeE10NFEIUIzWrFkzywLga8AXwGqhQBY2PECYLxiynEClfaI09M2LC7BcuXKNGzfGHUi6lR2RU99c2hACwQjIXgnGRHtSFIFLLrkEF0tCFl+1alUeAJSH0F7RuAI4V4ynxRhXMgUFkt/dr18/yJSpByaqQs15QK07gUKyWOhcyAlEiNq2bYtxkxCgqLcnAFSqVCnYeNkeMWKEGAgTciFSfFLZKyn+BdDy/4cAcZPjx48nyhVBVKhGjRr0hf6fQoa2Dh48aF+cy5COqSWGIiAKauhOhb1CkgrV5nhT0soCgeGe9oTUl+F9oUkhbaFg7icu4wBkp06dggWOGQlLYcpTcU06cIkSJRyYWlMIgWAEZK8EY6I9KYpA8eLFeQysX78+UeunLpSOP8Znx41P8ZFxsRIYGwJYG9ddd13r1q3hWMM8hYOYLO/womgS3qBBA1JGKHf/9ddfq1evjruF6CFlX3YYLpjsmCYNGzbMkSMHxCoYu0uWLKHXN+HL8HrqqBCwFQHZK7bCK+FeQoCmstygV61aZYfS1nMl/NOFB1KtWrXMzg5lKsVBSjUwi2ps0njkly1bFjOFDBUSbHGZRBWnIw8J6wEPBz16SM6dM2cOl5USaDpekZzLl+evv/6KTTFGYaNQrUZ1PaFJtKpZsyZtp55//nmK5qZNm3bnnXfGLFkDhYApBMTHbwpJyUkGBHiLxTlvB1sJz4MLLriAd+L+/ftbSJEKwLv1HXfcQdYClBs0vaMJC/y2ZnEcPHgwLOn79+9ndrOSJS1yBL766iue/cRWKlasSAzIVEgFw+X999+nTgcj5sSJE1xiPDdFihTJnz8/pP45c+bEmmEneVEEm3DSkFHO9xAPzdGjR0ng5UNCDIYOcrBOMHco5iejln5GuFIYHvkCdaYQcAAB2SsOgKwpPIMAfm865ZL5WKxYMYNK82JN1iQ5laQstGvXjmQF+LWwV6hfXb58OQ8JMhlJEcCaSSuJIWZleHrxTs/7d8wSNDAeBLAJIKofP358gQIFevToAcFaPNLSGoupwZeWDx0TMT5gcMEQwS5J63xrPzmzGDRk9V5//fV8T7CiCDOFH6KjQiCBCMheSSD4mtp1CBCvIYOEClLjvPhpLRXPB4YLj420Tohn/7x583DewOcBxW08cjQ2BgROnjw5fPjw3r17U6nerVs3Gk8aN0bDa/XTTz9hLWG1kEWOQcMGvhZyZfgXlSzXS3gJOioEXIWA7BVXXQ4pk3gEiNbXq1ePHFVTTvtELYlHFGm2vNbPmDEjUTqk5ryU/0yYMKF79+5ULLdv356oHyZCakKhVQsBgwjIXjEIpkQlAwK4WOgRSNsdIjUOvxCbhW/IkCEEmCCjs6PmyKyqySSN8h9slG+//bZRo0a9evXKnj17Mq1OaxECCURA9UEJBF9TuxEBKPPJNoBa9MUXX3SjfpHphJlCG0Ve8WWsRAaYgbNI0yZ7mvIf3FpW+Y+MFQOwSoQQ+BcB2Sv/IqH/hcC/CJB+SBUP9gr5H//u89L/tKOjLpoEXjrSeUlvz+oKjQoFxqQ9UYNDttD06dOVuOrZiynF3YuA7BX3XhtplkAEWrVqRW0z1Rx21Dbbui7qWqHQIIeXRBxPx7NsRcmUcHodQJNPcQ0Orbfeemvx4sVeT3syhYzkCAHjCCh/xTikEpgkCPz555/0dVuxYgVcn2XKlPHEquDVIB4BhQyEHNROe0Jnjypplf/06dMnS5YscKs4X/7jUdykthCIGQH5V2KGTgOTHAEoUnhjhjvr7rvvnjlzpvtXCxUpVCtketIkT8ZKnNdrwYIF2KkhhWDIWt1/iBjCpvP111+H6f4TUoJ2CgEhEAMCsldiAE1DUgUByCrgJG3cuPEDDzyA2x96UNeuHBuFhBXUg1Wd/BvX6ukJxWhBTALQU089RWVygMJEfGDTf/LJJ2niAycsFHCqVQ6ASH8KAZsQkL1iE7ASmyQIkAIC6xfv02PHjsXXwsu02xYGDxh1yzTRhS0XIl36PLtNQ2/pQzSNxpPYpt999x0X3af8mjVr4KrH2Va4cGGV//hg0YYQcAwB5a84BrUm8jYCtFmhsRyVIB07duzUqZNL3qph+8Dxc/jw4VdeeeWxxx7zNsRnnPHLL7/QnfGHH36ATp7EYSjv4GZlURSZQx7PBhXCfLDJLr/8copxjK8XuuGbb7754MGDlmfl4osvJr6GPl27dn3nnXcg5hkwYMDtt99ufF4JFAJCIF0EZK+kC5FOEAL/jwCJC8OGDSMEcMkll/AAo4AIWrlEoYMrBU0WLVpUt27dgQMH0oQoUZrEMy/+KlKDrcY3lNhgGVjSADZz5sw4t+jVxx5I/GCXZ4OEYusEOkTmy5ePwhyCX3QbICEaO8Y6FPO/2EbYIpikvjAQOUyQqWzcuBEaG/oU0twgZuEaKASEQJwIyF6JE0ANTzkE6MlCx2MI1+nA0qFDh/r161vPVGeAoFCZFIpBgwZhqfCQJuWTIIUzU5uaBcuDrsJ8YBAGzIwZM2J2WJYH3QNAlc7AuE/wqQTPiCVx4MABMotxwND0mN5+dPhjA1gI0xCwozzqzjvvjMGOJABEGAjjyWesWLOjBpbK008/reLw4MuhPULASQRkrziJtuZKHgR279790ksvTZw4kRd9PBzEYggWsG3fCnlIv/HGG6+99hppnjyYcfDQStq+6YxLPnXqFMnL9KleunQpwjGzMCz4l/hLDOaFv3r4RbAzPvroIyy59evXEzm67777oMMHpZBGj/9YaxtzB8K3OXPm4EILOIpuXFwSmAL2608hIAQcRkD2isOAa7qkQgBXweTJk1999VXe8nEM1KxZk7IReE4zZcpkZJ08R4mSzJ8/n4JqWjDyJCYI1axZM3wJRuQ7IwTbjjgaLa+PHTsGlx3FVtWqVbPyUYwrQJLsrFmzYJglXkYQp3nz5k2aNCG0FH4icoDIqgbtkKdhhm7atElVVyHB0U4h4BgCslccg1oTJTMCPM8wKfgQoeCN/KabbiJYU7x4cR5y2Bbnn39+hIsnUYMET6wf5PDExW1AxsZll11Wo0YNKmxxqNiRZBqhbjGchvXQt29fYmc5cuRo2rQppGrEemKQE8MQcmJGjx6NO4eidBoQUoGcltVCTA3CN5BPaxayWAgVkdqc1gnaLwSEgAMIyF5xAGRNkUIIkJBBWgaxiVWrVpFXQVYETztcL3x4VPMvhUU8Qa3yIqv+hX/JySAhg+IUXBEQp4JXrly54PmoWLEiEZOiRYvaGmmy4/KwCuyAwYMHs2Q6LzZs2DDOoE9sSlI59fLLLw8dOhTASUNBjYAI0bhx4zCk0jJWLJ2tjBYu6K233hqbGholBIRA/AjIXokfQ0kQAqER4DlH/QsBHVwm2DF8qH+hZPe3336DNIUxVv0LBk22bNko8OGDmXLdddfhleFBSzeAJUuW2BQ3Ca2xob3vvfce/gyiP7169SJ6lRBLxX8pR44coVX1qFGjMDgI3oGwdRQGW0J4vjAQF4L9VgpL1qxZuQrFihUjERgPGUNwEfnL1LYQEAIOIyB7xWHANZ0QiAgBzBqSYHi+fvDBB6ayYSKaOL6TMMUgrxsxYgRcNVRZu+oZ/9lnn2E8EWuDq4akFoiAcV+hMCumQB27BOsEG6VQoUJsE4OLDwmNFgJCwDACslcMAypxQsAUApgpWC3Eg+hlQwjJlFj75FDBRLrxrl27SBx5+OGH7ZsoZsn4TkhVITBE521qpy1vFr4T7JWYZWqgEBACziAge8UZnDWLEIgagbx585KvSpCCNFsiFy7PtCXsVaVKFQhhqQqGyS3q1To4AJcV1csQwVFJ5MVwm4NQaSoh4CIEbKSLcNEqpYoQ8CACVjAFlwC9DPEHBFODuGdNGzZsoDU0TaFJNHa5sQJo9FpasWLFjh07IGixaHPdg6Q0EQJCIC0EZK+khYz2C4EEI0CXHKuYBUsFNlgiLFQSJVinUNPz4MezUqpUKeJWXnFXkKFC/gp5uDDLWbnPoVamfUJACLgIAdkrLroYUkUI+CNA/bOvsgZLZfbs2fCX+IpZ/M9M4DZFQHCTELqaMWNG5DQzCVTYN3WePHkwsOi0TJGzb6c2hIAQcC0Csldce2mkWKojENBDB5MF9rM2bdq4CpcWLVqQFAyXWlpsbK7SNkAZMm1pEYClJbr9AGT0pxBwIQKyV1x4UaSSEPgvAuSvBOSsYLJAIkLvPZcA9Oabb7711ls0UYq/N3KiVkQPo86dO7dr146uTInSQfMKASEQCQKqD4oEJZ0jBBKAAKxrZFcET0xSS48ePajLDT7k5B7SPmjQQ+YKDGxOzmt8LoxCq3MCXYeMC5dAISAETCEg/4opJCVHCBhGIC2yNcjjYWuFjc3wfFGKg3WN3kY9e/aMcpzrTqdinFbb77zzzpo1a1ynnBQSAkLgXwTkX/kXCf0vBFyGwN69eykRCqkU7YR4ylLhQmPFkCfYvZPIFDm29erV40lv91zOyC9dujT12FOnTnVmOs0iBIRAtAjIvxItYjpfCDiEAEkhAc35mBgzhdZ9dOehijhRxgpqLFq0CHPqscceswMLhFO/nZZkWkJSJxWQ2ZPWyZHvh6Gf9tp4jCIfojOFgBBwEgHZK06irbmEQBQIQGibJUsWawAOFWwX/u3YsSOdnInFpOV6iWKCOE6lpua2226j1U4cMkIMXbx48T3/fD799NMQh884g3Juyo/Hjx+PgyfkCTHvhN6GQFsYOylmyRooBISAEQRkrxiBUUKEgC0I+FwsNLsZNmwYBCdXXnklnPe2TBaNUEJRVNZEMyKic8uUKRM+e3fw4ME//vhjRLKiPAnTsGTJkqwrynE6XQgIAYcQkL3iENCaRgjEgAAN+eC5nzdv3pdfftmqVStcC6TZGnctRKsYHPbbtm275ZZboh2Y7vm0dcQgS+u0TZs2QfxP5+e0TohzP92wlXIbJ4YaLgTsQ0D2in3YSrIQiBcB2E2WL19OzbCVyPLMM8+QvUGXvnjlxjf++++/J3RiU5+gs88+O6R2p06dYvk4mYJzekKeH8NOVkRSTgwDNUQICAEHEJC94gDImkIIxIhAAA/b1VdfXaNGjf79+8coztCww4cPI+nSSy81JO80MZY5EmyUdOnSpUOHDjZNammAcDoKua3jwWno6A8hkMIIyF5J4YuvpXsQgWeffXbdunU4XRKo+++//87svt5GDmhCh2pmoa+yrXORHkSsLeHhNlvXKOFCwLsIyF7x7rWT5qmIwM0330xGy4ABAxK4eMvJgSvCGR2oMR40aFCfPn3snu7QoUNZs2Z10g6ze0WSLwSSCYFzkmkxWosQSAUESOO4//77v/jii+uvvz4h673sssuY98CBA/nz53dAAfr7EB7iX2uutWvXskFd9w033NCoUSODCrCibNmyGRQoUUJACBhEQP4Vg2BKlBBwAoFq1aoVLlwYl4MTk4WagxIenuuEpUIdNL8Pdw7JthQHWZ8ffviBOTZv3vztt9+anYwV3XjjjWZlSpoQEAKmEJC9YgpJyRECDiGAs4EWzVOmTElUMQsKUPq7atUqOxZM5RFirX8t+b1794ZHzveB3Jb98+fPN9u6iBlXr17NuuxYlGQKASEQPwKyV+LHUBKEgNMI1K9fn6DM8OHDnZ743/kgoV2wYMGJEyf+3WHsfyuZ9+TJk8YkRiZo6dKlMNHdfffdkZ2us4SAEHAaAdkrTiOu+YRA/AhQydK6detRo0YdO3YsfmkxSIC0jTqa6dOnxzA2zBA8HO3bt+cEOGZGjhxpvElQmKnHjRsHA16iUoLCKKZDQkAIWAioP7O+CULAkwhgqeTJk6d79+7EhhKygEcffRS22c8//5wWjAlRwOCkO3fuJCUI+69x48YGxUqUEBACBhGQvWIQTIkSAo4i0K5du3feeeebb76hM6KjE/8zGc/46667bujQoU888YTzs5udsW7dup999hk5vCpmNguspAkBgwgoHmQQTIkSAo4iQOiEElzjQZkI1wDZbrNmzbp27WoV7EQ4yoWnkclL34O+ffvKWHHh1ZFKQsCHgPwrPii0IQS8h0C9evXwChCUoWbHee1//vlnehrnzZuX3NuEKBD/ksmxLV68+O233/7222/HL00ShIAQsA8B+Vfsw1aShYDtCEDPv2XLlkWLFtk+U6gJMmfOPHnyZCprSKMJddzt+6B1efjhh0lefu2119yuq/QTAimPgPwrKf8VEAAeR4ASXFr0EdQwsg4e4StXroSMhIpiSov5sMGfP/30E/IpYKZm57fffvv111+pDzp+/DhuFfwr9Aegc3KrVq2M6OCMEEDDWMHUoxkTLhZnJtUsQkAIxIyA5xP7Y165BgqB5EAAen5MFkp1SpQoEf+Kzj77bMhdfCkpmCNW+c9ZZ/3PF4v5wsMew4WEjwkTJhCTuvjii9u0acPsXjFZsMPg8p87dy6RLBkr8X9tJEEIOIDA/+5BDkymKYSAEDCOAF2LYZEfOHCgEclYJ4899pgv8xTT5I9/PvhdfB8e9tgx2CjLli3DWGHeTp06wUILJQxdfhhiRBP7hOAWuvfeezFW3n333XLlytk3kSQLASFgEAHFgwyCKVFCIDEITJ06tWHDhtu3b6dmJ34NkFOoUKEwZgfWDC2EiKQE9DsklwWy/IoVK06cONG1jQOpWyYMRGDr/fffV7eg+L8tkiAEHENA/hXHoNZEQsAuBB566KFcuXJBhWJkggIFCpQuXdo/AOQvloBRmTJleOoHGCucA4PcRx99tHXrViIsxFn8R7lhm4Sbl19+mQ5BYPXpp5/KWHHDRZEOQiByBGSvRI6VzhQCLkWAIE7btm3Hjh17+PDh+FX84osviPWE9K8QBiJatHDhwosuuijkRFDaY8rccccdVapUefDBBxPVkTFYN5j+b775ZuJWEMZ88MEHV1xxRfA52iMEhICbEZC94uarI92EQKQIQDKbIUOGV199NdIBQedh67zyyiu4RooUKQJ3bQDLPpYKHhdI1bCKfNktQTL+uwNTZtq0afRP3rhxIyT3ZLQcOnQo5JnO7MT8IgAEw8qll166adMm7JW0XEfO6KNZhIAQiA0B2Sux4aZRQsBdCGTKlKlp06YYHBQbR6WZVQvdoEGD3Llzd+vWDXsF9wMxHaqEfDT/xIAgKZk9ezZ0LxEKr1y5MkR2PXr0GD9+fL58+Shiom9AhGNNnfbxxx/XqVOnWLFiX3755YwZM1hXwYIFTQmXHCEgBJxGAK+vPkJACCQBAhQh42KB+izCtezevfull16CPYWbDjS1+GbIQvWNXbFihXUzwptC9ATPhO9QVBvQt1C7RMoIXg3qrmG+hxU3KgnRnrx//35SefASWeuixRI2WbRCdL4QEAJuQ0D1QdY9Wf8KgWRAgPIcnAq4E8KEPHDAUMo7ZsyYDz/8MGfOnCTJMio4eZZb1bXXXktgCFqXefPmXX755fEARK4r9TijR4+mqgi3Dd6XGjVq3HXXXdgx8Yj1jUVb4j54UGbNmgUCGTNmJAZEe6ObbrrJd442hIAQ8DQCslc8ffmkvBA4DYFt27bRM5lndvXq1U878M8f69evnzRp0pQpU/Bw4OogBlSzZs2APBX/Uf369YOG7vXXX7/gggv898ezffDgwTlz5sycOXPJkiXwuFCAXbZsWUwi3CF8smfPHqFwDJRvv/2WXgR81qxZAycv+TekCVerVu22226jutugzhGqpNOEgBCwFQHZK7bCK+FCwGkEsFSOHj3qi+Yw/ZEjR4iJjBw5kraIWDOYKVC7RmIZ/PLLLzz1ybS1Yw0I/+STT6h/xtRAMSsnl1xdYk+Qu+D4wUeSNWtWHEV0KYLhzaL/J2JFzRGRL/6lJwCKEc+iMpmKJD4k35Bqc88995C2gtPIDrUlUwgIgUQhIHslUchrXiFgCwJYKjy5iYnAoUInQuI+5Mny7IejhdAP1Cm2zBq30AMHDpCfS04u2Sf79u3jX+JWNC3CTMEbhOGCIXLhhRdiuxBCypEjB/+SPHv99ddnyZIlYPJevXo9//zztWrVopQJj0vAUf0pBISARxGQveLRCye1hUCaCOBvwHtx7NixH3/8EXo0HCoU+2CypDkguQ6sW7euVKlSuIUwa0jvJd6UXOvTaoRAiiIgeyVFL7yWnXwIEDTBlQIpPom0pHc0adIE7hMjDP3ewopqIKhW8M3gkgEHSqnxuITnjPHWAqWtEEhNBNSfOTWve6qvmtzM77//fs+ePYQhyAAFDnI+LFDwQ8A1wr9kUVhxBzIqwiSlugFKEmmJ+7zxxhu0JiR/BaulQ4cOPK1T0FjhcpDyQv0RKTt0kOZPqqmpG5o+ffo111zjhoslHYSAEIgNAflXYsNNozyGAHW5pHbSNYZaX/IkfIyr0KxZlbpkelqJpfCFULdCPAVThrdz1kn9LTytZKqSzglNKrEGH5FaYlHA5MKbQpbGjh07rERakkwvu+wytBo1alS7du2ooMHkSqySCZmdhouNGzfG0WLNjrnJJcOks7pJJ0QlTSoEhECcCMheiRNADXcvAtgcsMK/++67lM5STkKpyw033GDVzfJ0x31CzmZwtqZvPfgqMFkYiDVg1c1CME8qKHJICqE/DhmdCXFgYE7RwQdLhbpl9KdNT/PmzQO695GsSuEMJP0vvPCCb0Wps0EBEV4xy9z0XzX2ChwwJO3679S2EBACnkBA9oonLpOUjAIB3qoxU8aNG0eLYB7teEQqVapUrlw5/CIEeqIQFOpUCljw01B3A4UaQSUMoEceeYQWgNmyZQt1uuF9OIcgUIHhnqkhW6PeB2MlLaKRnj17QvP63XffpebjGcMUBrmAC0AWC+40YkNYnAGH9KcQEAJuR4BXEH2EQHIgQA5Knz598CsQ2eFxjv/fiunYsTq8L4sXL27RogWBJMwgrJa1a9faMREySR2FLB/Di7sJRLTdu3cn0JPuXNg0RLuGDRuW7plJeQKtmEOG7UjrITw0YMAAkfQn5XXXopIYgTOSeG1aWuogACUaT3FMB/g22rdvD82rY2sn3wVfDv13MCbuvfdeuFZNTQ31CGQqxHRI/qUxEK4U8kajesq2bNmSXoOYVqZU8pAcfGBpvSxizvKZOnWqh5YjVYWAEJC9ou+AtxHg+U1yJUmmkInRPRgXS6LWg21Rvnx5npFQwtNKMB41KFyiE6GVHGN1IqRWOQaBZBnjToCDJIaxXh9CKBA7L9hkISREtTPNjLy+QOkvBFINAdkrqXbFk2q9pMHC4op7/+mnn4YezQ1rozkOASmMJwIxUflCUJ4kWVIrMHcwMqjradOmDUT1cS7qgQceoOdfnEI8Ohx3F0j6myy4VciSpjrMoyuS2kIglRGQvZLKV9/ba6fQg1TTW265Jf6HulkgiBB16dIFKwrLA4bZSIRjeOEc4r2f52vFihWxWnAPRDIw3XPIquGBTYVUumcm3wkjRozgKlj2Cm4VtqkIwyhMvpVqRUIgFRCQvZIKVznZ1sgjp27dutCCPffcc65NzqCDz1VXXUXVNGRuaV0A0m5IpLVKkQsVKkQMiELctE6OeT+1UVRfxzzcuwMp5rKMFb4qsPLTWJHyb+huvbsiaS4EUhkB2SupfPU9uXYyVEgTIbWW5FOXLwBz5O677+YZCV2Kv6ok0qI8+bMUsBA5oiw52kRaf2npbr/33ns8tiGPSffM5DuB2ByeFShuwZzVwa2H7ZKa3qbku7haUaohIP4V6wVM/3oDAZJU7rzzToIsMKxAsOF+pXH/wDk7bdq0mTNnEh7avn07rPmvv/46tCgk0lL7A4MZVce2LoSbWtGiRcliYV5bJ3Kh8JEjR+JZYfk+3TATP/nkk02bNql1sw8TbQgBTyAge8UTl0lK/hcBwkD0hYFtFsc+781eAQVzoVmzZlOmTCGGNWHCBFIoGjZs2KhRIye5cZkXHYiP5M6d2yu42aQnybaYL1AIwrxn0xQSKwSEgB0IyF6xA1XJtAUBXBFQ1kIve/3119sygW1CCUbwWk8YgqIhVkFIwrapQgvGzYN5hMHUv3//0Gek0l7CcyT0vPnmmw899FAqrVtrFQLeRsBee4U3S4g4qX2AB4LebPv374dvlPwD6jzhk+AmTn0HRFh88M3mzJmTlh/kJxYsWBBX/yWXXOJtaKW9UQR4G8YnQRiIjBCjgh0S9uuvv9IQIGvWrMuWLfMVrTg09z/T9OvXD/JfiGHQwcl53TkXHZegpSEqJIeTOy+QtBICwQiYt1fIMIA4a/ny5TjtsVR+/vlnZrVsEcwRmndgiMCCQJohpZvcxHHynzp1isxEDBo+MGWdOHGCIZxcokQJShvuuOMONhJyiw/GS3sSggBNB+lQSLYHiZMJUcDIpPwcMFm6devWuXNnIwKjEsIbQp48ebp27dqhQ4eoBiblydScc1ehgAtfC7ejpFyjFiUEkgwBY/YKfhS6xfJZtWoV7hOeLpgadIMjVMw21knkwPFwolHZ5s2boTbH9MElwxsh1E81a9bEi2t3cmLkeupMxxCgoSDfBLr9xd+w0DGdQ06Eh4Oi5a+//hrDPeQJtu6kUwFOBZydIRvr2Dq1C4VTZ07Xw0GDBrVu3dqF6kklISAEAhGIsyAK7wiJhGXKlEEuJab169d/++23I+TIinBqnlKvvPIKVSH4YyDYJihAen+EY3VaEiAAHRwJH5TYJMFaeK0n4tmqVauErAXnJZYK7QsSMrsLJ6XnFMFoXo1cqJtUEgJCIACB2P0rpKFgRsAgSQCoevXqFG1WqFDB1vc2EvsxhuDX4gEGxRZO9dq1azufuhho8elvmxEg1YDYIg8V4377RYsWkYiK6y54BWEOBZ8c1R5SbmG/JfQJL0tUA42cDNcLRCzkbRgH04h6Dgv5888/edeCSphXIFvvXQ6vS9MJgeREIMB+ieRPAuHE4InRkInSs2dP7ryRjDJ4DiEnEvuxVEjLfeeddwxKlii3IfDLL7/gt8Npb1Yx+NmsvN0ePXoESA5zKODM2P7E0CfNHOKy2IbHOcqyVEhbjlNO0gynPD5z5sxYkEmzIi1ECCQrAlHz2xL/xqGNpfLiiy/G1jPWFJTkuDz88MNYLfRb+eqrr0yJlRxXIQA3K54A4yz1JHrv2rWLV5BgeyXMIVPI0IOwatWqpqRFK+eee+656667oh2VxOfDKcdthLqtJF6jliYEkgCBKHggyHvlJouJwP1u27ZttG5JiEPb5+YijRcGBSIFxImKFStGJiN5vr6j2kgOBLi+hQsXNp6dStYCZndIiMIcCnl+DDspebPS0mMYG/8QGujABEMye/yikkMCAUfubCTG8QKWHCvSKoRAUiIQqb1COL948eKYKZRpjBs37rLLLnMJHGT4f/rppxgrRKbw8EPx4hLFpIYRBNatW0cHZiOiAoSQvh2wx/dnmEO+c+LZ4Ev7008/USUUj5CYx5JnRinvyy+/HLOEJBuIA497GpHHdu3aJdnStBwhkEwIRGSvkCFIITGJaVgGt99+u9vWz9OFQs3Vq1fDhUVPls8++8xtGkqfmBHYt28fJBkxDw8z0Eo4DZl2GuZQGIGRH7JWROJX5EPMngkFC4lfvvbFZoV7UVr27NlJ5B8/fjywRKg/FiepSEQVoXJggz8jHKjThIAQiA2Bc8IPI+L17LPPQtIFOSZu5PAnJ/Yor4y8i9eqVYvKZ2hg+Dex+mh2IwgcPnz40ksvNSLKPUJI/yJhgjhmolSqU6cOxHHU9w0dOjRROrht3vvvv79x48YtWrTgxSxHjhw+9bCYLTooiBUoCMfK5IOB4jvBf4PvKtyYhBqhzaVrBAUBfPyl+Z+sbSEgBKJCIB17BWNlyJAhMKw88sgjUclNyMmULM2bNw9uMRrhEsByoSsoIbB4elJykuyOzjiPD8YKH4ppnZ/amhFI27RpQ1HM888/757YbqLQ8M3LvY6s2yZNmuBRXrx4MZ2q+BP6Sk7ACsH+wDFGLI9t7BKrvTP3HF7qrMoDXCxQT5EbzhBI+d59992DBw8ylt6ckGfyoTJA9P8+tLUhBKJFIJy9gluFOtLJkyd7wlixVg7/KdYVveXuu+8+bje83ESLiM53FQK4InCxuEql+JXh7RxjJVu2bPGLilkCT+VevXqNHj0aR0vMQpJsIHYGlVNYKvSGhEf7tttuo6k17hbS+fkexrBYzBfIoj7++GP6k0ASCLvmTTfdhA+YArFrr702BoEaIgRSGYE081f40eJcwV7xkLFiXUjeHd944w36AMDfb7UiSuUL7PW1k1iQfDnUvIJzXRJrr/A85mGMI4H6ba9/SeLUn/5l3DEo2qLk8P333ydXDw4ebEp8tBhz5cuXj81YsS4xPhVYdCnIQiDeX1qUkOlcoECBSpUqkSsDXWGcymu4EEgdBELbK0TWGzZsyHvAU0895UUsKEmFCZdWi+oM4sXL56+zlZbkv8fUNm58RFn/BsgMcyjgzNj+pJYYyjjqtGMbbmpU27ZtCWTgQDUl0HNyqAnCesiXLx+3O8xHeh/iYoGOBSPj3HPPNbscXL+VK1ceM2YM6S9z587lHgU3xDXXXMN0GExm55I0IZCUCIS2VygfoB/ya6+95t01815OjSKtUhYsWODdVUhzfPIUfNF2xzgUsLAjM6TkMIeMqAH5CnGBhBPA8xuh4Rc+1BQkLvrrr78wFIj7QNVdr1697777bsaMGRAikFdk5BKHEYIDmBYQmCzUZ5HkS21j/vz5J0yYENJ0DiNHh4RAyiHAjyTgQ3sRfrTTp08P2O/FPwkJ8RaL09WLyktnECBjkef6pEmTzKKBxdCyZUt+7aQR0APL/xsS5pARHUhiIFsTxiAj0uIUAjE0P3bq6eKU463h+LcgPsCD8vTTT0ODmVjl8ejwVcSIwTTn3ptYZTS7EHAzAiH4+CmuKV26NK9cbtY7Qt24HeMoIjgd4fk6zYUIEJckh8CFisWmEo2m+U5SJRvbcOOjaFZaqlQp42LdKRDDlGwSjAOyVbZs2eIeJbFUsFf4YqAeudjuUUyaCAH3IBBor2Ds82Mm+cM+FYkZU8LDmw3+WCoA7ZvIkoyLBS4Wu2eRfPsQIKsAAjfcHvZN4ZhkwhC0Fuc76diM6U4EYzV+JvoepHum10+ATxKOAzKHRo0a5cL3MVQaPHgw3kQIiI03zPL6tZP+QgAEAoO1ON7hFeCVy6bAGLWptB8in5cUGaghebEjcmzTXJZY6jYhUYAOwdZZJNw+BMgqoMoUA5fvq32zOCN56tSpdEimkNiZ6SKZhXpd3uwHDBgQycnePWfz5s1Qp1CkA6skDYNC8hondnWoREMA7HIIc7kiiWrXkFgQNLsQCIdAgNWG452+XwE7Df5JHr7Pt8+7JsQG2EYG5QeLwrlKX0Z4JoIPaY9XEOAZQ5oFCeBeUTiknrBxXHHFFRjQIY8mcOfMmTN5WMLfmkAdbJ0aKqaLLrqIO48DDt34F0LOFhF56pXofxK/NEkQAkmDwGn+FYK7a9eu5X0rnIETx7Fjx44RCcK/YsngCYRtBAsklEpxSE1nKOEtfvy8taRzng67GAGqaWgHQXU9CUkuVjOcatwyHn/8cb6NtLYId14ijlGlUqhQoWTtgEhqCOyRuOgoFYSONhEARzcnlsqHH35IJT9MMLSYjW6wzhYCyYvAafbKjh07SC4hc96m9W7fvh2fCvFjn3yLgsLuDoU87Ww1iXzL0YZ9CBBDgRC9du3aR44csW8W+yS/8MIL0IW9+eabMZOP2acbbw5wsRALTj5qPoLOPPWJO4M8DCj2YWhWMmx+OL0oXuPtzmIXNCtf0oSAFxE4zV7BX80a7OvOdeGFFyIfq8WHlGW7kAfn22PHxuWXX24tzQ7hkukMAlSfUnaLPc3jJyRpijNqxDYLvX979uxJmqdre1rRdYvENUq7Y1ugO0cRC4aem58/z/6Es91EC1HGjBnfe+891H700UdTkCAnWrh0fiogcFr/IJLRWLPVx8uOxUPmmCdPHqqLe/fuTTiZKaxXB24odkznk0lHt+TrQeNbXepskPyBS594ZdWqVWfPnm3fF9UspMOHD8d7gX+FzBWzkg1Kw/cACwghoU6dOmXOnBnJ/DZxt1B3DUOJ1UraSv4g08X68fKz4pdLL2L6/9n3khPPGrERyW4mC8RaUTyiEjIWVxxuIXJv4fQjHpoQHTSpEHAPAqfZK5a/FHJom95FLM5cXPr06YDVkeY+FE6DBX5+WxGhQwrs17ZOIeHOIAAhKfzxjRs3Llu2LOEVzF9n5o1tFnJWOnfu3L9/fwx0NmIT4swoVCUd9cUXX4Qznrf5L774Aqp+a2rcolYPZ8wUjBXOxHDhEEaM/zn8imkvWrx4cRoRs82Zzmie1iz4cUkVouVywvsepKVhJPuJzmN19ejRo27durly5YpkiM4RAsmKwH/vPr61UYVBoJeILw3QfTuNb1CtN3/+fGwjaFF4daB4h5wyW+9uffv2hZuf7Bzja5FA+xDg5Z6vou/D4wf+ct71yQylKrhBgwacMH78eFIp7dMhHslUeaDk0qVLKWtiIx5R9o3F70jCO9zwVNCwjR+CByS9QrE8wBmHFu4TAhNpKUB4DgcMDXHIg4Z+DStnw4YNpNVD4AshG5eG6j+20xpu635oBtEK/wqvSbZOZLdwukPwggeefNvtnkvyhYCrEcBe8X2476Arqem+PbZu8PPDTHnrrbdsnQXhTzzxBL92u2eR/NgQoCqNhGsyDHB6P/nkk6SnkGbo8/CRCopp63vkYEnzLWUimlmScsH3h5aWOOpim9q+UVgAhEjwBkH9bt8sMUvG4/j666/zwkC9Eq5H2tkQCVq/fn38zKpIQA7SoMlGMhcO9jPaeDFjzNrGMBDjiVsZVyGGsS4cQlklVwqqKhfqJpWEgGMIBPLb4mCnEMOB6XEpFyxYkAxEB+bCO/3ss886MJGmiAEBSsZ4feTpgo3iM1OCbXzybXnXJzXbfwocLcT48ZO7p90VDiHKg9GfLnouZPvgmQfzHqABNZFZ3haI6fhDanAbOxL5DzzwAHMxI/M69sQl3EzXZb5aBpfjEwXhMpmwvj+tDQxock1YI/l5xslzsekxf0mBCphUfwqBlEIg0F4hSsr7kN0Q4CqHlRxKTbsnQj5pg7yjz5kzx4G5NEVsCPBUCx8Q5DWd1E7iQcHy+S6RzsJw8nA/+OCD4BMc24Pjh7xaSt5ImHDMSRn56ojD4mjEdLjqqqvotsjvIvKxcZ7JXGTw8C7E7M2aNUOTOAWGH465wLeFtI/wp8VwlC8YbMsYoySU+A8nNFmgQAHSwC1+F3x+/keNbGOB4Xc0IkpChIBHEQi0V2iqztPdvtcg3OMkweErJmvSGciwiriJUAHrzHSaJQYEeA/mGc8XL9itwh6MFd7Ow7Ov8r0iUZSTKRjG10LOeAxqxDyE6APFNYQ/8AANGzaMhIOYRdkxkCwTuugRVsNSIf+UBtF2zJKuTGAhMMRDF1dZmzZt7IvikUbDN8EOcliiWvjPEB5grwCv5aYCaji7yfghiSddQKI6AQuYeffs2RPVKJ0sBJIJgUB7hXtK9uzZ+fnZsUjee2iuxk/OuL80LW15EJI22KJFi7RO0H6XIICREdLFgrFCWQrNXyLR85NPPiEWQ6Sf12vqciE2jWRUzOfAXEcWiMUHzWMYSyVRpkCYJVABTmSEGh8sFTcYUuiAJuiDVugWRvOYD40ZMwa+NWIoMUsIMxD9g+0V/+s+cOBAZjeer0O8id+CA9l+YdauQ0IgsQgEvtHy6sObIjcUi3GBX6bBj+W0J9sg5JPJ4EQ+UeQ30DYM96xvjzZciACPFl5M+e4FfDGwPPAKLF68mHKVSNSm8QK8LLwBE3QgRfGGG27Inz8/hgvvpsiPREK65/BzxdND3hXEo1hFTERiAWECypdIFkbbdCU4dgJPVrqKkr988803UylDrAqEHZs9rYnQAU3QB63QDQ0tCyCt82PYTyUgbyk83WMYm+4QvpPB5/hfd6gpaRxhnEABG4j0bX+yzWA1tEcIJDkCweYSflpuwThsgw95aw+PKBzgLmwv5y0YbdWWZxUxAogEyWyoWLGiv71CeAi/esz1NfjwVq9eDcsWJgu/YR6TFM/T/3bs2LHIjDwYQcELJi/lS+Sh16xZk94uSKMInzRSMiuNu/1NoU3KCNwE1CfjATIl07gcdENDrEyzyTR0JSM4aFxbSyDfK74AaSXHQAnBl8Qm/zFfYCwhm9YlsULA/QiEeAXhDkI6Ho95fnhQSPHj9OiHDDUeJ9xZPKp/cquNT4V6CowAkqUefvhhEgIIEOBHgYyHKB7GChYGjHA8dGPDAdPnln8+0LXBEbJ8+XJikXwIFlh0/oSZ4BfhA08uL68YTPyLjcuPlroePPw+dldLH9QjNQFvDVR1ZIvb9Poe22IDRmFg8cDGE0BpMXmgAUfd8yfd2rlE0LSQdURsiJiaEd0wRq3WH0akRSiEeE3Hjh2xwIgEUSVElh7fqAjHRnga31i+mRGerNOEQPIhcCZ355CrotaRXs1kACSK7imkVpHvpNeMVa754IMPRj5KZzqAgGWpQKVKnQiWCslS+FeseXFj4LdgG2MFUkF66hrXh3dfAkbEIyyiM4p6eAZgweDp4ZGDRwdTiQcDHn68jMQu+Rf1qLjGmjGujB0CMfhgG8K6gn3E8gbZMYtBmQRQSMDnywBnHRwH8UumXgxbk+9P/KKCJXDD5BvCW9Dzzz8fcJRDGIh4pnHsUU9Qv379gBPi/JNMKVq3EqyPU46GCwGvIsBvLOQHsku4ufBAerGyBoc/XiJyC0IuTTsThQCOCvJqCdBgjtDFjTyDAE0wJrAMLGMl4JD+jASBvXv3EgPlZ4vtFcn5LjkHbW+99VZuOOgfv0rkxJAcE7+ckBLCx4MYgvnLO95DDz0Ucng8OzHmRMESD4Aa63UEQsSDLMuLClKrt1ydOnW81d1069at8HXyIoKfH68snmHejPlQ1UzagbXNCzQGDc9Fr5qZXtObuzyl8l27dsW3gU+FQE9I5z9BnJdeeomTreJkr60ywfoSw+Kbzxcbzwrf8wRrE830aAsDG4E2HC04J4KTVSnxI7ZLcyI+tAugbjyMeL5aNMTGOA6ZGxtmoJFD3GfooGQ8idgqpQ75qzGitoQIAQ8gEN7gwlHBzw+3PC8N4c90ydFVq1bxckM4HLcQfP9WkgH+25BXgqPc3Ln3EePnhSw8w4dLFug5NSyfCghbPhVSKzy3BK8oTB0cv1YsQq8oHKDnzp070T9kpj/2Cras7wWDFw+CI9QZ0RcMnhUr68gnjZ5B/N5p8uDbY3CD7zPCA/hXAuRz/yFqE7Azzj+XLVvGvPYxY8WpnoYLAQcQOCPdOUhhISeRTEPuJumenNgTiDWQf0CLNV8Mixg2eyJJjcSLzmt9YvVPstktSwUnNvYiWUSUYibZAl21HGqqeaKTwuwqraJVhpIrVhHMUzx06FCfscJj2/qwx/Kg8AUjlkTmEyy6+Ja4U/HSgqMu2tkjOR8/B7NTd+Y7mXwseBN8TG50uCQd2zhjIf29IQj2TaoNIZCCCKRvrwAKqXC4YXn1cS1bETcR3sC4j8CBEdCzjZcteDKCb3b/f8/75z8MGqpIUvDy27RkWSo2AZuWWL7zvFHAlZfWCR7azypYC18hf52xYPx/sCG3fW5U8qOpOcKlZ/wNBPct9FTMTlxmxIgRWCooSc9woufcYdC8Ro0aeLkC/D3+C4ltm4l4aXzuuediG65RQiA5EIjIXmGpGATWD5Wkd7NkCfHjSFkBHQ0xp/CvhJRGEh9072FMFuwVbjohx2pnVAhYlgpsXZZPhVqVqIbr5NgQmDBhAt9hip5iG+6qUeSfsRZYefy1wnsR0kbx38koUtZgGca3sWHDBg4F+2n8ZRrcxjAi0BnQjNOg/Lfffhu3U3B+usEpJEoIuB+BSO0VayXvvvsuPkmSVV3SJIWS1AYNGvBLhigzfNge6nSCytzR/G9w1jZ2DFmK7r9ULtcQS4WvB344y1JJjmenyzH3qVeyZEl+CL4/DW6E7EWMw5XIC+kj2EkklhqczhLFSxH58iRl0/zr8ccfp9wJBwY/8+Afr+8nTP05Pdj90+xI2YbgOMBPY1xVBwTiPON1i060DsylKYSAmxFIk38lrVsDqSEwZwwePBj/ZJcuXR577LEwfou0hMS/H0uF2p/XXnuNWM/LL78MtV26Mnnrgp+KNxVehoJPhrKiefPmtWrV8qfWDj7N+T1YWngp4JPAS4Rnizpzvk/cly1NrCon/rWYQvgX0u7w1RPGlwCe77//PnQUhN7gvIECzgiLhnE9k1UgzZUIoOBlpL7G4Bppg4C5sGjRInJL4cjxSSYtHRI/PBm4JIlTlChRAi4+voG+E+LfQCBMlblz57Ye1bjrqHLnZ06D7gDh3Hz4+kG4QqEvTDn+R4GFPBIScvnV++/33DYvh1Ro43bip+055aWwEDCJQGzGFGnq5ItA4MgDktuZEdaECDWBopTXL6wKph4+fLh/p7F0JXBrC2B54qWNUDQ3ZRJCuffhOnriiSfo75quKPtOwBahthOuzEqVKuXMmdO62OjJ7Zj3RUjr2Y+21oeXSPbAaI6N4vMe8Szh0UUqz7Rp0zB07FMVPPGp8FSwfCrcUu2bS5LTQgBjgmxTrkVaJ8S23yqg5esXUAsDeSslx8jkVw/LCCfA+RvbFGmNYi3kvweka+BA8n3DmZRtfhS8YITJ46bUiDCx+wsF0sKB/dyLqBiACCDMOTokBFIEgejiQQGgEK/FB0s/Z7L0CangHLbe/gNOM/Inv1te3MlT4VaF9xvPSlSWir8Or7zyCnc6PtZdj9ID6yiPdmoKuPVzCCOAbBg7fN3+mvhv8zrIOyJucMBEAVZKGxRecGHBwf0eiSa4vmFrpTyBTEB8RRgx1v0dbwetCVauXGnQNy5Lxf/aJXab7youBDt04FvHb8TfXjl69ChsTL65+GbyXb3zzjt9e0xtQCeIXe4vrW/fvhbDvVUTxNebr7T/CcHbmFx4nqD8ZyP4qPv3HD9+HLIZwmFWYq/7FZaGQsBWBOKyVyzNiLNQRQnREz4PHpAVKlTguYtHN/57BA7nd955h5ckHMLcN3E2kPML3UL8iBAVwpvCrRZmKm7B/gJ5qJOmh/eCteDSwCALnxnjPzaGbdbIjdhq8sICsTNY8sGDB2MQFTyERiqYOyzBCtAgH8MlzPtosITgPZalQhQAnwoX3SaWi+B5tSctBGBEHDlyZFpH49nPbyHAXgmWRssnXJLB++Pcw4pYl78QOm+jjGXK8632PxRmm+gV7kbixQFlg2GGuOQQ91UsNuLdGIUuUUlqCIHEImDAXvEtAAJKDBeCNQSeubNgvhAp4E+cFryT4UMmyT8tPwGE3GRowok0adIkmAYoR6QBCkJ4l8KbQviWMJBB9wA6I5AbIpFvn/4BG7i70ZyoEw9my91i9pbHkx6mV14ZuZ+Suvjxxx+bXWDAcnBQ0fQENzt3fGxKkhkDTkj3T5+lggRZKunC5cwJmKT8TGK4mpGoxxVHOF+btE7mGws1LczFaZ0Q834yopjav402WVz4PqdMmRLtzwQ3zAUXXIC30uzvN+alRTIQYwU6GW5QFDpFcr7OEQKpgIBJe8UfL3wSWB6wKpFgQUkRtx7fh3sHT2jSdUkfu+yyy9i2HLzWCbg9cIHyIKcAgbswNpC/WLPb5FsQhQkvkxsHgSHsFR7S5Ijgq/ARQ4UfGOYo9yCoGhCIKUZDV+NsDWGm5l4PoZbFdo9HPfLnHD4ntLUsFd1DwyDs8CFevvnhwENtx7zp2it0FeVbxGnGZ2dFrMvftYm1wY8xton4ngcwScYmx5lR3PR4o8BY4f3NmRk1ixDwBAIh6nstuyHOf3kT4uMTgluF2hY8FoQ/eGci9YSHNHcfeLUJu/DLZANPBvEXsmF4KPoG2rphhZnCT4H/w8pshV+BWgM+1ClgbeAD554SrarEnsgGIL+E9BTI93iFilZCeG3TPWoFcfCOfP7551iEZB2RfIA+YaCgTgSPF41nOZlgHJGgdGfRCY4hgAHKXP4Wv2NTk1RBKJPXEju+w1bqFTaKbzmsMeZlwnfA1xivLWVHvH7435p88l2ygRuJG86hQ4cIqZNf7xKtpIYQcAUCnrCq3KMklpblbuHi0WeYgNGPP/4YoXoEy7Jly0YSCezdEQ6x+zSKYMk/IImHGvVgbzk+FfJ/eRph32Cv2K2M5MeAgFXZDktKDGPTHRLev0IyGVGbdIXEdgIZKvzEWF1sw0OOwhQg/TYMsWTIUU7uxNtKZTjl4spZcRJ2zeUVBOyKB3ll/THrSSyJ2BDBLNJ0eB8Kz6RJdg6JMjz4KQI3ewuOWX/fQFxf9CJgFbx6+urSWQ4NIHlgEAgzkuDsm04bZhHApODa8ZwzK9aSFsZeoZ8f9YB2TGrJhN+WdRmPNFEEQP6+ZYK7yiaAWgb/JYqhXsxhL/suhyQLATcgIHslrqvA7Y8bK2nFPNrhoMTdAr1bgES4aoj+0IBtzpw5AYfc8yfJv9QQ4f4h4IWlwn2TmJdqf9xzgcJoQgZJq1atwpwQ8yEr2ORfz2yJ4ksCKYBPLFaFceodnDfUIfumMLuBO4qKPDKFcStSM2xWeLTSuGNAr4KPE0+nElaiRU/npxQCslfMXG6cEGS0cAfkvgN1hC8jFcpXsnTJILavt4iZBfz9N3lFBPjRH3e0oj+mUHVADgRuJDrYMRHmOIa4fy9iZhk1atStt96Kc4XP+PHjoS+qWrUqgUWzCtDYoV27dmZl+ksjsIuxQuYcLxJ9+vRJiNeTJBXoK4lPocOgQYPSqp30V1vbQiCVEZC9YvLq86qEnxxHC3d53nonT55MwIiE1oTcDWNYGCksWF2kOsJ1EcNwDUkIArAz830z3rApZC9ibBTmCvhAPWA2cIO3hilYl9144lzBJwqrNWZ6ulFdg8pYrzeULNEXCXriAAoogxNJlBBIJgRkr9hyNfHrVq9eHa6ncuXKxc+bZ4uKaQslgs7tm/KEtE/RERchQNQGWh0aOLhIp/hUgW/Jah4Un5hIR/M6QWcPnKAYSRTK0RbNDv8iJh1F2iS90QCEiWAHGDNmjD/BTKTq6jwhkKoInMnCA96W9Gf8COBtJqpC+SWGC/7e+AU6KYHnH/w3S5Ys2bhxo0X95+TsmisGBAhtEFDYsWMHkYUYhrtqCFESnuiYX9gNDisGpyXVf5DKkHNGHR89UPnQ1x2PqdUKIFp9yJzdsmULVJCwUxIyg7f6mmuuoScofZfECxAtmDpfCMheseU70Lp1a4JBPO/dzPQQZuXYW8SzsLToRhQz6UUY+TpkFgEK0Kiux8qEHMisZOelPfXUU1T+Y3vByeT87NaM+FcokcPIgBuXmBEklsBLPix+LNLRMGXITCf3hZ8G/zIEhjfcJ/yLRWIRTWHxwEVJ1Q8xVoLCZcqUwfSBX5+8nEQtSvMKAa8jIHvF/BXkGQ+VHPdcq3ut+QkckUimMCYLnHKkczoyoSaJC4HRo0fT1YGkEwINcQlK6GASO/BnUHxEI62EKvL/k+NrJJmGXhYYH7QiImuelqKQXmKdhFQPC4YoMDYNpN7XXXcdMSasHCrv4GkMeb52CgEhEDkCslcixyqiM7mREQmCqPe9996LaICLT+rWrRtx/eSIMrgYZjOq8cW755574BShNi2Bnol4FnPy5EmMLbwXcNG62auHEUPKC94UNvC+sGQ8kVgk5O3ykWkSz3dAY4VAGARkr4QBJ5ZDuFWoZ4btHs6VWMa7aQzJgGQSPPbYY/369XOTXtIlNAK8+hNuKFu2LO3H3fy8D6k9z37aU5DqwW8HkyXkOdopBIRAKiMge8Xw1acgiBZIPDAMy/UTx2soJHU7d+7kra5OnTp4m/0OGt4kHkSF9r59+2LLNzSsjcSlh8Ann3wCJXG9evVeffXV9M510XGy/imkp08FNcykerhIM6kiBISAaxBQVNXkpSB0Qo4e1PsmhZ4ui3ZFvEOT5derV6+77767Zs2acKWcforJv3CuQA4BM69JoZJlGwJwwuLhg8aNzg94LGybx6Rg9CRbhZYCdACVsWISWckSAsmFgOwVk9eT9m8QQGFGmBR6uixCM5Qq1K9f/4ILLiAfltgT9KOnn2LyLzIH8RglQS6OSVDcLQuS4nfeeQcPHHWzdEF3t7JnoGGtWrWmTJmCzmjucm2lnhAQAglEQPaKSfCJvlPdYGvqAC0J9+/f72PNsToAmFxDkCzyIag6CdqtHe5FgN5PH374IbW4pH7D/+FaRdGNZlV8u0iwRWfX6inFhIAQcAMCsldMXgVoG3hCmJQYJOuuu+4iIZG2IxyB2oGQP3wVQWeZ3IEXhzgXUSGTQiXLZgRo8UOhEOUqfCGHDRvmttgQ1UyUnqEb3CT8atDWZjwkXggIAc8jIHvF5CWEKooAikmJQbIaNWpEQyL4TMksadq0aZMmTR5//PGgs0zusFYEEZZJoZJlPwJQgECvDLd9+/btyWtZt26d/XNGNMPatWuxVOD1QTc0RM+IhukkISAEUhsB2SvGrj+csATj7SZEh2qTLBlMFhIUoHRzwIturQiWdGNISZBTCNC68oUXXoBnGUYWTJa6detCeubU5CHmgXgNEl68KSSMoxW6oWGI87RLCAgBIRCEgOyVIEhi3XHmmWcyNC3iy1ilhhjH6+kVV1xBmi0Of4I1e/bsCXGSuV1Wroy1OnNSJck5BCBapRsUnXEwF2BchXaZXjbOTf/PTMxIA+RixYphMFHtjz5o5bAOmk4ICAFPIyB7xdjlO//88zNnznz48GFjEkMJgmCjYcOGI0eO7N+/PxkA8Jm2bNky1InG9lmelcsuu8yYRAlKBAKUC+HSwGrhO0PNF+YCzYbsNnZJD4e/h7mYETJ7ZkcHCoISAYDmFAJCwNsIyF4xef2g4YdazaTEIFkjRowg9m91WWvVqhVtbBcuXGhrsIZHDs4VuqIE6aIdHkMAqnisljVr1uCZo+yrR48eNPAjToTtS+MeUzm5pIEjDZlIJjeFWWj1x4zMy+yiq/fYl0bqCgHXICB+W5OX4pFHHqGrCPklJoWeLgtyFxJK4ASzdsNyS4d6/Pz2ede7du06Y8YMur6droj+8jwCp06dopB45syZ8OuQT02OC9X4dPAhZkQ3CXiTSZaKZJF//PHHtm3brKaAFPtQ1U8nB1ie4VPBlULvT1yPkcjROUJACAiBMAjIXgkDTtSHCNBQacyt374sQjzqFAQxBXxx6IclAdEtL6/2vbbiycckgjI1ajg0wCMIkKKEPbp8+XIoW4jXbN++HR+J5VSjlQ8FYtD8WC39+BeLnCQt/qUvBN5EmhbxbUQC3/kCBQrccMMNeG5wqBQuXFg5Tx65/lJTCHgDAdkrJq8TmQE82iHIt4+pE6c9bZPnzZtHMTPEcd98802fPn3y5ctnchl+sshvQDjcozVq1PDbrc1kRuD333//6quvvv76a8wRvmNYJBS+0ZHYMlOIRcKICLNLxowZyfvGUOYbSLUahT9qMpXMXwutTQgkGgHZK4avAN3meBm1u+EOnnw43HC5Z8uWzfACThdH8sHo0aOxWiIMDZw+Wn+lBAI08cZYgRMoJVarRQoBIZAgBJRvaxh4qnXIBvjss88Myz1dHAkBZBjYbazAaQs1Ko1zZaycDr/+Og2BKlWq4PA7bZf+EAJCQAiYRkD+FcOIEsi/7bbbKGz+4IMPDIt2XBzFR3TNJS5A1oLjk2tCzyCAsVKtWjWccHaTO3sGESkqBISADQjIv2IYVHIMBw4cCB0WT3rDop0VR0nqK6+80r17dxkrzgLvvdlgWyb7e8GCBd5TXRoLASHgHQTkX7HlWkE+O2rUKGo7KQq1ZQKbhf7888833XQTtSG0+bWv8sjmRUi8cwjce++9mCzkZTs3pWYSAkIgxRCQf8WWC967d2/qOWvWrGk33a0d2kOnAWU79SCwvMhYsQPh5JNJCgsBUAqLkm9pWpEQEAIuQUD2ii0XgsJOSoTogMh7JzQVtsxhj1Dyb+B3odvL3Llzoeu1ZxJJTTYE+J4fP34cprhkW5jWIwSEgGsQkL1i16WAmgKm/F27dlHhbCtfvsEF8H5cv379t956C8f+zTffbFCyRCU3ApD0FCpUaP78+cm9TK1OCAiBBCIge8VG8PPnz79ixQrYP6E5hy7FxplMiKZ6uWrVqhRj00/gnnvuMSFSMlIIAb48qmpOoeutpQoBxxGQvWIv5DCU4ySHEpS2LL6mP/ZOGZP01atX33jjjbCaQsqOQygmGRqU0giQwkILISieUxoFLV4ICAHbEJC9Yhu0/womC4S2LI899li9evUaNmzottgQSTZWB10I6KC5o//Lv4rrfyEQBQL0DKJjokJCUUCmU4WAEIgGAdkr0aAV67nQ0cJlQgYu5cFUOI8ZM4ZWLLEKMzmOpwvNeAcNGgRnDJEguwlzTaouWS5DgBzzu+66S/aKyy6L1BECyYOA7BXnriVNEOl82/qfT5EiRSZNmkTzQuemP30mXD6VKlUi54A0yS1btrRt21bddE9HSH9FjQAhIZgS8dhFPVIDhIAQEALpISB7JT2EjB6npS3Bl02bNpHO0rhxY6yW4cOHHzt2zOgk4YRRATRt2rSy/3woXSYdmLrlq666KtwYHRMCkSFAVTOdnEmBiux0nSUEhIAQiAIB2StRgGXqVEJCkydP/vLLL8uUKdOpUycqnxs1akTxM0RtpqYIkINpsmbNmg4dOuTOnfvRRx+97LLLsFQWL16MAgFn6k8hEDMCuXLlwgRXSChmADVQCAiBMAiIjz8MOE4cwrkyZcoUmg3Rr+fiiy+mbxzlOaQu5s2bN/7pf/zxR+ySpUuXkjpDO7prr70WYwU6OPWlix9bSQiJAPb3rFmztm3bFvKodgoBISAEYkZA9krM0Bke+N13382cOfPdd9/95JNPyADIkydPqVKlqNnhhRVqf95c0+07iCt+3759pMiQj8Jnw4YNW7duhVC/ePHimEG1a9cuVqyYYaUlTgicjgDBoPLly9PTG+P49CP6SwgIASEQFwKyV+KCz47BGCtdunSZPXs2hCibN2/euXOnlZZL7gtWCyWjfM455xz+PXHiBArA8/brr79+//33dPyx9MHWwdChMhmeOiI+6Ro6dqxCMlMTgT///JMqs549e7Zp0yY1EdCqhYAQsAkB2Ss2ARu7WLJYYJmjcmfEiBFIwXyBG3fv3r0//PAD/9I5GTOFpwLtWjBZcJ9cdNFFGTJkIAnG+lxzzTUyUGJHXyPjRqBOnTp8RZXFEjeQEiAEhMBpCMheOQ0ON/wxceLEpk2bEtYxksLihhVJh5RCYMKECS1atIAXMXPmzCm1cC1WCAgBWxFQfZCt8EYtHB65AQMGPPLIIzJWosZOA9yBACwslM0vW7bMHepICyEgBJIEAdkr7rqQM2bMIEn2mWeecZda0kYIRIwADShKlCiheFDEgOlEISAEIkJA9kpEMDl2Ur9+/SjkIVvWsRk1kRAwjoDV6Nu4WAkUAkIglRGQveKiqz9v3rz169c/++yzLtJJqgiB6BEgJLR7924YEaMfqhFCQAgIgdAIyF4JjUtC9vbt25cXU6j6EzK7JhUCphCAOggOZexvUwIlRwgIASEge8Ut3wHyE+lB2LlzZ7coJD2EQKwInH322ffcc49SWGLFT+OEgBAIgYDqmUOAkpBdd999N8wrcOcnZHZNKgTMIjB16lS6YtERQmxAZoGVNCGQsgjIv+KKSw93Pt0HobV1hTZSQgjEjQApLBTnf/jhh3FLkgAhIASEwH8RkH/FFd+DGjVq0I+QlodnnnmmKxSSEkIgbgRuvfVWul+99tprcUuSACEgBITAGecIg4QjAOHK3LlzaXYoYyXh10IKGEQAF8vo0aP//vtvfbENoipRQiBlEVA8KPGX/sUXXyxYsOB9992XeFWkgRAwhwDFbvv379+0aZM5kZIkBIRA6iIgeyXB1572y9OnT+/atSudCxOsiqYXAkYRoDI/Z86cqmo2CqqECYHURUDPyARfezhX8uTJQ0vbBOuh6YWAaQQIA6mq2TSokicEUhcB2SuJvPZ79+6dNGlSp06dzjlHiUSJvBCa2yYESGFZtWrVkSNHbJIvsUJACKQOArJXEnmtBw4cmD179gYNGiRSCc0tBGxDAP8Kgc4PPvjAthkkWAgIgVRBQPZKwq704cOHx40b16FDh/PPPz9hSmhiIWAnApDFUdUsols7MZZsIZAqCMheSdiVHjRoEJbK448/njANNLEQsB8BQkKk3MIdZ/9UmkEICIFkRkD2SmKu7vHjx0eNGvX0009nzpw5MRpoViHgCAJUNcPKT+NxR2bTJEJACCQtArJXEnNphw0bxhtny5YtEzO9ZhUCTiFQrFgxKuBU1ewU3ppHCCQtArJXEnBpf/nll1deeaV169YXXXRRAqbXlELAWQQqV66sFBZnIddsQiAJEZC9koCL+uqrr548ebJt27YJmFtTCgHHESCFZd26dQcPHnR8Zk0oBIRA8iAge8Xpa/nHH38MGTKkWbNm2bJlc3puzScEEoFApUqVzj333IULFyZics0pBIRAkiAge8XpCzlhwgSaqjz11FNOT6z5hECCEMiUKVPZsmUVEkoQ/JpWCCQJArJXHL2Qf/31FxxxjRo1IgPR0Yk1mRBIKAKEhBYsWPDnn38mVAtNLgSEgIcRkL3i6MV78803aXAIR5yjs2oyIZBoBKhqPnr06Jo1axKtiOYXAkLAqwjIXnHuyv3999/9+vV7+OGH8+fP79ysmkkIuACBQoUKXXPNNQoJueBSSAUh4FUEZK84d+Vmz579xRdf0N3QuSk1kxBwDQJUNYuFxTVXQ4oIAe8hcCYv/d7T2psalypVKleuXDNnzvSm+tJaCMSFwPvvv3/ffffRk/yKK66IS5AGCwEhkJIIyL/i0GWnmBMKis6dOzs0n6YRAi5D4K677rrgggvIunWZXlJHCAgBbyAg/4pD16lcuXIZMmQQBYVDcGsaVyJA1i21zW+//bYrtZNSQkAIuBqBc1ytXbIot3r16o8++mj58uXJsiCtQwjEggBVzV27doUyEfq4WMZrjBAQAimMgPwrTlx8Xit/+umnVatWOTGZ5hACbkVg165dV1999dKlS8uXL+9WHaWXEBACLkVA+Su2X5iNGzcSs+/WrZvtM2kCIeBuBPLly1ewYEFVNbv7Kkk7IeBSBGSv2H5hXnzxxeLFi1PMaftMmkAIuB4BfI0BVc2//vrrf/7zH9crLgWFgBBIMAKyV+y9AF999dWsWbOI2Z955pn2ziTpQsALCJDCsmXLlu+++w6i5xEjRtxzzz2XXHLJ77//7gXdpaMQEAKJRED5tvai37dv3wIFCtSsWdPeaSRdCHgBAewSWmidd955N91006FDh8455xz+5F9K57ygvnQUAkIgkQjIXrER/d27d9MwaOzYsWedJT+WjThLtMsR2LdvH2Rx77333uLFi4n+YKBgrKCz1f6QCmeX6y/1hIAQcAMCsldsvAo4V3LmzFm3bl0b55BoIeB6BGBKbNasGVa7lacS0KU5c+bMrl+BFBQCQiDxCOi939g1+PLLL/1vxD/88MPEiRMhtBXVhDGIJcibCNSoUaNp06ZpeRmzZs3qzWVJayEgBBxFQPaKMbg7duxIB9rXXnvNSh4cOHAgN+KGDRsam0CChIBnERgyZEiePHnOPvvs4BXIXgnGRHuEgBAIRkD2SjAmMe6BC4uElebNm9PUsE+fPq+++mqHDh1omBKjOA0TAkmEQMaMGaHhD1klR31QEi1USxECQsAuBGSvGEOWpEJkEaH/8ccfYYc7efLk4cOHjx49amwCCRICXkagRIkSL7zwQkBUiD8vuugiLy9LugsBIeAQArJXzAD922+/HT9+3CcLq+Xvv/8eMGDAlVde2bZt2/379/sOaUMIpCwCzz77bJkyZfwzuogQKR6Ust8HLVwIRIWA7JWo4Erz5L1792KgBBwm/ZbqzeHDh5PXsn79+oCj+lMIpBoCeFOmTp1KkNQXGGLPhRdemGo4aL1CQAjEgIDslRhACzEEeyXE3n924Wt5/vnnS5YsmdYJ2i8EUgcBsrvGjx/vb9xnyZIldZavlQoBIRAzArJXYobutIF79uwJCMz7DtM/qFOnTr4/tSEEUhyB2rVrN2jQwIoKYbjIv5Li3wctXwhEiIDslQiBSuc07BVYOwNOwundq1ev5557LmC//hQCKY4AQdIcOXLwkyFmKnslxb8MWr4QiBAB2SsRApXOaRQH+bu4ORtjhWoIOh2mM1KHhUDqIUAMaMaMGfxkiJYq3zb1rr9WLARiQUD2SiyoBY+h3+wff/zh24+x0rNnTxkrPkC0IQQCELj55pvJ62Kn/CsByOhPISAEQiIgeyUkLFHvhCzON8YyVqBg8e3RhhAQAsEIYNCXK1dO9kowMtojBIRAMAJnBkQxgs/QnkgQuPjii3/66SfOlLESCVw6RwicOnWKllsfffQR7ES//PILFXYHDx6Ex4gPLADgc/7558OKe95552XLlo2qIvJdrrrqquuuu65w4cJq6azvjxBIQQRkrxi46NxhubFi+WGs9OjRw/JyG5ArEUIguRDADYmBsmzZsk8++WTHjh0k22KO5M6dmzbmMCvyLzZKhgwZrC4WluFCmPXAgQPks/MvUVd2UoiXL1++0qVL45u54447ChUqlFwgaTVCQAiERkD2SmhcotrLnTd//vwMIWdFxkpU0OnkpEeAjNq1a9fOmjVr5syZ/FIwRzA1ypYtW6xYseuvv75AgQLBhXVpYfLXX39h8Wz+57Nq1aqPP/74559/xtyh/3PNmjWxXUL2U0xLmvYLASHgLQRkr6R/vXBW4z4Jc97y5cvLly+PZ6V79+5hTtMhIZBSCPzwww9Qw40ZMwa/CBTPtWrVqlatGsYKThQjOOCegTZ63rx5GEPYMASMGjdu3LRp07x58xqRLyFCQAi4CgHZK/+9HHibv/jiC25533zzzff/fvA8k5Liy+/hLZAiTALnhNIvv/xy3urwqfCCWLRo0UWLFjFQxoqrvtlSJoEIkJjSu3dvGjKTS9vwnw/eFFv1wXMzefLksWPHYiTde++9ZPKWKlXK1hklXAgIAYcRSFF7BSvks88+wy/CZ8WKFUeOHAH3K664omDBgsTR2eBDEJ3OsaSk4MHGduFl7sSJE/ifSQzknsi/W7duPXToEAMxX+666y7c0XhZFE13+Bus6VyFwPbt2wmJYqmQGNuxY8cHH3yQn49jGvIjfffdd/v3779mzZqqVatCLX3jjTc6NrsmEgJCwFYEUsteIf5Nrh/e49mzZ8PwdtlllxFHJ2uPTvdFihShxidarMkB3LJly7p168giXLlyJQYN8XhC6bi+9XoXLZg639MIUNSDT2XgwIH4HTFZIN1Pq0OFA8tcsGAByWT8MJs3b47VwouHA5NqCiEgBGxFIFXsFWomx40b99prr+3evRvXNCYFOXrFixfHfWIKX97tyCvEEiKvkPAQ75fcKx999FHdK00hLDmuRWD16tX169fH3Qinc6tWrSJPobVvRfhQJ02ahI+H3zi/fYJE9s0lyUJACDiBAL/q5P58/fXXBNBproY3pUOHDtu2bXNgvZ9++ukTTzyROXNmEnXbtWuHteTApJpCCDiPAD5L3CoYKMRfrK4UzusQZkZCvfRWxGThZwjjS5gzdUgICAGXI3CGy/WLRz1STLhVcSclK2XixInkoMQjLYaxx44de/nll2GVIBXm6aeftrJ3Y5CjIULAnQjwm6pTpw4vAySbY7i4U0m0mj59Om7OW2+9FQ+Qa5WUYkJACIRHIDnjQYRmhg4dSoFx9uzZ+bdu3boJJGYgrk8cindQwvkDBgyoV6+ewSCUEy44zSEEQiFw9OjR6tWrUwo0Z86cMmXKhDrFRfvIM6tSpQpWy/z58ynxc5FmUkUICIHIEEhCe4UAEAYK9cmErjt37uxkeUIYzLm5P/fcc6+++urdd9+NswdDKszJOiQEXI7AyZMnK1SoQKCTxz+pWi7X1lIPh2vlypV5maEkEI5/T+gsJYWAEPAhkGz9DqdMmVKyZEmWt3HjRgoEXGKsoA/FRyNHjoSRkwQa8nw//PBD3zXQhhDwFgJw5D/wwANQzS5evNgrxgoI41ZBYewVcm8hJvAW5tJWCAiB5LFXiHvREpmElSZNmsDVTc6KC6/uLbfcAu8LTC2851Gz4EINpZIQSBcBPIVU70Msa7WhSPd895wAB+7ChQvh26V2zz1aSRMhIAQiQiB8eotXjvLO1KhRI1JrJ0yY4AmdIaggi6VXr16e0FZKCgEfAjAYkYnllR+aT23/DUwWfn1UO/vv1LYQEAIuRyBJ8ld4W+LuM2PGDFLqIjLTXHASfVVatGgBF2f79u1doI5UEALpI0BBEAzO9AB666230j/bxWfwo6O3Eblu0By4WE2pJgSEwP8QSIZ4ELWUxFamTZvmIWOFKwBBy+DBg5955hlybv53QbQlBFyMwCuvvHLw4MFBgwa5WMeIVCO5DZYBqG8jOlsnCQEh4AIEPO9fgXgboip8FaStuADPqFWgiGn48OEQh9M6MerBGiAEHESAmiBSVtu0acPD3sFp7ZqKYj3WsnPnTlqG2TWH5AoBIWAOAW/bK7TvodamUqVKtGY1h4mjksi8oUvi8ePH4fJ3TzWToxBoMo8g8Prrrzdr1oyqYDuKgWlyTtlRMGs++enEefPkyfPII49AGG0Qqt9//x3z66mnnurSpYtBsRIlBISATQh4Ox7UqVMnnLojRoywCR0HxP5fe+cdeFP9//GUvffeO6tskeysFEpmRRIpfEspX5vs8TW+LUlfiVRWoYwyQmnYEkJkZGTvUL9HTr/r4zPvOOfcc+553j+499xz3u/X+/G+n3tf5zWJEZ4xY8a+ffvwDdkwnaYQgaAJoK889NBDpisr5BjXv/Ggi0U02YjqJRepU6dOqPKo9UY79GjnBP0yadKkFG9kiqBH0IUiIAJ2EnCxvrJ582ZibEeMGJE2bVo7kZk+V758+YhiYSGYi0wfXAOKgCkEcAZRJoCuy6aMFnUQauPimol6xHhO5dwePXoQmsYfCHUKMmXKRFZdzNNCOUIVmd27d+MSCmUQXSsCImAPARfrKyQDUxqO9iX2kLJ0FroLYesmmNHSWTS4CARNAH8l/ppq1aoFPUJcF2I7iTWChO6k1Heh/ZZxYe3atdFdDhw4ENc4QRyvUKFCsmTJ0MOCuFaXiIAI2EzArfrKiRMnFi5c2K1bN6t78ezatYv8HeMxc+ZMmrpZsUOpUqXq2LEjpmnCWawYX2OKQIgEtmzZki1bNos678Ta3mvDhg1Fixb1iZ0/f34iTpYtW+Y7EvoTlJVSpUphqQ19KI0gAiJgNQG36ivEfHBbZoV1Ohpxso4f+/8Hk8b6xRrtkuBePvnkk2SKmvt1HJwkukoEYhI4fvw4+krM46YcMe46ot57EKqCexQfkG989BWe0wTAd8SUJyzK3LAYU6TSICIgAjEJJI55yBVHli9fXrdu3ZQpU1oq7VdffVW6dOnx48cbs8RqtTZLgAIFCnCrx7rcVUXGrOVrHIcToGEnPbBsE3Lr1q3MFVVfMeJ8zfUHGVNIX7FtWzWRCIRCwK36yrp166hcEsrK/bl2+PDhFMH0edD9uSSUc6pWrSpXeigAda11BHCdXLlyxbrxo41MXXCOJEmSxHf80qVLPKcBkO+IKU+o2EuOoSlDaRAREAFLCbjSH0TwCrbiMmXKWIqGXsoUo6P6OF4n6rlZOpcx+N13301OhA0TaQoRCJQApg7+7gK9KujzjUAZjDq+EUhQ4jk2SN8RU55gXFFJflNIahARsJqAK/UVw36bNWtWS+mcPHmyVatWefLkmTdvHpaPMWPGWDodg2PxPnPmDFkYVk+k8UUgUAIoEFSKs+3DSbRKxowZf/vtN5+cNFXmuelloFXf1kdYT0TA4QRcqa+cPn0arOnSpbMUbpMmTT744INt27aRiMRclEixOhiW+ADM4MbqLF2aBheBQAncc889eGSoNhvohf6cb3h/jH+N8ynmRkHb1atX+y4nQQmFvkSJEr4joT85fPgwahBLC30ojSACImA1AVfqK0ZZbsM+bDUgxqc/EV/TVKWbNGmSpdOdO3eO8dOkSWPpLBpcBIIgQCkU1IUVK1YEcW2Cl5CozDnR/qJffvll0vsNleX8+fP0CKM9IWE0CY7m/wkshwLTlSpV8v8SnSkCIhAuAq7UV4ysATu96XiFmjZtunPnTkv3CT8Xyoq6CFkKWYMHR4BkY6rBWlG9/ptvvunZsydS4Xh9/fXXfSWI8EB98skn9FYcPXo0fYvo8kNxgeCEj+sqOgxwN2JuW6K45tJxERCBEAm4st8hRdvSp09Pwx0ai4S4fv8vxzfE49NPP/X/kkDP5Ibys88+MzI5A71W54uA1QTo71OxYsU1a9ZYUeU2HuGpuUJJ/ttvN/nmas+ePdSjmzt3Lk2R4pldb4mACDiEgMlfAfasiqJtmHBtTv0lc6d58+aWLpCMJJt/CSxdjgaPMAJUr+fz2bdvX5vXRWki05UVljBgwIDChQvH7Aht8+o0nQiIgJ8EXKmvsLbq1at/+eWXf/75p5/rDPQ0RibAdsGCBcYUK1euJI+gffv2gY7j//mkbnL/Su83/y/RmSJgMwFcM6tWrbLUymjPivhbw1w6bNgw4lfsmVGziIAIhEjAlf4g1kxbHyqjLFmypF69eiEiiPVy1BT6q/HVnDNnTmw5lStXRn2xrhg/Mvz3v/995ZVXSFhwe7vpWHnqYMQQaNu2Leo7PXfcW7aERCccW8hPvG3UJgARs0daiAhEJAG36itsBqYISrDgfrZuYyj/gOJiaRl+Q3hmoVgc9nbK6Vq3HI0sAqETwBDIZ5XH/PnzXfpj36VLl48++mjTpk158+YNHYhGEAERsIeAW/1B0KEeP9+Y3377rXWkqMRvg7KC/JimiY954YUXrFuLRhYBUwhQJYjGn5R+xuJoyoA2D0KcPqnR77zzjpQVm8lrOhEIkYCL7SusvEaNGuQK0ZXQinC8EMn6fzllJ6gyjvuJ71D/r9KZIhBGArNmzcIxNHToUJyYYRQj0KmnTZvWoUOHsWPHPv/884Feq/NFQATCS8DF9hXA0TmZzj7EAIYXYoiz/+tf/6JS3JAhQ0IcR5eLgG0EaFUxceJEaqKgr0StS2ubAEFMxNfFk08+2bt3bykrQdDTJSIQfgJ817j6gbJCE1dKTrl0FXiCCAKgUpZL5ZfYXiYwffp0o3A+NkInc6B+bo8ePfhD4+vCyXJKNhEQgXgIuNsfhLpHpCrlnohioW53sWLFwq8ABiIBeRYNGzZ85pln8KkHcp3OFQGnEKCpVuvWrYl8x0Nkdcv04Na8b98+JKQM45QpUzALBTeIrhIBEQg7AXf7g8BH5MqHH35I3af69evzxRR2oP4LgCeLGv8PPvigDZ2f/ZdKZ4pAQAQoKEB3LXKDyfknnMXoBBTQCNadTHDbG2+8UbZs2YsXL/LnJmXFOtQaWQRsIOB6fQVGKVOmpIUy3eerVq1KjqIN1EKf4vPPPyfAFoHfe+89VwcLh45CI7idAN21KGQycODA4cOHY2KhKpITVoSPGBUKNxBdh9atW3fnnXc6QSrJIAIiEDSBSNBXWDzKCr6VkiVLkjFELEjQOOy5kNJw+LDoHkc7N3P7zdojv2YRgWgEKKVI9yty8vkbbNCgAbWR8BNFO8e2l2gquFm5GUiXLh117UaOHJkiRQrbZtdEIiACFhGIEH0FOpSFXbRoESZfuvw899xzly9ftghZKMNSawvxSAjq378/peGIFA5lNF0rAo4iQEWTOXPmYMzgj/H+++8vX748lU7Onz9vj5BXrlyhMMx9992HpkLCHQoTLTtkVrEHvmYRARsIuD7eNiYjKldiAabUG2aMOnXqxDwhXEcISOzZsydJCnyrYgcKlxiaVwRsIEC8CH+A/DGilD9841G3bt3kyZObPvW1a9fom0Gda+Y6c+ZMkyZNnn32WZytpk+kAUVABMJLIAL1FYDu378fvzXeFswtxAAWLFgwvJQJSHzxxRfxWHXs2BEff6ZMmcIrj2YXAXsInDx5kggtIuLJ4EuTJg0qC5o6JhDCXEIJ2yLj8aeffqJQJFmBhMucOHGC/gCPPvooHUm5UbFnaZpFBETAZgKRqa8YEHEPUeH+l19+adeuXZ8+fQoVKmQzXKZbv3794MGD6fNMfzXqaxEAaL8MmlEEwk7g0KFDdM9YunTpmjVrUGJwGBHpUrp0af4tUKAAXUV5ZMuWLVYl5ujRo0eOHDl48OCBAwe2bNny448/kpyMaxUFqFq1athQ8bGG/Z4k7IQlgAhEPIFI1lfYPKqz4FDv16/fzz//jIkYP1GzZs1s6CCPK/3TTz/FeY8HnS/lvn37El3r0uZwEf83oAXaSYA/yW3bthESi85BfC7//v777z4BcBgRG8u/KC4kIfN3xL++d9OnT49+Q/MK/qbomk6isg1/y77Z9UQERCC8BCJcXzHgUoYB39Bbb731xRdfcA/H3RgP7NIkNZhLnyBfovxwpTMdYYaUV+ncubOjYmjMXa9GE4HQCVy6dAnrC73QsaPw3Hig1hw/fjx//vy0V6QYXfbs2XPnzp0qVarQp9MIIiACLiXgCX3Ftzd79ux5//330SewKhNEUr16dcObzu1a0Kk6fL1u2LABVzoPbN3cDlapUoX4QrrBoRv5ptYTERCBgAjQmQgdhVy/gK7SySIgApFKwFv6im8Xd+/eTYk5AmDRMAjWQ1mhlj+m5uLFi+fKlYuQPf6leAPHU6dObVxF6gH3fNiuDVf64cOHifjDmr13717sN3jfUX14kJ7Ac99EeiICIhAcAWJyMVLypxprUEtwY+oqERAB9xLwqL7i2zASDXCiY25B8yCOjy9HTNOoJr4TYn2CbQalBBUHVzpaTrly5RTuFysoHRSB4AhwF5ElSxb+PLmvaNy4cXCD6CoREIFIIuB1fSXWvSROtlatWmfPnr169aqv2hUZDcS7oKngSreijESskuigCHiTACnQNCnEskLy8/Lly70JQasWARGISkD6SlQafz8n6A/DCa0TSUaI/p5ei4AI2ELgqaeeonALNwzMhvmTCDNbptUkIiACziUQOfX4zWJMGxT8Qbt27TJrQI0jAiIQKAEaghrKCjFk1MkN9HKdLwIiEHkEpK/csqc//PADd3Uc2rlz5y1v6IUIiIBdBPjrI57dmA2tZdq0aYSz2DW55hEBEXAoAekrNzeG4L7u3bsTpJI0aVLZV25y0TMRsJcARYyiFoIj/27KlCn2iqDZREAEHEdA+srNLfnggw9oLUv7NB6yr9zkomciYC8BWgJx8+Cbk7/HcePGGe4h30E9EQER8BoB6Sv/7Dhl31566SWjZD51Vkhv9tpHQesVAScQQDtZsWIFNpWowlDrlvZDUY/ouQiIgNcISF/5Z8dHjBhx7NgxNBXjNVXgfM+99pnQekUgjATo5HzhwoVoApDYPGbMmGgH9VIERMBTBKSv/L3dtH4dOXIkN3a+vf/jjz846HupJyIgAvYQIHglZnMMzC3f3XjYI4NmEQERcCAB6St/b8oLL7wQ05qiEBYHfl4lUsQT+Oyzz6LeOfjWixIzYcIE30s9EQER8BoB6Su3ff3117Nnz44WzceXo1KEvPbHoPWGnQClj+geGjXY1icSf6EfffQRbZx9R/REBETAUwS8rq9gVunatSs5zNF2ncBb2VeiMdFLEbCaAC1Icf3EbHCYKlUqejXTAXHt2rVWy6DxRUAEnEkgsTPFsk2qqVOnkgoU0xlE/ArtD20TQxOJgAhAAL2EuFq6dGXMmJF/R40adfnyZTxEMe8ohEsERMBrBDzdP4iOhvRVPnnyZKz2Zzow06vZax8IrVcEnEPg+eefJ8pWNhXn7IgkEYEwEvC0P2jRokVYng1lhZq20azQeMopyhLGvdHUIuBxAlhZVInf458BLV8EfAQ8ra/QsJ6aK+glNFcbNGhQhgwZ0qRJY5SMM/SYn3/+2UdKT0RABGwmgEsI86fNk2o6ERABZxLwtL5ibEn27NkbNGjQq1evK1euUPYbJxH250mTJnXq1On8+fPO3DZJJQJeIIB9BX0lZniZF9auNYqACEQj4PV4Wx8OspfRTu6+++7UqVNXvfHwvaUnIiACYSGAfYV0IW4h0qdPHxYBNKkIiIBzCMi+8s9ebNq0iZawpUqVcs7eSBIR8DgB9BUIKITF4x8DLV8EDALSV/75JKCv3HnnncmTJ9cnQwREwCEEpK84ZCMkhgg4gYD0lX92YePGjTiDnLAlkkEERMAgQPwKTxRyq8+DCIgABKSv/PMx2Lx5s/QV/UmIgKMIkK9HoQH5gxy1KRJGBMJFQPrK3+QPHz589OhR6Svh+hRqXhGIi4BKsMRFRsdFwGsEpK/8veMEr/Av3Un+fqGHCIiAYwioBItjtkKCiECYCUhf+XsDCF7Jly9f5syZw7wbml4EROBWArKv3MpDr0TAuwSkr/y99wpe8e5fgFbubALYVxS/4uwtknQiYBMB6St/g1ZykE0fN00jAgESkD8oQGA6XQQiloD0ldvOnTu3d+9eBdtG7GdcC3MzAfmD3Lx7kl0EzCQgfeVvZxANSqSvmPmx0lgiYBIB+YNMAqlhRMD1BKSv/J0cRHcS4m1dv5lagAhEHAH5gyJuS7UgEQiSgPSVv/WVsmXLJkqUKEiEukwERMAyAviD6Hd49epVy2bQwCIgAu4gIH1Fwbbu+KRKSm8SwL7y119/nTp1ypvL16pFQAR8BLyur1y7dm379u0KXvF9IPREBBxFAH0FeZTS7KhNkTAiEBYCXtdXUFYuX74sfSUsHz5NKgIJEsAfxDlqeZggKJ0gAhFPwOv6CsEryZIlu/POOyN+p7VAEXAjAdlX3LhrklkErCAgfWVTqVKlkiRJYgVcjSkCIhAiAW4nUqVKJX9QiBh1uQhEAAHpK5vkDIqAz7GWEMEEMLFIX4ng/dXSRMBPAp7WV8g7UOcgPz8oOk0EwkUAfUXxK+GCr3lFwDkEPK2v7N+/n+9B2Vec83GUJCIQk4BK8sdkoiMi4EECntZXCLalTFyZMmU8uPFasgi4hYDsK27ZKckpApYS8Lq+UqhQobRp01qKWIOLgAiEQkDxK6HQ07UiEDEEvK6vUIk/YvZSCxGBiCQgf1BEbqsWJQKBEvC0vrJx48a77rorUGQ6XwREwE4Csq/YSVtziYBjCXhXX6EjyYEDB2RfcexHU4KJgEFA9hV9EkRABCDgXX0F4wr5zEoO0p+BCDicAPYVmmZcunTJ4XJKPBEQAUsJeFdfITkoa9asOXPmtJSvBhcBEQiRAPoKI6hkXIgYdbkIuJ2Ap/UVOYPc/vGV/F4gIH3FC7usNYpAggQ8ra/IGZTg50MniEDYCahFc9i3QAKIgBMIeFRfuXLlyo4dO6SvOOEjKBlEIH4CGTJkuP322+UPip+S3hWBiCfgUX1l69atV69elb4S8Z9vLTACCNxxxx3p0qWTvhIBW6kliEAoBDyqrxBsmzJlyiJFioTCTteKgAjYQ4AQFrU8tAe1ZhEBxxLwrr5C2yDu2xy7MRJMBETAR0AlWHwo9EQEPEvAu/qKkoM8+6HXwl1HAPuK/EGu2zUJLALmEvCivvLnn39u2bJFlfjN/SRpNBGwjoD8Qdax1cgi4BYCXtRXdu/efe7cOdlX3PIZlZwiIPuKPgMiIAJe1FcItiVypVSpUtp+ERABVxBQ/IortklCioClBDyqrxQrVoz8IEvJanAREAGzCMgfZBZJjSMC7iXgUX1FlVfc+5GV5B4kgH2Fjva9rAAAVKVJREFUfGYalHpw7VqyCIiAQSBxpII4f/78sWPH+Je6cPxLjG3atGmpkknhqV9//bVmzZqRunCtSwQijwD2lWvXrp09e5a/38hbnVYkAiLgD4FEEXDLQnF9QlIoWfvjjceBAwcOHjyIjhLP+lOkSEFn5jx58tx5552lS5cuWbJk+fLlU6VKFc8leksERCBcBNavX1+hQoU9e/YULFgwXDJoXhEQgfAScKt9BXvJunXrli5dumrVqm+//fbSpUtoGyVKlCCK9t57782dO3f27NmzZcuWJk2axIkT8xaWFXKCuOrMmTMUcvjtt98OHTqEoYXE5g8++OD06dOcxhdijRo16tSpg/UlSZIk4d0YzS4CIuAjYLQ85C9X+oqPiZ6IgNcIuMy+gjUIBeXDDz/85JNP0Dny58+PhoF6gY5SqFChRIkSBbd/KC5ff/31V199xeDbt2+nv1qTJk0eeeSRRo0aqQZucEh1lQiYSMDwBC1evLh+/fomDquhREAEXETANfrKqVOn/ve//7311ls7d+4kWrZ58+bNmjWzIid5375982481q5di8/oqRuPXLlyuWhTJaoIuJrA77//vm3bNuokYQTltuTw4cMYUHft2kUIGlEsmEu5i+A5KX5YUjGj4tilFxheXe40XL1wCS8CIhAPARfoKxiBJ02aNGHChOvXr7du3bpLly72lHrju/Ltt99+4403UJVatWo1YMAATDjxoNRbIiACwREgBO37779fuXLlmjVriEU7evQo4+DMRR3JkSMHdwsEnKVPnx4DavLkyS9fvsxXARaXCxcuEKl25MgR/uU5l3AmNzP33Xjg3sXJG5w8ukoERMCBBBytr/AtNurGg2+rnj17du3ala8wmyEiw7Rp04YNG8Z93jPPPDNo0CBlKNi8BZouUgmQorxgwQKsmQSiYUFBO8G3W65cOeymGEuwbvq/cFy6eHIJuv/hhx9w7KLE8F3RsGFDDLF4de3/3vBfcp0pAiLgJwHn6ivLli179tlnMQX36dOnW7duqVOn9nNJVpxGUvTUqVP79euHIXrMmDFt27a1YhaNKQJeIEDY+xdffPHmm2+irPAHRYR706ZN+dfEWNodO3YsX74cTQibDVYWtJbOnTtjdvECXq1RBCKWABGsTntg7+3evTu23wceeIBoEueIh2MIwfiG5esVL5VzBJMkIuAKAvxpv/7664ZfFe1h+vTp5OtZKjl/p1OmTKlUqRLf4OQPEgPHvYelM2pwERABiwg4zr5CiQUSc/bu3cvtF9EqDtQTV6xY8dhjj3HT9vHHH1esWNGBEkokEXAaAeJkJ0+ePGLEiOPHjz/55JPPPfccpY/sFHLDhg2Ewb3//vskFWIobdeuHTUO7BRAc4mACIRIwFl/sfieq1atigFj48aNzlRWwF2rVi1CAvm25cmiRYtC3ABdLgIRT4AoWuoxvvDCCxgmyfp57bXXbFZWIExYzLvvvkt2IXadjh07VqtWjS+ZiCevBYpAJBFwkL6CvxkNgO81XM4merKt2K3MmTPjekej4vsXm7YVU2hMEYgAAhcvXiShDxWBNB+CYSdOnBje0gB8sbzzzjtUy8U+inH0pZde+uOPPyKAs5YgAl4g4BR/EJaV2rVrE7BCMo6Lasu+8sorY8eOnTt3LvXlvPBx0RpFwH8CKCgUAiBVh5iVli1b+n+hDWfiX0dxef7557H0UOFapQpsYK4pRCBEAo7QV3755ZfKlStTL4GqtS5SVgz05B1gYiGohSWEuBm6XAQihgAGSJQVmnOhDRQoUMCZ66IGHULy/TN//nwqZTtTSEklAiJgEAi/vkIgHuZi7MbUk3Vjx0FKV2FcIX8Sd7hKs+jvSgQgQKFFqiV16NABy4rDi7aRskT4/MKFC7nrINJf2ycCIuBYAuGPXxkyZMjmzZtnzpzpRmWFfSU6GB8W33p8QTt2myWYCNhGAD8LRkdycEgIcriyAhMK5tKP7Omnn8bQgpXFNkqaSAREIFACYbavYInFf0wNW+qaBCq6o84nUYjgGwprVq9e3VGCSRgRsJMALt2HH364b9++AwcOtHPe0OeiOiU1IZcsWYK5N/TRNIIIiIDpBMKsr3BPQ24wcXmuC1uJuRP3338/xa/WrVsXdJvomGPqiAi4iADhIKQN416h65aLxDZEpeouQcEkJ2LuDagVgOtWKoFFwKUEwqmvULuWsPxZs2a1aNHCpfiiik2SJCHDRlZ21ON6LgJeIEDdWIyLhKN9/fXXSZMmdeOSaZrInzANn7/88kv8vG5cgmQWgQgmEM74FWpjZ8mShRIm1vHlCwh9iF6JJCmQwWjdRIxM5RjKflOTytJZNLgIOJPA6NGjf/zxR/7cXKqsQJUQuhkzZnzzzTeE4DgTsqQSAS8TCKe+QowtpmPrPEEUfsA6Tdg/3z5t2rTp0aOH1TtNofHZs2cTe2v1RBpfBBxF4NixYyNHjqQcUeHChR0lWKDC8I1BG3aChc+dOxfotTpfBETAUgJh01eOHj36888/169f37rl0YGIMnREwv72229lypRBazl79qx10zEyISyXLl1iUktn0eAi4DQCNAZKkyYN5decJlgQ8hAsfOXKFZoGBHGtLhEBEbCOQGLrho5/ZKqt4CE2+qbGf2bQ7/bu3TtZsmRcniJFiscff3zAgAFWW6qpi0Xdcfz39957b9Bi60IRcBcBStpjxcTrmjJlSoskpzV6zF5d3ITwMH1Gum1gKCUZu1evXuqJaDpeDSgCQRMIm75CJjNB+GnTpg1a9AQvNJQV4zS6wv7rX/+i1kKCV4V4AunZLC3EQXS5CLiIADnMp0+f5pbAOpnfeustbj+ijU+DdCv0FWahIeJ//vMfyhPUrFkz2qR6KQIiEC4CYdNXfv/9d+5j7Fk2DhoyLefMmWPDdCyKpdkwkaYQAYcQWLp0KW3VrcsBJlIeleijjz4qVaoUtlJWze0H7cYaNWpkEYGSJUuWKFGCWizSVywirGFFIAgCYYtfIXMnderUQUgc0CXnz5+n7CwFoObNm0c7ext6sbIoReoFtEc62e0E8O1a6gDdv38/sWhUPcB4mf/Gg94XjRs3ts79xI5Uq1aNdbl9ayS/CEQSgbDpK+nTp8eGbDVKtAfi5rDr3nPPPePHj+cWzeoZcbRnzJjR6lk0vgg4hAChqTTPIpnfOnlQUe66666o4+MJevTRR6MeMf05hVgoHGf6sBpQBEQgaAJh01cyZcpkj9+EarN89Xz++efMSFezoEn5eSGLYiI/T9ZpIuB2Anzg8ddkz57dtoUwIx7ehg0bWjojKyKdULUJLIWswUUgIAJh01eKFy9OmjElUgISN+iT6ZxMv3ir/UGU9N6yZQtW66Dl1IUi4C4CJ0+eROAMGTLYJja+3QYNGhiBLNZNatx1nDhxwropNLIIiEBABMKmr+CgIZ+ZbjsBiRvKyVR8QWUJZYQEr6W+Jy2EiD1M8EydIAKRQcCoEWD1nUBUVjY4g5gOPxf/2pBRGHVpei4CIhAPgbDpK2Qyly1b1joHDX1MqJ978OBBY/G0Mbt48SKVK+NhEfpbLIfbstKlS4c+lEYQAVcQMLL8bLNDMJENziDI43XihspOu5ErtltCikAYCYQtn5k1U4y/T58+1DmgMqbpCDBTd+vWjVQdkh4JYcmTJw/R/pbWi8OLTz/6du3aqVOa6bupAR1LgF908nToXWqPhDiDiFyxwezBighhUb04e7ZVs4iAPwTCZl9BuLZt22IFoeuhP4IGek7WrFm5Q9q+ffukSZP4jps4caLVDu/PPvts9+7dVJoKVFSdLwLuJcAvesWKFekRaM8S6M9ldWaQsRCqVOOztmdRmkUERMAfAuHUV3CdPPvss0OGDCHmwx9ZAz0Hswrd17CsBHphEOcTaUvbkebNm8sZFAQ9XeJqAgRs4W+1YQkYTXEGEWxr9VzcR2GOlb5iNWeNLwIBEQinvoKg+IOuX78+ePDggIR24MnUC9+2bduwYcMcKJtEEgFLCTz88MNYFjFIWDoLg8+fPx9nUNQ+GxbNSCAagTJNmza1aHwNKwIiEASBRERdBHGZiZe8++67Tz31FKWv69ata+Kwdg6F1wmTOP2Jhg4daue8mksEHEKA2Pm7776bv2VL5aGrRqpUqXLlymXpLAz+wAMPkPFEnwGrJ9L4IiAC/hMIv76CrK1ataIE7XfffZc7d27/RXfImRSVohg5hXRZQuLE4YxfdggQieFBAmgqnTt33rp1a7Fixdy+fIos4OH69NNP0VrcvhbJLwKRRMAR+grxK/zkEwLCT767isNSpAED9c6dOzGG58uXL5I+GVqLCPhPAK8uJpZChQoR2+7/VQ48E3sz7cZI8bMnIseBBCSSCDiWQJjjVwwuFJ9dvHgx9VHIPbatkEPoW3Lp0iV6sNF6jWL/UlZC56kR3EuAH/ixY8fSRZmiR+5dBZKTSIh9ZcyYMa5ehYQXgYgk4Aj7ikH2559/vv/++wmm4+e/QIECDsdNqsKDDz74008/LViwQAVtHb5ZEs8eAj169Jg2bdqGDRsKFixoz4zmzrJp06YqVaqQ6MfD3JE1mgiIQOgEHKSvsBg6CtEm/vDhw9OnT69Xr17oy7NoBGwqLVu2JCIP1UrdgiyCrGFdR4DugOju2B1Xr15t1L110RJ+/fXXatWqFS1alDBblXx00cZJVO8QcIQ/yIc7R44cq1atql27NiUWXnnlFTubkvhkiP8J7m0sxhRmIDSYGllSVuLHpXc9RYCys4sWLSKoi7sOSku7aO3Hjx+vX79+xowZ58yZI2XFRRsnUT1FwFn6CuipzY8LfPLkyf/973/vuuuu5cuXO2c/MBcTF9yzZ0/KxixbtgztyjmySRIRcAIB/iiwT2CrqFmzpm3d10Nc+N69e/m7Nsyl6dOnD3E0XS4CImARAcfpK8Y6qWpP+TVss3Xq1MHzQpiIRev3c9gDBw7QK7FChQqc//333/fr1083YX6i02leI0BRadLlLly4gG+IDGeHL5/oWtxA1COgoG3OnDkdLq3EEwEvE3CovsKW5M+fn3QDolmpxlaqVKk2bdps3rzZ/q3as2dP165dixQpQqjKO++8s2bNGupi2S+GZhQBFxEgXp6/FHymlStXfvPNN50pOb7dUaNGkb1cvnx5spfpbuhMOSWVCIiAQcC5+oohHyWbUFNmzZqFuQVFgcAR+iNy62b1/l29enXu3Lm4tLHx0MhwwoQJ1NZ84okn6Elk9dQaXwQigADxtjhzcZ7SI+yhhx7av3+/oxZFzSQKapMHhN+KSncODJVzFC4JIwJOIOB0fQVGNIClzAlay4oVKyhzwpcLvZdpWTJjxoxTp06ZC5EaMBh10EuyZcvGpNSrRWvBxMKkSZMmNXcujSYCkU2APx+6maK1oByUKFFi+PDhJBCFfckEAhN/VqZMGUoS4AOiRymFCbJkyUKxO9zQFOrdsWNH2LuUhJ2SBBABBxJwVj6zP4CI5KeGJmoE6gttVPnewaJLuBzBuXzjBBpWwhfTvn378LLjcae6Lt1fqdSJ3x19iIc9vZ39WbXOEQH3EsB6QTU5umtRGbJXr15PP/10ihQp7F8OmsqkSZPGjRtn9FjFz2t8XaCmTJ06FXmMl7yLnAS1VK9enX+JWguLtPbz0Ywi4HAC7tNXfEBPnz6N15n8Z/QMrC98y5BOSYIxgS84zslTwAyTNm1avoP4l6vwIvG9yb9oPIcOHaLWC5oKwTHnz5/Hy4Nqws0fdS2pWYdxxTeLnoiACJhC4OjRo8SLEM5CDiAqAl1ObSsLicmElENcyXxLUNTu+eefz5Ahg29ROH+551m/fj1PfAf5TsA+xBG+QCh/V6tWLXSXGjVqqJK1D5GeiIDNBFysr0QlRYkqNA9iXH788UdyKQ11BL2EZoRRT+M5iQBUWUChIbwub968mKlLly7Nv7iWaNU2fvz4Ll26RLtEL0VABMwigNZCNNjrr7+OtYMIEryuRLfgjjFr/KjjcE+CLfajjz7ilobbmE6dOvHXHVVT8Z188OBBDLQ0MkOh8R2M+gR3MHc7fEVgi02SJEnUt/RcBETAHgIRoq/EAwufkVG6ik708cegdO/effbs2bt3706ZMmU8A+otERCBoAnw99i0aVOasRPOsnDhwiVLlqAH4HnBgIH1gnwirKRBD86FGFAp5IiC8sUXX3z77bf81dOVrH379thNiYSLZ2Rq8iJDXPoKF2JxIRaH+Nx4BtFbIiAC1hGIfH3Ff3bYY4iAGTBgAEkN/l+lM0VABPwnQLoQMa0oE0bXLdQLKgVQtgDHLjlEtA8reeNBCYPixYtTECVXrlw4do3IkmizoPpgrcGYygOPD5YPzKvYWTlODRi0HwJpUVP8V4CIbsFbFGuwLTaVtm3bInk0GfRSBETANgLSV25B3bt37ylTppAQZIS83PKeXoiACIRGYODAga+++ipWTEwsMUdCX8HIQSyaoXngozHOMULQiCYh8MU4gp8XQwjumz///NM4grsHPQctp2zZslhrgq781qFDh/fffx+NJ6p4WFb4QsDy6rqmSFFXoeci4HYC0ldu2UFieImt4x4LK8stb+iFCIhAaAS4EyCChD4bmFj8GYmgNFqfEoPCv/xhokMYjl2uNeLoM2XKRBQaBhiC6zHM+DNmgucQdE+RJyLhoqksVIyktRCxbgmOoBNEQAQsIiB9JTpY7v9GjhxJSxGLYgCjz6fXIuABAvRBxKZC4RNMLA5fLs03KE3pi73FE4Sagj5EIw5SoIcNG0ZMjMOXIPFEICIJxBeAFpELTnBR5DryfURic4Jn6gQREAF/CPBLTxcwyjA6X1lhOZQ2oGikb104g8gworIc7ThwFVHwiRhh37t6IgIiYBsB6SvRUaOsvPzyyxMnTvS5z6OfodciIAJ+EyAarEmTJkS/OraRUMylUH9y9OjRaCqEzgwaNIgwfJ4//vjjxPNShaVBgwaPPvrosWPHYl6oIyIgAtYRkD8oFrb4sGkbxJfsa6+9FsvbOiQCIuAfgd9//50feMJNqEZN6SP/LnLKWa1bt96yZcumTZuiFVzBt0UIDg4jzEXdunWLP03aKYuRHCLgfgLSV2Lfw7fffpuvJJIkCb+N/QwdFQERiJcA3bjq1KmDHYJmF26sGY38xLGRcxRzlbw1ePBgvMZkZb/11luU1Y55jo6IgAiYS0D6Suw8yZYkPbJKlSrU8I79DB0VARGImwB/QXTgIuyDB9bKuE908TuYXuiFxL8vvPACbiOzcpRcTESii4CVBBS/Ejtd/Nb9+/cnvI7yU7GfoaMiIAJxEKDkGj/ky5Yt+/TTTyNVWWHppBFhOiLShfYCmGG+/PLLOHjosAiIgAkEpK/ECbFVq1bkMaK1xHmG3hABEYiNAH8106ZNmzlzJrVMYns/co5RxY5yTT/99BN5Q/Xq1SMml5CdyFmeViICTiIgfSXO3SCMDhvv3Llz6XUS50l6QwRE4FYCxH4NHTqUfsg0Mrz1nYh9Rc06qsmRBU1YMYaW9957L2KXqoWJQPgIKH4lAfbE06VLl44WJwmcp7dFQARuu82oC4d9pV+/fh7kQdIQa6eG73333UccrkW+MLoQ0DiJsr886HpGKd7z589fvXoV4PRqJYwmRYoUVP6lKQGPWPtRe3BrtOQIICB9JYFNpNErpSO4bVJf1gRI6W3PE6AuHC2OSQPGxOJlGAS1dO7cmcIzvXr1+ve//x1/W3h/QKGOELb8ww8/0FmJiLqdO3fS1Nq40GhNQK64kXRN4tKVK1doZUBRBuMEbreMzkp4t7n7uuuuu2JtHumPGDpHBMJLQPpKwvzr1q3LH/+aNWsSPlVniIBXCfDzzM9hxYoV58+fT1SHVzH8s26sHQTh0n+AWnMYWsg0DBQIMcsoKPPmzVu+fPn69esxolBbAWfTjfbVJfPmzUvXJPxQmFJiHfnkyZO0XqJzNSnZhpZDI8lTp06hvtAPsn79+rRHyJ07d6zX6qAIOJOA9JWE94W7xsqVK2PobtiwYcJn6wwR8B4BvBLUhUufPj2WSLXX8e0/usIzzzxDnhSNHkkjwhbieyueJ1TRxUBF5BydjAoUKMDXDt4lHigo8VyV4FsoQIy8cuVKbMa0FKB5JMolxjBihDNmzJjg5TpBBMJOQPqKX1tA5OC+ffs2btyoWpZ+8dJJXiLALx/eUkI38INkzZrVS0v3a60ff/wxxSexOY0YMQLlIK5rqFjDmVhlVq9eXbhwYTSJZs2alS1bNq7zQzmOz4jsa1QiZsS1RHuB7t27ly9fPpQxda0IWE4ApVuPBAlgUEVToe1ZgmfqBBHwFAF+7XAu0Mx8165dnlp4QIvFO0NBGpoQPfDAA/v37492Lc4j0r8JzkWnocje0qVLiaiNdo5FL9E1cVdRSIZfGmQjF9KiiTSsCIRO4LbQh/DICG3atOELhW8Wj6xXyxSBBAnws9q+fXtyUr755psET9YJq1atonI/uDC0EI9iAMGDVqJECTQVSP7888/hooS/G683WgudtIl6CZcYmlcE4iEgfSUeOLe8xVcJEfjvvvvuLUf1QgQ8TKB37978UZDt72EGgS0dcxTKCinHOHqIa2nXrh1Gl8aNG4dRU4m6AOoRE9WbJk2a//znP/inor6l5yIQdgKKXwnA44ZFF1MtyYRqFBIANZ0aoQSoCNelS5d33nmnQ4cOEbpEq5ZFTjLls8moypQp08SJE0nVsWqmwMclFxqNigd1HKZPn+7GRpWBL1pXuIOA6tsGsE+0j6fZ7JQpUwK4RqeKQCQSWLBgATGkQ4YMkbISxPZSCReVhUIJ9Ep0lLLCWkiQpq435RtIbqJYCzHUQSxQl4iAFQRkXwmMKo1YZ82atXv3bpzQgV2ps0UgUggQlVm7du22bdsSqhkpa7JpHThZunXrhmlq3LhxpOTYNGtQ05w9e5ZsJizK9IFymlIV1IJ0kesJSF8JbAtpZoZ/lzJQL7/8cmBX6mwRiAgCKOvUhSM2k1JmqgsX0JYSnkzYPjEibtEAfNoV6UuopwEtVieLgOkEpK8EjJTGKPQHwViqxhwBs9MFLidAyVSUFYqsUHRVdeEC3cyuXbsSsE94sruae9BVYPz48ahZDRo0CHTJOl8ETCSg+JWAYb744ovUYiF+PuArdYEIuJkAtTrIZMGmQvCKlJVAd5L6triB8Ca7S1lhmSNHjiSP6ZFHHtm2bVugq9b5ImAiAdlXgoFJ8PzQoUMJ71c1z2Dw6RrHE+CXiZLtPXv29ElK5SHqiVHimQBMqq/6juuJPwTo6UG/gmHDhnG348/5TjuHajF0sjx9+jShS3F1LHKazJIn8gjIvhLMnvbo0YO2Ydx2BHOxrhEBxxN44403+GX917/+RcgFwlJ3gQ44FIVbvHixlJVAd4/i9wR/8HsfVf8LdJDwno9RbcaMGdSRo+JOeCXR7F4mIH0lmN3nDoN4Wzp90JAsmOt1jQg4mAB+n//9738IOGnSJDrL8HPLrxQhovSaKVeunIMFd6hoYOSXfurUqZSGc6iIfohFR2hcWnzpUYDKj9N1igiYT0D+oCCZUqeS0tpUUIia0knRAtrHh9hGNUiBdJkImEQA4wo5t+SGMB431rly5fr111/RYOLp1WfSzBE4DJ2D+E6A5+DBg92+PD4SlOUtUqTInDlz3L4Wye9GArKvBLlrSZMm7du3L/dMxt3Ghg0b6PpWvXp1ngQ5oi4TAWcQwB5guIEQh8AFbAO0M3RdlKgzWN5GiVhgvvTSSw6RJxQx7rjjjgEDBsyfPx/9NZRxdK0IBEdA9pXguP19FXcbpUuXxp2P7kJndu5EcfNjMsXrH/ygulIEwkoAGyFqdzQRaBKUPn16+t1Q8DTaW3oZPwFaH1eqVInMoPhPM+Vdss2//PJLnNR48TDqmDJmtEHQX/PkyfPMM8/0798/2lt6KQJWE5B9JXjChw8fxlRObieVCdBUSKDAP03fsuBH1JUiEG4CBCignUSTgs/2qVOn0GO++uqraG/pZTwE+DbYvHnzY489Fs85Zr2FSkTKMc6aV155xSJlBVG5K6Pz0ezZs80SW+OIgP8EpK/4z+rmmVS5Nb4UaBDPUb7Njfd48tNPP908T89EwFUEaI/FT5Hv8xxVdm6sicN9+OGHjxw5EvW4nsdDAGMVsfnUAo7nnNDf4maJevkffvghxhXmsjqqF88g6e7E5YQuuUYQgYAISF8JCNffJ9OQFoso7T/4Wo/5zb5jx46AR9QFIuAMAny2+fGLKQsWF34FKRq2devW7NmzxzxBR2IlQLWS8uXL4y+O9V2zDo4ZM2bdunXkGydPntysMeMZhwLHfEh++OGHeM7RWyJgBQHpKwFT5VaGzKC4LuPu8/Lly3G9q+Mi4FgChIXiDMKOElVC7P+8vPfee/FrEDoqZSUqnASfHzx4sECBAgmeFsoJBPjTzozKLrZtDcHXVDcmCjsUsXWtCARBQPpKwNAyZcq0evVqfPnGV3m067nzoLVQtIN6KQLOJ/DZZ5/x++qTE4MKD1RzWgXxILTc95ae+EngxIkTmTNn9vPk4E6jMQjfOWhF7du3x1OD4nLmzJnghvL/KhaFT9z/83WmCJhC4O+bJz0CJcDtBV/uLVu2XLhwoVGmIuoIu3btKlGiRNQjei4C1hEgEvb8+fO4Ji9cuIB1hMrL6Bmk86RNm5YEVP/npYsnKrhhX+FJxowZhwwZ0rFjx4AG8X86L5zJpsQMXjZ34bic6AqCbYztW7FiBV9KRLHgrIn1bsqsqZMlS0YVQbNG0zgi4CcB6St+gop+Gn+xFE168skn33//fV+xCk7CV60Uoeiw9NokArt37yaCZPv27fxL2irmEPyPlC6MdXi6cmbLli1nzpy5c+dGgS5VqlTJG49Yf8n27du3dOlS7tR516gtRFq+OsXECtb/g+h8mFj8Pz/QM2now7cNxf5JYObaJk2a0AJ67NixH3zwgaVJSRhXrLYbBYpC53uBgPSV4HeZ+06KfmbIkGHixIl80RsDobtIXwmeqa6MQYCPE117SCTmQf4OWkj+/PlRPipWrNisWTOiFlBKMKWgZ6RMmZJ/z549y6eRXzLsLqTcE2dAdS+y7onK5HY/derUxEvWqFGjTp061AXBEmNMSDYsVzH4U089NWjQIDXyjLEPwRwg1OPo0aPBXOnfNWwxuxZVdSDSCH1l06ZN1ukrWFb4dLE0/2TUWSJgGgHpKyGh5Ot+/Pjx/Gb42oBhTv/xxx9DGlQXi8Btt/EpmjVr1rx583iCc4ffIWqk8i9xJLgjgyCEskItZroro/cQV0uQJtWDCB5v0aIFSbBkBjVq1IifuuLFiwcxuC6JlQDl9UAa61umHERzTZMmDVqpb7R77rmH58F9QnyDxP8EZxN3ZRTmj/80vSsC5hNAPdcjdAITJkzw3apyuxP6gBrBmwRILsPDiF7Cnzpp8927dycoASXYdBpbtmzBjmLUq82XL1+XLl0w8ps+i8cHXLt2LfuIF886Do0bN6ZGnG/877//nhmpROw7YvqTUaNGcYdm+rAaUAQSJPB3p3g9TCHw5ptvGioL/1JZy5QxNYh3CGBmp3cmNg/8jPTRpGgyd7E2LJ8KhzQbJ9ICdxLqETfrNkzqkSnYU9IJhw8fbt16yUbExIKOa0wxcODAevXqWTcdI+OIpPOlpVNocBGIlYD0lVixBHmQMDcjmYKiCEEOocu8R4AUM8JHuGdFY3jhhRfCojGgYVMC0ZAB5yYJR97bB0tWTGfmokWLWqp6EpxE2vnIkSN79OhB7C1pYpas5MagmOWw36xcudK6KTSyCMRFQP0O+esz87Fo0SK6eEybNs2I2L906RL3rxiEaUVG5CP/YvAnWo0pKZPgSz3lh4okDn4t+BfrLl9wVqdBmrlmjRUCgY0bN5LTQUwA//773/8meDaEwUK9lI/rG2+8QRozAbwEZhHPG+qInr+eH3haHpJLaClMcsT4ksGvZ2nkCptJjeP169eToeZzf3t+hwXAPgLSV0xmzY0USUOff/4541ISFGstd88YXUi4wNSfI0cOVBPUFN7Fimu4jVBfuCUyclNJAOEtEkqLFSvG1xx5HPfddx8ajMlSajgHEOAegswyomgJIkFLqFChggOE+lsEUnDRnN5++226BfEv0b4OEcylYrRu3RqDKz133H4TwhdauXLlPvroIz4YLt0Lie1qAtJXzNm+ixcvoqOQzcG/dAIjyZkCuPxtU/CChA7apcZa9CLm3Di8sccYBTYInfvmm28YGaMLlRWaN29O/Uo/x4k5so44igCKaZs2bSiUTHDD888/78C7VT7JlEzF0PLxxx+jOjuKnruE+eWXX/DXDBgwwJdF6C75DWkJ+uY7jeekmDnw4+pGpJI5YAJxOYp03E8CtGDFRkplLYwo2EKM4gfYVPy8PP7TMPOSYjB48GAje5CgSCIiSXCN/yq963ACmO4LFy6MFosbyMmiEklTq1YtDIFLlixxspzOl43iN9xpcPvhfFHjkhCTG/0UMbHEdYKOi4DVBBRvGyRhqlkQpGI0VaEFK/Z8CkMFOZZ/l+FaGjFiBD9y6KQoRgTK+HedznIWAQJWcA6SZGH1B8aUZaMxU3kMRwax5KYM6M1BcBPXr1+fcikEsbmRAJZjagmSv+ZG4SVzxBCQvhLwVmI7effdd7k/5kv8iSeeoH9HwEOEcAGzc7NL0QW0FuqTYrQPYTBdajcBitUSUUttWRcl4PBbS9YSn3apyKF8XChvg1eoTJkyRlHaUIay+dpVq1ZhWXnmmWdsnlfTiUA0AtJXogFJ4CUxJdwZ891N56A9e/YkcLaVbyMJQS04kvkX04uVU2lscwgQs1KwYEE+P64rz4PKwgeeUHGbtXNzuDtmFBojEIvmFtOagY3uicQwkfNoRdFCx+yMBHEHgdsDDnjx6gXkIRMXWaVKFUJVMOlTv5zfnjDCIJ2EkmJ8mxAMQVQvcTN84sIoj6aOnwC7w08+P/x09qaJT/wnO+1d1GJ8AYRbtmrViv5EThPPLfJQsJhqxcTjV6tWjT9b54uNE7Bhw4Y0aqAenVFZyvkyS8JIJuAOtSrcUpKzQ4oE9xl4gvjJCbc4t8xPhMGrr76KyadBgwauCIm4RXrPvHjttdeIuCQ6270r5tNFiSAqkrl3CU6QHIyYWEghnD17thPkiVUGEhVp0I2eiivQrOyBWCfSQRHwn4D8QQmzIkaEG2KCRcLrAIpf0HXr1hUoUABrM/Wp4j9T79pP4Pjx4xTdocWg/VObOyMhLNy9qbxpiFQpUtC5c2dI8i91I0MczfTLyUAkhyBqmX/Tp9CAIhAEAekrCUCj+BumCwpRYMZI4NRwv00cHwVaqO6FzTncsmj+Wwg899xzlAp0UYztLdLf+oI8F8wDTrMy3iqjO15R2IbuQjlz5nRO7hWRVRQw5BuPLd61a5c7OEpKzxCQvhLfVqOsYBHlttgt384E2dAHgAgbCpHFtzC9ZyMBEkOSJUtGxruNc1o4FcFbGAaWLl1q4RyeGZrPRqdOnUgVpiP3F198EcZ104qBassoTziqXn/9dfmAwrgXmjouAtJX4iLzF13ECDjo27dvnGc48g2+aFq0aIH3gd8VRwroOaFoxIM/0Z6coP379xPVS3EgSylXrVqVwFtLp/DU4GRdYbVCC0RrmTt3rtXbF40tOtPo0aPRVLjPIWaFLLZoJ+ilCDiEgPSV2Ddi586d/MZw6+MWy0rUZXCrhGOI4lR0Jop6XM/DQgDTeseOHW2YGlWVfednDzObpdORHEdBDns0MEsX4qjBqX77wAMPYGtBdejXrx8x/paKR34y2YXU5mYrySQg+ZFurJbOqMFFIEQC6h/E13v0B/c3pG7y90ynDFoPRn/bDa8J8KSLHmmT+MjdIG/EykjMCgb2WbNm2dAijqLveDAJlkRfwQNlHVPq9NO8E/8Fhe+sm8WbI+/bt2/y5MnkIR45coQ6BXQNI+8PlZeYElOAEOWGs5hSCJ988gmWFUZ++umn6chodWNnU4TXIB4nIH0llg8A6cEjR46kpaqrGyPzc4KRGX2Fr7xYFqlDthDgFrZu3bpUYeem2dIJyQujXUOpUqUIt7JaX2EhJKPheMIMYOmiPDs4pjJS3/ENzZ8/nypzVOq758aDBiAoMUWLFvVffaFejtE/ldY/aCq0iYYq1ZtQoHkY/T08y1kLdxcB6SvR9wv3LWrKK6+84upmqsaqMPZiZMaw7FIrUfS9ceFryqzxQaJEmKWyUy3jwQcfnDlzJrfm9KWzQV/Bc0FuCy20LF2XBocAPRy++uoriuJT0poqc9h9+XOmqwPFC0g6y5w5M6YRjvAvOYzYhjHp4RGmysvBgwcx0vCEQfBuo8ui89SoUYMoGfZObEXAdQQSu05iqwXGuII3l7gzqyeyYXzWUrx4cXwEmHxtmE5TxCSAyZ1flJjHzT2CjvLiiy/a+SOUJUsWNHtzV6HRYiXA7RMPQqB4F40EYwl3IFjseBBxQi8OqrmgsKKmoLXwQDUhcpaemvQqQqHBEoZJhmg2Uh1jHV8HRcAtBKSv3LJT3JhSeZpvf/7gb3nD1BckccyYMYOve2rmUi3Uf9NuoFLwJUUeB/fc0lcCRWfW+QSlUnfLrNFiHQeXE8fr1asX67sWHUSnd0VFeYuWH65hUUf40uARLgE0rwiEkYD0lVvg4zDmNuWxxx675aipL7g9olQuMZjYaTHeTpo0CUsvt0SmTnJzsKeeeorY4U2bNuk77iYUG5+RWE4BU+smJHyS1lHz5s2zbopYRyb1jMqEsb6lgyIgAiJgBQH1O7yF6uLFi8kIxTd8y1FTX5ALSiTsgQMHfvnll5YtWxLVO3ToUFNnuGUwUoRI5aClwC1H9cIuAvhoTpw4Yd1sBMdg5+df+rzwMOrl9+rViwQT6yZlZPxcdrqfLF2LBhcBEXAFAekrt2wTMfn8wN9yyNQX3JUS7EaTZ0ZFjSALiR+bb7/91tRJbhmM8VkRidm3HNULuwiQysGmo55aNCFKA7ELJAcZD+IrmWjr1q2kxVo0ozEs0xUrVszSKTS4CIiACEQlIH/QTRrY7bF5UJDg5iGzn2FCb9asmW/UfPnyEQpHMJ3viBVPcD+NGzfOipE1ZoIEKleuTMwB+iK2tARPDuKEaMa54cOHE32FOc3S+itk2JJ7QpXbIATWJSIgAiIQHAHZV25yM/IdrK6TcXO+226jeC4aklGKO+pxc59nz56d8nEUFjR3WI3mDwECt2l1+9lnn/lzslvOYTlUBLFUs3cLCskpAiJgGwHpKzdRG0UyMmbMePOQxc+oMklRhKgWFysmJJ+WwF7KRlkxuMZMkABVcKjah1cowTPdcgIxWI888ggqi1sElpwiIAIRQED6ys1NpLshLyjHdPOQlc/QIbDeU3GLEBMr57mNiRjfuqxpS4WPgMHbtGnDKuwprUbgLYY0S51B69at++GHHyhuGwFboyWIgAi4iID0lZubZeQ7WJrNcXOy226jJN2AAQNsCFoklQOvhO6Go8K38zlBS8899xy1+yxNbLZtRdT7J0OeMqm2zaiJREAERAAC0ldufgxIY77jjjso5nbzkGXPJkyYgPu/UaNGls1wc2CiI+0Myrk5sZ79PwHMHsQqDR48+P8PuPX/OXPmrFixYtSoUW5dgOQWARFwLQHpKze3DiME7cRouHPzkDXPpk6dig+offv2xvAY8Hfs2GHNVH+PSnKKkUFt3RQaOX4ClAccPXr0+PHjjVq08Z/s2HfJCercuTOF4fVxcuweSTARiGAC0ldu2VxSNGktdsshs1+8+eabU6ZMoZw5bX0o6kV9W1rHkb9j9jz/jEfDEQIO6HNm0fga1k8CBHwQo/r4448fPnzYz0scdRofJHpH0DYIrctRgkkYERABjxBQf+ZbNprKs/Rh+fHHH0uUKHHLGya9QEfp0KFDtMFoSLZnzx6Lom7JTKGFENXD8uTJE21evbSZAClC1O7D50gHBiwuNs8eynQ4s1q3br1kyZLVq1djgwxlKF0rAiIgAsERkL5yCze+lwsVKtS8eXN6stzyhmtfNGjQgB9Io0y7axcROYJT6BaVBd2RHXFL/53r16936dKFPqCUoaNbReRshlYiAiLgKgLyB92yXbfffvuzzz771ltvudRof8tibkSucE9Mckq043oZLgJoKkuXLkVrwUNnXZF+E1d36dIl3Fi0E//www+lrJgIVkOJgAgESkD6SnRi/LqT2EymcfQ33PaaMF763tWqVathw4Zukz1i5WVTfvrpJyK7UYhRWawOlgqRI25EdBSEXLZs2YMPPhjiaLpcBERABEIhIH0lOr3kyZOPGDGCFB6+o6O/56rXRPLSSZG0FFdJHcnCEh1FO6GHH36YJoiUtCehvXbt2oMGDcLh4sBlE/lUtmzZy5cvk19maRNQB65dIomACDiRADd8esQkQIxqjhw56CgU8y1XHNm4cSNFTin44QppI15IkuRRTfj7r1u3LsVhfeul6C11/O666661a9f6Dob9CXnLjz32GNLy74ULF8IujwQQAREQAQjIvhK7EknWMUZ7bOB8X8d+hoOP8nvz0EMPkZtNq14Hi+kJ0bZt2/boo4/i+rly5crKlSsx2tH+0Ldy0ps3bNhAkjAVY0l4xv/ieyssT8hgGjhwIOaf7777DlHfe+89lUUOy0ZoUhEQgZgEpK/EZPL3kXTp0pENQZpxixYtqDwR+0mOPEo/AVKyU6dOTSlSMoMcKaMnhKIGIOoIthMqJtPYcs2aNbHWsKchA5rBBx98QJgIikKnTp12795tPyA+NmgqpNZPnDixf//+W7ZswRRkvxiaUQREQATiJCArUzwEvv/+ewq78cVN55d4TnPOW/w03nnnnWnSpMmdOzdROKdOnXKObN6RhF14+umnaZ9JFZ+PPvqIJHl/1k5bSuoHFi5cmEo8aJyEj6Ao+3NhiOdQUoVCcIRtURIGB6JbPuohrlqXi4AIuI7Aba6T2GaBCQQhkOXuu++mC4/NUwc63fr16+kTVKZMGQIkX375ZUxEKC7du3fn5zPQoXR+cAQIeII8kUP58+cnK55e34GOwyUYYxo3bkxqPQrEE088wUuSigMdJ/7zifDF3vPCCy8gJ7cyFSpUePvtt8+fPx//VXpXBERABMJIQPpKwvB/+eWXkiVLZsyYcd68eQmfHY4zuIOngSI/k9yXE4JgiMCNMqXTKfjBLx8l/wn5DIdoXpmTJthoKsQ8YdlCU8FYEuLK0TLHjBlDEBLbh/Hjvvvu69ev3+LFi3/77bfgRuaDgY5CvhgfBqNUXfHixYlwQiMPbkBdJQIiIAJ2ElB92zg9ZVHfuHjxYo8ePej789RTT40cORLdJeq74X2OOkXNGKqQUTOGnx9+3qLKg0/hk08+4ZePCEqyUlkF1XsV1xIVUYjPMUu89tprw4cPT5IkyYsvvohBC60lxDGjXk6lFhKhKeFPgIsR2kJ9IKxomEbQjbLfeOC1ZN+xqHEhEeJsOv8SkkLkNfoNqs/27dv5l3dpQk5sL9oPXk5ch1En0nMREAERcDIB6SsB7M7s2bP5NeLWGZWF7srRNIMABjLpVNwE9A0YNmwYP13Y8+MvksG9NWJTBp6GA+g3xHUq9SPBfaC2GwYqgpdjPRMtFuxoKjzp2rUryiJ6Q6xnmnWQvphbt24l54gWVzgoUUeOHDmCaSfW8RHbUGjy5s1LJA02wlKlShkOoFjP10EREAERcDQBO405ETAXN9OYMZImTcq9KcUzgghQMAUCybE4HXLlyoXOgTwU9fJz2F27dhkGAHJo8V8cOnTIzws9eNrevXuxRgwdOjTm2jFgwJ9ooVSpUoHx5MmTMc+x7QjBKAiAKkM6Gw8MKrzkE2KbAJpIBERABGwgoPiVYCDv3LmTUlp4VUhAHTduHIb3YEYJ6hqs+n379sUJgKZCvCS310EMc/ToUbSczJkzE/LCQrhfj38Q7uN9YTHxnxkx76LJYZYgVYeY5ahpVigHpPxgo0JnJQko6GiSiAGlhYiACIiAPQTkDwre+vXzzz//5z//oRUcd9sEhdAWjmbI5sYu+ITjJ3PBggX8UhJxiWmE2mKYSbj7950QxBNuwWliR9ozlULq1KnDgERi8gsdcyjeIniCKApUnJjvmnXk3LlzhFmgCxKxgR6AxkDIMBYsjhtT4OAgRsTI1kZjw7xUpEgR3BxG3IZZYjAOytm9996LLQrfHzPShunVV1/lD3LhwoUoiwjZunVr6uhTrcTESTWUCIiACIhAPASkr8QDx6+38BDNnDlz+vTpZBGjrKCy0GKQymD8jsb62+/XoDdO4qea2u2Ux0BRWLFiBeEyxEgSN0PtWn5E/R8n/jPJLSKohSphzEJxM+IwqHJGQorvKpwLaAYoN5QGIeqT7G7fWyE+wVaxadMmNCGG3bx5s1HdlamZAlcLk5LGQhUTFBRjIlCjQJw9e9YII0WtIYKHtwgxQXJiSHlQPZZLQhGMSFV2EMGYyxgHkaj0SvQPqTR0/0F3wa4WyhS6VgREQAREIFAC0lcCJRbn+bhm5s+fzy04ka0YBsghKleunBHkSA1Tfn35DY6qB0QbiJ/JAwcO8BtMjCcOGh78OnIQIwraDzoKxg9LwzmZDnMRhVYxonTu3BmbipEGRTwvziOUJ5SkrFmzolvgDYkmfEAvWRS1g0kOp+cflgymI2OlUqVKsOKB0cJ/PQ8Vh8hTWFF7Br0HPxfKDSoj5q5GjRoFgQtTGe2sGYr1+haF4w/VqmnTpkOGDCFk1XdcT0RABERABGwjIH3FfNT8tmEtQGuhqDkP9A8MA8Y0VADj4Us95SCOHv6lzljUc0qXLs0vN+oOXgmKZJgvYtwj4oghkhRzC9aFNm3aoLXUrFnTl4GCyoLzhT44iBf3GHG+gwmKxkykWaEWoKOgAWAxInXFfwUlzqFvvIFja/ny5WiNSAhkxu/SpQvanp/js2T0QqrjR1VWjBmx2RB+iyEnfgH0rgiIgAiIgEUEpK9YBPbmsMQ9oAQYMRk8QUFBocGpYZyB+sKvKSEpmC74OSQsgyc3Lw7TM+xDZOpOmjQJz4sRSOUTxHDQoBZQ89d3MP4nrHfWrFmjRo1Ce0MJI5UarwpLjv+qUN4FMlrL5MmT161bh8JHWRScXPE70fCLoZ+hSyFtzKm5llKzMIn5lo6IgAiIgAjYQED6ig2Q3ToF9ga8M2haqCxR14B/hEgdKtTRdjjq8ZjPuZB4ZAI+yLMlRrVbt24VK1aMeZp1RwhD+e9//0v0CZVI+vTpQ/RPrLXykPOZZ55BHUFriUsYDDZE2uLai+sEHRcBERABEbCOwC21UK2bRiO7kQBBvkaBlmjCY4Eg0LV27dqE6EZ7K+pLrCn4s1ARqlSpwi89SoPNygrCYASiKjGZXHQqQCOpXLkydX6jCmk87927d/zKCqehytAOMOa1OiICIiACImADAekrNkB26xRkxMSVa4PKQgwKMa24XWIuD8MMGgCpOvzGk+L0v//9j8TjmKfZdiRfvnwE5RBURAQuNiGCcqiw55udArWsNKplBVMK5VX41ziHonDUv2/VqhVpQbF6i3xD6YkIiIAIiIBFBOQPsgis64el7jtJwtE8QdFWReQN7hXSuVu0aOF7i35GuH7I2aFpERXVfL/6vhPC+4TMc9xSlKUnpIbQljfeeIMUbp9I+LnIfqJ4MaoJOhb/ksVtaaiNb2o9EQEREAERiIeA9JV44Hj6LbQN4m2p8m7UODFYoJ1gcUGJIYPGZ5BAI8Hn0qFDB86hWgwpNlSGJS/ase30DI2KRGhStREYBQXVBL0E7YR4Z0/vuhYvAiIgAk4lIH3FqTvjGLnQV9BaqC7DvzyoccKDDGdyncge4gk1VPCSTJgwgRozbdu2bdy48fvvvx9PpRknrAyPFa22UarQtEgdcoJIkkEEREAERCAeAiFVAo1nXL0VMQRwkWAv4RHPisgfxivUsmVLCs1Ru8VpPqCYkpOfTFQNCpbRZ7tdu3Yxz9ERERABERAB5xCQvuKcvXCxJBRqo8lOx44dSR52yzIIvsEfhFeLZkyZMmWirK1bJJecIiACIuBBAvIHeXDTTV4yBVqIzKUMLhGssVY3MXk+U4cjFgd9Ze7cubQjKFiwoKljazAREAEREAHTCEhfMQ2lNwfCPlG/fn36+GzYsMHXmNBdKGjlSJIzccRr166Nvwauu9YlaUVABEQgkgio/kok7WYY1kK8Kh0Qsay4VFkBWbJkyQi+IV1o/PjxYSCoKUVABERABPwgIPuKH5B0ShwE6NFIDjBhtjR2juMU1xymBzWRwrt37yaWxTVCS1AREAER8AwB2Vc8s9UWLJQfeLKd6ctjwdh2D/nSSy9haBk9erTdE2s+ERABERABPwhIX/EDkk6JjQCRqlOnTiUnKHPmzLG9b+YxeisuWrTIzBFjjJU6dWoaDL377ruUZonxpg6IgAiIgAiEmYD0lTBvgHunX7lyJV2XjbK21q2ClorE8/KgD5F1sxgjsxbK31mtGFm9Co0vAiIgAhFJQPpKRG6rHYtasmRJyRsPSyejwzOtCi2dwjc4NfFIFFq8eLHviJ6IgAiIgAg4hID0FYdshPvEIPsXZcJquanrTxVaq2fxjV+tWjXW5XupJyIgAiIgAg4hIH3FIRvhPjE2bdpUvnx5G+S2swZdhQoVtm/f/scff9iwLk0hAiIgAiLgPwHpK/6z0pk3CZAWRDJzjhw5bh6y7BmF8xnb+NeySf4ZmP7MVMA7ceKE1RNpfBEQAREQgYAISF8JCJdO/ofAyZMneZYhQ4YII2LkOhF1G2Hr0nJEQAREwO0EpK+4fQfDI3/SpEmZOPJSf6nNz7ooxBIerJpVBERABEQgDgLSV+IAo8PxEsiYMePtt98eeX4Tw7JiQ0WZeOnqTREQAREQgegEpK9EJ6LX/hAgBjZr1qy0OfTnZBeds3///pQpU6ZPn95FMktUERABEfACAekrXthlS9ZYpUqVb775xpKhbx2UQrocMP699R3zX3399deVK1fGdGT+0BpRBERABEQgBAL6Xg4BnrcvrVq16po1a65fv241BiO7+MKFC1ZPxPj0mqZknA0TaQoREAEREIGACEhfCQiXTr5J4JFHHjl27BhVbm8esuAZJpyePXsy8Lx5815//fVr165ZMMk/Q6J+0WGAdVk3hUYWAREQAREIjkAie8zswQmnqxxOoFatWqQ0z5071+Fy+ile+/btt2zZsmHDBj/P12kiIAIiIAK2EZB9xTbUEThRt27dPvnkk/Xr10fA2nbu3Dljxozu3btHwFq0BBEQARGIPAKyr0Tentq3IoxztBCiWsny5cvtm9WamZo1a4YzaOPGjXaW/7dmKRpVBERABCKQgOwrEbipti2JGvljx4796quv3nzzTdsmtWKiDz74AEPRmDFjpKxYgVdjioAIiEDoBGRfCZ2h10fo378/v/Tff/99yZIl3chi79695cqVe+KJJyZMmOBG+SWzCIiACHiBgPQVL+yytWskZ4fA24MHD65duzZnzpzWTmb26BS0rV69eooUKai8kjx5crOH13giIAIiIALmEJC+Yg5Hj49CYX5+9RMnTkz9Ehc1QTx37ly9evXIykbTsqfXtMc/J1q+CIiACARNQPErQaPThTcJZMqUiUIsZ8+eRWs5cODAzTcc/Ozo0aOYhWgpsHjxYikrDt4oiSYCIiACfxOQvqLPgTkE8uTJg5WCSvbUh3V+hvOPP/5IfV4ULGQuWrSoOQg0igiIgAiIgGUEpK9YhtZ7A+fKlWv16tUlSpSoVq3a+PHjHVuKcMqUKZUqVcKmgrJSqFAh722UViwCIiAC7iMgfcV9e+ZkidOlS4d7pV+/fi+99FLDhg2paOIoaQkKbt68eefOnakLt3LlyixZsjhKPAkjAiIgAiIQFwHpK3GR0fEgCeAS6tOnD4G3hw4dKlWq1ODBgy9evBjkWOZdduXKlVGjRt15553btm1bunTp8OHDiQ42b3iNJAIiIAIiYC0B5QdZy9fLo1+9enXixImDBg1KmTJlr169unTpwhP7gVy+fBkH0IgRI06dOtW7d28MPxTktV8MzSgCIiACIhAKAekrodDTtQkTOH78ONXkaK2MstKhQ4dOnTrZFjJCptLbb7+NsnL69Omnn3765ZdfVh5QwhumM0RABETAkQSkrzhyWyJOKMqyvfbaa6gOhw8frl279qOPPtq0aVOLwkdOnjy5YMGCjz/+mEgapkBJoi+jNJWI+0xpQSIgAt4iIH3FW/sd3tVev3594cKF06ZNQ5P4448/6JVYp06dGjVqkK0TYm1ZRqMhAJ2M6LxI6AxtgOrWrUuJ/YceeihJkiThXbVmFwEREAERCJ2A9JXQGWqEgAlcuHDh888/xwpCks6vv/5KQAmRuaVLl6YDESGxuXPnzp49e9asWemnGOvQVKSl2hvunp07d1JJZcuWLUTRXrp0iW4ANWvWbNKkSePGjdOkSRPrtTooAiIgAiLgRgLSV9y4axElMxVmqdqyadMmdA4eOIyM5WEXSZ06NWoHiTz090EdwTxDhTd0HawpxjnZsmUztJy7776b0rq2RcZE1AZoMSIgAiLgBgLSV9ywS16SEXWEKilHjhzBfDJw4MAGDRpQOff8+fPoLnh50qZNS9wuhekwwGCGkRHFSx8NrVUERMDTBKSveHr7nbx4yregkRCSguHEyXJKNhEQAREQARsIqF6cDZA1RTAEiGvhsrx58wZzsa4RAREQARGILALSVyJrPyNoNegrOIAIoY2gNWkpIiACIiACQRKQvhIkOF1mNQHiVyiaomxkqzlrfBEQARFwBQHpK67YJi8Kib5CpK0XV641i4AIiIAIxCAgfSUGEh1wBgH8QQpeccZWSAoREAERCD8B6Svh3wNJECsB9BXZV2Ilo4MiIAIi4EEC0lc8uOnuWLL8Qe7YJ0kpAiIgArYQkL5iC2ZNEiCBy5cv0yJR/qAAsel0ERABEYhYAtJXInZrXb0wnEF//fWX9BVXb6KEFwEREAETCUhfMRGmhjKNAPoKYyl+xTSgGkgEREAEXE5A+orLNzBCxSd4hR6HmTNnjtD1aVkiIAIiIAKBEZC+EhgvnW0PASM5KFGiRPZMp1lEQAREQAQcTkD6isM3yKPiYV9R8IpH917LFgEREIHYCEhfiY2KjoWbgJKZw70Dml8EREAEnEVA+oqz9kPSGATwB8m+og+DCIiACIiAj4D0FR8KPXEQgYMHDyo5yEH7IVFEQAREINwEpK+Eewc0fwwCJ06cOH/+vOwrMcDogAiIgAh4l4D0Fe/uvWNXTvAKssm+4tgNkmAiIAIiYD8B6Sv2M9eMCRAwisXlzp07gfP0tgiIgAiIgGcISF/xzFa7Z6HoK5kyZUqdOrV7RJakIiACIiAC1hKQvmItX40eBAEVXwkCmi4RAREQgcgmIH0lsvfXlatT8RVXbpuEFgEREAErCUhfsZKuxg6KgIqvBIVNF4mACIhAJBOQvhLJu+vStcm+4tKNk9giIAIiYB0B6SvWsdXIwRC4fv364cOHlcwcDDtdIwIiIAKRS0D6SuTurTtXhrJy7do1FYtz5+5JahEQARGwioD0FavIatzgCBjFV6SvBEdPV4mACIhApBKQvhKpO+vWdRG8cscdd+TIkcOtC5DcIiACIiACFhCQvmIBVA0ZAgHsKzlz5kycOHEIY+hSERABERCBSCMgfSXSdtTt61GxOLfvoOQXAREQASsISF+xgqrGDJ6Aiq8Ez05XioAIiEDkEpC+Erl7686VqfiKO/dNUouACIiAtQSkr1jLV6MHSgD7ioqvBApN54uACIhAxBOQvhLxW+ymBV68ePHEiRNKZnbTnklWERABEbCFgPQVWzBrEv8IGMVXZF/xj5bOEgEREAEPEZC+4qHNdv5SCV5BSNlXnL9TklAEREAEbCYgfcVm4JouPgLYV1KmTJkpU6b4TtJ7IiACIiAC3iMgfcV7e+7gFav4ioM3R6KJgAiIQDgJqIpoOOlr7pkzZ86ZM4eAlXz58vHv+vXrs2XL9tdffyVKlEhwREAEREAERMBHQPqKD4WehIEA2sncuXNpGHT77bdfvXrVkCBp0qRZs2ZFfSlatGj79u1r164dBsk0pQiIgAiIgJMIJOJe1knySBZvETh37lz69On//PPPWJeNHrN79+78+fPH+q4OioAIiIAIeIeA4le8s9dOXGmaNGmKFy8eq2RJkiR57LHHpKzECkcHRUAERMBrBKSveG3HHbfeGjVq4ACKKdb169d79+4d87iOiIAIiIAIeJCA9BUPbrqzlnzPPfdcu3YtmkwYV1q2bEn8SrTjeikCIiACIuBNAopf8ea+O2jVe/bsKVy4cDSByA/asmVLqVKloh3XSxEQAREQAW8SkH3Fm/vuoFUXKlQoWoE4jCtNmzaVsuKgTZIoIiACIhBuAtJXwr0Dmv+226pVq0Y+s48Eic19+vTxvdQTERABERABEbj5IyEWIhAuAugrpC4bsydOnLhBgwbly5cPlzCaVwREQAREwIEEpK84cFM8JxIht75iccTe9uvXz3MItGAREAEREIF4CSjeNl48etMWApcuXUqbNi2aCsaV6tWrL1++3JZpNYkIiIAIiIBrCMi+4pqtimBBU6RIYUTXorIMHDgwgleqpYmACIiACARHQPpKcNx0lckEatasyYiVKlW67777TB5aw4mACIiACLifgPQV9+9hRKyAEBbWMWTIkIhYjRYhAiIgAiJgMgHFr5gMVMMFR+DQoUPNmzf/9ttvg7tcV4mACIiACEQ2Aekrkb2/DlrdyZMnabZ85MiRgwcP8i8xtmfPnqUz8/nz5wm2pf7KxYsXKXSbO3fu7Nmz8y/PiWtx0AIkigiIgAiIQPgISF8JH/tInxkFZfWNB5X1t23b9ttvvxkrppptjhw5UqZMiZpC3f3UqVOfO3cOxeXMmTPoLmgzFy5c4EwqshQsWLB06dJ33303PREJbUmePHmkM9P6REAEREAEYicgfSV2LjoaHIG//vpr/fr1c+fOXbRoEToKg5D4Q/G3EiVKoHnQvxBNJUG1A/XlwIED27dv//HGAyfRr7/+ylXEuDz44IPNmjXLly9fcOLpKhEQAREQAZcSkL7i0o1znNj79u2bPHny+++/j6qRP3/+hx56qHbt2hRTyZAhQ+iyMviqVauWLVuGGnT69OkKFSp06NChXbt2WGhCH1wjiIAIiIAIOJ+A9BXn75HTJfzyyy/HjRu3ePFi4k7at2//8MMPlytXziKhKYO7YsWKWbNmffjhh4S8tGnT5sUXXyxSpIhF02lYERABERABhxCQvuKQjXClGBg8Bg8evGbNmrp163bt2rVJkyYUqLVnJVhZpk+fPmnSpF9++QWtpW/fvtJa7CGvWURABEQgLARUfyUs2F0/KVGxLVq0uP/++wlYweCB4kJYiW3KCvjSp0/frVu3HTt2zJw587vvvitZsmSPHj0IfHE9WS1ABERABEQgNgLSV2KjomNxEyCRZ9SoUcWKFSMWlkY/GFeM0rRxX2HhO7iEUJsI7B0/fvx7772H1vL5559bOJ+GFgEREAERCBMB6SthAu/OaclJxqZC/+Q+ffps2rSpVq1aTlgHmc94o3bu3El4b+PGjXv27PnHH384QTDJIAIiIAIiYBYBxa+YRTLyxyGvmHTidOnSffDBB6QoO3PBWFmeffZZkqg//fTTLFmyOFNISSUCIiACIhAoAekrgRLz6PkLFy5s2bIlKcrEi6RJk8bJFDC0NGrUCKMLKUtUnHOyqJJNBERABETATwLyB/kJytOnzZ8/n3Datm3bzps3z+HKCvtEbM3XX39NaRbcQ2QPeXrntHgREAERiBQCsq9Eyk5atg4KtTVo0ID6bK+//rplk5g/MM2JCK8hY4iI4KxZs5o/gUYUAREQARGwkYD0FRthu3Cq/fv3ly1blvIqlGgjGcddKzh69Oi9996bLVu2lStX2plr7S5KklYEREAEXEFA+oortik8QpK6XKdOnWPHjv3www8ubZVME6KKFStSA3fQoEHhgahZRUAEREAEzCDgsjtmM5asMfwlMHbs2HXr1lH53qXKCuukzyKrGDp0KCqXv8vWeSIgAiIgAs4jIPuK8/bEGRL9/vvvhQsXfuGFF/r37+8MiYKXgsBbnFkE4gQ/hK4UAREQAREIKwHZV8KK38GTY5NImTIl+oqDZfRXtNGjR69evVqlb/3lpfNEQAREwHkEZF9x3p44QKJLly7lzJmTIrZEflgnzsaNG+fMmZM3b14aFqZOndq6iRiZsrzJkiVbsGCBpbNocBEQAREQAYsIyL5iEVh3Dzt37tzz58+3a9fOumW8++676EOdOnVKnjw5HYhwP1k3FyN37NiR8nGHDx+2dBYNLgIiIAIiYBEB2VcsAuvuYVu1anXmzBnrHCik7VSpUoVCtDly5IBU/fr1CxUqZGl9lytXrmTKlIm2iE899ZS790bSi4AIiIAnCci+4sltT2jR1Ie97777Ejor+PdxMxUpUsRQVhiFMv/vvPPOgQMHgh8xoStxBlWqVIl1JXSi3hcBERABEXAiAekrTtyV8Mp05MgRVIfKlStbJ8aGDRuKFi3qGz9//vx0VF62bJnviBVPsOh8//33VoysMUVABERABKwmIH3FasLuG5+ysAidJ08ei0QnVIUp8M74xkdf4bnVvX5y586NKuabVE9EQAREQARcRED6ios2yyZRjdDXqPqEuRNv3bqVAaOOnyVLFo5Y6g9i/MyZM588efL69evmLkejiYAIiIAI2EBA+ooNkF02RaJEiZD4r7/+skhuY+QkSZL4xid9mufZs2f3HbHiCfOyNGN1VoyvMUVABERABKwjIH3FOrZuHdmwfJw4ccKiBeCXYeRTp075xr9w4QLPS5Uq5TtixRPsRhkzZnRd10YrUGhMERABEXAdAekrrtsyywWmoTFzHDp0yKKZiFZBb/jtt99849MFmuclS5b0HbHiCcVXsmbNasXIGlMEREAERMBqAtJXrCbsvvHxy2ACodOhRaInTZqUgrYUyPeNv2XLFkJY6E3oO2LFE1ZEr2YrRtaYIiACIiACVhOQvmI1YVeOX7Vq1TVr1lgn+ssvv3zt2jVDZaGQ7uTJk1999VVKpFg3I/nS33333T333GPdFBpZBERABETAOgKqb2sdWxePPH36dOrAHjx40MjcsWIlaA///ve/qWy7adMmKrn16NHDill8Y86ePZuivfv27TOiZ3zH9UQEREAERMAVBKSvuGKb7Bby4sWL9Dvs37+/1f2ZqbmSL18+G2JgGzZsSGbQZ599ZjdKzScCIiACImAGAfmDzKAYcWOkTJny8ccfHzduHIqLpYsrUKCADcoKZW2XLFnStWtXS9eiwUVABERABKwjIPuKdWzdPfLx48cLFy7cq1cvuii7eyW33VanTh1KvKxdu1bFV9y+lZJfBETAswRkX/Hs1iewcCJXUFaGDRv2008/JXCqs9+eOnXqypUrsRVJWXH2Rkk6ERABEYiPgOwr8dHx+Huk8NCl+dy5c/hTkidP7kYau3fvLleu3LPPPjt8+HA3yi+ZRUAEREAEDALSV/RJiI/A3r17y5Yt26RJk/fee8+GQJP4RAn8PQraVq9ePW3atORmRy3/H/hIukIEREAERCDMBOQPCvMGOHz6ggULzp07l2Tgnj17OlzUaOJR1qVx48ZXrlyZP3++lJVocPRSBERABFxHILHrJJbANhMgWBXjChVpcQ9NmDDBFVYWLCvYhKi2gmUlR44cNhPTdCIgAiIgAqYTkL5iOtIIHPDRRx9NnDhx27ZtacFDKTmynZ28yD179jRq1Ojq1atfffVVkSJFnCyqZBMBERABEfCTgPxBfoLy+mnNmzdfunTpqlWraMGzdetWx+L46KOPypcvnyZNmq+//rpYsWKOlVOCiYAIiIAIBERA+kpAuDx9MrGrGzdupLVy5cqVx48fj3vIUThOnjzZsWPHli1bYgfCDUTXRkeJJ2FEQAREQARCISB9JRR6nrs2T548K1asoFvhK6+8UqFCBWwYTkDw119/UWSlePHilNsnOvi1115zafa1E2BKBhEQARFwJgHpK87cF+dKRSDLgAEDtm3bRoOhatWq1atXj+os4RIXTWXBggVoTp07d27duvWOHTuaNWsWLmE0rwiIgAiIgHUEpK9YxzaSR6ZUP8aMhQsXnjlzBvfQAw88wMs///zTtjWTrjx58uQyZco0bdqUoNrNmzeTu5QuXTrbBNBEIiACIiACdhJQvTg7aUfmXGgqY8eOxU+UN2/eDh06tGjRokSJEhYt9fr166tXr/7www9nzpz5xx9/kLhE04CSJUtaNJ2GFQEREAERcAgB6SsO2QjXi7Fr1y4MHjNmzDhy5AihJPhlatasWbVq1dSpU4e+tt9++w015YsvvqD4G40YMaugGNFBmuDf0AfXCCIgAiIgAs4nIH3F+XvkJglxCRGES9DrokWL0GAIdqF9DxX9S5cujRWEBONs2bIlWHGOorSHDh2izyJRMuROEx9jDEWcykMPPfTwww+rqoqbPhOSVQREQATMICB9xQyKGiM2AhhFqNhGavGWLVvQPMg35qw77rgDlYVY3fTp0/Oc5j4cJGz29OnT/Hvs2DHMM1hQjPFwMKHlUE+FVGqzTDWxSapjIiACIiACTicgfcXpOxQx8lEbl8qzGE7QSFBlUFAIRjl79iwLTJQoEeoLdpcsWbKgzeTOnZsi+hhjFD8bMbuvhYiACIhAiASkr4QIUJeLgAiIgAiIgAhYTkD5zJYj1gQiIAIiIAIiIAIhEpC+EiJAXS4CIiACIiACImA5AekrliPWBCIgAiIgAiIgAiES+D/e+E/NritaRwAAAABJRU5ErkJggg==",
|
||
"text/plain": [
|
||
"<PIL.PngImagePlugin.PngImageFile image mode=RGB size=741x1063>"
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"coupling_map = [\n",
|
||
" [1, 0],\n",
|
||
" [2, 1],\n",
|
||
" [3, 2],\n",
|
||
" [3, 5],\n",
|
||
" [4, 1],\n",
|
||
" [6, 7],\n",
|
||
" [7, 4],\n",
|
||
" [7, 10],\n",
|
||
" [8, 5],\n",
|
||
" [8, 9],\n",
|
||
" [8, 11],\n",
|
||
" [11, 14],\n",
|
||
" [12, 10],\n",
|
||
" [12, 13],\n",
|
||
" [12, 15],\n",
|
||
" [13, 14],\n",
|
||
" [16, 14],\n",
|
||
" [17, 18],\n",
|
||
" [18, 15],\n",
|
||
" [18, 21],\n",
|
||
" [19, 16],\n",
|
||
" [19, 22],\n",
|
||
" [20, 19],\n",
|
||
" [21, 23],\n",
|
||
" [23, 24],\n",
|
||
" [25, 22],\n",
|
||
" [25, 24],\n",
|
||
" [26, 25],\n",
|
||
"]\n",
|
||
"CouplingMap(coupling_map).draw()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "aa6db33d-8407-4bd2-a6fc-a9a9aea8cfeb",
|
||
"metadata": {},
|
||
"source": [
|
||
"Create the pass managers and transpile each of the permutation circuits using the AI synthesis passes and generic synthesis methods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "f3112a62-1ce0-4586-8e89-423b34974838",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"results = []\n",
|
||
"\n",
|
||
"# Transpile and analyze all circuits\n",
|
||
"for i, (qc_name, circuit) in enumerate(circuits.items(), start=1):\n",
|
||
" pattern = patterns[i - 1]\n",
|
||
" analyze_transpilation(results, circuit, pattern, qc_name, coupling_map)\n",
|
||
"results_df = pd.DataFrame(results)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e67e64b1-54ac-4df6-932d-f8dec72290ff",
|
||
"metadata": {},
|
||
"source": [
|
||
"Record the metrics (depth, gate count, time) for each circuit after transpilation."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "fd90b81b-970d-4f5b-9d1a-f0760589ab6e",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"\n",
|
||
"=== Average Metrics ===\n",
|
||
" Depth Gates(2q) Time (s)\n",
|
||
"Method \n",
|
||
"ACG 24.0 120.0 0.01\n",
|
||
"AI 21.0 71.4 0.00\n",
|
||
"Basic 33.6 108.0 0.00\n",
|
||
"Depth-LNN-KMS 138.0 623.4 0.02\n",
|
||
"\n",
|
||
"Best Non-AI Method (based on least average depth): ACG\n",
|
||
"\n",
|
||
"=== Comparison of AI vs Best Non-AI Method ===\n",
|
||
" Metric AI ACG Improvement (AI vs Best Non-AI)\n",
|
||
"0 Depth 21.0 24.00 -3.00\n",
|
||
"1 Gates(2q) 71.4 120.00 -48.60\n",
|
||
"2 Time (s) 0.0 0.01 -0.01\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Calculate averages for each metric\n",
|
||
"average_metrics = results_df.groupby(\"Method\")[\n",
|
||
" [\"Depth\", \"Gates(2q)\", \"Time (s)\"]\n",
|
||
"].mean()\n",
|
||
"average_metrics = average_metrics.round(2) # Round to 2 decimal places\n",
|
||
"print(\"\\n=== Average Metrics ===\")\n",
|
||
"print(average_metrics)\n",
|
||
"\n",
|
||
"# Identify the best non-AI method based on least average depth\n",
|
||
"non_ai_methods = [\n",
|
||
" method for method in results_df[\"Method\"].unique() if method != \"AI\"\n",
|
||
"]\n",
|
||
"best_non_ai_method = average_metrics.loc[non_ai_methods][\"Depth\"].idxmin()\n",
|
||
"print(\n",
|
||
" f\"\\nBest Non-AI Method (based on least average depth): {best_non_ai_method}\"\n",
|
||
")\n",
|
||
"\n",
|
||
"# Compare AI to the best non-AI method\n",
|
||
"ai_metrics = average_metrics.loc[\"AI\"]\n",
|
||
"best_non_ai_metrics = average_metrics.loc[best_non_ai_method]\n",
|
||
"\n",
|
||
"comparison = {\n",
|
||
" \"Metric\": [\"Depth\", \"Gates(2q)\", \"Time (s)\"],\n",
|
||
" \"AI\": [\n",
|
||
" round(ai_metrics[\"Depth\"], 2),\n",
|
||
" round(ai_metrics[\"Gates(2q)\"], 2),\n",
|
||
" round(ai_metrics[\"Time (s)\"], 2),\n",
|
||
" ],\n",
|
||
" best_non_ai_method: [\n",
|
||
" round(best_non_ai_metrics[\"Depth\"], 2),\n",
|
||
" round(best_non_ai_metrics[\"Gates(2q)\"], 2),\n",
|
||
" round(best_non_ai_metrics[\"Time (s)\"], 2),\n",
|
||
" ],\n",
|
||
" \"Improvement (AI vs Best Non-AI)\": [\n",
|
||
" round(ai_metrics[\"Depth\"] - best_non_ai_metrics[\"Depth\"], 2),\n",
|
||
" round(ai_metrics[\"Gates(2q)\"] - best_non_ai_metrics[\"Gates(2q)\"], 2),\n",
|
||
" round(ai_metrics[\"Time (s)\"] - best_non_ai_metrics[\"Time (s)\"], 2),\n",
|
||
" ],\n",
|
||
"}\n",
|
||
"\n",
|
||
"comparison_df = pd.DataFrame(comparison)\n",
|
||
"print(\"\\n=== Comparison of AI vs Best Non-AI Method ===\")\n",
|
||
"print(comparison_df)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "1464ba6b-ce1b-412e-b179-6ad690356053",
|
||
"metadata": {},
|
||
"source": [
|
||
"The results demonstrate that the AI transpiler outperforms all other Qiskit synthesis methods for this set of random permutation circuits. Key findings include:\n",
|
||
"\n",
|
||
"1. **Depth**: The AI transpiler achieves the lowest average depth, indicating superior optimization of circuit layouts.\n",
|
||
"2. **Gate Count**: It significantly reduces the number of two-qubit gates compared to other methods, improving execution fidelity and efficiency.\n",
|
||
"3. **Transpilation Time**: All methods, including the AI transpiler, run very quickly at this scale, making them practical for use. However, the AI transpiler provides additional optimization benefits without added runtime cost.\n",
|
||
"\n",
|
||
"These results establish the AI transpiler as the most effective approach for this benchmark, particularly for depth and gate count optimization."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "059bf36f-33cb-4438-a73f-07f9a724cd52",
|
||
"metadata": {},
|
||
"source": [
|
||
"Plot the results to compare the performance of the AI synthesis passes against the generic synthesis methods."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"id": "37e6bd25-abb9-474a-9366-0af31c44c0dc",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAABv0AAAH5CAYAAACiZvIdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xN9/8H8NfN3otEhCQiRoxI7JKQIIhZNWKL2Hu1KFWrCFqjtbURlFSL2qNGjdpiVW1qltiJETLfvz/87vnmuvdmScR4PR+P+yDn8znnfM7+nPM+5/NRiYiAiIiIiIiIiIiIiIiIiN5bBnldACIiIiIiIiIiIiIiIiJ6Mwz6EREREREREREREREREb3nGPQjIiIiIiIiIiIiIiIies8x6EdERERERERERERERET0nmPQj4iIiIiIiIiIiIiIiOg9x6AfERERERERERERERER0XuOQT8iIiIiIiIiIiIiIiKi9xyDfkRERERERERERERERETvOQb9iIiIiIiIiIiIiIiIiN5zDPoREWVTkSJFoFKptH5WVlbw8fHBiBEj8PDhw7wuZrYEBgZCpVJh9+7deV2UXHXt2jWoVCoUKVIkV8d5F0yfPl3ZR2fNmpVu3t27dyt5syouLg4TJkxA1apVYWtrC2NjYxQoUADe3t7o2LEjFixYgOfPn2d3Md6Kzp07Q6VSYfHixXldFC1vY/9Tz0P9W7NmTbr5GzVqpOQNCgrKtXK97l07T6mvCdeuXcvrouSKtPuFubk5bt26pTevkZHRe7cujh8/rixfixYtMsyvzpvV/S81NRWLFy9G3bp14eTkBGNjYzg4OKBEiRJo2rQppk6d+s6vt8WLF0OlUqFz5855XRSd3saxmLYOOHDgwHTzfvvtt0peIyOjXCvT68aOHQuVSoWxY8e+tXmm521cW9XXhfR+gwYNyrX5v0k51fWl+vXrY9myZRCRvC5mht7XOnFa6v0y7c/IyAiOjo6oW7culi5d+l5siw/Nu1wXzwnbt29HWFgYSpQoARsbG5iamqJgwYKoW7cuZsyYgfv372vkf9evu2rZvX8kIqKcx6AfEdEb8vPzQ2hoKEJDQ9GxY0d88sknuHTpEiZPnoxy5crh33//zesiEiEiIkL5/6JFi3JlHhcuXEDZsmXx9ddf49SpU/D19UXLli1RvXp1JCUlYdmyZejVqxeuXr2aK/PPDHVAMzAwMM/K8L5Jb3/577//8Mcff+T4PN+Xhxsfq5cvX2L06NF5XYwclfYcuWHDBq0Hbjnh+fPnCAoKQlhYGHbs2AFXV1d8+umnqFu3LmxtbbF161YMHz4cGzduzPF5ZwUf2mXN8uXLkZiYqDc9N665H0KwJTf5+PgodfPXf1WqVMnr4inSlrNZs2awt7fHtm3b0LFjR7Rq1YrBprfI09NT2RYtW7ZEgQIFsGPHDuXvlJSUvC7iW5dbL1d9zHW8Bw8eoG7duqhXrx4WL16MpKQk1KpVCy1atECpUqVw4MABDBkyBEWLFsXhw4fzurg55l17UY+I6GPw9l41JCL6QHXr1k3rpiUmJgYBAQG4ePEihg0bhlWrVuVN4SjHFSpUCOfOnYOxsXFeFyXTDh06hLNnz8LOzg5JSUk4efIkjh8/jgoVKuTofDp06IBbt26hVq1a+PXXX+Ho6KiRfuPGDSxZsgRWVlY5Ot+Pydvc/wwNDeHt7Y2tW7ciJiYGzs7OWnmWLFmClJQUVK5cGUePHs31MlHeU6lUMDU1xdKlS/H555+jTJkyeV2kN/by5UtERUUBeHWM/ffff/j5558xZMiQHJ3P2LFjsWvXLri4uGDLli0oV66cRnpcXBxWr16NggUL5uh8PzY7d+5EUlISChUqlOvzqlSpEqKjo7Fu3Tq0atVKK/3AgQM4f/48z5FvWbNmzd6ZLxzT83o5RQTffvsthg8fjtWrV2PVqlU69yvKef7+/lpflc2bNw99+vTB77//jiVLlqBLly55U7iPUHh4OL788ssP6noYFxcHf39/XLhwAV5eXli4cCFq1KihkSchIQFLlizBmDFjcOfOHWX4Z599hk8++QS2trZvu9hZcu7cubwuAhER/T9+6UdElAucnZ0xdOhQAK8ePtGHw9jYGF5eXvD09MzromSa+guWtm3bKg+P0n7VkhOuXLmC6OhoAMD8+fO1An4A4Obmhq+//ppfJryBt73/denSBcnJyViyZInO9MjISJiZmaFdu3ZvpTyU9wwMDNC/f3+kpKRg5MiReV2cHLF69WrExsaidOnSmDhxIoCcP0cCwIoVKwAAY8aM0Qr4AYCtrS26dOmCBg0a5Pi8Pyaenp7w8vJ6Ky9HqIMA+r7mU+9HDBZQZqhUKgwdOhQlS5YE8OqrY8o7vXv3RkBAAADgt99+y+PSfFwKFiwILy+vdz7IlRX9+/fHhQsXUKRIEezfv18r4AcApqam6NGjB06ePIlSpUopw21tbeHl5fXOB0G9vLzg5eWV18UgIiIw6EdElGvUX8UkJyfrzbNq1SoEBwfD0dERJiYmKFSoEDp06ICzZ89q5U3blJOIYOHChahYsSIsLS1ha2uLevXq4eDBg3rnFR8fj5kzZ8Lf3x/29vYwNTWFu7s7mjRponzhoMvJkyfRvHlz5M+fH6ampihdujSmTZums8mhtP0vXLhwAa1bt4aTkxMsLS1RuXJlrFu3Tsl7+PBhNG3aFI6OjjA3N0e1atX0BkiPHDmCYcOGoUqVKnB2doaJiQkKFCiAJk2aYMeOHTrHSdt0zKNHjzBo0CB4enrC1NQ0U007xsfH49NPP4VKpUKtWrUQGxsLIP0mtdI2ibZ69Wr4+/vDxsYGlpaW8PPzw+bNm/XO7/r16+jcuTOcnZ1hZmaG4sWLY8yYMXj58uUbNYny/Plz/PrrrwCArl27omvXrgCAqKgovHz5MsvT0+fu3bvK/52cnDI9XkBAAFQqFX755Re9eaZOnQqVSoWQkBBlWNq+iu7fv4++ffvC1dUVJiYmcHV1Rf/+/ZVtphYYGIhatWoBAPbs2aPRf4u+QOTVq1fRsWNHODs7w9TUFJ6enhg1ahQSEhL0lvfYsWNo37493NzcYGpqCgcHB9SvX1/v9r9z5w4GDhyIEiVKwMzMDBYWFnB1dUWdOnXw3XffaeRNb/+7dOkSunTpAg8PD5iamsLKygru7u5o1KgRIiMj9ZY3Pe3bt4epqanO8ffs2YPLly/js88+g52dXbrTefz4McaMGQNfX19YW1vDwsIC3t7emDBhAuLj4zXyFilSBGFhYQBefUmYdjvpO3azcp4CXp2X58+fj+rVq8PW1lY55gYMGID//vtP73KcPXsWrVq1Qv78+WFubo6yZcviu+++S7fZr6xsX33++OMPqFQqjQdAupbJ2dkZKpUKp06dUobnxn4xYsQI2NvbY/369di/f3+Wxo2Pj8fkyZNRoUIFZV8oU6YMRo0ahcePH2vlf9NrX2b89NNPAF4FZlq1agUbGxucPXsWhw4deqPpvk59nszKOXLMmDFQqVTo2bOn3jxHjhyBSqVCoUKFlDpH2qaMk5KSMGXKFJQpUwbm5ubIly8fmjdvrvVGvvq8qvZ6P1e6+sh7/vw5RowYgWLFisHU1BTOzs4IDQ1N9zi6ffs2hgwZglKlSsHCwgLW1taoXLkyZs+erbPOlJCQgG+//RYVK1aEtbU1TExM4OzsjMqVK2PYsGF49OiRRn59ffrFxcVh1KhR8Pb2hqWlJUxNTeHi4gI/Pz+MHj0aSUlJesusj7e3NypVqoRt27ZpLfOzZ8/w22+/oXDhwqhXr16600lOTsZPP/2EwMBAODg4wNTUFB4eHujduzdu3rypkbdz587w8PAA8Kru8Pp20iWz18m0/vjjDzRu3BhOTk4wMTGBi4sLWrdurbzgo4u6vuXu7g5TU1O4ubmhX79+Wtsoraxu35z26NEjjBw5EmXKlFH2x4oVK2Lq1Kl48eKFVv60x1Z8fDxGjx6t7Ms58VKTSqVC2bJlAWjWrdTetE6cnWN248aNCAgIgLW1NWxtbVGjRg2NOr0+58+fR1hYmLI/ODg4oE6dOnoDaGnrdrdv30a3bt3g4uKiXG/Tvoxx/vx5tGvXTqk3+/j4KPXdnFSxYkUA0DqfZKVe8/qy3bhxA127doWrqyuMjY2VFmNy4z4qM00Bv37OVO/je/bsAQDUqlVL4xyT9ovIHTt2oH///vD19VXqYIULF0br1q11ft2c2TpeRn36rVixAnXq1FHOl+7u7ujSpQsuXryY4TLu2rUL9erVg729PczNzVGhQgUsXbpU53g5dd34999/lfvt6dOnw8HBId38BQoUUIL/gP4mUbNyPjp27BhCQ0Ph4eEBMzMzODg4wMfHB0OHDsX169cznJdaZu+F05YvM/vSsWPH0Lp1axQuXBgmJiawsbFB0aJF0aJFi0ydb4iI6DVCRETZ4u7uLgAkMjJSZ/rXX38tAKRq1apaaUlJSRISEiIAxNTUVKpXry6tWrUSHx8fASDm5uayZcsWjXGuXr0qAMTd3V1CQ0PF2NhYateuLSEhIVKiRAllWocOHdKa340bN6R06dICQCwsLKRu3brSpk0bqVGjhtja2oq7u7tG/oCAAAEgX375pZiYmEipUqWkTZs2EhAQIIaGhgJABg4cqDWf0NBQASD9+/cXS0tLKVmypLRp00aqVasmAESlUsnKlStlzZo1YmxsLOXLl5fWrVsry21kZCR//fWX1nTr1KkjBgYG4u3tLQ0bNpRWrVpJhQoVBIAAkJkzZ2qNExkZKQCkUaNG4uHhIfb29tK0aVNp1aqVtG/fXmudphUTEyOVKlUSANKhQwdJSEjQuR1epy7P6NGjRaVSiZ+fn8byqVQq+f3337XGO3PmjOTPn18AiIuLi4SEhEijRo3E0tJS/P39pXr16gJAdu3apTVuRiIiIgSAlCtXThmm3l+WL1+uc5xdu3Ypy5JZN2/eVMYZO3ZspsdbvXq1AJDq1avrTE9JSZEiRYoIANmzZ48yfMyYMQJAunTpIoULF5YCBQpI8+bNpWHDhmJraysApHLlypKYmKiMEx4eLvXr1xcAUqBAAQkNDVV+n3/+uZJPvR8PHDhQbGxsxN3dXUJCQiQoKEjMzc0FgDRr1kxneWfOnCkGBgYCQHx9faVly5bi7+8vJiYmAkDGjRunkf/OnTvi4uIiAMTNzU0+/fRTad26tdSoUUMcHBzE1tZWI7++/e/06dNiY2MjAKRkyZLSvHlzadWqlVSrVk2srKzEx8cnE1tDcx6GhoYiIsq5at++fRr5OnbsKABk+/btyvFWp04dremdOXNGXF1dBYAULFhQgoODpUmTJlKgQAFlPcXGxir5P//8c/Hz8xMA4unpqbGdwsPDlXzZPU+9fPlSgoKCBICYmZlJgwYNpHXr1koZ8+fPL8eOHdMa76+//hJLS0sBIEWLFpU2bdpIUFCQGBsbS4sWLZRrwtWrV5Vxsrp99UlJSZHChQsLADl48KDOPOvXrxcAUqFCBWVYbu4XU6ZMEQDi5+enlVe9/tOuCxGRhw8fiq+vrwAQGxsbadq0qbRo0UI5/3l4eGiN8ybXvsy4fPmyqFQqMTY2lrt374qISPfu3QWAdO/eXe946vNdVs7Lnp6eAkDq168vL1++zNQ4d+7cERMTE7G0tJTHjx/rzNOpUyet84v6PF69enUJCgoSCwsLCQ4OlhYtWij7up2dncb6XrNmjXL+A6Bx7IWGhsr9+/dF5H/X12bNmkm5cuXEzs5OmjRpIp9++qk4OTkp2yvtca22Z88esbe3FwBSpEgRadq0qdSvX18ZVq9ePY3zdkpKitSpU0fZZxo0aCBt27aVoKAg5Zg7ceKExjx0HYvPnz+XsmXLCgBxdHSUJk2aSJs2bSQwMFCcnZ0FgN71q4t6Hn/99ZfMnTtXAMiECRM08qivv1999ZXW8ZPWkydPJDAwUACIlZWVBAQESMuWLaVkyZICQPLlyyfHjx9X8v/444/SokULASCWlpZa20ktO9dJtVGjRin1Fj8/P2nbtq1y7BoaGkpERITWODExMVK8eHEBIPb29tK8eXNp1qyZ2NnZiaenpzRt2lSr3pyd7Zse9XVhzJgxmcp/5coVZT6Ojo7SokULadq0qVhbWyvn00ePHmmMoz62qlatKpUrVxZLS0vlOhIUFJQj5axbt64AkI4dO2qlvUmdODvH7PTp05VpV6lSRdq2bavUkYcMGaK3Trxx40YxMzNTrj9t2rSR2rVrK9eHLl26aI2j3mfDwsLE2dlZ3NzcJCQkRGrVqqWM991338nBgwfF2tpa6z4DgKxYsSLjDZCG+pyX9thJq1u3blr16KzWa9IuW7t27cTBwUGcnZ2lRYsW0rx5c6UOmhv3Uendt6i9fs48d+6chIaGKstTv359jXNM2nl4enqKiYmJlC9fXpo2bSrNmzdX7jmNjIxk1apVGvPKbB1PvS5ev89OTU1VrnlGRkZSu3ZtadOmjVIfsLCw0LqHTruMX3/9tahUKqlYsaK0adNGPvnkE2XfmTFjhsY4OXnd+P7775XrbnJycqbGSUt9DL++n2b2fDR16lTl/qREiRISEhIiTZo0kVKlSmmtZ33zUsvMvbBaZvelHTt2iLGxsQAQHx8fadmypXz22WdSpUoVMTU1lU8//TTL64yI6GPHoB8RUTbpCvqlpKTIrVu3ZNasWWJqaiqGhoayYcMGrXFHjhypVND//fdfjbSVK1eKoaGh2Nvba9xIqCvY6kr2hQsXlLTk5GTp0qWL8sAsrZSUFOXmvF69enLv3j2N9BcvXsimTZs0hqkfRgCQ+fPna6Tt3LlTVCqVGBoays2bNzXS0j4snDBhgqSmpippP/zwgwCQwoULi729vSxdulRj3EGDBgkAnQ9MNm/eLLdv39YafuDAAbGxsRFjY2O5deuWRpr6hkUdiIiLi9MaX9dNy5kzZ5RtO2rUqEyNo6aen52dndYDaPXNfokSJbTGUz+sadOmjcaD4Fu3bikP/bL6cFlNHTBM+xAoPDxcAEjt2rV1jpOdoJ+IyKeffqqMV7p0afniiy/k119/lcuXL+sdJzk5WVnfaR9qqm3YsEHrYYvI/9YnAOncubPGertx44YUKlRIAEhUVJTOZQsICNBbprT78VdffaVxc3769Gkl8HPgwAGN8bZu3SoqlUry58+vEaAUEfn777+VoM3u3buV4ePGjRMA0qNHD43jRUQkMTFRduzYoTFM3/4XFham86GziEh8fLxWedLz+sPpP/74Q+sBXVxcnFhYWEiRIkUkNTVVb9AvPj5eCXSMGjVKI4D+/Plzadu2rfKAL62MHjiIZP88NXz4cOVhU9qgQGJionTt2lWAV8GntGV98eKF8oBv0KBBGvvEqVOnlKDV64GGrG7f9Hz11VcCQHr27Kkz/bPPPhMAMmvWLGVYbu4X8fHxyj69bt06jbz6gn6tW7dWrn0PHjxQhj99+lQaNGgggPYLANm99mWW+nqcNpB/8OBBASDW1tby7NkzneNl57w8Y8YMZbwCBQpI9+7dJSIiQo4fP57uQ8D27dsLAJk+fbpW2v3798XU1FSMjY3lzp07yvC05/Hy5ctrpL148UJ5AaJHjx56l02ftNfX+vXra1xfHz16pASHJk2apDHenTt3JF++fKJSqWTu3LmSkpKipD148EBq164tgGbwcs+ePcoyPHnyRKssR48e1diXRHQH/ZYsWSIApEGDBlpBrpSUFNm9e7fGMZ+RtEG/2NhYMTc3l2LFimnk8fPzE5VKJVeuXEk36NeuXTsBII0bN1YCz2rqfaZ48eIa+0hmHuRn9zq5ZcsWAV69FLFt2zaNtJ9++kkAiLGxsfzzzz8aaS1bthQAUqNGDY2Ax8OHD6Vq1apKWdLWm7OzfdOT1aCfulxNmzbVONbv3bun1M3atWunMU7aY6tcuXIax1ZOlPPevXtKUHblypVa6W9aJ87KMXvq1CkxNDQUAwMDrbIsW7ZMVCqVzv0wJiZGWYbX7weOHj2qBPkXLlyoMV7afbZXr16SlJSkpKlfbLG2thZ3d3et6c6cOVMAaB2HGUkv6Pf8+XNxc3MTANKpUycRyX69Ju2ydejQQeeLH7lxH5WdoJ+aej9N7zq3Zs0arcC4eriRkZHky5dP4uPjNdIyU8fTF/SbN2+eAK9e0Er7QkBqaqqyju3s7LTud9XLaGxsrHVvri6Pra2tRllz8rqhflFO371XRjIK+qV3Plq3bp1yTv/111+10s+cOSNnz57NcF5qWQn6qWW0L9WqVUsAyLJly7TSYmNj9b7wRkRE+jHoR0SUTeqbB32/ypUra30ZI/Lq4Ye5ubmYmZlp3ZSr9enTR+vhbdoHn+vXr9ca586dOwK8+uIh7Y3J2rVrBXj1JurTp08ztWzqinnz5s11pgcHBwsArRtO9Q1alSpVtB5wJyUliYODgwCQVq1aaU3zwYMHAkBMTEx0vnWuz4gRIwSAzJkzR2O4+obF2NhYrly5onPc129adu7cKXZ2dmJsbCyLFi3K1DhpqbfPDz/8oJX28uVL5QHIjRs3lOF79+4V4NXb/Q8fPtQab+PGjdl6uCzy6u1K9TpN+9Ds9u3bYmhoKCqVSivoLJL9oN+TJ0+kQ4cOykOgtL/ChQvLiBEjdD4YmDp1qgCQrl27aqWpH0wvWLBAY7j6xr5w4cLy/PlzrfEmT54sgPab5FkJ+lWsWFFrPxYR6dWrlwCQ8ePHawxXPzx8/a1mtd9++00ASIsWLZRh6mNd1xeguujb/xo2bCiA7sBpVr3+cDolJUXc3NzEyspKeSg6f/58Af73Vae+oJ/64Uzjxo11zuvp06fi5OQkRkZGGvtGVoJ+WTlPvXjxQqysrPSeR58/f668jZz2S9hly5YJAHF1ddV5fkobzEn70Cyr2zc9ly9fVh5KvXjxQiPt3r17YmxsLKamphrnkdzcL0T+FwAoU6aMRkBCV9Dv+vXrYmBgICqVSk6dOqU1/Vu3bilfhezfv19rvlm99mVGcnKy8iXm6w8B1V8q6PuaP7vn5YkTJyovDqT9WVtbS6dOneT8+fNa4xw5ckSAV4Gf189J6pc42rZtqzFcfa5TqVRy8uRJrWkeOnRIgFdfrepbNn3Ux6elpaXO4MOKFSt0PtxUB9z79eunc7q3bt0SY2NjcXR0VJZTfd4cMGCA3vK8TtcDbPV1RlfgNDvSBv1E/heYVb/Ucf78eQEggYGBIqL7+BEROXv2rKhUKnFxcdEZ9BL533Gcdh/NStAvq9dJ9Zd3Q4YM0Tndxo0bC6D5JeyNGzeU4/vMmTNa45w4cULZr9IeU9nZvulJ+zKIrl/a9fXXX38J8OrLoJiYGK1pRUdHCwAxMDDQeHkkbR1p7969b1TOtEG/Z8+eyf79+5Uvjzp16qQRGM+MjOrEWT1m1V+5tW7dWuf81C97vb4ffvPNN0o9SpfvvvtOOaelpd5n3dzctK5zIiLlypXL1H3G9evXdc5XF11BvxcvXkh0dLTSKoChoaEcOXJERLJfr1Evm4ODg84vKtOWJSfvo3I76JcedQD09ZdL3yTopw646rrXSk1NVfaRiRMnaqSpl1Hfec3Ly0vrmM7J64a6TtqmTZtsjZ+ZoJ++85E6qD9t2rQ3mpdabgT91HUuXfeJRESUPezTj4joDfn5+SE0NFT5NWrUCK6urjh69CgGDx6MS5cuaeTftWsXXrx4AT8/PxQqVEjnNNV9Ghw4cEArzcjICMHBwVrDnZ2dYW9vj4SEBDx8+FAZvnXrVgBAu3btYGVllaVla9Kkic7h6n6l9PX/0aBBA61+ZYyMjJQ+aBo2bKg1Tr58+eDg4IDExESN8qs9fPgQS5cuxbBhw9C9e3d07twZnTt3VvoIuHDhgs6ylC9fHkWLFtWzhP+zZMkSBAcHIzU1FZs2bVL6m8gOXevN1NRUKUfa9aYuf3BwsM7+HRo1apRhf2n6qPup+vTTT5EvXz5leMGCBdGgQQOICBYtWpStaetibW2Nn3/+GVeuXMH06dPRsmVLZZlv3bqF8PBw+Pr6avWL0q1bN1hYWCAqKkqjT6/Lly9j27ZtsLOzQ4cOHXTOs06dOrCwsNAantE+mhmNGzfW2T+Srmk/ePAAR44cgbm5ud7jRtdxXaVKFQDAl19+id9//x3Pnj3LVlnV0+nduzf++OOPHO2v0cDAAKGhoUr/VACwaNEiGBgY6O3vQ23Tpk0AgNatW+tMt7KyQqVKlZCcnKyz75fMyMp5Kjo6Gs+ePYODg4PO8SwsLNCmTRsAr87Vaur+NENCQmBsbKw1XmhoqM4y5NT2BQBPT0/UrFkTcXFxWLNmjUba8uXLkZSUhE8//VTjPJKb+wXwqs+d0qVL48yZM1iyZEm6effu3YvU1FSUL18e5cqV00ovVKgQ6tevD0Bz3atl9dqXGVu2bMHt27eVc2JaXbp0AQCNPqRywsiRI3Hr1i0sXrwYYWFh8PHxgaGhIZ4+fYqlS5eifPnyWv1/Vq5cGdWqVcOlS5fwxx9/KMNTU1Mxf/58AEC/fv10zs/NzQ0+Pj5aw3PiHFmpUiUULFgw09PO6HxQqFAhFC9eHPfv31fqThUqVIChoSEWLVqEOXPm4M6dO9kqa+XKlQG86iN26dKlOd5PnHp/UV9T1f+qh+uzefNmiAgaNGgAa2trnXnSqxNmRlauk8nJyUo/nfrO7+q+gdMep+rju0KFCihdurTWOL6+vjqP+5zavq/z8fHRqJurfy1btlTyqM/rwcHBKFCggNY0KlasCB8fH6Smpip1tbScnJxQo0aNNyrnuHHjlL6trKys4Ofnh0OHDiE8PBxLliyBgYHuxzXZrRNn9ZhVryN9dTB91z71ePrS1fvQpUuXcPv2ba30WrVqwczMTGt48eLFAei/z1D3MaZrmhlJ27+cubk5KlWqhB07dih1W/U55E3rNUFBQbC1tU23LLlxH5Wbbt++jR9//BGff/45unXrpuyPZ86cAaB/f8yqW7du4cqVKwB071sqlUq5f9NVjwCyVmfM7etGTtJ3PoqJicHJkydhYGCgHHfvInV9tX379ti3b5/O/n2JiChrjPK6AERE7zv1zU1aycnJGD16NMLDwxEQEIALFy4oD3P+/fdfAMDOnTt1BhTSun//vtawggUL6nzoDAA2NjZ4/PixxoNddcfcXl5emV4mNTc3N73zAaD3AbK+8dRBR33p1tbWePTokdZ0f/zxRwwePBjPnz/XW9YnT57oHJ5ex/Vqt27dUrbhn3/+CX9//wzHSU9W1tutW7cyLKe7uztiY2OzVIakpCT8/PPPAHQ/dOzSpQs2btyIJUuWYNy4cXofLGWHh4cHBg8ejMGDBwN4tQ9GRERg6tSpuHHjBvr27as8NAEAe3t7dOzYEQsWLEBERAS++OILAMDcuXMhIggLC9P5wBLI/j6aGVmZ9tWrVyEiePHiBUxNTdOdbtrjumPHjti+fTuWL1+OFi1awNDQEKVLl4a/vz9atmyJ2rVrZ6qsQ4cOxb59+7Bjxw4EBwfD2NgYPj4+qFmzJtq0aaM8uMiusLAwTJgwAYsWLUKVKlVw5MgRBAUFwd3dPd3x1Oe7jh07omPHjunm1XW+y4ysbCf1wxz1gzNdPD09NfIC/ztO9Y1nb28PW1tbxMXFaQzPqe2r1qVLF+zduxeRkZFo27atMjwyMhIAtF5WyO39wtDQEJMmTUKzZs0wZswYtGvXTueDWiD7614tq9e+L774Ag8ePNDKu3jxYuX/6oBep06dYGhoqJGvY8eOGDFiBPbt24eLFy+iRIkSesudVXZ2dkoQAgAeP36MNWvWYNSoUbhz5w5CQ0Nx/fp1jfPegAEDcPDgQcyePVsJfm7cuBHXr19H+fLlUb16dZ3zyuj4SEhIyPZyZPX8qz4fZCZQcv/+fZQoUQKenp6YMWMGhg4din79+qFfv35wd3dHtWrV0LhxY7Rq1QomJiYZTi8wMBDDhw/Ht99+i9DQUKhUKhQvXhx+fn749NNP0aRJkze6DtaqVQseHh5YtWoVZs6ciaVLl8LGxkYjyKSLep1ERERkGGB+G+fIhw8fKn/rO1azc45Up/39999a08qJ7fu6Zs2aYezYsenmyew56dSpUzrPSZmpX2bEx8cHvr6+AIBHjx7h0KFDuH//PkaPHo3SpUujadOmWuO8SZ04q8dsRttV3/CM1q2dnR0cHBzw6NEj3Lp1Cy4uLpkqZ2buI4Ds1f08PT2V+r+hoSHs7Ozg4+ODpk2barx896b1mszsNzl9H5Wbxo0bh4kTJyIpKUlvHn37Y1ap96t8+fIp++zr0qtHAFk7BnLyuuHo6AgAuHfvXqbyZ5W+/erGjRsAXtWhMgo256Xw8HD8/fff2LJlC7Zs2QJzc3NUqFABgYGBaN++vRKUJSKizGPQj4goFxgZGWHChAn48ccfcefOHSxduhR9+/YF8OrNfAAoVqwY/Pz80p2OrkBdTgZnMpLdeWU0Xlame+zYMfTs2ROGhoaYMmUKmjRpAjc3N1hYWEClUmHhwoXo2bMnRETn+Obm5hnOw8nJCb6+vtiyZQsGDRqEP/74Q+PLuKzKznpLLwCcUXBYlw0bNig3luPHj8eECRM00tVvUN68eRPbtm3T+QVNTnF3d8f48eNhb2+PIUOGYNu2bXjx4oXGthkwYAAWLFiAefPmYciQIXj58iUiIyOhUqmUY0eX3DwesjJt9XFtZWWFFi1aZGkey5Ytw8iRI7Fp0ybs378f+/fvx7x58zBv3jw0adIEa9as0QpIvM7CwgLbt2/H0aNHsXXrVhw4cAAHDhxAdHQ0pk+fjj59+mDOnDmZLtfrPDw8EBgYiF27dmHEiBEAMv6CBfjfetH3JUVaGQUQ9Xmb58Ssyqntq9aqVSv0798fO3fuxK1bt1C4cGEcP34cf//9NwoVKoR69epp5M/t/QJ49SVx9erVceDAAcyaNQtDhw59o+npk9XtvGrVKuWll7TUQb+7d+9i48aNAF6dL/ft26eV19jYGElJSVi0aBEmT56c9UJnkr29Pbp06YLy5cujQoUKePDgAfbv34+6desqeVq2bIkvvvgCW7ZswdWrV+Hh4aFsO31f+QHvzjkS+N/5oGXLlrC0tEw3b9prcP/+/RESEoL169dj37592LdvH1asWIEVK1ZgzJgx+Ouvv3R+vfS6yZMno1evXsr23r9/PyIjIxEZGYnKlStj165dGZZLH5VKhc6dO2PMmDEIDQ1FTEwMevTokWEdRL1OfH19dX6RmVbVqlWzVbZ3+RwJ5Nz2fdsyU7/MyOvByYSEBHTp0gVRUVHo1KkTzp07p7Hsb1onftf3BbWcvI/ILH9/f42XQvR503pNZvabt7386mXKqt9//x1jx46FlZUVZs+ejdq1a8PFxQXm5uZQqVQYOXIkwsPD9e6PeSGr6y6nrhsVK1bEzz//jOPHjyMlJSXT9b7MyonzUWZld39Jj7OzM6Kjo7Fnzx7s2LED+/fvx+HDh7F//35MmjQJ4eHhGD58eI7Pl4joQ8agHxFRLjEwMECRIkXw4MEDnDt3Thnu6uoKAChZsmSmbi7flPqNxvPnz+f6vHLDypUrISLo378/hg0bppX+evOp2WFiYoJ169ahXbt2WLVqFQICArBjxw44Ozu/8bQzom7i9fUmL9PS9eA6I2m/GDh48GCGeXMz6KemDkgkJycjNjZW4wa1dOnSCAoKwo4dO5Qm92JjY9GgQQPlrd13mfq4VqlUStOXWVG6dGmULl0aQ4cOhYjgzz//RLt27bBhwwYsXbo0083NVq5cWfl6Kzk5GWvXrkWnTp0wd+5ctGzZErVq1cragqXRpUsX7Nq1Cxs2bIC9vT0+++yzDMdxdXXF+fPn0bVr1wy/eHkb1Mfb1atX9eZRv8WftvnljI7T2NhYra/80sqp7WthYYGQkBBERERgyZIl+Oqrr5TrSGhoqN79Ljf3CwCYMmUKatSogfDwcHTv3l1nHvU6VK9fXXSt++xK75wKAEuXLlVefjh79my6eZcsWYIJEybAyCh3b53Kly+P/Pnz48GDB1pfKRoZGaF3794YNWoU5s6di+7du2P79u1wcHDQ+OrzXebq6opLly5h+PDhqFSpUpbGLVCgALp3767sX+fPn0eXLl1w8OBBfPnllxk2L6tWpEgR9O/fH/379wcAHD16FB06dMDRo0cxdepUjBs3LmsLlUbnzp0xbtw4bNiwAUDmXoxQXzv8/Pwwe/bsbM87p+TLlw+mpqZISEjAv//+q7NJzuycIzNKy6ntmxVv+5yUGaampoiIiMDRo0dx6dIlfP3110pT7cDbqROnVahQIVy5cgXXrl1DmTJltNL1bdNChQrh/PnzetdtXFyc0lTi21q3OeVdq9dkRP2l7NOnT3WmJyUlZbtZXXWT7xMnTkSPHj200nNjfwRefZH85MkTnV/75cYxmxPXjcaNG2PIkCGIjY3F+vXrM1WHzgnq5wB37txBXFxcpr72y2ifyc59aWaoVCoEBgYqTVq/fPkSixcvRt++fTFy5Ei0bNnyvbgnJCJ6V7wfr3oREb2HUlNTlZvhtH3p1alTByYmJti9e3euNfGRljqY88svv6TbFNC7Sv1QQNfbsi9fvsTq1atzZD7GxsZYsWKF0gdFjRo1cu2mJq2aNWsCeNX3Ytr+7NS2bNmic3h6bt26pfT7dO7cOYiIzp/6Qff69et1NoOXFZl5i1fdxIypqSny58+vlT5w4EAAwOzZszP1BUt2qG9kc7qvCBcXF5QrVw5Pnz5V+tHMLpVKhTp16qBdu3YAgJMnT2ZrOkZGRmjZsqXST1p2p6PWokULuLu7I1++fAgLC9PbjGNa6n7S1A+GMiu3tlOlSpVgZWWFR48eYf369VrpL168wIoVKwBAIxAWEBAA4NVy6GrCaunSpZkuw5tuX3UgYcmSJUhISEBUVBQA/f1vvS6n9wvg1RcSTZo0wePHjxEeHq4zT82aNWFgYICTJ0/i1KlTWul37txRjp03DUJmhvrFiHnz5uk9RyYnJ6NgwYKIiYnR6mcvOzI6T8bGxirNoBUuXFgrvWfPnjAzM8OiRYswbdo0iAi6du2a42/4q5tRzenjL7vnA128vLyUt/7fZB+uXLky+vTp88bTAV49XFX3ofvJJ59k6ss89TpZv359lprky61zpJGRkdLEob4X09T9FaY9TmvWrAmVSoXjx4/rfMns1KlTWk17pientm961A+Wt27dirt372qlnzhxQukLS11XexvMzMwwZcoUAK+2weXLl5W0t1UnVlNf+5YvX64zXd+1T71u9QVr1ftQ8eLF37ugX06ex94GR0dHmJiY4NGjRzrvO//44w+955GMzjPp7Y/37t3D9u3bszVdfQoXLqwEfXSdn0REGZ6b9YjsXDc8PT2VF3Q+//zzDPsHvHfvXo70hejs7Kz0TZrZftzVx6S+F4bTdtGQWdnZ5mZmZujVqxfKlSuH1NTULF1DiIiIQT8iolyRnJyMUaNGKYGUtH1yFChQAP3798fz58/RpEkTnD59Wmv8hIQErF+/Pke+zmvatCnKly+P27dvo1WrVlqdu798+RJbtmx54/nkFnUb/kuWLNF44/Dly5fo06dPul/sZJWhoSEWLVqEfv364fLly6hRowYuXryYY9PXpWbNmvDx8cHTp0/Rv39/JCYmKmm3b9/G559/nuVpLl68GCkpKahSpUq6fTmWKlUKlSpVQmJiIpYtW5at8qv9/fffqFWrFtasWaOxDGqnTp1SgnotWrTQ2TdXw4YNUaxYMWzduhWnTp2Cp6en8nAlp6gfpF+6dCnd/keyQ92EalhYmPKlR1oigsOHD2Pbtm3KsKVLl+LYsWNaeZ8+fYrdu3cDyFyzl3PnztX5cCAmJgbR0dGZnk56zM3Nce3aNTx48ADTpk3L1Dg9evSAu7s7Vq5cieHDh+t8azgmJgY//vijxjD1dsroC6ysMjMzU5qL/fzzzzUC+0lJSRg4cCBiYmLg4eGh8QZ/y5YtUahQIdy4cQMjRozQaNron3/+0Wo+Vy2ntm9a1atXR8mSJZUvph4+fAh/f38UL15cK+/b2C/UJk2aBAMDA8yaNUtn009ubm5o1aoVRAQ9e/bUuBY9f/4cPXr0wMuXL1G9enW9/dPllH379uHChQswNTVF69at9eYzNDRE+/btASDTD8vSU6VKFcydO1fnw76YmBiEhoYiMTFR6dPsdfnz50e7du3w6NEjLFy4EAYGBsqDx5ykPv7OnDmTo9MdOnQo7OzsMH36dEybNk3nteLq1asa16M///wTmzdv1jpfi4jSPGtm9uE1a9Zg7969WvtmUlKSEmzOiWPh999/x4MHDzL8wl6tfPnyaNGiBW7evInmzZvr/HLq+fPnWL58uUZgSv0gPyYmJsOHx1mlrnfMmzcPO3fu1EhbvHgx1q9fD2NjY+WaDrw6vj/77DOkpqaid+/eGn14PX78GH369NEZ9M6p7Zsd/v7+qFq1Kl68eIGePXsiPj5eSXvw4AF69uwJAGjTpo3yRebb8tlnn6Fq1apISUnR+IrobdaJgVdNrxoaGuK3337DmjVrNNJWrFiBtWvX6hyve/fusLGxwfHjxzFp0iSNbX/ixAnlmplbzUHnpuzWa/KKsbGxErQeNWqUxjnw1KlT6b5cl9G1QL0/Lly4UON8HhcXh9DQUL0tILxJHU/d7/c333yj8QKRiGDChAk4efIk7Ozs9LY6kBU5fd2YNWsWihUrhqtXr8Lf319ns+KJiYlYtGgRypcvr9FS0JsYM2YMAOCrr77S+WLA2bNnNeZVpUoV2NjY4OzZs0r/8GorV67EDz/8kOUyZLQvfffdd8rLoWmdP39e+WI0t64FREQfKjbvSUT0hn766Sfl4S3wqsmRU6dO4ebNmwBeVbBff4A5efJk3LlzB1FRUUo/LkWLFoWRkRFu3bqFkydP4vnz59iyZUu6QZvMMDAwwJo1a1C/fn1s2bIFbm5u8Pf3R758+fDff//h1KlTsLOzy7AptLwSFhaG77//HidOnICHhwdq1KgBQ0ND/PXXX3jx4gUGDhyI77//Psfmp1KpMGvWLFhbWyM8PBw1a9bE9u3b4e3tnWPzeH1+y5YtQ0BAAJYvX47du3fDz88P8fHx2LVrF3x9fVGtWjUcPHhQeUsyPSKCyMhIAK+a+8tIp06dEB0djYiICAwaNCjbyyEi2L17N3bv3g1LS0uUL18ehQoVQmJiIq5evaq8Cevr64uZM2fqnIaBgQH69eunlKNPnz7Z6s8wPW5ubqhUqRKio6Ph7e2NSpUqwczMDPnz53/jPruaNGmC77//Hp9//jmaNm2KYsWKoWTJkrC1tcX9+/dx6tQp3Lt3D8OHD1eaOv39998RGhoKFxcX+Pr6wt7eHo8fP8b+/fsRFxeHsmXLZurBxcKFC9G3b194eHigbNmysLGxwf3795XjpHbt2hovH7wtlpaW2LRpExo3boypU6di4cKFKFeuHAoXLoz4+HhcvHgR586dg5OTk8ZyfvLJJ3BxccGJEydQoUIFeHt7w9jYGCVLlnzjh4Tjxo1DdHQ0du7ciVKlSqFWrVqwtrbGwYMHcePGDeTLlw8rV67UON7Mzc2xfPlyNGzYENOmTcPatWtRuXJlPHz4ELt370aTJk1w7Ngxra+Dc2r7vi4sLAxffvmlcu7T14zg29wvypYti06dOqXbbPWcOXNw/vx5HD58GJ6enqhVqxaMjIywZ88e3L9/Hx4eHnq/KMlJ6q/8mjZtCnt7+3TzdurUCd999x02bdqEu3fvZtiHU3ouXbqEvn37YsCAAfD29oanpyeMjIzw33//4fDhw0hKSoKDgwNWrFihtynRAQMGKAHIRo0aoUiRItkujz4tWrTAd999h6CgINSuXRvW1tYAXjXj+ib93RYuXBjr1q1DixYt8MUXX2Dq1KkoW7YsChYsiLi4OJw7dw5XrlxB1apV0aFDBwCvXigZPHgwbGxsUKFCBbi4uODFixc4fvw4rl+/DltbW4wfPz7Dee/Zswfff/898ufPj/Lly8PJyQlPnz7FoUOHcO/ePRQqVEhnc4lvQ2RkJGJjY7FlyxaULFkSPj4+8PDwgIjg2rVrOHXqFBITE3Hu3Dll/zM2NkbTpk2xatUq+Pr6wt/fHxYWFgCg0RxkdjRo0ACjRo3ChAkTULduXfj5+cHNzQ3nz5/H8ePHYWhoiPnz52s19zhnzhycOnUKu3fvVvqBFRHs2rUL+fLlQ9OmTbW+sM6p7ZtdUVFRqF27NtatWwcPDw/UrFkTSUlJ2LVrF548eYIKFSrkWbOr4eHhqF27Nn755ReMGjUKJUuWfOt1Yl9fX4SHh2PYsGFo3rw5qlatCk9PT1y6dAlHjx7F4MGDMWPGDK3xChQogOXLl6NVq1b46quv8PPPP6N8+fK4d+8e9uzZg+TkZISFheVIYOZty269Ji9NmDABe/fuxY8//og9e/agXLly+O+//xAdHY127dph9+7dOls3adGiBSIjIzFs2DDs2LEDTk5OUKlU6NKlC6pXr45BgwZh6dKl2Lx5M4oWLYpPPvkESUlJ2LNnDywsLNClSxedL8y8SR2vZ8+eOHDgAH7++WdUqlQJAQEBcHJywvHjx3HhwgWYm5sjKioKjo6Ob7zecvq6YW9vj/3796N169bYvXs3atSoAQ8PD5QrVw4WFha4e/cujhw5gmfPnsHGxgYuLi5vvAzAq5cIJk6ciFGjRqFly5bw8vKCj48PXrx4gcuXL+Ps2bOIjIxUgrjm5uYYN24cBg8ejE6dOmHevHkoVKgQzp07h7Nnz2LUqFH45ptvslSGjPalCRMmYOjQofDy8kKpUqVgbm6O27dvY9++fUhOTkanTp1QoUKFHFkfREQfDSEiomxxd3cXAFo/ExMTcXd3l9atW8uuXbvSncbmzZulefPmUqhQITE2NhY7OzspVaqUtGnTRqKiouT58+dK3qtXrwoAcXd3z7BMV69e1Up7+vSpTJkyRSpXrizW1tZiamoq7u7u0rRpU1mxYoVG3oCAAAGgt/xjxowRADJmzBiN4aGhoQJAIiMjdY6X0XT1lf/+/fvSp08f8fT0FFNTU3FxcZEOHTrIpUuXJDIyUgBIaGioxjj6hqeV0ToNDw8XAGJvby+HDx/OcBz1PqBPest/9epV6dixozg5OYmJiYl4enrKyJEjJT4+XooWLSoA5MKFC3qnrbZz505lP3z48GGG+e/fvy/GxsYCQFnGXbt2Zbgsr0tKSpI9e/bI6NGjJTAwUIoWLSoWFhZiYmIiLi4uEhwcLAsXLpTExMR0p3Pu3DkBIBYWFvL48WO9+fTtg2rqZQgICNBKu379urRr104KFiwoRkZGWtszo/04o33r9OnT0qNHDylevLiYmZmJhYWFFC1aVOrXry8//PCD/Pfff0revXv3yqBBg6RKlSri7OwsJiYm4uzsLNWqVZNZs2bJs2fPNKatb//buHGj9O7dW8qXLy+Ojo5iYmIihQsXlsDAQFmyZEmG613XPAwNDTM9jnqd1KlTR2f6kydPZOrUqVKtWjWxs7MTY2NjKViwoFSuXFmGDh0qBw4c0Brn9OnT0rRpU3F0dBQDAwOt7Znd85TIq/117ty58sknn4i1tbVyzPXv319u3bqldzlPnz4tzZs3FwcHBzE1NZVSpUpJeHi4JCUl6Tx/ZXX7Ztbt27fF0NBQAIilpaU8ffpUZ763vV/cuHFDzMzMlPOHrmvR8+fPJTw8XHx9fcXCwkLMzMykVKlSMnLkSHn06JHe+Wb32ve6J0+eiKWlpQCQjRs3ZphfRMTX11cAyJQpU5Rh6mXM6Dqf1unTp2XGjBnSpEkT8fLyEjs7OzEyMhIHBwepXr26jBs3Tu7fv5/hdJydnQWA/PHHH3rzpHcOfH0ZXvfixQsZNmyYFCtWTExMTLS2Z0bnwIy22d27d+Xrr7+WChUqKMdf4cKFpXr16jJmzBj5+++/lbyXL1+WsWPHSp06dcTNzU3MzMzE3t5eypUrJ19++aXcvHlTa/q69ocTJ07Il19+Kf7+/lKoUCExMTERR0dHqVixokyaNEkePHigdz3pop7HX3/9lan8GR0/KSkpEhUVJQ0bNpQCBQqIsbGx5MuXT8qWLSthYWGyZs0areP14cOH0rNnT3Fzc1Ou42m355tcJ0VEtmzZIg0bNpR8+fKJkZGRODs7S6tWrZS6gi4PHjyQ/v37S+HChZXt2qtXL7l//77Oa2t2tm961NcFfcusy8OHD2XEiBFSqlQp5Zpdvnx5mTx5ssTHx2vlz8yxlVPlrF+/vgCQNm3aKMNyo06c0TG7bt068ff3F0tLS7GyspLq1avLqlWrMhzv7NmzEhoaKoULF1buc2rVqqV136GW0T77pvcZ6U0zvfsFXbJar8lo2dKWJafvo0REDh48KPXq1RMbGxsxNzcXHx8fmTt3rqSmpqY73o8//igVKlQQCwsL5RyTtnxXr16V9u3bi5ubm3Jv2atXL4mJiUl3mTOq42W0LqKioiQwMFBZ966urtK5c2c5f/58lteNvvnl9HUjrS1btkinTp2kWLFiYmVlJcbGxuLs7Cx169aVmTNnat3D6TuGs3I+OnjwoLRt21Z57uDg4CA+Pj4ybNgwuX79ulb+JUuWSIUKFcTMzExsbGykdu3asn379mzfC6e3Ly1btkzCwsKkbNmySh3b3d1dGjRoIGvWrJHU1NQMl4+IiDSpRDLRCQ8RERHliatXr6JYsWKwtrbGo0ePYGDwYbfMPWrUKEycOBE9evTAggUL8ro4RETvlB07dqBu3booWbIkzp07l+NfQxMREREREdH77cN+ckhERPQeeP78uc4+Dq5fv4727dsjNTUVoaGhH3zA786dO5gzZw4MDAzeqKlRIqIPUUpKitI3z5AhQxjwIyIiIiIiIi380o+IiCiPXbt2DR4eHvD09ESJEiVgY2ODGzdu4Pjx40hISICPjw/27t0LGxubvC5qrvjyyy/x33//YceOHYiJiUGvXr0wb968vC4WEdE7ITIyEnv37kV0dDT++ecfeHt74/jx43r7/SMiIiIiIqKPF4N+REREeezZs2cYN24c/vzzT9y4cQOxsbGwsLBAyZIl0aJFC/Tv3x8WFhZ5XcxcU6RIEdy4cQPOzs5o3bo1Jk+eDFNT07wuFhHRO6Fz585YsmQJ7OzsUKtWLcycORNubm55XSwiIiIiIiJ6BzHoR0RERERERERERERERPSe+7A7ByIiIiIiIiIiIiIiIiL6CDDoR0RERERERERERERERPSeY9CPiIiIiIiIiIiIiIiI6D3HoB8RERERERERERERERHRe45BPyIiIiIiIiIiIiIiIqL3HIN+RERERERERERERERERO85Bv2IiIiIiIiIiIiIiIiI3nMM+hERERERERERERERERG95xj0IyIiIiIiIiIiIiIiInrPMehHRERERERERERERERE9J5j0I+IiIiIiIiIiIiIiIjoPcegHxEREREREREREREREdF7jkE/IiIiIiIiIiIiIiIiovccg35ERERERERERERERERE7zkG/YiIiIiIiIiIiIiIiIjecwz6EREREREREREREREREb3nGPQjIiIiIiIiIiIiIiIies8x6EdERERERERERERERET0nmPQj4iIiIiIiIiIiIiIiOg9x6AfERERERERERERERER0XuOQT8iIiIiIiIiIiIiIiKi9xyDfkRERERERERERERERETvOQb9iIiIiIiIiIiIiIiIiN5zDPoRERERERERERERERERvecY9CMiIiIiIiIiIiIiIiJ6zzHoR0RERERERERERERERPSeY9CPiIiIiIiIiIiIiIiI6D3HoB8RERERERERERERERHRe45BPyIiIiIiIiIiIiIiIqL3HIN+RO+IIkWKoHPnzm99vteuXYNKpcLixYvf+rzflsDAQJQtWzavi/FeGzt2LFQqVV4Xg4iIiOijEhgYiMDAwLwuBhER0Turc+fOKFKkSF4Xg16TV885iYhBP6Jcd+XKFfTs2RNFixaFmZkZbGxs4Ofnh++//x4vXrzI6+LptHnzZowdOzbT+QMDA6FSqaBSqWBgYAAbGxuULFkSHTt2xPbt23OvoGncvn0bY8eOxcmTJ3Nl+ikpKYiMjERgYCAcHBxgamqKIkWKICwsDNHR0bkyTyIioo/Z0aNH0a9fP5QpUwaWlpZwc3NDSEgILl68qDO/iODnn39GzZo1YWdnBwsLC3h7e2PChAmIj4/P0rz//vtvhIWFwcPDA2ZmZrCysoKvry+GDRuGf//9N1vLk9X6VVadPHkSHTp0gKurK0xNTeHg4ICgoCBERkYiJSUl1+abFZMmTcLatWuzNM6TJ08wbtw4+Pj4wMrKCubm5ihbtiyGDx+O27dv505BiYiIKE+pnzFl9Nu9e3deF1Wvu3fv4osvvoCXlxcsLCxgaWmJihUrYsKECYiNjc3r4hHRB0wlIpLXhSD6UG3atAmtWrWCqakpOnXqhLJlyyIxMRH79u3D6tWr0blzZyxcuBAAkJCQAAMDAxgbG7/VMooIEhISYGxsDENDQwBAv379MGfOHGT29BAYGIgrV64gPDwcAPD8+XNcvnwZv//+O/7991+EhIRg2bJlubps0dHRqFy5MiIjI7XeJAoMDMSDBw/wzz//ZGvaL168QPPmzbF161bUrFkTTZo0gYODA65du4bffvsNFy9exI0bN1C4cOEcWJJ3U3JyMpKTk2FmZpbXRSEioo9Ey5YtsX//frRq1QrlypVDTEwMZs+ejWfPnuHQoUMaX/GnpKSgXbt2+O2331CjRg00b94cFhYW+OuvvxAVFYUyZcpgx44dcHJyynC+P/74I3r37o38+fOjffv28PLyQnJyMv755x+sXr0ajx49wosXL5R6U2ZltX6VFT/99BN69eqFAgUKoGPHjihevDiePn2KnTt3YtOmTZgwYQJGjhyZ4/PNKisrK7Rs2TLTLUz8+++/CAoKwo0bN9CqVSv4+/vDxMQEf//9N3755Rc4ODjoDQJ/KBITEwEAJiYmeVwSIiKit2fZsmUafy9duhTbt2/Hzz//rDG8bt26cHBwQGpqKkxNTd9mEdN19OhRNGzYEM+ePUOHDh1QsWJFAK+eXa1YsQLVq1fHtm3b8riUuSuvnnMSEWCU1wUg+lBdvXoVbdq0gbu7O/78808ULFhQSevbty8uX76MTZs2KcMyUzl5/vw5LC0tc7ScKpUqRwI5tra26NChg8awyZMnY8CAAZg7dy6KFCmCKVOmvPF88sLQoUOxdetWzJgxA4MGDdJIGzNmDGbMmJE3BXsL1PuckZERjIx4ySAiordnyJAhiIqK0gh2tG7dGt7e3pg8ebLGw6CpU6fit99+wxdffIFvv/1WGd6jRw+EhISgWbNmCAsL06h76XLgwAH07t0bfn5+2LhxI6ytrTXSp02bhokTJ+bQEuaMQ4cOoVevXqhWrRo2b96sUeZBgwYhOjo62y8+5aXk5GQ0b94cd+/exe7du+Hv76+RPnHixPe2bpkZ8fHxsLCwYLCPiIg+Sq8/Xzp06BC2b9+uNfxdFBsbi88++wyGhoY4ceIEvLy8NNInTpyIH3/8MY9Kl7tEBC9fvoS5ufk7FYQl+ugIEeWKXr16CQDZv39/pvK7u7tLaGio8ndkZKQAkN27d0vv3r3F0dFR7OzslPTNmzdLzZo1xcrKSqytraVSpUqyfPlyvdNTCwgIkICAAOXvq1evCgCJjIwUEZHQ0FABoPVLT0BAgJQpU0ZnWnJyspQuXVosLCwkNjZWI+3nn3+WChUqiJmZmdjb20vr1q3lxo0bOqcdHR0t1apVEzMzMylSpIjMmzdPybNr1y6dZVYvk3oaZ86ckcDAQDE3NxcXFxeZMmVKusslInLz5k0xMjKSunXrZphX7fjx4xIcHCzW1tZiaWkptWvXloMHD2rkUW/fv/76S/r37y/58+cXW1tb6dGjhyQkJMjjx4+lY8eOYmdnJ3Z2djJ06FBJTU1Vxldvt2+//VamT58ubm5uYmZmJjVr1pTTp09rzOvUqVMSGhoqHh4eYmpqKgUKFJCwsDB58OCBRr4xY8YIADlz5oy0bdtW7OzsxNfXVyMtrW3btomfn5/Y2tqKpaWllChRQkaMGKGR5+7du9KlSxdxcnISU1NTKVeunCxevFgjT9plWbBggRQtWlRMTEykUqVKcuTIkUyvdyIi+jhUqFBBKlSooPwdHx8v9vb2UqJECUlKStI5TlhYmACQw4cPpzvtevXqiZGRkdy8eTPT5dm7d6+0bNlSXF1dxcTERAoXLiyDBg2S+Ph4JU9G9auUlBSZMWOGlC5dWkxNTcXJyUl69Oghjx49ynD+wcHBYmRkJNevX89UeZ89eyZDhgyRwoULi4mJiZQoUUK+/fZbnfUMdV0qLQAyZswY5W91HeHSpUsSGhoqtra2YmNjI507d5bnz59rjPf6T1ddVW3FihUCQCZOnJip5RIR+e2335S6Zb58+aR9+/Zy69YtjTyhoaFiaWkp169fl0aNGomlpaW4uLjI7NmzRUTk77//llq1aomFhYW4ublp1K9F/leH27Nnj/To0UMcHBzE2tpaOnbsqLW91q5dKw0bNpSCBQuKiYmJFC1aVMaPHy/Jycka+dLWd2vUqCHm5uYycOBAJS1t3V1E5IcffpDSpUuLubm52NnZScWKFbXKmZX66L59+2Tw4MGSP39+sbCwkGbNmsm9e/cyvd6JiIhyW9++ffU+mwoNDRV3d3fl77TPGGbPni0eHh5ibm4udevWlRs3bkhqaqqMHz9eChUqJGZmZtK0aVN5+PCh1nQ3b94s/v7+YmFhIVZWVtKwYUP5559/Mizr5MmTBYDWtTk9c+bMkdKlS4uJiYkULFhQ+vTpI48fP9bIo64vnDp1SmrWrCnm5ubi6ekpK1euFBGR3bt3S5UqVcTMzExKlCgh27dv1xhfXWc7d+6ctGrVSqytrcXBwUEGDBggL1680Mi7aNEiqVWrljg6OoqJiYmUKlVK5s6dq1Vud3d3adSokWzdulUqVqwopqamMmPGDCUtbV0vMTFRxo4dK8WKFRNTU1NxcHAQPz8/2bZtm8Y0d+7cqax3W1tbadq0qZw9e1bnsmRU/yT6WPGzDaJcsmHDBhQtWhTVq1d/o+n06dMHjo6OGD16NJ4/fw4AWLx4Mbp06YIyZcpgxIgRsLOzw4kTJ7B161a0a9fujebXs2dP3L59W2ezCdlhaGiItm3b4uuvv8a+ffvQqFEjAK/ebPr6668REhKCbt264f79+5g1axZq1qyJEydOwM7OTpnG48eP0bBhQ4SEhKBt27b47bff0Lt3b5iYmKBLly4oVaoUxo8fj9GjR6NHjx6oUaMGAGis+8ePHyM4OBjNmzdHSEgIVq1aheHDh8Pb2xsNGjTQW/4tW7YgOTkZHTt2zNTynjlzBjVq1ICNjQ2GDRsGY2NjLFiwAIGBgdizZw+qVq2qkb9///5wdnbGuHHjcOjQISxcuBB2dnY4cOAA3NzcMGnSJGzevBnffvstypYti06dOmmMv3TpUjx9+hR9+/bFy5cv8f3336N27do4ffo0ChQoAADYvn07/v33X4SFhcHZ2RlnzpzBwoULcebMGRw6dAgqlUpjmq1atULx4sUxadIkvU2QnTlzBo0bN0a5cuUwfvx4mJqa4vLly9i/f7+S58WLFwgMDMTly5fRr18/eHh4YOXKlejcuTNiY2MxcOBAjWlGRUXh6dOn6NmzJ1QqFaZOnYrmzZvj33//ZXMQREQE4NXbw3fv3kWZMmWUYfv27cPjx48xcOBAvV+ld+rUCZGRkdiwYQOqVKmiM098fDz+/PNPBAYGZqnJ7pUrVyI+Ph69e/dGvnz5cOTIEcyaNQu3bt3CypUrAWRcv+rZsycWL16MsLAwDBgwAFevXsXs2bNx4sQJ7N+/X+91MD4+Hjt37kTNmjXh5uaWYVlFBE2bNsWuXbvQtWtX+Pr64o8//sDQoUPx33//vVHrBSEhIfDw8EB4eDiOHz+On376CU5OTsrXeD///DO6deuGKlWqoEePHgAAT09PvdNbv349AGS6DqZef5UrV0Z4eDju3r2L77//Hvv379eqW6akpKBBgwaoWbMmpk6diuXLl6Nfv36wtLTEV199hfbt26N58+aYP38+OnXqhGrVqsHDw0Njfv369YOdnR3Gjh2LCxcuYN68ebh+/Tp2796t1K0WL14MKysrDBkyBFZWVvjzzz8xevRoPHnyROOLVAB4+PAhGjRogDZt2qBDhw5KPe51P/74IwYMGICWLVti4MCBePnyJf7++28cPnxYuQ/ITn3U3t4eY8aMwbVr1zBz5kz069cPv/76a6bWPRER0bto+fLlSExMRP/+/fHo0SNMnToVISEhqF27Nnbv3o3hw4fj8uXLmDVrFr744gssWrRIGffnn39GaGgo6tevjylTpiA+Ph7z5s2Dv78/Tpw4gSJFiuid7/r162Fubo6WLVtmqpxjx47FuHHjEBQUhN69eyv1iqNHj2rVAx8/fozGjRujTZs2aNWqFebNm4c2bdpg+fLlGDRoEHr16oV27drh22+/RcuWLXHz5k2tlitCQkJQpEgRhIeH49ChQ/jhhx/w+PFjLF26VMkzb948lClTBk2bNoWRkRE2bNiAPn36IDU1FX379tWY3oULF9C2bVv07NkT3bt3R8mSJfUuZ3h4uFIffPLkCaKjo3H8+HHUrVsXALBjxw40aNAARYsWxdixY/HixQvMmjULfn5+OH78uNZ6z6j+SfTRyuOgI9EHKS4uTgDIp59+mulx9H3p5+/vr/E2cGxsrFhbW0vVqlW13sRJ+4Z2dr/0E0n/DSpd0vvST0RkzZo1AkC+//57ERG5du2aGBoaar25ffr0aTEyMtIYHhAQIABk2rRpyrCEhATx9fUVJycnSUxMFBGRo0eP6n0jXT2NpUuXakzD2dlZWrRoke6yDR48WADIiRMn0s2n1qxZMzExMZErV64ow27fvi3W1tZSs2ZNZZh6+9avX19ju1WrVk1UKpX06tVLGZacnCyFCxfWud3Mzc013mA/fPiwAJDBgwcrw9J+aaD2yy+/CADZu3evMkz9plTbtm218r/+pd+MGTMEgNy/f1/vupg5c6YAkGXLlinDEhMTpVq1amJlZSVPnjzRWJZ8+fJpvCG/bt06ASAbNmzQOw8iIvq4/PzzzwJAIiIilGHq682aNWv0jvfo0SMBIM2bN9eb59SpUwJABg0apJX28OFDuX//vvJLSEhQ0nRdZ8PDw0WlUml8faevfvXXX3/pfBt869atGb4lri6z+quwjKxdu1YAyIQJEzSGt2zZUlQqlVy+fFlEsvelX5cuXTTyffbZZ5IvXz6NYZaWlul+3ZdW+fLlxdbWNlN5ExMTxcnJScqWLatRP964caMAkNGjRyvD1F9dTpo0SRn2+PFjMTc3F5VKJStWrFCGnz9/Xmt51XW4ihUrKvVQEZGpU6cKAFm3bp0yTNe+0bNnT7GwsJCXL18qw9R11fnz52vlf73u/umnn6Zb7xbJen00KChIoz46ePBgMTQ01Gqlg4iIKK9k50s/R0dHjWvZiBEjBID4+PhotA7Rtm1bMTExUa7NT58+FTs7O+nevbvGfGJiYsTW1lZr+Ovs7e3Fx8cnU8t17949MTExkXr16klKSooyfPbs2QJAFi1apAxT1xeioqKUYeq6ioGBgRw6dEgZ/scff2jV5dR1tqZNm2qUoU+fPgJATp06pQzTVYepX7++FC1aVGOYu7u7AJCtW7dq5X/9uaSPj480atQonbUhyrO+tF9enjp1SgwMDKRTp05ay5KZ+ifRx8ggx6OIRIQnT54AgNbbNNnRvXt3GBoaKn9v374dT58+xZdffqnVF9/rX2y9K6ysrAAAT58+BQD8/vvvSE1NRUhICB48eKD8nJ2dUbx4cezatUtjfCMjI/Ts2VP528TEBD179sS9e/dw7NixTJchbdvvJiYmqFKlCv799990x8vKtkxJScG2bdvQrFkzFC1aVBlesGBBtGvXDvv27VOmp9a1a1eN7Va1alWICLp27aoMMzQ0RKVKlXSWtVmzZihUqJDyd5UqVVC1alVs3rxZGWZubq78/+XLl3jw4AE++eQTAMDx48e1ptmrV68Ml1X9tvy6deuQmpqqM8/mzZvh7OyMtm3bKsOMjY0xYMAAPHv2DHv27NHI37p1a9jb2yt/q7/YzGgbERHRx+H8+fPo27cvqlWrhtDQUGW4un6R3rVanabOq4v6Gq2ut6RVtGhRODo6Kj/1V2iA5nX2+fPnePDgAapXrw4RwYkTJzJcrpUrV8LW1hZ169bVqBdVrFgRVlZWWvUiXWXObJ1z8+bNMDQ0xIABAzSGf/755xARbNmyJVPT0eX1+kONGjXw8OFDrbpPZj158iTTyxUdHY179+6hT58+GvXjRo0awcvLS2dfjt26dVP+b2dnh5IlS8LS0hIhISHK8JIlS8LOzk5nXaRHjx4ab9737t0bRkZGeutgT58+xYMHD1CjRg3Ex8fj/PnzGtMzNTVFWFhYhstqZ2eHW7du4ejRozrTs1Mf7dGjh0Z9tEaNGkhJScH169czLA8REdG7qlWrVrC1tVX+Vn/p3qFDB43WIapWrYrExET8999/AF49d4uNjUXbtm016maGhoaoWrVqunUzIGt1mB07diAxMRGDBg2CgcH/HtN3794dNjY2WnUYKysrtGnTRvlbXVcpVaqUxpf86v/rqsO8/qVe//79AUBvHSYuLg4PHjxAQEAA/v33X8TFxWmM7+Hhgfr162e4rHZ2djhz5gwuXbqkM/3OnTs4efIkOnfuDAcHB2V4uXLlULduXY3yqeV0/ZPoQ8GgH1EusLGxAZD+g6XMer0poStXrgAAypYt+8bTfluePXsG4H8PpC5dugQRQfHixTUeoDk6OuLcuXO4d++exvguLi6wtLTUGFaiRAkAwLVr1zJVhsKFC2sFRe3t7fH48eN0x8vKtrx//z7i4+N1NmVQqlQppKam4ubNmxrDX2+KS10hdXV11Rquq6zFixfXGlaiRAmN9fLo0SMMHDgQBQoUgLm5ORwdHZX96vXKGqC9z+nSunVr+Pn5oVu3bihQoADatGmD3377TSMAeP36dRQvXlyj4gq8Whfq9LReXxfqAGBG24iIiD58MTExaNSoEWxtbbFq1SqNF6IyE9BTpzk5OenNo56Out6S1rp167B9+3Z89913Wmk3btxQHk5YWVnB0dERAQEBAHRfZ1936dIlxMXFwcnJSate9OzZM616UVpZrXNev34dLi4uWg+i9F2bsyKnr+M2NjZZWi4AOutgXl5eWstlZmYGR0dHjWG2trY664uZrYNZWVmhYMGCGnWwM2fO4LPPPoOtrS1sbGzg6OiovIT2+r5RqFAhmJiYZLCkwPDhw2FlZYUqVaqgePHi6Nu3r0bz6jlRH2UdjIiIPgRZed4C/O+6pw5K1a5dW6tutm3btnTrZkDO1GFMTExQtGhRrTqMvrpKRsuU1ut1GE9PTxgYGGjUYfbv34+goCBYWlrCzs4Ojo6OGDlyJADtOkxmniEBwPjx4xEbG4sSJUrA29sbQ4cOxd9//62kp1efK1WqFB48eKB0e6TGOgyRbuzTjygX2NjYwMXFBf/8888bTyvt2zVZoe+rv5SUFI0HZW+Dej0UK1YMAJCamgqVSoUtW7boLIuuN+zflL5lFj191ql5eXkBAE6fPg1fX9+cLpbecukanlFZ9QkJCcGBAwcwdOhQ+Pr6wsrKCqmpqQgODtb5lV5m9jlzc3Ps3bsXu3btwqZNm7B161b8+uuvqF27NrZt25atfSy724iIiD5scXFxaNCgAWJjY/HXX3/BxcVFI7106dIAgL///hvNmjXTOQ31A4W0Xz69rlixYjAyMtJZf1MH8V7vMzAlJQV169bFo0ePMHz4cHh5ecHS0hL//fcfOnfurPdr+LRSU1Ph5OSE5cuX60x/PTilq8ynT5/OcD5ZkV49Up+cvo57eXnhxIkTuHnzptaDrDeVlfoXkL1liI2NRUBAAGxsbDB+/Hh4enrCzMwMx48fx/Dhw7X2jczW+UuVKoULFy5g48aN2Lp1K1avXo25c+di9OjRGDduXJbLCbAORkREH6bsXu/V1+iff/4Zzs7OWvn09SGt5uXlhZMnTyIxMTFTL/RkRW7UYV6v9125cgV16tSBl5cXpk+fDldXV5iYmGDz5s2YMWNGtuswNWvWxJUrV7Bu3Tps27YNP/30E2bMmIH58+drtMCQFazDEOnGoB9RLmncuDEWLlyIgwcPolq1ajk2XU9PTwCvAmnqIJou9vb2iI2N1Rp+/fr1dB94ATnbTGhKSgqioqJgYWEBf39/AK+WQUTg4eGhfLGXntu3b+P58+caX/tdvHgRAJROfHOradMGDRrA0NAQy5YtQ8eOHdPN6+joCAsLC1y4cEEr7fz58zAwMMjxh1a6mkW4ePGisl4eP36MnTt3Yty4cRg9enS642WVgYEB6tSpgzp16mD69OmYNGkSvvrqK+zatQtBQUFwd3fH33//jdTUVI2v/dTNWbm7u79xGYiI6MP28uVLNGnSBBcvXsSOHTuUAF9afn5+sLOzQ1RUFL766iudN/9Lly4F8KqZJ30sLS0RGBiIPXv24L///tNoPluf06dP4+LFi1iyZAk6deqkDN++fbtWXn11FU9PT+zYsQN+fn5ZftnLwsICtWvXxp9//pmp4Ji7uzt27NiBp0+fanzt9/q1Wf2W9Ot1yTdt7jEr9bUmTZrgl19+wbJlyzBixIh086rLfeHCBdSuXVsj7cKFC7lS57h06RJq1aql/P3s2TPcuXMHDRs2BADs3r0bDx8+xO+//46aNWsq+a5evfrG87a0tETr1q3RunVrJCYmonnz5pg4cSJGjBiRJ/VRIiKiD4n6uZuTkxOCgoKyPH6TJk1w8OBBrF69WqO7E13S1mHSPqtLTEzE1atXszX/jFy6dEnj67zLly8jNTVVeY60YcMGJCQkYP369Rpf0mXUrGlmODg4ICwsDGFhYXj27Blq1qyJsWPHolu3bhrr4nXnz59H/vz5tVoBIyLd2LwnUS4ZNmwYLC0t0a1bN9y9e1cr/cqVK/j++++zPN169erB2toa4eHhePnypUZa2jdZPD09cejQISQmJirDNm7cqNWcjy7qi6iuoGFWpKSkYMCAATh37hwGDBigNEHVvHlzGBoaYty4cVpv34gIHj58qDEsOTkZCxYsUP5OTEzEggUL4OjoiIoVK+ZomV/n6uqK7t27Y9u2bZg1a5ZWempqKqZNm4Zbt27B0NAQ9erVw7p16zSaRbh79y6ioqLg7++vrIOcsnbtWqXdeQA4cuQIDh8+jAYNGgD431tPr6/nmTNnvtF8Hz16pDVM/SVkQkICAKBhw4aIiYnBr7/+quRJTk7GrFmzYGVlpXw1QUREpEtKSgpat26NgwcPYuXKlXpforKwsMCwYcNw4cIFfPXVV1rpmzZtwuLFi9GkSRN4e3unO8/Ro0cjJSUFHTp00NnM5+vXU13XWRHRWcfTV1cJCQlBSkoKvvnmG61xkpOTM6zbjBkzBiKCjh076izzsWPHsGTJEgCvrs0pKSmYPXu2Rp4ZM2ZApVIp9QcbGxvkz58fe/fu1cg3d+7cdMuSEUtLy0zX1Vq2bAlvb29MnDgRBw8e1Ep/+vSpsr0rVaoEJycnzJ8/X6mHAMCWLVtw7tw5NGrU6I3KrcvChQuRlJSk/D1v3jwkJyenWwdLTEx843X4ej3ZxMQEpUuXhoggKSkpT+qjREREH5L69evDxsYGkyZN0rjWq92/fz/d8Xv16oWCBQvi888/V15YT+vevXuYMGECACAoKAgmJib44YcfNOoMERERiIuLy5U6zJw5czT+Vj/rSq8OExcXh8jIyDea7+t1GCsrKxQrVkypuxUsWBC+vr5YsmSJRn3xn3/+wbZt25QXq4goY/zSjyiXeHp6IioqCq1bt0apUqXQqVMnlC1bFomJiThw4ABWrlyJzp07Z3m6NjY2mDFjBrp164bKlSujXbt2sLe3x6lTpxAfH6881OnWrRtWrVqF4OBghISE4MqVK1i2bJnyxlJ61IG0AQMGoH79+jA0NNToKFiXuLg4LFu2DAAQHx+Py5cv4/fff8eVK1fQpk0bjQdZnp6emDBhAkaMGIFr166hWbNmsLa2xtWrV7FmzRr06NEDX3zxhZLfxcUFU6ZMwbVr11CiRAn8+uuvOHnyJBYuXAhjY2NlmnZ2dpg/fz6sra1haWmJqlWrZrpt8fRMmzYNV65cwYABA/D777+jcePGsLe3x40bN7By5UqcP39eWT8TJkzA9u3b4e/vjz59+sDIyAgLFixAQkICpk6d+sZleV2xYsXg7++P3r17IyEhATNnzkS+fPkwbNgwAK/2l5o1a2Lq1KlISkpCoUKFsG3btjd+y3z8+PHYu3cvGjVqBHd3d9y7dw9z585F4cKFlS86e/TogQULFqBz5844duwYihQpglWrVmH//v2YOXNmpju2JiKij9Pnn3+O9evXo0mTJnj06JFSz1BT940GvHrZ6uTJk5gyZQoOHjyIFi1awNzcHPv27cOyZctQpkwZLF68OMN51qhRA7Nnz0b//v1RvHhxtG/fHl5eXkhMTMTFixexfPlymJiYKE09eXl5wdPTE1988QX+++8/2NjYYPXq1Tr7EdFXvwoICEDPnj0RHh6OkydPol69ejA2NsalS5ewcuVKfP/992jZsqXeMlevXh1z5sxBnz594OXlhY4dO6J48eJ4+vQpdu/ejfXr1ysPlpo0aYJatWrhq6++wrVr1+Dj44Nt27Zh3bp1GDRokEY9sVu3bpg8eTK6deuGSpUqYe/evTofXGVFxYoVsWPHDkyfPh0uLi7w8PBA1apVdeY1NjbG77//jqCgINSsWRMhISHw8/ODsbExzpw5g6ioKNjb22PixIkwNjbGlClTEBYWhoCAALRt2xZ3797F999/jyJFimDw4MFvVG5dEhMTUadOHYSEhODChQuYO3cu/P390bRpUwCvtou9vT1CQ0MxYMAAqFQq/Pzzz2/c3FS9evXg7OwMPz8/FChQAOfOncPs2bPRqFEjpW71tuujREREHxIbGxvMmzcPHTt2RIUKFdCmTRs4Ojrixo0b2LRpE/z8/LReoErL3t4ea9asQcOGDeHr64sOHToo9cDjx4/jl19+UV5mc3R0xIgRIzBu3DgEBwejadOmSr2icuXKGvXdnHL16lU0bdoUwcHBOHjwIJYtW4Z27drBx8cHwKu6homJCZo0aYKePXvi2bNn+PHHH+Hk5IQ7d+5ke76lS5dGYGAgKlasCAcHB0RHR2PVqlXo16+fkufbb79FgwYNUK1aNXTt2hUvXrzArFmzYGtri7Fjx77pohN9PISIctXFixele/fuUqRIETExMRFra2vx8/OTWbNmycuXL5V87u7uEhoaqvwdGRkpAOTo0aM6p7t+/XqpXr26mJubi42NjVSpUkV++eUXjTzTpk2TQoUKiampqfj5+Ul0dLQEBARIQECAkufq1asCQCIjI5VhycnJ0r9/f3F0dBSVSiUZnSoCAgIEgPKzsrKS4sWLS4cOHWTbtm16x1u9erX4+/uLpaWlWFpaipeXl/Tt21cuXLigMe0yZcpIdHS0VKtWTczMzMTd3V1mz56tNb1169ZJ6dKlxcjISGOZ1NN4XWhoqLi7u6e7bGnXyU8//SQ1atQQW1tbMTY2Fnd3dwkLC5MTJ05o5D1+/LjUr19frKysxMLCQmrVqiUHDhzQyKNv+44ZM0YAyP3797XKamlpqfyt3m7ffvutTJs2TVxdXcXU1FRq1Kghp06d0hj31q1b8tlnn4mdnZ3Y2tpKq1at5Pbt2wJAxowZk+G806ap7dy5Uz799FNxcXERExMTcXFxkbZt28rFixc1xrt7966EhYVJ/vz5xcTERLy9vTX2tdeX5XWvl5GIiD4er9cvXv+9LjU1VRYvXix+fn5ibW2t5AsKCpKEhIQszfvEiRPSqVMncXNzExMTE7G0tJRy5crJ559/LpcvX9bIe/bsWQkKChIrKyvJnz+/dO/eXU6dOpXl+tXChQulYsWKYm5uLtbW1uLt7S3Dhg2T27dvZ6rMx44dk3bt2omLi4sYGxuLvb291KlTR5YsWSIpKSlKvqdPn8rgwYOVfMWLF5dvv/1WUlNTNaYXHx8vXbt2FVtbW7G2tpaQkBC5d+9epusP6rrO1atXlWHnz5+XmjVrirm5uQDQqPvq8/jxYxk9erR4e3uLhYWFmJmZSdmyZWXEiBFy584djby//vqrlC9fXkxNTcXBwUHat28vt27d0sjzep1KTV990d3dXRo1aqS1XHv27JEePXqIvb29WFlZSfv27eXhw4ca4+7fv18++eQTMTc3FxcXFxk2bJj88ccfAkB27dqV4bzVaWnr7gsWLJCaNWtKvnz5xNTUVDw9PWXo0KESFxenMd6b1Ed37dqlVUYiIqK81LdvX73Ppl5/tqPvGYP6+rZy5UqN4eldD+vXry+2trZiZmYmnp6e0rlzZ4mOjs5UmW/fvi2DBw+WEiVKiJmZmVhYWEjFihVl4sSJWtft2bNni5eXlxgbG0uBAgWkd+/e8vjxY408ma2rqAGQvn37Kn+r62xnz56Vli1birW1tdjb20u/fv3kxYsXGuOuX79eypUrJ2ZmZlKkSBGZMmWKLFq0SKtup2/e6rS0db0JEyZIlSpVxM7OTszNzcXLy0smTpwoiYmJGuPt2LFD/Pz8lOedTZo0kbNnz2rkyUr9k+hjpBJhz5ZE9O4KDAzEgwcP8M8//+R1Ud4p165dg4eHB7799luNryKJiIjolaSkJDRp0gQ7d+7Ehg0bEBwcnNdFog/A4sWLERYWhqNHj6JSpUp5XRwiIiKiTBk7dizGjRuH+/fvI3/+/HldHCLKRezTj4iIiIiIPjjGxsZYvXo1fH190apVKxw/fjyvi0RERERERESUq9inHxERERERfZAsLS1x9OjRvC4GERERERER0VvBL/2IiIiIiIiIiIiIiIiI3nPs04+IiIiIiIiIiIiIiIjoPccv/YiIiIiIiIiIiIiIiIjecwz6EREREREREREREREREb3njPK6AO+C1NRU3L59G9bW1lCpVHldHCIiIsolIoKnT5/CxcUFBgZ89+ltYD2LiIjo48G61tvFehYREdHHI7P1LAb9ANy+fRuurq55XQwiIiJ6S27evInChQvndTE+CqxnERERfXxY13o7WM8iIiL6+GRUz2LQD4C1tTWAVyvLxsYmj0tDREREueXJkydwdXVVrv2U+1jPIiIi+niwrvV2sZ5FRET08chsPYtBP0BpAsHGxoaVJCIioo8Amz96e1jPIiIi+viwrvV2sJ5FRET08cmonsUG1omIiIiIiIiIiIiIiIjecwz6EREREREREREREREREb3nGPQjIiIiIiIiIiIiIiIies+xTz8iIiIiIiIiIiIieutSUlKQlJSU18Wgj4iJiQkMDPgtFH24GPQjIiIiIiIiIiIiordGRBATE4PY2Ni8Lgp9ZAwMDODh4QETE5O8LgpRrmDQj4iIiIiIiIiIiIjeGnXAz8nJCRYWFlCpVHldJPoIpKam4vbt27hz5w7c3Ny439EHiUE/IiIiIiIiIiIiInorUlJSlIBfvnz58ro49JFxdHTE7du3kZycDGNj47wuDlGOY+O1RERERERERERERPRWqPvws7CwyOOS0MdI3axnSkpKHpeEKHcw6EdEREREREREREREbxWbVqS8wP2OPnQM+hERERERERERERERERG95xj0IyIiIiIiIiIiIiJ6TwQGBmLQoEE5Pt2xY8fC19c3x6dLRG8Pg35ERERERERERERERDmgc+fOUKlU6NWrl1Za3759oVKp0Llz50xNa/fu3VCpVIiNjc3ZQhLRB4tBPyIiIqIPUJEiRaBSqbR+ffv2BQC8fPkSffv2Rb58+WBlZYUWLVrg7t27GtO4ceMGGjVqBAsLCzg5OWHo0KFITk7Oi8UhIiIiIiJ6b7i6umLFihV48eKFMuzly5eIioqCm5tbHpaMiD50DPoRERERfYCOHj2KO3fuKL/t27cDAFq1agUAGDx4MDZs2ICVK1diz549uH37Npo3b66Mn5KSgkaNGiExMREHDhzAkiVLsHjxYowePTpPloeIiIgou+bMmYMiRYrAzMwMVatWxZEjR9LNv3LlSnh5ecHMzAze3t7YvHmzkpaUlIThw4fD29sblpaWcHFxQadOnXD79m2NaTx69Ajt27eHjY0N7Ozs0LVrVzx79kwjz99//40aNWrAzMwMrq6umDp1as4tNBHlqQoVKsDV1RW///67Muz333+Hm5sbypcvrwxLTU1FeHg4PDw8YG5uDh8fH6xatQoAcO3aNdSqVQsAYG9vr/WFYGpqKoYNGwYHBwc4Oztj7NixGmW4ceMGPv30U1hZWcHGxgYhISFaL3pOnjwZBQoUgLW1Nbp27YqXL1/m8JogorfNKK8LQERElJb3Eu8sj3M69HQulITo/ebo6Kjx9+TJk+Hp6YmAgADExcUhIiICUVFRqF27NgAgMjISpUqVwqFDh/DJJ59g27ZtOHv2LHbs2IECBQrA19cX33zzDYYPH46xY8fCxMQkLxaLiIjog5TVOjDrv5n366+/YsiQIZg/fz6qVq2KmTNnon79+rhw4QKcnJy08h84cABt27ZFeHg4GjdujKioKDRr1gzHjx9H2bJlER8fj+PHj+Prr7+Gj48PHj9+jIEDB6Jp06aIjo5WptO+fXvlxaukpCSEhYWhR48eiIqKAgA8efIE9erVQ1BQEObPn4/Tp0+jS5cusLOzQ48ePd7a+iGi3NOlSxdERkaiffv2AIBFixYhLCwMu3fvVvKEh4dj2bJlmD9/PooXL469e/eiQ4cOcHR0hL+/P1avXo0WLVrgwoULsLGxgbm5uTLukiVLMGTIEBw+fBgHDx5E586d4efnh7p16yI1NVUJ+O3ZswfJycno27cvWrdurcz/t99+w9ixYzFnzhz4+/vj559/xg8//ICiRYu+zdVElOs+tmeN/NKPiIiI6AOXmJiIZcuWoUuXLlCpVDh27BiSkpIQFBSk5PHy8oKbmxsOHjwIADh48CC8vb1RoEABJU/9+vXx5MkTnDlzRu+8EhIS8OTJE40fERERUV6ZPn06unfvjrCwMJQuXRrz58+HhYUFFi1apDP/999/j+DgYAwdOhSlSpXCN998gwoVKmD27NkAAFtbW2zfvh0hISEoWbIkPvnkE8yePRvHjh3DjRs3AADnzp3D1q1b8dNPP6Fq1arw9/fHrFmzsGLFCuWLwOXLlyMxMRGLFi1CmTJl0KZNGwwYMADTp09/OyuGiHJdhw4dsG/fPly/fh3Xr1/H/v370aFDByU9ISEBkyZNwqJFi1C/fn0ULVoUnTt3RocOHbBgwQIYGhrCwcEBAODk5ARnZ2fY2toq45crVw5jxoxB8eLF0alTJ1SqVAk7d+4EAOzcuROnT59GVFQUKlasiKpVq2Lp0qXYs2cPjh49CgCYOXMmunbtiq5du6JkyZKYMGECSpcu/RbXEBHlBgb9iIiIiD5wa9euRWxsrNIUTExMDExMTGBnZ6eRr0CBAoiJiVHypA34qdPVafqEh4fD1tZW+bm6uubcghARERFlQWJiIo4dO6bxopOBgQGCgoKUF51ed/DgQY38wKsXn/TlB4C4uDioVCqlbnXw4EHY2dmhUqVKSp6goCAYGBjg8OHDSp6aNWtqtJ6g/gLx8ePHWV5WInr3ODo6olGjRli8eDEiIyPRqFEj5M+fX0m/fPky4uPjUbduXVhZWSm/pUuX4sqVKxlOv1y5chp/FyxYEPfu3QPw6uUDV1dXjfux0qVLw87ODufOnVPyVK1aVWMa1apVy/byEtG7gc17EhEREX3gIiIi0KBBA7i4uOT6vEaMGIEhQ4Yofz958oSBPyIiIsoTDx48QEpKis4Xmc6fP69zHH0vPul76enly5cYPnw42rZtCxsbG2UarzcdamRkBAcHB40XrDw8PLTmo06zt7fXmldCQgISEhKUv9miAtG7r0uXLujXrx+AV/2LpqXu53PTpk0oVKiQRpqpqWmG0zY2Ntb4W6VSITU19U2KS0QfAH7pR0RERPQBu379Onbs2IFu3bopw5ydnZGYmIjY2FiNvHfv3oWzs7OS5/VO3tV/q/PoYmpqChsbG40fERER0YcoKSkJISEhEBHMmzcv1+fHFhWI3j/BwcFITExEUlIS6tevr5FWunRpmJqa4saNGyhWrJjGT318q78GTklJydJ8S5UqhZs3b+LmzZvKsLNnzyI2NlZpwrNUqVLK18dqhw4dyvIyEtG7hUE/IiIiog9YZGQknJyc0KhRI2VYxYoVYWxsrPT3AAAXLlzAjRs3lOZcqlWrhtOnTyvNwwDA9u3bYWNjw34eiIiI6L2QP39+GBoa6nyRSd9LTPpefHo9vzrgd/36daWOlHYaaetQAJCcnIxHjx690QtWI0aMQFxcnPJL+zCfiN5NhoaGOHfuHM6ePQtDQ0ONNGtra3zxxRcYPHgwlixZgitXruD48eOYNWsWlixZAgBwd3eHSqXCxo0bcf/+feXrwIwEBQXB29sb7du3x/Hjx3HkyBF06tQJAQEBStPDAwcOxKJFixAZGYmLFy9izJgx6fbfTkTvBwb9iIiIiD5QqampiIyMRGhoKIyM/tequ62tLbp27YohQ4Zg165dOHbsGMLCwlCtWjV88sknAIB69eqhdOnS6NixI06dOoU//vgDo0aNQt++fTPV1AwRERFRXjMxMUHFihU1XnRKTU3Fzp079fZbVa1aNY38wKsXn9LmVwf8Ll26hB07diBfvnxa04iNjcWxY8eUYX/++SdSU1OV/rOqVauGvXv3IikpSWM+JUuW1Nm0J8AWFYjeV+kdr9988w2+/vprhIeHo1SpUggODsamTZuU5n8LFSqEcePG4csvv0SBAgWUpkIzolKpsG7dOtjb26NmzZoICgpC0aJF8euvvyp5Wrduja+//hrDhg1DxYoVcf36dfTu3fvNF5iI8pRKRCSvC5HXnjx5AltbW8TFxbHCRESUx7yXeGd5nNOhp3OhJPQh+tiu+du2bUP9+vVx4cIFlChRQiPt5cuX+Pzzz/HLL78gISEB9evXx9y5czXeLFff9O3evRuWlpYIDQ3F5MmTNQKIGfnY1jkREVF2ZLUO/K7Wf9/F6/6vv/6K0NBQLFiwAFWqVMHMmTPx22+/4fz58yhQoAA6deqEQoUKITw8HABw4MABBAQEYPLkyWjUqBFWrFiBSZMm4fjx4yhbtiySkpLQsmVLHD9+HBs3btTo/8/BwUFpiq9Bgwa4e/cu5s+fj6SkJISFhaFSpUqIiooCAMTFxaFkyZKoV68ehg8fjn/++QddunTBjBkz0KNHj0wt27u4voky4+XLl7h69So8PDxgZmaW18Whjwz3v4/Ph/KsMbPX/cw/sSEiIiKi90q9evWg7/0uMzMzzJkzR6sz+bTc3d2xefPm3CoeERERUa5r3bo17t+/j9GjRyMmJga+vr7YunWrEqy7ceMGDAz+1xBW9erVERUVhVGjRmHkyJEoXrw41q5di7JlywIA/vvvP6xfvx4A4OvrqzGvXbt2ITAwEACwfPly9OvXD3Xq1IGBgQFatGiBH374Qclra2uLbdu2oW/fvqhYsSLy58+P0aNHZzrgR0RERKQLg35ERERERERERPTB6tevn94m8Xbv3q01rFWrVmjVqpXO/EWKFNH7UlVaDg4Oyld9+pQrVw5//fVXhtMiIiIiyiz26UdERERERERERERERET0nmPQj4iIiIiIiIiIiIiIiOg9x6AfERERERERERERERER0XuOQT8iIiIiIiIiIiIiIiKi9xyDfkRERERERERERERERETvuTwN+u3duxdNmjSBi4sLVCoV1q5dq5GuUql0/r799lslT5EiRbTSJ0+e/JaXhIiIiIiIiIiIiIiIiCjv5GnQ7/nz5/Dx8cGcOXN0pt+5c0fjt2jRIqhUKrRo0UIj3/jx4zXy9e/f/20Un4iIiIiIiIiIiIiIiOidYJSXM2/QoAEaNGigN93Z2Vnj73Xr1qFWrVooWrSoxnBra2utvEREREREREREREREREQfizwN+mXF3bt3sWnTJixZskQrbfLkyfjmm2/g5uaGdu3aYfDgwTAyem8WjYiIiIiI6IPjvcQ7y+OcDj2dCyUhIiKi90GRLze91fldm9woW+MdPHgQ/v7+CA4OxqZN/yvztWvX4OHhgRMnTsDX1zeHSqnbmQdnsjxOmfxlcqEkRPSueW8iY0uWLIG1tTWaN2+uMXzAgAGoUKECHBwccODAAYwYMQJ37tzB9OnT9U4rISEBCQkJyt9PnjzJtXITERERERERERER0YchIiIC/fv3R0REBG7fvg0XF5e8LhIRkeK9CfotWrQI7du3h5mZmcbwIUOGKP8vV64cTExM0LNnT4SHh8PU1FTntMLDwzFu3LhcLS8RERERERERERERfTiePXuGX3/9FdHR0YiJicHixYsxcuTIvC4WEZHCIK8LkBl//fUXLly4gG7dumWYt2rVqkhOTsa1a9f05hkxYgTi4uKU382bN3OwtERERERERERERET0ofntt9/g5eWFkiVLokOHDli0aBFEJK+LRUSkeC+CfhEREahYsSJ8fHwyzHvy5EkYGBjAyclJbx5TU1PY2Nho/IiIiIiIiIiIiIiI9ImIiECHDh0AAMHBwYiLi8OePXvyuFRERP+Tp817Pnv2DJcvX1b+vnr1Kk6ePAkHBwe4ubkBeNXf3sqVKzFt2jSt8Q8ePIjDhw+jVq1asLa2xsGDBzF48GB06NAB9vb2b205iIiIiIiIiIiI6P+Ntc3GOHE5Xw6iHHThwgUcOXIEa9asAQAYGRmhdevWiIiIQGBgYN4Wjojo/+Vp0C86Ohq1atVS/lb3zxcaGorFixcDAFasWAERQdu2bbXGNzU1xYoVKzB27FgkJCTAw8MDgwcP1ujnj4iIiIiIiIiIiIjoTURERCA5ORkuLi7KMBGBqakpZs+enYclIyL6nzwN+gUGBmbY5nGPHj3Qo0cPnWkVKlTAoUOHcqNoRERERERERERERERITk7G0qVLMW3aNNSrV08jrVmzZvjll18QHBycR6UjIvqfPA36ERERERERERERERG9yzZu3IjHjx+ja9eusLXVbL62RYsWiIiIYNCPiN4JBnldACIiIiIiIiIiIiKid1VERASCgoK0An7Aq6BfdHQ0njx5kgclIyLSxC/9iIiIiIiIiIiIiChPXZvcKK+LoNeGDRv0plWpUkXpwiqjrqyIiHIbv/QjIiIiIiIiIiIiIiIies8x6EdERERERERERERERET0nmPQj4iIiIiIiIiIiIiIiOg9x6AfERERERERERERERER0XuOQT8iIiIiIiIiIiIiIiKi9xyDfkRERERERERERERERETvOQb9iIiIiIiIiIiIiIiIiN5zDPoRERERERERERERERERvecY9CMiIiIiIiIiIiIiIiJ6zzHoR0RERERERERERERERPSeM8rrAhARERERERERERHRR26s7VueX1y2Rjt48CD8/f0RHByMTZs2aaQlJiZi5syZWL58OS5dugQLCwuULFkS3bp1Q4cOHWBsbAwAiImJQXh4ODZt2oRbt27B1tYWxYoVQ4cOHRAaGgoLC4s3Xjwi+jgx6EdERERERERERERElAkRERHo378/IiIicPv2bbi4uAB4FfCrX78+Tp06hW+++QZ+fn6wsbHBoUOH8N1336F8+fLw9fXFv//+Cz8/P9jZ2WHSpEnw9vaGqakpTp8+jYULF6JQoUJo2rRpHi8lEb2v2LwnERERERERERF9sObMmYMiRYrAzMwMVatWxZEjR9LNv3LlSnh5ecHMzAze3t7YvHmzRvrvv/+OevXqIV++fFCpVDh58qRG+rVr16BSqXT+Vq5cqeTTlb5ixYocW24iynnPnj3Dr7/+it69e6NRo0ZYvHixkjZz5kzs3bsXO3fuRN++feHr64uiRYuiXbt2OHz4MIoXLw4A6NOnD4yMjBAdHY2QkBCUKlUKRYsWxaeffopNmzahSZMmebR0RPQhYNCPiIiIiIiIiIg+SL/++iuGDBmCMWPG4Pjx4/Dx8UH9+vVx7949nfkPHDiAtm3bomvXrjhx4gSaNWuGZs2a4Z9//lHyPH/+HP7+/pgyZYrOabi6uuLOnTsav3HjxsHKygoNGjTQyBsZGamRr1mzZjm27ESU83777Td4eXmhZMmS6NChAxYtWgQRAQAsX74cQUFBKF++vNZ4xsbGsLS0xMOHD7Ft2zb07dsXlpaWOuehUqlydRmI6MPGoB8REREREREREX2Qpk+fju7duyMsLAylS5fG/PnzYWFhgUWLFunM//333yM4OBhDhw5FqVKl8M0336BChQqYPXu2kqdjx44YPXo0goKCdE7D0NAQzs7OGr81a9YgJCQEVlZWGnnt7Ow08pmZmeXcwhNRjouIiECHDh0AAMHBwYiLi8OePXsAAJcuXYKXl1e641++fBkigpIlS2oMz58/P6ysrGBlZYXhw4fnTuGJ6KPAoB8REREREREREX1wEhMTcezYMY3gnIGBAYKCgnDw4EGd4xw8eFArmFe/fn29+TPj2LFjOHnyJLp27aqV1rdvX+TPnx9VqlTR+GJIl4SEBDx58kTjR0Rvz4ULF3DkyBG0bdsWAGBkZITWrVsjIiICANI9fjNy5MgRnDx5EmXKlEFCQkKOlJeIPk4M+hERERF9oP777z906NAB+fLlg7m5Oby9vREdHa2kiwhGjx6NggULwtzcHEFBQbh06ZLGNB49eoT27dvDxsYGdnZ26Nq1K549e/a2F4WIiIgoyx48eICUlBQUKFBAY3iBAgUQExOjc5yYmJgs5c+MiIgIlCpVCtWrV9cYPn78ePz222/Yvn07WrRogT59+mDWrFl6pxMeHg5bW1vl5+rqmu0yEVHWRUREIDk5GS4uLjAyMoKRkRHmzZuH1atXIy4uDiVKlMD58+fTnUaxYsWgUqlw4cIFjeFFixZFsWLFYG5unpuLQEQfAQb9iIiIiD5Ajx8/hp+fH4yNjbFlyxacPXsW06ZNg729vZJn6tSp+OGHHzB//nwcPnwYlpaWqF+/Pl6+fKnkad++Pc6cOYPt27dj48aN2Lt3L3r06JEXi0RERET03nnx4gWioqJ0fuX39ddfw8/PD+XLl8fw4cMxbNgwfPvtt3qnNWLECMTFxSm/mzdv5mbRiSiN5ORkLF26FNOmTcPJkyeV36lTp+Di4oJffvkF7dq1w44dO3DixAmt8ZOSkvD8+XPky5cPdevWxezZs/H8+fM8WBIi+tAZ5XUBiIiIiCjnTZkyBa6uroiMjFSGeXh4KP8XEcycOROjRo3Cp59+CgBYunQpChQogLVr16JNmzY4d+4ctm7diqNHj6JSpUoAgFmzZqFhw4b47rvv4OLi8nYXioiIiCgL8ufPD0NDQ9y9e1dj+N27d+Hs7KxzHGdn5yzlz8iqVasQHx+PTp06ZZi3atWq+Oabb5CQkABTU1OtdFNTU53DiSj3bdy4EY8fP0bXrl1ha2urkdaiRQtERERg37592LRpE+rUqYNvvvkG/v7+sLa2RnR0NKZMmYKIiAj4+vpi7ty58PPzQ6VKlTB27FiUK1cOBgYGOHr0KM6fP4+KFSvm0VIS0YeAX/oRERERfYDWr1+PSpUqoVWrVnByckL58uXx448/KulXr15FTEyMRp81tra2qFq1qtJnzcGDB2FnZ6cE/AAgKCgIBgYGOHz48NtbGCIiIqJsMDExQcWKFbFz505lWGpqKnbu3Ilq1arpHKdatWoa+QFg+/btevNnJCIiAk2bNoWjo2OGeU+ePAl7e3sG9ojeQREREQgKCtIK+AGvgn7R0dG4cOECtm/fjmHDhmHBggX45JNPULlyZfzwww8YMGAAypYtCwDw9PTEiRMnEBQUhBEjRsDHxweVKlXCrFmz8MUXX+Cbb75524tHRB8QfulHRERE9AH6999/MW/ePAwZMgQjR47E0aNHMWDAAJiYmCA0NFTplya9PmtiYmLg5OSkkW5kZAQHBwe9/dokJCRodDz/5MmTnFwsIiIioiwZMmQIQkNDUalSJVSpUgUzZ87E8+fPERYWBgDo1KkTChUqhPDwcADAwIEDERAQgGnTpqFRo0ZYsWIFoqOjsXDhQmWajx49wo0bN3D79m0AUPrmcnZ21vgi8PLly9i7dy82b96sVa4NGzbg7t27+OSTT2BmZobt27dj0qRJ+OKLL3JtXRC988bG5XUJ9NqwYYPetCpVqkBElL+//PJLfPnll+lOr2DBgpg1a1a6/XgSEWUHg35EREREH6DU1FRUqlQJkyZNAgCUL18e//zzD+bPn4/Q0NBcm294eDjGjRuXa9MnIiIiyorWrVvj/v37GD16NGJiYuDr64utW7cqLz7duHEDBgb/awirevXqiIqKwqhRozBy5EgUL14ca9euVb7QAV61qKAOGgJAmzZtAABjxozB2LFjleGLFi1C4cKFUa9ePa1yGRsbY86cORg8eDBEBMWKFcP06dPRvXv3nF4FRERE9BFh0I+IiIjoA1SwYEGULl1aY1ipUqWwevVqAFDeQr979y4KFiyo5Ll79y58fX2VPPfu3dOYRnJyMh49eqS3X5sRI0ZgyJAhyt9PnjyBq6vrGy/Pu8J7iXeWxzkdejoXSkJERESZ1a9fP/Tr109n2u7du7WGtWrVCq1atdI7vc6dO6Nz584ZznfSpEnKC1ivCw4ORnBwcIbTICIiIsoK9ulHRERE9AHy8/NTmppSu3jxItzd3QEAHh4ecHZ21uiz5smTJzh8+LDSZ021atUQGxuLY8eOKXn+/PNPpKamomrVqjrna2pqChsbG40fERERERERERHlPn7pR0RERPQBGjx4MKpXr45JkyYhJCQER44cwcKFC5X+aFQqFQYNGoQJEyagePHi8PDwwNdffw0XFxc0a9YMwKsvA4ODg9G9e3fMnz8fSUlJ6NevH9q0aQMXF5c8XDoiIiIiIiIiInodg35EREREH6DKlStjzZo1GDFiBMaPHw8PDw/MnDkT7du3V/IMGzYMz58/R48ePRAbGwt/f39s3boVZmZmSp7ly5ejX79+qFOnDgwMDNCiRQv88MMPebFIRERERERERESUDgb9iIiIiD5QjRs3RuPGjfWmq1QqjB8/HuPHj9ebx8HBAVFRUblRPCIiIiIiIiIiykHs04+IiIiIiIiIiIiIiIjoPcegHxEREREREREREREREdF7js17EhEREREREX0kvJd4Z3mc06Gnc6EkRERERESU0/ilHxERERERERERERHRO+7atWtQqVQ4f/p8XheFiN5ReRr027t3L5o0aQIXFxeoVCqsXbtWI71z585QqVQav+DgYI08jx49Qvv27WFjYwM7Ozt07doVz549e4tLQURERERERERERERvwnuJ91v9ZUfa59XGxsYoUKAA6tati0WLFiE1NTVH10fnzp3RrFmzHJnW2l/Wws7OLt15qVQqTJ48WXO8tWuhUqmUv3fv3g2VSoUyZcogJSVFI6+dnR0WL16cbjlejwEkJSWhbdu2KFSoEP755x8lj0qlwqFDhzTGTUhIQL58+aBSqbB7925l+J49e1C7dm04ODjAwsICxYsXR2hoKBITE9MtC9GHKk+Dfs+fP4ePjw/mzJmjN09wcDDu3Lmj/H755ReN9Pbt2+PMmTPYvn07Nm7ciL1796JHjx65XXQiIiIiIiIiIiIi+sion1dfu3YNW7ZsQa1atTBw4EA0btwYycnJeV28bDMzM8OUKVPw+PHjDPP++++/WLp06RvNLz4+Hk2bNsXRo0exb98+lC1bVklzdXVFZGSkRv41a9bAyspKY9jZs2cRHByMSpUqYe/evTh9+jRmzZoFExMTraAk0cciT4N+DRo0wIQJE/DZZ5/pzWNqagpnZ2flZ29vr6SdO3cOW7duxU8//YSqVavC398fs2bNwooVK3D79u23sQhERERERERERERE9JFQP68uVKgQKlSogJEjR2LdunXYsmWL8qVbbGwsunXrBkdHR9jY2KB27do4deqUMo2xY8fC19cXCxYsgKur6/+xd+dxVVX7/8ffB2RwAgNjyglnSRSHIszMjMShwfSamimSaYM4cXPAHLFCLc1M07IUvWqaZabmJZVSb4mzpDmlZlLpQcuARAWB8/ujn+fbCTAx4Gzg9Xw89iPOWmuv/dl8PLDic/beqlSpkp544gmlpaVZ+5csWaJPP/3UeuXbn69u+/HMj4roFqHWtVqre/vuStqT9I/PKzQ0VD4+PoqNjf3bsUOHDtWkSZOUmZl5S8dKTU3VQw89pLNnz+qrr76Sv7+/TX94eLhWrlypK1euWNsWLVqk8PBwm3GbNm2Sj4+PZsyYoaZNm6pevXrq1KmTFi5cqIoVK95SbEBpZ/hn+m3dulVeXl5q1KiRnn/+ef3666/WvsTERFWrVk2tW7e2toWGhsrBwUG7du2yR7gAAAAAAAAAgHKkQ4cOat68udasWSNJ6tmzp86fP6///ve/2rdvn1q2bKkHH3xQFy9etO5z8uRJffjhh1q/fr3i4+N14MABvfDCC5KkF198UU888YTNXfDatGlj3XfOq3M04IUB+ujLj1Snbh2Nfnb0P77K0NHRUa+++qreeust/fTTTzccO2LECGVnZ+utt94q9HHMZrPuv/9+SX/cmtPHxyfPmFatWqlOnTr6+OOPJUnJycnavn27+vXrZzPOx8dH586d0/bt2wsdB1BWGbro16lTJy1dulQJCQmaPn26tm3bps6dO1svzTWbzfLy8rLZp0KFCvLw8JDZbC5w3szMTKWnp9tsAAAAAAAAAADcisaNG+uHH37QV199pd27d2v16tVq3bq1GjRooNdff13VqlXTRx99ZB1/9epVLV26VEFBQWrXrp31DnZms1lVqlRRxYoVbe6C5+zsbN13wAsDdH/H+1WnXh0NGTNEZ388q+TTyf/4HB5//HEFBQVp0qRJNxxXqVIlTZo0SbGxsdarE2/W8OHDlZWVpc2bN9/wOYNPP/20Fi1aJEmKi4tTly5ddPvtt9uM6dmzp/r06aP7779fvr6+evzxxzV37lz+3o9yrYK9A7iR3r17W78ODAxUs2bNVK9ePW3dulUPPvjgLc8bGxurKVOmFEWIAAAAAOwscElgofc5FH6oGCIBAABAeWWxWGQymfTNN9/o0qVL8vT0tOm/cuWKTp06ZX1dq1Yt3XHHHdbXISEhys3N1fHjx/O9+u3PGt7Z0Pp1de/qkqSLFy6qboO6uqv2Xda+h3s+rEmv37iA91fTp09Xhw4d9OKLL95w3MCBAzVz5kxNnz5dr776qk3fc889p2XLlllfX7p06f9ievhhrV27Vu+8845GjhxZ4PxPPfWUxo4dq++//15xcXGaM2dOnjGOjo5avHixXn75ZX3xxRfatWuXXn31VU2fPl27d++Wr6/vzZ42UGYYuuj3V3Xr1lX16tV18uRJPfjgg/Lx8dH58+dtxmRnZ+vixYs3/MEYHR2tqKgo6+v09HTVrFmz2OIGAAAAAAAAAJRdR48elb+/vy5duiRfX1+bZ/Bdd6Mr2wrDqYKT9WuTySRJyrXkSpI+/vJja1/lqpULPXe7du0UFham6OhoDRgwoMBxFSpU0CuvvKIBAwYoMjLSpi8mJqbAomG/fv306KOP6umnn5bFYrH5O/2feXp66uGHH9bAgQN19epVde7cWb///nu+Y++44w7169dP/fr109SpU9WwYUMtWLCAC39QLpWqot9PP/2kX3/91VqhDwkJUWpqqvbt26dWrVpJkr744gvl5uYqODi4wHlcXFzk4uJSIjEDAAAAAAAAAMquL774QocOHdLIkSNVo0YNmc1mVahQQXXq1Clwn+TkZJ09e1Z+fn6SpJ07d8rBwUGNGjWSJDk7O1sfc1UYterWuqVz+LNp06YpKCjIGktBevbsqddeey1Pcc3LyyvPY7n+LDw8XA4ODoqIiFBubm6BBcKnn35aXbp00ZgxY+To6HhTsd92223y9fVVRkbGTY0Hyhq7Fv0uXbqkkydPWl+fPn1aSUlJ8vDwkIeHh6ZMmaIePXrIx8dHp06d0ujRo1W/fn2FhYVJkpo0aaJOnTpp0KBBWrBgga5du6bIyEj17t3b+sMSAAAAAAAAAICikJmZKbPZrJycHKWkpCg+Pl6xsbF6+OGH1b9/fzk4OCgkJETdunXTjBkz1LBhQ509e1afffaZHn/8cbVu3VqS5OrqqvDwcL3++utKT0/XsGHD9MQTT1jvYFenTh19/vnnOn78uDw9PeXu7v6P4s7JyVFSUpJNm4uLi5o0aZJnbGBgoPr27ZvvLTX/atq0ada/1xdGv3795ODgoPDwcFksFo0aNSrPmE6dOunChQtyc3PLd4533nlHSUlJevzxx1WvXj3rcxIPHz6st956q9AxAWWBXYt+e/fu1QMPPGB9ff1S3vDwcM2fP18HDx7UkiVLlJqaKj8/P3Xs2FFTp061uUpv+fLlioyM1IMPPigHBwf16NHjpn4YAQAAAAAAAABQGPHx8fL19VWFChV02223qXnz5pozZ4716jVJ2rhxo1566SVFRETowoUL8vHxUbt27eTt7W2dp379+urevbu6dOmiixcv6uGHH9bbb79t7R80aJC2bt2q1q1b69KlS/ryyy9veOXg37l06ZJatGhh01avXj2bi3L+LCYmRqtWrfrbeTt06KAOHTpo06ZNhY6pb9++cnBwUL9+/ZSbm6sxY8bY9JtMJlWvXr3A/e+++2599dVXeu6553T27FlVqVJFd955p9auXav777+/0PEAZYHJYrFY7B2EvaWnp8vd3V1paWkFfmoAAFAyApcEFnqfQ+GHiiESlEX8zi95Ze17zs8oYyIvxkRejIm8GFNh82LUnJS13/tGZ+jv9+RbuCJpclrRxwFDunr1qk6fPi1/f3+5urraOxy7mDx5stauXZvnyrubdfiXw4Xe587qd97Sscoa/v2VP2Vl/Xuzv/dL1TP9AAAAAAAAAJQ9ZeWPsgAA2JODvQMAAAAAAAAAAAAA8M9Q9AMAAAAAAAAAoIRMnjz5lm/tCQA3wu09AQAAAAAAAAAA/gFuUwwj4Eo/AAAAAAAAAAAAoJSj6AcAAAAAAAAAAACUchT9AAAAAAAAAAAAgFKOoh8AAAAAAAAAAABQylH0AwAAAAAAAAAAAEq5CvYOAAAAAAAAAABgPIFLAgu9z6HwQ8UQSfkQFxenESNGKDU11d6hACilKPoBAAAAAAAAAOzqaOMmJXq8JseOFnqfAQMGaMmSJdbXHh4euuuuuzRjxgw1a9bsH8fUq1cvdenS5R/PA6D84vaeAAAAAAAAKLPmzZunOnXqyNXVVcHBwdq9e/cNx69evVqNGzeWq6urAgMDtXHjRpv+NWvWqGPHjvL09JTJZFJSUlKeOdq3by+TyWSzPffcczZjkpOT1bVrV1WqVEleXl4aNWqUsrOz//H5AihenTp10rlz53Tu3DklJCSoQoUKevjhh4tk7ooVK8rLy6tI5gJQPlH0AwAAAAAAQJm0atUqRUVFadKkSdq/f7+aN2+usLAwnT9/Pt/xO3bsUJ8+fTRw4EAdOHBA3bp1U7du3fTtt99ax2RkZKht27aaPn36DY89aNAga2Hg3LlzmjFjhrUvJydHXbt2VVZWlnbs2KElS5YoLi5OEydOLJoTB1BsXFxc5OPjIx8fHwUFBWns2LH68ccfdeHCBUnSmDFj1LBhQ1WqVEl169bVhAkTdO3aNev+33zzjR544AFVrVpVbm5uatWqlfbu3Svpj9t7VqtWzeZ469ev11133SVXV1dVr15djz/+eImdK4DSh6IfAAAAAAAAyqRZs2Zp0KBBioiIUEBAgBYsWKBKlSpp0aJF+Y5/88031alTJ40aNUpNmjTR1KlT1bJlS82dO9c6pl+/fpo4caJCQ0NveOxKlSpZCwM+Pj5yc3Oz9m3atElHjhzRsmXLFBQUpM6dO2vq1KmaN2+esrKyiubkARS7S5cuadmyZapfv748PT0lSVWrVlVcXJyOHDmiN998UwsXLtQbb7xh3adv376qUaOG9uzZo3379mns2LFycnLKd/7PPvtMjz/+uLp06aIDBw4oISFBd999d4mcG4DSiaIfAAAAAAAAypysrCzt27fPpjjn4OCg0NBQJSYm5rtPYmJinmJeWFhYgeNvZPny5apevbqaNm2q6OhoXb582eY4gYGB8vb2tjlOenq6Dh8+nO98mZmZSk9Pt9kAlLwNGzaoSpUqqlKliqpWrap169Zp1apVcnD440/t48ePV5s2bVSnTh098sgjevHFF/Xhhx9a909OTlZoaKgaN26sBg0aqGfPnmrevHm+x3rllVfUu3dvTZkyRU2aNFHz5s0VHR1dIucJoHSi6AcAAAAAAIAy55dfflFOTo5NYU2SvL29ZTab893HbDYXanxBnnzySS1btkxffvmloqOj9Z///EdPPfXU3x7nel9+YmNj5e7ubt1q1qxZqJgAFI0HHnhASUlJSkpK0u7duxUWFqbOnTvrzJkzkv64rfC9994rHx8fValSRePHj1dycrJ1/6ioKD3zzDMKDQ3VtGnTdOrUqQKPlZSUpAcffLDYzwlA2UHRDwAAAAAAAChCgwcPVlhYmAIDA9W3b18tXbpUn3zyyQ3/uP93oqOjlZaWZt1+/PHHIowYwM2qXLmy6tevr/r16+uuu+7Se++9p4yMDC1cuFCJiYnq27evunTpog0bNujAgQN66aWXbG7bO3nyZB0+fFhdu3bVF198oYCAAH3yySf5HqtixYoldVoAygiKfgAAAAAAAChzqlevLkdHR6WkpNi0p6SkyMfHJ999fHx8CjX+ZgUHB0uSTp48ecPjXO/Lj4uLi9zc3Gw2APZnMpnk4OCgK1euaMeOHapdu7ZeeukltW7dWg0aNLBeAfhnDRs21MiRI7Vp0yZ1795dixcvznfuZs2aKSEhobhPAUAZQtEPAADAQOLj4/XVV19ZX8+bN09BQUF68skn9dtvv9kxMgAAgNLF2dlZrVq1svmDeW5urhISEhQSEpLvPiEhIXn+wL558+YCx9+spKQkSZKvr6/1OIcOHdL58+dtjuPm5qaAgIB/dCwAxSszM1Nms1lms1lHjx7V0KFDdenSJT3yyCNq0KCBkpOTtXLlSp06dUpz5syxuYrvypUrioyM1NatW3XmzBl9/fXX2rNnj5o0aZLvsSZNmqQPPvhAkyZN0tGjR3Xo0CFNnz69pE4VQClE0Q8AAMBARo0apfT0dEnSoUOH9O9//1tdunTR6dOnFRUVZefoAAAASpeoqCgtXLhQS5Ys0dGjR/X8888rIyNDERERkqT+/fsrOjraOn748OGKj4/XzJkzdezYMU2ePFl79+5VZGSkdczFixeVlJSkI0eOSJKOHz+upKQk67P4Tp06palTp2rfvn364YcftG7dOvXv31/t2rVTs2bNJEkdO3ZUQECA+vXrp2+++Uaff/65xo8fryFDhsjFxaWkvj0AbkF8fLx8fX3l6+ur4OBg7dmzR6tXr1b79u316KOPauTIkYqMjFRQUJB27NihCRMmWPd1dHTUr7/+qv79+6thw4Z64okn1LlzZ02ZMiXfY7Vv316rV6/WunXrFBQUpA4dOmj37t0ldaoASqEK9g4AAAAA/+f06dPWT3d//PHHevjhh/Xqq69q//796tKli52jAwAAKF169eqlCxcuaOLEiTKbzQoKClJ8fLy8vb0lScnJyXJw+L/PxLdp00YrVqzQ+PHjNW7cODVo0EBr165V06ZNrWPWrVtnLRpKUu/evSX9cUXO5MmT5ezsrC1btmj27NnKyMhQzZo11aNHD40fP966j6OjozZs2KDnn39eISEhqly5ssLDwxUTE1Pc3xLAsJocO2rvEP5WXFyc4uLibjhmxowZmjFjhk3biBEjJP1xBfIHH3xQ4L4DBgzQgAEDbNq6d++u7t2727Qd/uXwTccMoHyh6AcAAGAgzs7Ounz5siRpy5Yt6t+/vyTJw8PDegUgAAAAbl5kZKTNlXp/tnXr1jxtPXv2VM+ePQucL78/yv9ZzZo1tW3btr+Nq3bt2tq4cePfjgMAALhZ3N4TAADAQNq2bauoqChNnTpVu3fvVteuXSVJ3333nWrUqHHT80yePFkmk8lma9y4sbX/6tWrGjJkiDw9PVWlShX16NFDKSkpNnMkJyera9euqlSpkry8vDRq1ChlZ2cXzYkCAAAAAACgSFH0AwAAMJC5c+eqQoUK+uijjzR//nzdcccdkqT//ve/6tSpU6HmuvPOO3Xu3Dnr9tVXX1n7Ro4cqfXr12v16tXatm2bzp49a3PLmJycHHXt2lVZWVnasWOHlixZori4OE2cOLFoThQAAAAAAABFitt7AgAAGEitWrW0YcOGPO1vvPFGoeeqUKGCfHx88rSnpaXp/fff14oVK9ShQwdJ0uLFi9WkSRPt3LlT99xzjzZt2qQjR45oy5Yt8vb2VlBQkKZOnaoxY8ZYn1UDAAAAAAAA4+BKPwAAAIM5deqUxo8frz59+uj8+fOS/rjS7/Dhwj2s/cSJE/Lz81PdunXVt29fJScnS5L27duna9euKTQ01Dq2cePGqlWrlhITEyVJiYmJCgwMlLe3t3VMWFiY0tPTbxhHZmam0tPTbTYAAAAA+CuLxWLvEFAO8e8OZR1X+gEo1wKXBBZq/KHwQ8UUCQD8Ydu2bercubPuvfdebd++Xa+88oq8vLz0zTff6P3339dHH310U/MEBwcrLi5OjRo10rlz5zRlyhTdd999+vbbb2U2m+Xs7Kxq1arZ7OPt7S2z2SxJMpvNNgW/6/3X+woSGxurKVOmFOKMAQAAAJQnTk5OkqTLly+rYsWKdo4G5U1WVpYkydHR0c6RAMWDoh8AAICBjB07Vi+//LKioqJUtWpVa3uHDh00d+7cm56nc+fO1q+bNWum4OBg1a5dWx9++GGx/o91dHS0oqKirK/T09NVs2bNYjseAAAAgNLF0dFR1apVs97VpFKlSjKZTHaOqnTJvZZb6H2uXr1aDJGULrm5ubpw4YIqVaqkChUojaBs4l82AACAgRw6dEgrVqzI0+7l5aVffvnlluetVq2aGjZsqJMnT+qhhx5SVlaWUlNTba72S0lJsT4D0MfHR7t377aZIyUlxdpXEBcXF7m4uNxynAAAAADKvuv/T3G98IfCOX+p8N+3CqmUAiTJwcFBtWrVotCMMot3OgAAgIFUq1ZN586dk7+/v037gQMHdMcdd9zyvJcuXdKpU6fUr18/tWrVSk5OTkpISFCPHj0kScePH1dycrJCQkIkSSEhIXrllVd0/vx5eXl5SZI2b94sNzc3BQQE3HIcAAAAAGAymeTr6ysvLy9du3bN3uGUOsM/GV7ofdY9vq4YIil9nJ2d5eDgYO8wgGJD0Q8AAMBAevfurTFjxmj16tUymUzKzc3V119/rRdffFH9+/e/6XlefPFFPfLII6pdu7bOnj2rSZMmydHRUX369JG7u7sGDhyoqKgoeXh4yM3NTUOHDlVISIjuueceSVLHjh0VEBCgfv36acaMGTKbzRo/fryGDBnClXwAAAAAioSjoyPPVrsF57LOFXofV1fXYogEgNFQ9AMAADCQV199VUOGDFHNmjWVk5OjgIAA5eTk6Mknn9T48eNvep6ffvpJffr00a+//qrbb79dbdu21c6dO3X77bdLkt544w05ODioR48eyszMVFhYmN5++23r/o6OjtqwYYOef/55hYSEqHLlygoPD1dMTEyRnzMAAAAAAAD+OYp+AAAABuLs7KyFCxdq4sSJOnTokC5duqQWLVqoQYMGhZpn5cqVN+x3dXXVvHnzNG/evALH1K5dWxs3bizUcQEAAAAAAGAf3LwWAADAQGJiYnT58mXVrFlTXbp00RNPPKEGDRroypUrXGUHAAAAAACAAtm16Ld9+3Y98sgj8vPzk8lk0tq1a619165d05gxYxQYGKjKlSvLz89P/fv319mzZ23mqFOnjkwmk802bdq0Ej4TAACAojFlyhRdunQpT/vly5c1ZcoUO0QEAAAAAACA0sCuRb+MjAw1b94839tKXb58Wfv379eECRO0f/9+rVmzRsePH9ejjz6aZ2xMTIzOnTtn3YYOHVoS4QMAABQ5i8Uik8mUp/2bb76Rh4eHHSICAAAAAABAaWDXZ/p17txZnTt3zrfP3d1dmzdvtmmbO3eu7r77biUnJ6tWrVrW9qpVq8rHx6dYYwUAAChOt912m/WuBQ0bNrQp/OXk5OjSpUt67rnn7BghAAAAAAAAjMyuRb/CSktLk8lkUrVq1Wzap02bpqlTp6pWrVp68sknNXLkSFWoUKpODeVA4JLAQo0/FH6omCIBABjR7NmzZbFY9PTTT2vKlClyd3e39jk7O6tOnToKCQmxY4QAAAAl4/Tp0/rf//6nM2fO6PLly7r99tvVokULhYSEyNXV1d7hAQAAGFapqYxdvXpVY8aMUZ8+feTm5mZtHzZsmFq2bCkPDw/t2LFD0dHROnfunGbNmlXgXJmZmcrMzLS+Tk9PL9bYAQAA/k54eLgkyd/fX23atJGTk5OdIwIAAChZy5cv15tvvqm9e/fK29tbfn5+qlixoi5evKhTp07J1dVVffv21ZgxY1S7dm17hwsAAGA4paLod+3aNT3xxBOyWCyaP3++TV9UVJT162bNmsnZ2VnPPvusYmNj5eLiku98sbGxmjJlSrHGDAAAcCvuv/9+69dXr15VVlaWTf+fP/wEAABQVrRo0ULOzs4aMGCAPv74Y9WsWdOmPzMzU4mJiVq5cqVat26tt99+Wz179rRTtAAAAMbkYO8A/s71gt+ZM2e0efPmv/1DV3BwsLKzs/XDDz8UOCY6OlppaWnW7ccffyziqAEAAG7N5cuXFRkZKS8vL1WuXFm33XabzQYAAFAWTZs2Tbt27dILL7yQp+AnSS4uLmrfvr0WLFigY8eOqW7dunaIEgAAwNgMXfS7XvA7ceKEtmzZIk9Pz7/dJykpSQ4ODvLy8ipwjIuLi9zc3Gw2AAAAIxg1apS++OILzZ8/Xy4uLnrvvfc0ZcoU+fn5aenSpfYODwAAoFiEhYXd9FhPT0+1atWqGKMBAAAonex6e89Lly7p5MmT1tenT59WUlKSPDw85Ovrq3/961/av3+/NmzYoJycHJnNZkmSh4eHnJ2dlZiYqF27dumBBx5Q1apVlZiYqJEjR+qpp54q15+ED1wSWKjxh8IPFVMkAICyorC/WyR+v9yq9evXa+nSpWrfvr0iIiJ03333qX79+qpdu7aWL1+uvn372jtEAACAYrV//345OTkpMPCPNeinn36qxYsXKyAgQJMnT5azs7OdIwQAADAmu17pt3fvXrVo0UItWrSQ9Mfz+Vq0aKGJEyfq559/1rp16/TTTz8pKChIvr6+1m3Hjh2S/rhib+XKlbr//vt155136pVXXtHIkSP17rvv2vO0AAAAbtnFixett6tyc3PTxYsXJUlt27bV9u3b7RkaAABAiXj22Wf13XffSZK+//579e7dW5UqVdLq1as1evRoO0cHAABgXHa90q99+/ayWCwF9t+oT5JatmypnTt3FnVYAAAAdlO3bl2dPn1atWrVUuPGjfXhhx/q7rvv1vr161WtWjV7hwcAAFDsvvvuOwUFBUmSVq9erXbt2mnFihX6+uuv1bt3b82ePduu8QEAABiVoZ/pBwAAUN5ERETom2++kSSNHTtW8+bNk6urq0aOHKlRo0bZOToAAIDiZ7FYlJubK0nasmWLunTpIkmqWbOmfvnlF3uGBgAAYGh2vdIPAAAAtkaOHGn9OjQ0VMeOHdO+fftUv359NWvWzI6RAQAAlIzWrVvr5ZdfVmhoqLZt26b58+dLkk6fPi1vb287RwcAAGBcFP0AAAAMrHbt2qpdu7a9wwAAACgxs2fPVt++fbV27Vq99NJLql+/viTpo48+Ups2bewcHQAAgHFR9AMAADCAK1euKCEhQQ8//LAkKTo6WpmZmdZ+R0dHTZ06Va6urvYKEQAAoEQ0a9ZMhw4dytP+2muvydHR0Q4RAQAAlA4U/QAAAAxgyZIl+uyzz6xFv7lz5+rOO+9UxYoVJUnHjh2Tn5+fze0/AQAAyhM+/AQAAHBjFP0AAAAMYPny5Ro9erRN24oVK1S3bl1J0rJlyzRv3jyKfgAAoEy67bbbZDKZbmrsxYsXizkaAACA0omiHwAAgAGcPHlSgYGB1teurq5ycHCwvr777rs1ZMgQe4QGAABQ7GbPnm39+tdff9XLL7+ssLAwhYSESJISExP1+eefa8KECXaKEAAAwPgc/n4IAAAAiltqaqrNM/wuXLigOnXqWF/n5uba9AMAAJQl4eHh1u3rr79WTEyMPvjgAw0bNkzDhg3TBx98oJiYGG3btq3Qc8+bN0916tSRq6urgoODtXv37huOX716tRo3bixXV1cFBgZq48aNNv1r1qxRx44d5enpKZPJpKSkJJv+ixcvaujQoWrUqJEqVqyoWrVqadiwYUpLS7MZZzKZ8mwrV64s9PkBAABcR9EPAADAAGrUqKFvv/22wP6DBw+qRo0aJRgRAACAfXz++efq1KlTnvZOnTppy5YthZpr1apVioqK0qRJk7R//341b95cYWFhOn/+fL7jd+zYoT59+mjgwIE6cOCAunXrpm7dutms0zIyMtS2bVtNnz493znOnj2rs2fP6vXXX9e3336ruLg4xcfHa+DAgXnGLl68WOfOnbNu3bp1K9T5AQAA/BlFPwAAAAPo0qWLJk6cqKtXr+bpu3LliqZMmaKuXbvaITIAAICS5enpqU8//TRP+6effipPT89CzTVr1iwNGjRIERERCggI0IIFC1SpUiUtWrQo3/FvvvmmOnXqpFGjRqlJkyaaOnWqWrZsqblz51rH9OvXTxMnTlRoaGi+czRt2lQff/yxHnnkEdWrV08dOnTQK6+8ovXr1ys7O9tmbLVq1eTj42PdXF1dC3V+AAAAf8Yz/QAAAAxg3Lhx+vDDD9WoUSNFRkaqYcOGkqTjx49r7ty5ys7O1rhx4+wcJQAAQPGbMmWKnnnmGW3dulXBwcGSpF27dik+Pl4LFy686XmysrK0b98+RUdHW9scHBwUGhqqxMTEfPdJTExUVFSUTVtYWJjWrl1b+BP5k7S0NLm5ualCBds/xQ0ZMkTPPPOM6tatq+eee04REREymUz/6FgAAKD8ougHAABgAN7e3tqxY4eef/55jR07VhaLRdIfz3p56KGH9Pbbb8vb29vOUQIAABS/AQMGqEmTJpozZ47WrFkjSWrSpIm++uoraxHwZvzyyy/KycnJs4by9vbWsWPH8t3HbDbnO95sNhfyLGzjmDp1qgYPHmzTHhMTow4dOqhSpUratGmTXnjhBV26dEnDhg3Ld57MzEybZzynp6ffckwAAKBsougHAABgEP7+/oqPj9fFixd18uRJSVL9+vXl4eFh58gAAABKVnBwsJYvX27vMP6x9PR0de3aVQEBAZo8ebJN34QJE6xft2jRQhkZGXrttdcKLPrFxsZqypQpxRkuAAAo5Sj6AQAAGIyHh4fuvvtue4cBAABgN7m5uTp58qTOnz+v3Nxcm7527drd1BzVq1eXo6OjUlJSbNpTUlLk4+OT7z4+Pj6FGn8jv//+uzp16qSqVavqk08+kZOT0w3HBwcHa+rUqcrMzJSLi0ue/ujoaJtbj6anp6tmzZqFjgsAAJRdFP0AAAAAAABgGDt37tSTTz6pM2fOWG95fp3JZFJOTs5NzePs7KxWrVopISFB3bp1k/RHMTEhIUGRkZH57hMSEqKEhASNGDHC2rZ582aFhIQU6hzS09MVFhYmFxcXrVu3Tq6urn+7T1JSkm677bZ8C36S5OLiUmAfAACARNEPAAAAAAAABvLcc8+pdevW+uyzz+Tr6yuTyXTLc0VFRSk8PFytW7fW3XffrdmzZysjI0MRERGSpP79++uOO+5QbGysJGn48OG6//77NXPmTHXt2lUrV67U3r179e6771rnvHjxopKTk3X27FlJ0vHjxyX9cZWgj4+P0tPT1bFjR12+fFnLli1Tenq69fl7t99+uxwdHbV+/XqlpKTonnvukaurqzZv3qxXX31VL7744i2fKwAAAEU/AAAAAAAAGMaJEyf00UcfqX79+v94rl69eunChQuaOHGizGazgoKCFB8fL29vb0lScnKyHBwcrOPbtGmjFStWaPz48Ro3bpwaNGigtWvXqmnTptYx69atsxYNJal3796SpEmTJmny5Mnav3+/du3aJUl5zuH06dOqU6eOnJycNG/ePI0cOVIWi0X169fXrFmzNGjQoH98zgAAoPyi6AcAAAAAAADDCA4O1smTJ4uk6CdJkZGRBd7Oc+vWrXnaevbsqZ49exY434ABAzRgwIAC+9u3b5/ntqR/1alTJ3Xq1OmGYwAAAAqLoh8AAICBrF69Wh988IG+++47OTs7q2HDhoqIiFBYWJi9QwMAACgRQ4cO1b///W+ZzWYFBgbKycnJpr9Zs2Z2igwAAMDYKPoBAAAYQG5urvr06aPVq1erYcOGaty4sSTpwIEDWr16tQYPHqz58+fr119/1fbt2/X444/bOWIAAIDi0aNHD0nS008/bW0zmUyyWCwymUzKycmxV2gAAACGRtEPAADAAN58801t2bJF69at08MPP2zTd/25MfXq1VNcXJz69+9vpygBAACK3+nTp+0dAgAAQKlE0Q8AAMAAFi9erNdeey1PwU+SHn30Uc2YMUODBw9Wx44dNWLEiJIPEAAAoITUrl3b3iEAAACUShT9AAAADODEiRMKDQ0tsP9636effipnZ+eSCgsAAMAuTp06pdmzZ+vo0aOSpICAAA0fPlz16tWzc2QAAADG5WDvAAAAACBVrFhRqampBfanp6fLzc2Ngh8AACjzPv/8cwUEBGj37t1q1qyZmjVrpl27dunOO+/U5s2b7R0eAACAYVH0AwAAMICQkBDNnz+/wP558+YpJCTkluefNm2aTCaTza1Br169qiFDhsjT01NVqlRRjx49lJKSYrNfcnKyunbtqkqVKsnLy0ujRo1Sdnb2LccBAADwd8aOHauRI0dq165dmjVrlmbNmqVdu3ZpxIgRGjNmjL3DAwAAMKxbvr1nbm6uTp48qfPnzys3N9emr127dv84MAAAgPLkpZdeUvv27fXrr7/qxRdfVOPGjWWxWHT06FHNnDlTn376qb788stbmnvPnj1655131KxZM5v2kSNH6rPPPtPq1avl7u6uyMhIde/eXV9//bUkKScnR127dpWPj4927Nihc+fOqX///nJyctKrr776j88ZAAAgP0ePHtWHH36Yp/3pp5/W7NmzSz4gAACAUuKWin47d+7Uk08+qTNnzshisdj0mUwm5eTkFElwAAAA5UWbNm20atUqDR48WB9//LFN32233aYPPvhA9957b6HnvXTpkvr27auFCxfq5ZdftranpaXp/fff14oVK9ShQwdJ0uLFi9WkSRPt3LlT99xzjzZt2qQjR45oy5Yt8vb2VlBQkKZOnaoxY8Zo8uTJ3GoUAAAUi9tvv11JSUlq0KCBTXtSUpK8vLzsFBUAAIDx3VLR77nnnlPr1q312WefydfXVyaTqajjAgAAKHcef/xxhYWF6fPPP9eJEyckSQ0aNFBYWJgqVap0S3MOGTJEXbt2VWhoqE3Rb9++fbp27ZpCQ0OtbY0bN1atWrWUmJioe+65R4mJiQoMDJS3t7d1TFhYmJ5//nkdPnxYLVq0yHO8zMxMZWZmWl+np6ffUtwAAKD8GjRokAYPHqzvv/9ebdq0kSR9/fXXmj59uqKiouwcHQAAgHHdUtHvxIkT+uijj1S/fv2ijgcAAKBcq1Spkh5//PEimWvlypXav3+/9uzZk6fPbDbL2dlZ1apVs2n39vaW2Wy2jvlzwe96//W+/MTGxmrKlClFED0AACivJkyYoKpVq2rmzJmKjo6WJPn5+Wny5MkaNmyYnaMDAAAwLodb2Sk4OFgnT54s6lgAAADKtStXruirr77SkSNH8vRdvXpVS5cuvem5fvzxRw0fPlzLly+Xq6trUYZ5Q9HR0UpLS7NuP/74Y4kdGwAAlA0mk0kjR47UTz/9ZF1T/PTTTxo+fDh3mwIAALiBm77S7+DBg9avhw4dqn//+98ym80KDAyUk5OTzdhmzZoVXYQAAADlwHfffaeOHTsqOTlZJpNJbdu21QcffCA/Pz9JfzyDLyIiQv3797+p+fbt26fz58+rZcuW1racnBxt375dc+fO1eeff66srCylpqbaXO2XkpIiHx8fSZKPj492795tM29KSoq1Lz8uLi5ycXG56fMGAAD4q9OnTys7O1sNGjRQ1apVre0nTpyQk5OT6tSpY7/gAAAADOymi35BQUEymUyyWCzWtqefftr69fU+k8mknJycoo0SAACgjBszZoyaNm2qvXv3KjU1VSNGjFDbtm21detW1apVq9DzPfjggzp06JBNW0REhBo3bqwxY8aoZs2acnJyUkJCgnr06CFJOn78uJKTkxUSEiJJCgkJ0SuvvKLz58/Ly8tLkrR582a5ubkpICDgH54xAABA/gYMGKCnn35aDRo0sGnftWuX3nvvPW3dutU+gQEAABjcTRf9Tp8+XZxxAAAAlGs7duzQli1bVL16dVWvXl3r16/XCy+8oPvuu09ffvmlKleuXKj5qlatqqZNm9q0Va5cWZ6entb2gQMHKioqSh4eHnJzc9PQoUMVEhKie+65R5LUsWNHBQQEqF+/fpoxY4bMZrPGjx+vIUOGcDUfAAAoNgcOHNC9996bp/2ee+5RZGSkHSICAAAoHW666Fe7dm3r19u3b1ebNm1UoYLt7tnZ2dqxY4fNWAAAAPy9K1eu2KytTCaT5s+fr8jISN1///1asWJFkR/zjTfekIODg3r06KHMzEyFhYXp7bfftvY7Ojpqw4YNev755xUSEqLKlSsrPDxcMTExRR4LAADAdSaTSb///nue9rS0NO4uBQAAcAMOt7LTAw88oIsXL+ZpT0tL0wMPPHDT82zfvl2PPPKI/Pz8ZDKZtHbtWpt+i8WiiRMnytfXVxUrVlRoaKhOnDhhM+bixYvq27ev3NzcVK1aNQ0cOFCXLl26ldMCAACwm8aNG2vv3r152ufOnavHHntMjz766D8+xtatWzV79mzra1dXV82bN08XL15URkaG1qxZk+dZfbVr19bGjRt1+fJlXbhwQa+//nqeD34BAAAUpXbt2ik2NtamwJeTk6PY2Fi1bdvWjpEBAAAY2y0V/a4/u++vfv3110LdeiojI0PNmzfXvHnz8u2fMWOG5syZowULFmjXrl2qXLmywsLCdPXqVeuYvn376vDhw9q8ebM2bNig7du3a/DgwYU/KQAAADt6/PHH9cEHH+TbN3fuXPXp08fm2coAAABl1fTp0/XFF1+oUaNGioiIUEREhBo1aqTt27frtddes3d4AAAAhlWoj2l3795d0h+3WRgwYIDNs1xycnJ08OBBtWnT5qbn69y5szp37pxvn8Vi0ezZszV+/Hg99thjkqSlS5fK29tba9euVe/evXX06FHFx8drz549at26tSTprbfeUpcuXfT666/Lz8+vMKcHAABgN9HR0YqOji6w/+2337a59SYAAEBZFRAQoIMHD2ru3Ln65ptvVLFiRfXv31+RkZHy8PCwd3gAAACGVaiin7u7u6Q/CnJVq1ZVxYoVrX3Ozs665557NGjQoCIJ7PTp0zKbzQoNDbU5fnBwsBITE9W7d28lJiaqWrVq1oKfJIWGhsrBwUG7du3S448/nu/cmZmZyszMtL5OT08vkpgBAAAAAADwz/n5+enVV1+1dxgAAAClSqGKfosXL5Yk1alTRy+++GKhbuVZWGazWZLk7e1t0+7t7W3tM5vN8vLysumvUKGCPDw8rGPyExsbqylTphRxxAAAAAAAACgK//vf//TOO+/o+++/1+rVq3XHHXfoP//5j/z9/XmuHwAAQAFu6Zl+kyZNUuXKlXX+/Hn973//0//+9z+dP3++qGMrNtHR0UpLS7NuP/74o71DAgAAAAAAgKSPP/5YYWFhqlixovbv32+9W1NaWhpX/wEAANzALRX9fv/9d/Xr10933HGH7r//ft1///2644479NRTTyktLa1IAvPx8ZEkpaSk2LSnpKRY+3x8fPIUG7Ozs3Xx4kXrmPy4uLjIzc3NZgMAAAAAAID9vfzyy1qwYIEWLlwoJycna/u9996r/fv32zEyAAAAY7ulot8zzzyjXbt2acOGDUpNTVVqaqo2bNigvXv36tlnny2SwPz9/eXj46OEhARrW3p6unbt2qWQkBBJUkhIiFJTU7Vv3z7rmC+++EK5ubkKDg4ukjgAAACKW8uWLfXbb79JkmJiYnT58mU7RwQAAGA/x48fV7t27fK0u7u7KzU1teQDAgAAKCVuqei3YcMGLVq0SGFhYdYr5cLCwrRw4UKtX7/+pue5dOmSkpKSlJSUJEk6ffq0kpKSlJycLJPJpBEjRujll1/WunXrdOjQIfXv319+fn7q1q2bJKlJkybq1KmTBg0apN27d+vrr79WZGSkevfuLT8/v1s5NQAAgBJ39OhRZWRkSJKmTJmiS5cu2TkiAAAA+/Hx8dHJkyfztH/11VeqW7euHSICAAAoHSrcyk6enp5yd3fP0+7u7q7bbrvtpufZu3evHnjgAevrqKgoSVJ4eLji4uI0evRoZWRkaPDgwUpNTVXbtm0VHx8vV1dX6z7Lly9XZGSkHnzwQTk4OKhHjx6aM2fOrZwWAACAXQQFBSkiIkJt27aVxWLR66+/ripVquQ7duLEiSUcHQAAQMkaNGiQhg8frkWLFslkMuns2bNKTEzUiy++qAkTJtg7PAAAAMO6paLf+PHjFRUVpf/85z/WZ+eZzWaNGjWqUIuv9u3by2KxFNhvMpkUExOjmJiYAsd4eHhoxYoVNx88AACAwcTFxWnSpEnasGGDTCaT/vvf/6pChbzLNJPJRNEPAACUeWPHjlVubq4efPBBXb58We3atZOLi4tefPFFDR061N7hAQAAGNYtFf3mz5+vkydPqlatWqpVq5YkKTk5WS4uLrpw4YLeeecd61gesAwAAHBjjRo10sqVKyVJDg4OSkhIkJeXl52jAgAAsA+TyaSXXnpJo0aN0smTJ3Xp0iUFBAQUeCcEAAAA/OGWin7Xn6kHAACAopWbm2vvEAAAAAzB2dlZAQEBSk9P15YtW9SoUSM1adLE3mEBAAAY1i0V/SZNmlTUcQAAAOD/O3XqlGbPnq2jR49KkgICAjR8+HDVq1fPzpEBAAAUvyeeeELt2rVTZGSkrly5orvuukunT5+WxWLRypUr1aNHD3uHCAAAYEgOt7pjamqq3nvvPUVHR+vixYuS/riV588//1xkwQEAAJQ3n3/+uQICArR79241a9ZMzZo1065du3TnnXdq8+bN9g4PAACg2G3fvl333XefJOmTTz5Rbm6uUlNTNWfOHL388suFnm/evHmqU6eOXF1dFRwcrN27d99w/OrVq9W4cWO5uroqMDBQGzdutOlfs2aNOnbsKE9PT5lMJiUlJeWZ4+rVqxoyZIg8PT1VpUoV9ejRQykpKTZjkpOT1bVrV1WqVEleXl4aNWqUsrOzC31+AAAA191S0e/gwYNq2LChpk+frtdff12pqamS/lj0REdHF2V8AAAA5crYsWM1cuRI7dq1S7NmzdKsWbO0a9cujRgxQmPGjLF3eAAAAMUuLS1NHh4ekqT4+Hj16NFDlSpVUteuXXXixIlCzbVq1SpFRUVp0qRJ2r9/v5o3b66wsDCdP38+3/E7duxQnz59NHDgQB04cEDdunVTt27d9O2331rHZGRkqG3btpo+fXqBxx05cqTWr1+v1atXa9u2bTp79qy6d+9u7c/JyVHXrl2VlZWlHTt2aMmSJYqLi9PEiRMLdX4AAAB/dktFv6ioKA0YMEAnTpyQq6urtb1Lly7avn17kQUHAABQ3hw9elQDBw7M0/7000/ryJEjdogIAACgZNWsWVOJiYnKyMhQfHy8OnbsKEn67bffbP4OdTNmzZqlQYMGKSIiQgEBAVqwYIEqVaqkRYsW5Tv+zTffVKdOnTRq1Cg1adJEU6dOVcuWLTV37lzrmH79+mnixIkKDQ3Nd460tDS9//77mjVrljp06KBWrVpp8eLF2rFjh3bu3ClJ2rRpk44cOaJly5YpKChInTt31tSpUzVv3jxlZWUV6hwBAACuu6Wi3549e/Tss8/mab/jjjtkNpv/cVAAAADl1e23357vLaKSkpLk5eVV8gEBAACUsBEjRqhv376qUaOG/Pz81L59e0l/3PYzMDDwpufJysrSvn37bIpzDg4OCg0NVWJiYr77JCYm5inmhYWFFTg+P/v27dO1a9ds5mncuLFq1aplnScxMVGBgYHy9va2OU56eroOHz5808cCAAD4swq3spOLi4vS09PztH/33Xe6/fbb/3FQAAAA5dWgQYM0ePBgff/992rTpo0k6euvv9b06dMVFRVl5+gAAACK3wsvvKDg4GAlJyfroYcekoPDH59Zr1u3bqGe6ffLL78oJyfHprAmSd7e3jp27Fi++5jN5nzHF+ZD7mazWc7OzqpWrVqB8xR0nOt9+cnMzFRmZqb1dX5/mwMAAOXbLRX9Hn30UcXExOjDDz+UJJlMJiUnJ2vMmDHq0aNHkQYIAABQnkyYMEFVq1bVzJkzrc9K9vPz0+TJkzVs2DA7RwcAAFAyWrVqpVatWtm0de3a1U7RGENsbKymTJli7zAAAICB3dLtPWfOnKlLly7p9ttv15UrV3T//ferfv36qlq1ql555ZWijhEAAKDcMJlMGjlypH766SelpaUpLS1NP/30k4YPHy6TyWTv8AAAAIrFtGnTdOXKlZsau2vXLn322Wd/O6569epydHRUSkqKTXtKSop8fHzy3cfHx6dQ4wuaIysrS6mpqQXOU9BxrvflJzo62ro+TEtL048//njTMQEAgPLhlop+7u7u2rx5sz777DPNmTNHkZGR2rhxo7Zt26bKlSsXdYwAAADlUtWqVVW1alV7hwEAAFDsjhw5olq1aumFF17Qf//7X124cMHal52drYMHD+rtt99WmzZt1KtXr5taIzk7O6tVq1ZKSEiwtuXm5iohIUEhISH57hMSEmIzXpI2b95c4Pj8tGrVSk5OTjbzHD9+XMnJydZ5QkJCdOjQIZ0/f97mOG5ubgoICMh3XhcXF7m5udlsAAAAf1bo23vm5uYqLi5Oa9as0Q8//CCTySR/f3/5+PjIYrHwCXQAAAAAAAAUytKlS/XNN99o7ty5evLJJ5Weni5HR0e5uLjo8uXLkqQWLVromWee0YABA+Tq6npT80ZFRSk8PFytW7fW3XffrdmzZysjI0MRERGSpP79++uOO+5QbGysJGn48OG6//77NXPmTHXt2lUrV67U3r179e6771rnvHjxopKTk3X27FlJfxT0pD+u0PPx8ZG7u7sGDhyoqKgoeXh4yM3NTUOHDlVISIjuueceSVLHjh0VEBCgfv36acaMGTKbzRo/fryGDBkiFxeXovmmAgCAcqdQRT+LxaJHH31UGzduVPPmzRUYGCiLxaKjR49qwIABWrNmjdauXVtMoQIAAAAAAKCsat68uRYuXKh33nlHBw8e1JkzZ3TlyhVVr15dQUFBql69eqHn7NWrly5cuKCJEyfKbDYrKChI8fHx8vb2liQlJyfLweH/boTVpk0brVixQuPHj9e4cePUoEEDrV27Vk2bNrWOWbdunbVoKEm9e/eWJE2aNEmTJ0+WJL3xxhtycHBQjx49lJmZqbCwML399tvWfRwdHbVhwwY9//zzCgkJUeXKlRUeHq6YmJhCnyMAAMB1hSr6xcXFafv27UpISNADDzxg0/fFF1+oW7duWrp0qfr371+kQQIAAAAAAKB8cHBwUFBQkIKCgopkvsjISEVGRubbt3Xr1jxtPXv2VM+ePQucb8CAARowYMANj+nq6qp58+Zp3rx5BY6pXbu2Nm7ceMN5AAAACqNQz/T74IMPNG7cuDwFP0nq0KGDxo4dq+XLlxdZcAAAAOXJtWvX9OCDD+rEiRP2DgUAAAAAAAClTKGKfgcPHlSnTp0K7O/cubO++eabfxwUAABAeeTk5KSDBw/aOwwAAAAAAACUQoUq+l28eNF6z/P8eHt767fffvvHQQEAAJRXTz31lN5//317hwEAAAAAAIBSplDP9MvJyVGFCgXv4ujoqOzs7H8cFAAAQHmVnZ2tRYsWacuWLWrVqpUqV65s0z9r1iw7RQYAAAAAAAAjK1TRz2KxaMCAAXJxccm3PzMzs0iCAgAAKK++/fZbtWzZUpL03Xff2fSZTCZ7hAQAAGAXJ0+e1KlTp9SuXTtVrFhRFouF9RAAAMANFKroFx4e/rdj+vfvf8vBAAAAlHdffvmlvUMAAACwq19//VW9evXSF198IZPJpBMnTqhu3boaOHCgbrvtNs2cOdPeIQIAABhSoYp+ixcvLq44AAAA8Cd8sh0AAJRXI0eOVIUKFZScnKwmTZpY23v16qWoqCiKfgAAAAUoVNEPAAAAxevXX3/VE088oS+//JJPtgMAgHJp06ZN+vzzz1WjRg2b9gYNGujMmTN2igoAAMD4HOwdAAAAAP7PyJEj5eTkpOTkZFWqVMna3qtXL8XHx9sxMgAAgJKRkZFhsw667uLFi3JxcbFDRAAAAKUDRT8AAAAD2bRpk6ZPn84n2wEAQLl13333aenSpdbXJpNJubm5mjFjhh544AE7RgYAAGBs3N4TAADAQPhkOwAAKO9mzJihBx98UHv37lVWVpZGjx6tw4cP6+LFi/r666/tHR4AAIBhcaUfAACAgfDJdgAAUN41bdpU3333ndq2bavHHntMGRkZ6t69uw4cOKB69erZOzwAAADDougHAABgIDNmzNC7776rzp07Wz/Z3rRpU23fvl3Tp0+/6Xnmz5+vZs2ayc3NTW5ubgoJCdF///tfa//Vq1c1ZMgQeXp6qkqVKurRo4dSUlJs5khOTlbXrl1VqVIleXl5adSoUcrOzi6ycwUAACiIu7u7XnrpJX344YfauHGjXn75Zfn6+to7LAAAAEPj9p4AAAAGcv2T7XPnzlXVqlV16dIlde/eXUOGDCnUH7pq1KihadOmqUGDBrJYLFqyZIkee+wxHThwQHfeeadGjhypzz77TKtXr5a7u7siIyPVvXt36y2zcnJy1LVrV/n4+GjHjh06d+6c+vfvLycnJ7366qvFdfoAAACS/viA0sGDB3X+/Hnl5uba9D366KN2igoAAMDYKPoBAAAYzPVPtv8TjzzyiM3rV155RfPnz9fOnTtVo0YNvf/++1qxYoU6dOggSVq8eLGaNGminTt36p577tGmTZt05MgRbdmyRd7e3goKCtLUqVM1ZswYTZ48Wc7Ozv8oPgAAgILEx8erf//++uWXX/L0mUwm5eTk2CEqAAAA4+P2ngAAAAbz22+/6fXXX9fAgQM1cOBAzZw5UxcvXrzl+XJycrRy5UplZGQoJCRE+/bt07Vr1xQaGmod07hxY9WqVUuJiYmSpMTERAUGBsrb29s6JiwsTOnp6Tp8+PCtnxwAAMDfGDp0qHr27Klz584pNzfXZqPgBwAAUDCKfgAAAAayfft21alTR3PmzNFvv/2m3377TXPmzJG/v7+2b99eqLkOHTqkKlWqyMXFRc8995w++eQTBQQEyGw2y9nZWdWqVbMZ7+3tLbPZLEkym802Bb/r/df7CpKZman09HSbDQAAoDBSUlIUFRWVZy0CAACAG+P2ngAAAAYyZMgQ9erVS/Pnz5ejo6OkP67Ue+GFFzRkyBAdOnTopudq1KiRkpKSlJaWpo8++kjh4eHatm1bcYUuSYqNjdWUKVOK9RgAAKBs+9e//qWtW7eqXr169g4FAACgVKHoBwAAYCAnT57URx99ZC34SZKjo6OioqK0dOnSQs3l7Oys+vXrS5JatWqlPXv26M0331SvXr2UlZWl1NRUm6v9UlJS5OPjI0ny8fHR7t27beZLSUmx9hUkOjpaUVFR1tfp6emqWbNmoeIGAADl29y5c9WzZ0/973//U2BgoJycnGz6hw0bZqfIAAAAjI2iHwAAgIG0bNlSR48eVaNGjWzajx49qubNm/+juXNzc5WZmalWrVrJyclJCQkJ6tGjhyTp+PHjSk5OVkhIiCQpJCREr7zyis6fPy8vLy9J0ubNm+Xm5qaAgIACj+Hi4iIXF5d/FCcAACjfPvjgA23atEmurq7aunWrTCaTtc9kMlH0AwAAKIDhi3516tTRmTNn8rS/8MILmjdvntq3b5/nNlXPPvusFixYUFIhAgAA/CMHDx60fj1s2DANHz5cJ0+e1D333CNJ2rlzp+bNm6dp06bd9JzR0dHq3LmzatWqpd9//10rVqzQ1q1b9fnnn8vd3V0DBw5UVFSUPDw85ObmpqFDhyokJMR6zI4dOyogIED9+vXTjBkzZDabNX78eA0ZMoSiHgAAKFYvvfSSpkyZorFjx8rBwcHe4QAAAJQahi/67dmzRzk5OdbX3377rR566CH17NnT2jZo0CDFxMRYX1eqVKlEYwQAAPgngoKCZDKZZLFYrG2jR4/OM+7JJ59Ur169bmrO8+fPq3///jp37pzc3d3VrFkzff7553rooYckSW+88YYcHBzUo0cPZWZmKiwsTG+//bZ1f0dHR23YsEHPP/+8QkJCVLlyZYWHh9usuQAAAIpDVlaWevXqRcEPAACgkAxf9Lv99tttXk+bNk316tXT/fffb22rVKnSDZ8tAwAAYGSnT58u8jnff//9G/a7urpq3rx5mjdvXoFjateurY0bNxZ1aAAAADcUHh6uVatWady4cfYOBQAAoFQxfNHvz7KysrRs2TJFRUXZ3M99+fLlWrZsmXx8fPTII49owoQJN7zaLzMzU5mZmdbX6enpxRo3AADAjdSuXdveIQAAABhGTk6OZsyYoc8//1zNmjWTk5OTTf+sWbPsFBkAAICxlaqi39q1a5WamqoBAwZY25588knVrl1bfn5+OnjwoMaMGaPjx49rzZo1Bc4TGxurKVOmlEDEAAAAhXf27Fl99dVXOn/+vHJzc236hg0bZqeoAAAASsahQ4fUokULSX885uXP/vwhcAAAANgqVUW/999/X507d5afn5+1bfDgwdavAwMD5evrqwcffFCnTp1SvXr18p0nOjpaUVFR1tfp6emqWbNm8QUOAABwk+Li4vTss8/K2dlZnp6eNn/YMplMFP0AAECZ9+WXX9o7BAAAgFKp1BT9zpw5oy1bttzwCj5JCg4OliSdPHmywKKfi4uLXFxcijxGAACAf2rChAmaOHGioqOj5eDgYO9wAAAAAAAAUEqUmqLf4sWL5eXlpa5du95wXFJSkiTJ19e3BKICAAAoWpcvX1bv3r0p+AEAgHKle/fuiouLk5ubm7p3737DsX/3gXAAAIDyqlQU/XJzc7V48WKFh4erQoX/C/nUqVNasWKFunTpIk9PTx08eFAjR45Uu3bt1KxZMztGDAAAcGsGDhyo1atXa+zYsfYOBQAAoMS4u7tbb2vu7u5u52gAAABKp1JR9NuyZYuSk5P19NNP27Q7Oztry5Ytmj17tjIyMlSzZk316NFD48ePt1OkAAAA/0xsbKwefvhhxcfHKzAwUE5OTjb9s2bNslNkAAAAxWfx4sWKiYnRiy++qMWLF9s7HAAAgFKpVBT9OnbsKIvFkqe9Zs2a2rZtmx0iAgAAKB6xsbH6/PPP1ahRI0myfuL9r18DAACUNVOmTNFzzz2nSpUq2TsUAEB5N/kWrjr3r1X0cQCFxMNiAAAADGTmzJlatGiRjh49qq1bt+rLL7+0bl988YW9wwMAACg2+X3guyjMmzdPderUkaurq4KDg7V79+4bjl+9erUaN24sV1dXBQYGauPGjXninDhxonx9fVWxYkWFhobqxIkT1v6tW7fKZDLlu+3Zs0eS9MMPP+Tbv3PnzqL/BgAAgHKDoh8AAICBuLi46N5777V3GAAAAHZR1Hc2WLVqlaKiojRp0iTt379fzZs3V1hYmM6fP5/v+B07dqhPnz4aOHCgDhw4oG7duqlbt2769ttvrWNmzJihOXPmaMGCBdq1a5cqV66ssLAwXb16VZLUpk0bnTt3zmZ75pln5O/vr9atW9scb8uWLTbjWrVqVaTnDwAAyheKfgAAAAYyfPhwvfXWW/YOAwAAwC4aNmwoDw+PG26FMWvWLA0aNEgREREKCAjQggULVKlSJS1atCjf8W+++aY6deqkUaNGqUmTJpo6dapatmypuXPnSvrjKr/Zs2dr/Pjxeuyxx9SsWTMtXbpUZ8+e1dq1ayVJzs7O8vHxsW6enp769NNPFRERkaeo6enpaTP2r89zBgAAKIxS8Uw/AACA8mL37t364osvtGHDBt155515/vCzZs0aO0UGAABQ/KZMmSJ391t4jlI+srKytG/fPkVHR1vbHBwcFBoaqsTExHz3SUxMVFRUlE1bWFiYtaB3+vRpmc1mhYaGWvvd3d0VHBysxMRE9e7dO8+c69at06+//qqIiIg8fY8++qiuXr2qhg0bavTo0Xr00UcLPJ/MzExlZmZaX6enpxc4FgAAlE8U/QAAAAykWrVq6t69u73DAAAAsIvevXvLy8urSOb65ZdflJOTI29vb5t2b29vHTt2LN99zGZzvuPNZrO1/3pbQWP+6v3331dYWJhq1KhhbatSpYpmzpype++9Vw4ODvr444/VrVs3rV27tsDCX2xsrKZMmXKDMwYAAOUdRT8AAAADWbx4sb1DAAAAsIuifp6fEfz000/6/PPP9eGHH9q0V69e3eaKwrvuuktnz57Va6+9VmDRLzo62maf9PR01axZs3gCBwAApRLP9AMAAAAAAIDdWSyWIp2vevXqcnR0VEpKik17SkqKfHx88t3Hx8fnhuOv//dm51y8eLE8PT1veNvO64KDg3Xy5MkC+11cXOTm5mazAQAA/BlFPwAAAAPx9/dX3bp1C9wAAADKqtzc3CK7tackOTs7q1WrVkpISLA5RkJCgkJCQvLdJyQkxGa8JG3evNk63t/fXz4+PjZj0tPTtWvXrjxzWiwWLV68WP3798/znOb8JCUlydfX96bPDwAA4K+4vScAAICBjBgxwub1tWvXdODAAcXHx2vUqFH2CQoAAKCUioqKUnh4uFq3bq27775bs2fPVkZGhiIiIiRJ/fv31x133KHY2FhJ0vDhw3X//fdr5syZ6tq1q1auXKm9e/fq3XfflfTHLUhHjBihl19+WQ0aNJC/v78mTJggPz8/devWzebYX3zxhU6fPq1nnnkmT1xLliyRs7OzWrRoIUlas2aNFi1apPfee68YvxsAAKCso+gHAABgIMOHD8+3fd68edq7d28JRwMAAFC69erVSxcuXNDEiRNlNpsVFBSk+Ph4eXt7S5KSk5Pl4PB/N8Jq06aNVqxYofHjx2vcuHFq0KCB1q5dq6ZNm1rHjB49WhkZGRo8eLBSU1PVtm1bxcfHy9XV1ebY77//vtq0aaPGjRvnG9vUqVN15swZVahQQY0bN9aqVav0r3/9qxi+CwAAoLyg6AcAAFAKdO7cWdHR0Vq8eLG9QwEAAChVIiMjFRkZmW/f1q1b87T17NlTPXv2LHA+k8mkmJgYxcTE3PC4K1asKLAvPDxc4eHhN9zfSOqM/axQ439w/fsxAACg6PFMPwAAgFLgo48+koeHh73DAAAAAAAAgEFxpR8AAICBtGjRQiaTyfraYrHIbDbrwoULevvtt+0YGQAAAAAAAIyMoh8AAICBdOvWzea1g4ODbr/9drVv377A58EAAAAAAAAAFP0AAAAMZNKkSfYOAQAAAAAAAKUQz/QDAAAAAAAAAAAASjmu9AMAADAABwcHm2f55cdkMik7O7uEIgIAAAAAAEBpQtEPAADAAD755JMC+xITEzVnzhzl5uaWYEQAAAAAAAAoTSj6AQAAGMBjjz2Wp+348eMaO3as1q9fr759+yomJsYOkQEAAAAAAKA04Jl+AAAABnP27FkNGjRIgYGBys7OVlJSkpYsWaLatWvbOzQAAAAAAAAYFEU/AAAAg0hLS9OYMWNUv359HT58WAkJCVq/fr2aNm1q79AAAAAAAABgcNzeEwAAwABmzJih6dOny8fHRx988EG+t/sEAAAAAAAACkLRDwAAwADGjh2rihUrqn79+lqyZImWLFmS77g1a9aUcGQAAAAAAAAoDSj6AQAAGED//v1lMpnsHQYAAAAAAABKKYp+AAAABhAXF2fvEAAAAAAAAFCKOdg7AAAAAAAAAAAAAAD/DEU/AAAAAAAAAAAAoJSj6AcAAAAAAAAAAACUchT9AAAAAAAAAAAAgFKOoh8AAEAZFBsbq7vuuktVq1aVl5eXunXrpuPHj9uMuXr1qoYMGSJPT09VqVJFPXr0UEpKis2Y5ORkde3aVZUqVZKXl5dGjRql7OzskjwVAAAAAAAA3ASKfgAAAGXQtm3bNGTIEO3cuVObN2/WtWvX1LFjR2VkZFjHjBw5UuvXr9fq1au1bds2nT17Vt27d7f25+TkqGvXrsrKytKOHTu0ZMkSxcXFaeLEifY4JQAAAAAAANxABXsHAAAAgKIXHx9v8zouLk5eXl7at2+f2rVrp7S0NL3//vtasWKFOnToIElavHixmjRpop07d+qee+7Rpk2bdOTIEW3ZskXe3t4KCgrS1KlTNWbMGE2ePFnOzs72ODUAAAAAAADkgyv9AAAAyoG0tDRJkoeHhyRp3759unbtmkJDQ61jGjdurFq1aikxMVGSlJiYqMDAQHl7e1vHhIWFKT09XYcPH873OJmZmUpPT7fZAAAAAAAAUPwo+gEAAJRxubm5GjFihO699141bdpUkmQ2m+Xs7Kxq1arZjPX29pbZbLaO+XPB73r/9b78xMbGyt3d3brVrFmziM8GAAAAAAAA+TF00W/y5MkymUw2W+PGja39V69e1ZAhQ+Tp6akqVaqoR48eSklJsWPEAAAAxjNkyBB9++23WrlyZbEfKzo6Wmlpadbtxx9/LPZjAgAAAAAAwOBFP0m68847de7cOev21VdfWftGjhyp9evXa/Xq1dq2bZvOnj2r7t272zFaAAAAY4mMjNSGDRv05ZdfqkaNGtZ2Hx8fZWVlKTU11WZ8SkqKfHx8rGP++oGq66+vj/krFxcXubm52WwAAAAAAAAofhXsHcDfqVChQr5/VEpLS9P777+vFStWqEOHDpKkxYsXq0mTJtq5c6fuueeekg4VAADAMCwWi4YOHapPPvlEW7dulb+/v01/q1at5OTkpISEBPXo0UOSdPz4cSUnJyskJESSFBISoldeeUXnz5+Xl5eXJGnz5s1yc3NTQEBAyZ4QAAAAAAAo3ya7F34f/1pFH4eBGb7od+LECfn5+cnV1VUhISGKjY1VrVq1tG/fPl27dk2hoaHWsY0bN1atWrWUmJh4w6JfZmamMjMzra/T09OL9RwAAABK2pAhQ7RixQp9+umnqlq1qvUZfO7u7qpYsaLc3d01cOBARUVFycPDQ25ubho6dKhCQkKs66iOHTsqICBA/fr104wZM2Q2mzV+/HgNGTJELi4u9jw9AAAAAIXFH8sBoMwz9O09g4ODFRcXp/j4eM2fP1+nT5/Wfffdp99//11ms1nOzs6qVq2azT7e3t7WP2oVJDY2Vu7u7tatZs2axXgWAAAAJW/+/PlKS0tT+/bt5evra91WrVplHfPGG2/o4YcfVo8ePdSuXTv5+PhozZo11n5HR0dt2LBBjo6OCgkJ0VNPPaX+/fsrJibGHqcEAAAAAACAGzD0lX6dO3e2ft2sWTMFBwerdu3a+vDDD1WxYsVbnjc6OlpRUVHW1+np6RT+AABAmWKxWP52jKurq+bNm6d58+YVOKZ27drauHFjUYYGAAAAAACAYmDoK/3+qlq1amrYsKFOnjwpHx8fZWVlKTU11WZMSkpKvs8A/DMXFxe5ubnZbAAAAAAAAAAAAEBpVaqKfpcuXdKpU6fk6+urVq1aycnJSQkJCdb+48ePKzk5WSEhIXaMEgAAAAAAAEYxb9481alTR66urgoODtbu3btvOH716tVq3LixXF1dFRgYmOeuBxaLRRMnTpSvr68qVqyo0NBQnThxwmZMnTp1ZDKZbLZp06bZjDl48KDuu+8+ubq6qmbNmpoxY0bRnDAAACi3DH17zxdffFGPPPKIateurbNnz2rSpElydHRUnz595O7uroEDByoqKkoeHh5yc3PT0KFDFRISonvuucfeoQMAUO4dbdyk0Ps0OXa0GCIBAABAebVq1SpFRUVpwYIFCg4O1uzZsxUWFqbjx4/Ly8srz/gdO3aoT58+io2N1cMPP6wVK1aoW7du2r9/v5o2bSpJmjFjhubMmaMlS5bI399fEyZMUFhYmI4cOSJXV1frXDExMRo0aJD1ddWqVa1fp6enq2PHjgoNDdWCBQt06NAhPf3006pWrZoGDx5cjN8RAABQlhm66PfTTz+pT58++vXXX3X77berbdu22rlzp26//XZJ0htvvCEHBwf16NFDmZmZCgsL09tvv23nqAEAAAAAAGAEs2bN0qBBgxQRESFJWrBggT777DMtWrRIY8eOzTP+zTffVKdOnTRq1ChJ0tSpU7V582bNnTtXCxYskMVi0ezZszV+/Hg99thjkqSlS5fK29tba9euVe/eva1zVa1atcBH0CxfvlxZWVlatGiRnJ2ddeeddyopKUmzZs2i6AeUN5PdC7+Pf62ijwNAmWDo23uuXLlSZ8+eVWZmpn766SetXLlS9erVs/a7urpq3rx5unjxojIyMrRmzZq/fZ4fAAAAAAAAyr6srCzt27dPoaGh1jYHBweFhoYqMTEx330SExNtxktSWFiYdfzp06dlNpttxri7uys4ODjPnNOmTZOnp6datGih1157TdnZ2TbHadeunZydnW2Oc/z4cf3222/5xpaZman09HSbDQAA4M8MfaUfAAAAAAAAcCt++eUX5eTkyNvb26bd29tbx44dy3cfs9mc73iz2Wztv95W0BhJGjZsmFq2bCkPDw/t2LFD0dHROnfunGbNmmWdx9/fP88c1/tuu+22PLHFxsZqypQpf3veAACg/KLoBwAAAAAAABShqKgo69fNmjWTs7Oznn32WcXGxsrFxeWW5oyOjraZNz09XTVr1vzHsQIAgLLD0Lf3BAAAAAAAAG5F9erV5ejoqJSUFJv2lJSUAh8P4+Pjc8Px1/9bmDklKTg4WNnZ2frhhx9ueJw/H+OvXFxc5ObmZrMBAAD8GVf6AQAAAAAAoMxxdnZWq1atlJCQoG7dukmScnNzlZCQoMjIyHz3CQkJUUJCgkaMGGFt27x5s0JCQiRJ/v7+8vHxUUJCgoKCgiT9ccXdrl279PzzzxcYS1JSkhwcHOTl5WU9zksvvaRr167JycnJepxGjRrle2tP5O9o4yaF3qfJsaPFEAkAAMbAlX4AAAAAAAAok6KiorRw4UItWbJER48e1fPPP6+MjAxFRERIkvr376/o6Gjr+OHDhys+Pl4zZ87UsWPHNHnyZO3du9daJDSZTBoxYoRefvllrVu3TocOHVL//v3l5+dnLSwmJiZq9uzZ+uabb/T9999r+fLlGjlypJ566ilrQe/JJ5+Us7OzBg4cqMOHD2vVqlV68803bW7fCQAAUFhc6QcAAAAAAIAyqVevXrpw4YImTpwos9msoKAgxcfHy9vbW5KUnJwsB4f/+0x8mzZttGLFCo0fP17jxo1TgwYNtHbtWjVt2tQ6ZvTo0crIyNDgwYOVmpqqtm3bKj4+Xq6urpL+uA3nypUrNXnyZGVmZsrf318jR460Kei5u7tr06ZNGjJkiFq1aqXq1atr4sSJGjx4cAl9ZwAAQEFK85XkFP0AAAAAAABQZkVGRhZ4O8+tW7fmaevZs6d69uxZ4Hwmk0kxMTGKiYnJt79ly5bauXPn38bVrFkz/e9///vbcQAAADeL23sCAAAAAAAAAAAApRxFPwAAAAAAAAAAAKCU4/aeAAAAAAAAAIAiUZqfhQUApR1FPwAAAAAAAAAoZeqM/axQ439wLaZAAACGwe09AQAAAAAAAAAAgFKOoh8AAAAAAAAAAABQynF7TwAAAAAAAAAAyjCetQgj4jbFRY8r/QAAAAAAAAAAAIBSjqIfAAAAAAAAAAAAUMpxe08AAAAAxjHZvfD7+Ncq+jgAAAAAAChluNIPAAAAAAAAAAAAKOW40g8AAAAAAKAUOdq4SaH3aXLsaDFEAgAAACOh6AcAAAAAAAAAQBGoM/azQo3/wbWYAkGpwAd5UNQo+gEAAAAAABQVnk0KAAAAO+GZfgAAAAAAAAAAAEApx5V+AAAAAAAAAACgzOK2qygvuNIPAAAAAAAAAAAAKOW40g88LBQAAAAAAAAAAKCUo+gHAACA8mmye+H38a9V6F0K+wErPlwFAAAAAABuBbf3BAAAAAAAAAAAAEo5in4AAAAAAAAAAABAKUfRDwAAAAAAAAAAACjleKYfYFCFff6PxDOAUH7xfrkFhX2W2S08xwwAAAAAAABAyeFKPwAAAAAAAAAAAKCUo+gHAABQBm3fvl2PPPKI/Pz8ZDKZtHbtWpt+i8WiiRMnytfXVxUrVlRoaKhOnDhhM+bixYvq27ev3NzcVK1aNQ0cOFCXLl0qwbMAAAAAAADAzeL2ngAAAGVQRkaGmjdvrqefflrdu3fP0z9jxgzNmTNHS5Yskb+/vyZMmKCwsDAdOXJErq6ukqS+ffvq3Llz2rx5s65du6aIiAgNHjxYK1asKOnTAWBvhb0ttMStoQEAAACghFH0AwAAKIM6d+6szp0759tnsVg0e/ZsjR8/Xo899pgkaenSpfL29tbatWvVu3dvHT16VPHx8dqzZ49at24tSXrrrbfUpUsXvf766/Lz8yuxcwGKQ2GfB1vunwULAAAAADA8Qxf9YmNjtWbNGh07dkwVK1ZUmzZtNH36dDVq1Mg6pn379tq2bZvNfs8++6wWLFhQ0uGiPOGTzuVWYf9AKPFHQhS/OmM/K/Q+P7gWQyAoNU6fPi2z2azQ0FBrm7u7u4KDg5WYmKjevXsrMTFR1apVsxb8JCk0NFQODg7atWuXHn/8cXuEDgAAAAAAgAIYuui3bds2DRkyRHfddZeys7M1btw4dezYUUeOHFHlypWt4wYNGqSYmBjr60qVKtkjXAAAgFLBbDZLkry9vW3avb29rX1ms1leXl42/RUqVJCHh4d1TH4yMzOVmZlpfZ2enl5UYQMAAAAAAOAGDF30i4+Pt3kdFxcnLy8v7du3T+3atbO2V6pUST4+PiUdHgAAAP4iNjZWU6ZMsXcYAAAAAAAA5Y6DvQMojLS0NEmSh4eHTfvy5ctVvXp1NW3aVNHR0bp8+fIN58nMzFR6errNBgAAUF5c/7BUSkqKTXtKSoq1z8fHR+fPn7fpz87O1sWLF2/4Yavo6GilpaVZtx9//LGIowcAWE12L/wGlEPz5s1TnTp15OrqquDgYO3evfuG41evXq3GjRvL1dVVgYGB2rhxo02/xWLRxIkT5evrq4oVKyo0NFQnTpyw9v/www8aOHCg/P39VbFiRdWrV0+TJk1SVlaWzRiTyZRn27lzZ9GePAAAKFdKTdEvNzdXI0aM0L333qumTZta25988kktW7ZMX375paKjo/Wf//xHTz311A3nio2Nlbu7u3WrWbNmcYcPAABgGP7+/vLx8VFCQoK1LT09Xbt27VJISIgkKSQkRKmpqdq3b591zBdffKHc3FwFBwcXOLeLi4vc3NxsNgAAAHtZtWqVoqKiNGnSJO3fv1/NmzdXWFhYng83Xbdjxw716dNHAwcO1IEDB9StWzd169ZN3377rXXMjBkzNGfOHC1YsEC7du1S5cqVFRYWpqtXr0qSjh07ptzcXL3zzjs6fPiw3njjDS1YsEDjxo3Lc7wtW7bo3Llz1q1Vq1bF840AAADlgqFv7/lnQ4YM0bfffquvvvrKpn3w4MHWrwMDA+Xr66sHH3xQp06dUr169fKdKzo6WlFRUdbX6enpFP4AAECZcunSJZ08edL6+vTp00pKSpKHh4dq1aqlESNG6OWXX1aDBg3k7++vCRMmyM/PT926dZMkNWnSRJ06ddKgQYO0YMECXbt2TZGRkerdu7f8/PzsdFYAyrqjjZsUanyTY0eLKRIAZcWsWbM0aNAgRURESJIWLFigzz77TIsWLdLYsWPzjH/zzTfVqVMnjRo1SpI0depUbd68WXPnztWCBQtksVg0e/ZsjR8/Xo899pgkaenSpfL29tbatWvVu3dvderUSZ06dbLOWbduXR0/flzz58/X66+/bnM8T09PHlkDAACKTKko+kVGRmrDhg3avn27atSoccOx1z95fvLkyQKLfi4uLnJxcSnyOAHY2a3crsi/VtHHAQAGsHfvXj3wwAPW19c/8BQeHq64uDiNHj1aGRkZGjx4sFJTU9W2bVvFx8fL1dXVus/y5csVGRmpBx98UA4ODurRo4fmzJlT4ucCAABwK7KysrRv3z5FR0db2xwcHBQaGqrExMR890lMTLT5oLgkhYWFae3atZL++CCV2WxWaGiotd/d3V3BwcFKTExU79698503LS0tz+NqJOnRRx/V1atX1bBhQ40ePVqPPvpoYU8TAADAytBFP4vFoqFDh+qTTz7R1q1b5e/v/7f7JCUlSZJ8fX2LOToAAADjat++vSwWS4H9JpNJMTExiomJKXCMh4eHVqxYURzhAQAAFLtffvlFOTk58vb2tmn39vbWsWPH8t3HbDbnO95sNlv7r7cVNOavTp48qbfeesvmKr8qVapo5syZuvfee+Xg4KCPP/5Y3bp109q1awss/GVmZiozM9P6Oj09Pd9xAACg/DJ00W/IkCFasWKFPv30U1WtWtW6eHJ3d1fFihV16tQprVixQl26dJGnp6cOHjyokSNHql27dmrWrJmdowcAAAAAAEB59vPPP6tTp07q2bOnBg0aZG2vXr26zRWFd911l86ePavXXnutwKJfbGyspkyZUuwxAwCA0svB3gHcyPz585WWlqb27dvL19fXuq1atUqS5OzsrC1btqhjx45q3Lix/v3vf6tHjx5av369nSMHAAAAAACAPVWvXl2Ojo5KSUmxaU9JSSnwOXo+Pj43HH/9vzcz59mzZ/XAAw+oTZs2evfdd/823uDgYJtnMv9VdHS00tLSrNuPP/74t3MCAIDyxdBX+t3ollSSVLNmTW3btq2EogEAAAAAAEBp4ezsrFatWikhIUHdunWTJOXm5iohIUGRkZH57hMSEqKEhASNGDHC2rZ582aFhIRIkvz9/eXj46OEhAQFBQVJ+uM2m7t27dLzzz9v3efnn3/WAw88oFatWmnx4sVycPj7z90nJSXd8HE1Li4ucnFx+dt5AABA+WXooh8kTXYv/D7+tYo+jjKsztjPCr3PD67FEAhskBdjuqW8TOtaDJEAAACgpBxt3KRQ45scO1pMkQCFFxUVpfDwcLVu3Vp33323Zs+erYyMDEVEREiS+vfvrzvuuEOxsbGSpOHDh+v+++/XzJkz1bVrV61cuVJ79+61XqlnMpk0YsQIvfzyy2rQoIH8/f01YcIE+fn5WQuLP//8s9q3b6/atWvr9ddf14ULF6zxXL8acMmSJXJ2dlaLFi0kSWvWrNGiRYv03nvvldS3BgAAlEEU/QAAAAAAAPLBhxFLv169eunChQuaOHGizGazgoKCFB8fL29vb0lScnKyzVV4bdq00YoVKzR+/HiNGzdODRo00Nq1a9W0aVPrmNGjRysjI0ODBw9Wamqq2rZtq/j4eLm6/pH8zZs36+TJkzp58qRq1KhhE8+f72o1depUnTlzRhUqVFDjxo21atUq/etf/yrObwcAACjjKPoBAAAAKBb8sRwAYASRkZEF3s5z69atedp69uypnj17FjifyWRSTEyMYmJi8u0fMGCABgwYcMOYwsPDFR4efsMxAAAAhfX3NxQHAAAAAAAAAAAAYGhc6QcAAIBSjyvKAAAAAABAeUfRDwAAAADKEYrkAAAAAFA2UfQDABSvye6FG+9fq3jiAAAAAAAAAIAyjGf6AQAAAAAAAAAAAKUcV/oBAAAAAGBn3HYVAAAAwD/FlX4AAAAAAAAAAABAKUfRDwAAAAAAAAAAACjluL1nCeJ2LQAAAAAAAAAAACgOXOkHAAAAAAAAAAAAlHIU/QAAAAAAAAAAAIBSjqIfAAAAAAAAAAAAUMpR9AMAAAAAAAAAAABKOYp+AAAAAAAAAAAAQClH0Q8AAAAAAAAAAAAo5Sj6AQAAAAAAAAAAAKUcRT8AAAAAAAAAAACglKPoBwAAAAAAAAAAAJRyFP0AAAAAAAAAAACAUo6iHwAAAAAAAAAAAFDKUfQDAAAAAAAAAAAASjmKfgAAAAAAAAAAAEApR9EPAAAAAAAAAAAAKOUo+gEAAAAAAAAAAAClHEU/AAAAAAAAAAAAoJSj6AcAAAAAAAAAAACUchT9AAAAAAAAAAAAgFKOoh8AAAAAAAAAAABQylH0AwAAAAAAAAAAAEo5in4AAAAAAAAAAABAKVdmin7z5s1TnTp15OrqquDgYO3evdveIQEAAJQJrLMAAEBpVti1zOrVq9W4cWO5uroqMDBQGzdutOm3WCyaOHGifH19VbFiRYWGhurEiRM2Yy5evKi+ffvKzc1N1apV08CBA3Xp0iWbMQcPHtR9990nV1dX1axZUzNmzCiaEwYAAOVWmSj6rVq1SlFRUZo0aZL279+v5s2bKywsTOfPn7d3aAAAAKUa6ywAAFCaFXYts2PHDvXp00cDBw7UgQMH1K1bN3Xr1k3ffvutdcyMGTM0Z84cLViwQLt27VLlypUVFhamq1evWsf07dtXhw8f1ubNm7VhwwZt375dgwcPtvanp6erY8eOql27tvbt26fXXntNkydP1rvvvlt83wwAAFDmlYmi36xZszRo0CBFREQoICBACxYsUKVKlbRo0SJ7hwYAAFCqsc4CAAClWWHXMm+++aY6deqkUaNGqUmTJpo6dapatmypuXPnSvrjKr/Zs2dr/Pjxeuyxx9SsWTMtXbpUZ8+e1dq1ayVJR48eVXx8vN577z0FBwerbdu2euutt7Ry5UqdPXtWkrR8+XJlZWVp0aJFuvPOO9W7d28NGzZMs2bNKpHvCwAAKJtKfdEvKytL+/btU2hoqLXNwcFBoaGhSkxMtGNkAAAApRvrLAAAUJrdylomMTHRZrwkhYWFWcefPn1aZrPZZoy7u7uCg4OtYxITE1WtWjW1bt3aOiY0NFQODg7atWuXdUy7du3k7Oxsc5zjx4/rt99++4dnDgAAyqsK9g7gn/rll1+Uk5Mjb29vm3Zvb28dO3Ys330yMzOVmZlpfZ2Wlibpj1srFKfczMuF3ifdZCn0PjlXcgo1/lJO4cZLxf+9KknkxZjIizGVRF4KmxOJvJCXws9vsRT+50V5xDorr5J4L/DzibwUN/JiTOTFmIyaFyOus/58DKOstW5lLWM2m/Mdbzabrf3X2240xsvLy6a/QoUK8vDwsBnj7++fZ47rfbfddlue2Oy1zpIK/14w6s8nqXz/jCIvJYO8GBN5MSbyUvj5/26dVeqLfrciNjZWU6ZMydNes2ZNO0RzY+63tNfRQo2++1YO4X5rkZUV5MWYyIsxFf7sC5cTibzcivKel99//13u5fzfQHFhnZVXod8L5fzfJnkxJvJiTOTFmPj/EtZaxYV1Vl5Gfy8YDXkxJvJiTOTFmMjL36+zSn3Rr3r16nJ0dFRKSopNe0pKinx8fPLdJzo6WlFRUdbXubm5unjxojw9PWUymYo13uKWnp6umjVr6scff5Sbm5u9w8H/R16MibwYDzkxprKUF4vFot9//11+fn72DqVUYJ1lqyy9F8oS8mJM5MWYyIsxlaW8GG2tdStrGR8fnxuOv/7flJQU+fr62owJCgqyjjl//rzNHNnZ2bp48aLNPPkd58/H+CvWWShp5MWYyIsxkRdjKkt5udl1Vqkv+jk7O6tVq1ZKSEhQt27dJP2x6ElISFBkZGS++7i4uMjFxcWmrVq1asUcaclyc3Mr9f+IyyLyYkzkxXjIiTGVlbzwqfObxzorf2XlvVDWkBdjIi/GRF6MqazkxUhrrVtZy4SEhCghIUEjRoywtm3evFkhISGSJH9/f/n4+CghIcFa5EtPT9euXbv0/PPPW+dITU3Vvn371KpVK0nSF198odzcXAUHB1vHvPTSS7p27ZqcnJysx2nUqFG+t/aUWGfBfsiLMZEXYyIvxlRW8nIz6yyHEoij2EVFRWnhwoVasmSJjh49queff14ZGRmKiIiwd2gAAAClGussAABQmv3dWqZ///6Kjo62jh8+fLji4+M1c+ZMHTt2TJMnT9bevXutRUKTyaQRI0bo5Zdf1rp163To0CH1799ffn5+1sJikyZN1KlTJw0aNEi7d+/W119/rcjISPXu3dv66fwnn3xSzs7OGjhwoA4fPqxVq1bpzTfftLmSDwAAoLBK/ZV+ktSrVy9duHBBEydOlNlsVlBQkOLj4/M8VBkAAACFwzoLAACUZn+3lklOTpaDw/99Jr5NmzZasWKFxo8fr3HjxqlBgwZau3atmjZtah0zevRoZWRkaPDgwUpNTVXbtm0VHx8vV1dX65jly5crMjJSDz74oBwcHNSjRw/NmTPH2u/u7q5NmzZpyJAhatWqlapXr66JEydq8ODBJfBdAQAAZVWZKPpJUmRkZIG3ZihPXFxcNGnSpDy3e4B9kRdjIi/GQ06MibyAddYfeC8YE3kxJvJiTOTFmMhL8bvRWmbr1q152nr27KmePXsWOJ/JZFJMTIxiYmIKHOPh4aEVK1bcMK5mzZrpf//73w3HlBe8D4yJvBgTeTEm8mJM5TEvJovFYrF3EAAAAAAAAAAAAABuXZl4ph8AAAAAAAAAAABQnlH0AwAAAAAAAAAAAEo5in4AAAAAAAAAAABAKUfRDwAAAAAAAAAAACjlKPoBdmKxWOwdAvLx57yQI+MhJwCAm8HvC2NinWVs5AQAcDP4fWFMrLOMjZygJFH0Kydyc3PtHQL+4voP++v/JUfGcOnSJWVlZenatWsymUzkxSAOHTokSTKZTCyUDCQ+Pl6JiYn2DgOwO35XGA/rLGNinWVMrLOMiXUW8Ad+VxgP6yxjYp1lTKyzjKmsr7Mo+pVxW7du1ffffy8HBwd+2BvIhg0bNGzYMHXv3l2xsbG6dOmSHBwc+OFvZ6tXr1afPn3Uvn179ejRQ2lpaXJw4MekvX388cdq3ry5hg4dKomFklEsWLBAXbp0sXcYgF2xzjIm1lnGxDrLmFhnGRPrLIB1llGxzjIm1lnGxDrLmMrDOot3fxm2atUqdejQQU888YROnDjBQskgFi1apL59+8rZ2VlXr17Vhg0bFB0drZycHJlMJnuHV24tWrRIERERuvfee9WpUyedO3dOkyZNsvbzS9l+fv/9d9WrV0/Lli1TRESEJPFesbOFCxdq2LBhWrVqlUJCQvL087sG5QHrLGNinWVMrLOMi3WW8bDOAlhnGRXrLGNinWVcrLOMp7yssyrYOwAUj507d2r69Onq3bu3UlNTNWDAAMXFxalBgwbKzc3l0x528uWXX2ry5MlauHChnnjiCUnStGnT9NFHH+ny5cuqWrWqnSMsnzZs2KAJEyYoLi5O//rXvyRJ586dk6+vr7KysmSxWOTi4mLnKMsvFxcXNWjQQO+8844ee+wxOTo66r333pMkJScnq1atWnaOsHyJi4vTs88+q+XLl6tnz546ffq04uPjdeLECd1xxx165pln5O7uzu8alGmss4yJdZYxsc4yNtZZxsI6C2CdZVSss4yJdZaxsc4ylvK0zird0aNAKSkp8vf318SJEzVs2DBVqVJFAwYMsH5CKicnx94hljvXrl3Tnj171L59e3Xp0sWagyeffFI//fSTzpw5Y+cIy6/vv/9effr00cMPP2xtO378uOLi4nTXXXepdevW2rNnjyQ+IWUPbdu2lSTdd999eu+997Rq1So988wzuu+++7Ru3TplZ2fbOcLyZf/+/ZKkOnXqaN++fQoNDdWnn36qLVu2KC4uTs2bN1dKSgq3eEGZxjrLeFhnGRfrLGNjnWUsrLMA1llGxDrLuFhnGRvrLGMpV+ssC8qsQ4cOWb9ev369pWPHjpY2bdpYjh8/bm2/du2aPUIrl3Jzcy1r1661/Pe//7W25eTkWH788UfLbbfdZjlw4EC++6D4Xb161XLmzBnr66eeespSq1Yty0cffWTZvHmzpWfPnpYaNWpYfvvtN/sFWY79/PPPljvuuMOSlJRksVgslo8++sji5ORk8fDwsFy+fNlisfBeKWmDBg2yODg4WGrUqGEZN26c5eLFi5bs7GzL4cOHLSEhIZZ27dpZMjMz7R0mUKxYZxkL6yzjYp1lbKyzjId1FsA6y2hYZxkX6yxjY51lPOVlncWVfmWQ5f9Xops2bWpte/jhh62fkHr66ad18uRJZWdn66mnntLx48ftFWq5YjKZ9PDDD6tTp06S/siTg4ODPD09ddttt1k/KWWxWDRx4kRlZGRwn+cS4uLiYr2kPiUlRb6+vtq+fbt69Oih0NBQjRs3Tunp6UpKSrJvoOWQxWKRn5+fAgMDVaVKFUnSpEmT1LBhQ2VlZSkqKkoS90QvKdd/Tr377rt64YUX5O/vr2HDhqlatWpydHRUQECA+vbtqzNnzujChQt2jhYoHqyzjIl1lnGxzjIu1lnGwjoLYJ1lVKyzjIt1lnGxzjKW8rbO4pl+ZdBff1hYLBaZTCZ17dpVJpNJb731lvr166dr164pOTlZy5Yts1Ok5Y+jo6P16+t5ut5WocIfb8euXbvq6NGjNg/dRcnx9vZWbGysHB0drfdwTk9PV6NGjVSjRg17h1fuXH+f1KlTR3FxcdqwYYM8PDz04Ycfas+ePXrsscdUp04djRkzxs6Rlg+Ojo7KycmRo6Oj3nrrLR08eFDe3t6SZG2vWrWq/Pz8VLlyZTtHCxQP1lnGxTrL+FhnGQvrLGNhnQWwzjIy1lnGxzrLWFhnGUt5W2dxpV85YDKZrJ+W6tKli/r166ddu3bJyclJP//8sypUqMA90e3EYrHot99+05UrV3TlyhU98cQTOnXqlL777jvrL2mUvOsPa3VwcFBWVpZee+011ahRQ/Xq1bNzZOXP9fdA7dq19corr8jX11cff/yxfHx81LVrV23btk3//ve/7Rxl+fLnn03NmjWzac/KytIHH3ygBg0aqFq1anaKEChZrLOMi3WWMbHOMg7WWcbDOguwxTrLuFhnGRPrLONgnWU85WmdZbJYSvtTCVEY6enpeuSRR/Tbb79p//79qlChgrKzs62fykHJS0tLU8uWLfX777/L09NTBw8elJOTE3mxs8zMTO3cuVPTpk3Tzz//rH379snJycn6aSmUrF9//VULFy7U008/LS8vrzz9vF/s6+rVq0pMTNS0adNkNpu1b98+VahQwfrJXKC8YJ1lPKyzjIl1lrGwzjI21lnAH1hnGQ/rLGNinWUsrLOMrayus/gXVc5s375dFSpUsP4D5geL/V2/HUKdOnW0Y8cO8mIQBw8e1CeffCInJyfrAom82EdOTo48PT01duzYAseQF/v65ptvtGrVKplMJu3du5efYyi3WGcZD+ssY2KdZRyss4yPdRbwB9ZZxsM6y5hYZxkH6yzjK6vrLK70K6X+yaczrleqy8I/YKO5lbxkZ2dr7dq1evzxx+Xo6EheisGt5uWnn35SrVq15ODgQF6KAZ8yM6Zbycu1a9f0ww8/qF69erxfUCawzjIm1lnGxDrLmFhnGRPrLIB1llGxzjIm1lnGxDrLmFhn/R+KfqXQn/8B//e//1WVKlV03333/e1+f/1HW9ovUzWaW8lLfjkgL0XrVt8vf0Veitat5uWveSAvRYv3C8A6y6hYZxkTvzeMiXWWMfF+AVhnGRXrLGPi94Yxsc4yJt4vtihJlzIWi8X6D3j06NEaNmyYjhw5ogsXLvztftcXSLt27VJaWlqZ+AdsFLealz8jL0Xvn7xfriMvRe+f5OV6HshL0eP9ArDOMirWWcbE7w1jYp1lTLxfANZZRsU6y5j4vWFMrLOMifdLPiwolWbPnm3x8vKyfP3115bMzMwbjs3NzbV+PW/ePEvDhg0t3377bXGHWC6RF2MiL8ZEXoyJvAC8D4yKvBgTeTEm8mJM5AXgfWBU5MWYyIsxkRdjIi//h6JfKZOTk2O5cuWK5ZFHHrFMnTrVpu/P/1ivv/5z24IFCyxubm6WDz/8sERiLU/IizGRF2MiL8ZEXgDeB0ZFXoyJvBgTeTEm8gLwPjAq8mJM5MWYyIsxkZe8uL1nKWD506WmDg4OcnV11Q8//GC9vUFOTo4kyWQyKSsrS/v27bO+vn5J6jvvvKPRo0dr8eLF6tmzZwmfQdlEXoyJvBgTeTEm8gLwPjAq8mJM5MWYyIsxkReA94FRkRdjIi/GRF6MibzcGEU/g7P86Z6/K1eu1Ny5cyVJdevW1bp16yRJjo6O1vFnzpzRsmXL9N1331nb3n77bY0ZM0aLFi1S9+7dSzD6sou8GBN5MSbyYkzkBeB9YFTkxZjIizGRF2MiLwDvA6MiL8ZEXoyJvBgTebkJJXE5IW5NTk6O9etDhw5ZWrRoYWnRooVlzZo1lt27d1tq1Khh6dmzp8VisViuXLli+f333y2dOnWyPPTQQ9Z9t2zZYvH19S1zl6jaE3kxJvJiTOTFmMgLwPvAqMiLMZEXYyIvxkReAN4HRkVejIm8GBN5MSbycnNMFsufroWEIY0aNUqnTp3STz/9pBMnTsjHx0fDhg2Tl5eXRo0aJUdHR3l6eio3N1dZWVnas2ePnJycJElHjx7V77//rrvvvtvOZ1H2kBdjIi/GRF6MibwAvA+MirwYE3kxJvJiTOQF4H1gVOTFmMiLMZEXYyIvN0bRz+CWLl2qESNGaMuWLapdu7YyMzMVHh6urKwsDRw4UGFhYfrPf/6j9PR0Va9eXS+88IIqVKig7Oxs6z1sUfTIizGRWz+hTAAACBhJREFUF2MiL8ZEXgDeB0ZFXoyJvBgTeTEm8gLwPjAq8mJM5MWYyIsxkZebYN8LDfF3Jk6caLn33nstOTk5ltzcXIvFYrH8+OOPlrvuustSt25dm8tQr1+imp2dbZdYyxPyYkzkxZjIizGRF4D3gVGRF2MiL8ZEXoyJvAC8D4yKvBgTeTEm8mJM5OXvOdi76Ij8Wf7/BZgVK1ZUZmamMjMzZTKZdO3aNdWoUUOvvvqqzp07p3nz5undd9+VJDk4OCgnJ8fmQZUoWuTFmMiLMZEXYyIvAO8DoyIvxkRejIm8GBN5AXgfGBV5MSbyYkzkxZjIy82j6GdQJpNJkvTII48oKSlJM2bMkCTrvWezsrIUFhYmT09PLVu2THFxcZJU7v4BlzTyYkzkxZjIizGRF4D3gVGRF2MiL8ZEXoyJvAC8D4yKvBgTeTEm8mJM5KUQ7HB1IQpp8eLFFicnJ8uLL75o2b17t+XkyZOWrl27WiZMmGA5e/as5YknnrAEBgZali1bZu9QyxXyYkzkxZjIizGRF4D3gVGRF2MiL8ZEXoyJvAC8D4yKvBgTeTEm8mJM5OXGKPqVEh999JHFy8vLUqNGDUuNGjUsLVq0sFy5csVisfxxz9r+/ftbfvjhBztHWf6QF2MiL8b0/9q7l9Co7j4MwO9EHS9RKwVBxUvAuBDaSsWVELTiIgt3LgotiCJ4TaWloaULRaISLCpiQd2piAu7EFpKQVDxEtyJF1BEsV7ABsSNEoNNbPIt+n2BkH4U245zTvs8q8n/zMw5M28O/OCdOSOXYpILOA+KSi7FJJdikksxyQWcB0Ull2KSSzHJpZjk8v9VBgf/ezFUCu/nn3/O48eP8+LFi7S0tGTUqFF5+fJlxo0b96+8Nm1RyKWY5FJMcikmuYDzoKjkUkxyKSa5FJNcwHlQVHIpJrkUk1yKSS6/T+lXYv/mf9wik0sxyaWY5FJMcgHnQVHJpZjkUkxyKSa5gPOgqORSTHIpJrkUk1x+o/QDAAAAAACAkmuo9wEAAAAAAAAAf43SDwAAAAAAAEpO6QcAAAAAAAAlp/QDAAAAAACAklP6AQAAAAAAQMkp/QAAAAAAAKDklH4AAAAAAABQcko/AAAAAAAAKDmlH1Boq1evTqVSSaVSSbVaTXNzczo6OvLq1as/fOzRo0czZcqUEetNTU3Zv3//33+wAAAlYs4CAKgNcxZQL6PrfQAAf6S1tTVHjhzJL7/8kh9//DGbN2/OmDFj8tVXX9X1uPr6+lKtVut6DAAAf4U5CwCgNsxZQD34ph9QeGPHjs20adMyZ86cbNy4McuXL8/333+fffv25d13301jY2NmzZqVTZs2paenJ0ly/vz5rFmzJs+ePRv6ZNX27duzdOnSPHz4MJ999tnQ+v90dXWlpaUl48ePz6xZs7Jly5a8ePFiaHtTU1N27NiRVatWZfLkyVm3bt3Qp69Onz6d+fPnZ+LEiWltbU13d/cbf58AAF6XOQsAoDbMWUA9KP2A0hk/fnz6+vrS0NCQAwcO5ObNmzl27FjOnTuXL774IkmyePHi7N+/P5MnT053d3e6u7vT3t6eU6dOZebMmeno6BhaT5J79+6ltbU1K1euzI0bN3Ly5Ml0dXWlra1t2L737NmTBQsW5OrVq9m6dWuSpLe3N3v27Mnx48dz8eLFPHr0KO3t7W/2TQEA+BuYswAAasOcBbwJLu8JlMbg4GDOnj2b06dP55NPPsmnn346tK2pqSk7d+7Mhg0bcvDgwVSr1bz11lupVCqZNm3asOcZNWpUJk2aNGy9s7MzH3/88dBzzps3LwcOHMiSJUty6NChjBs3LkmybNmyfP7550OPu3TpUvr7+3P48OHMnTs3SdLW1paOjo4avQsAAH8/cxYAQG2Ys4A3SekHFN4PP/yQiRMnpr+/PwMDA/noo4+yffv2nDlzJp2dnbl9+3aeP3+eV69e5eXLl+nt7c2ECRNeax/Xr1/PjRs3cuLEiaG1wcHBDAwM5P79+5k/f36SZNGiRSMeO2HChKEBKUmmT5+eJ0+e/MlXCwDw5pizAABqw5wF1IPSDyi8Dz74IIcOHUq1Ws2MGTMyevToPHjwICtWrMjGjRuza9euvP322+nq6sratWvT19f32kNST09P1q9fny1btozYNnv27KHbjY2NI7aPGTNm2N+VSiWDg4OvtX8AgHowZwEA1IY5C6gHpR9QeI2NjWlubh62duXKlQwMDGTv3r1paPjt50m//fbbYfepVqv59ddfRzzf760vXLgwt27dGrEfAIB/MnMWAEBtmLOAemio9wEA/BnNzc3p7+/PN998k59++inHjx/P4cOHh92nqakpPT09OXv2bJ4+fZre3t6h9YsXL+bx48d5+vRpkuTLL7/M5cuX09bWlmvXruXu3bv57rvvRvzwMQDAP505CwCgNsxZQK0p/YBSWrBgQfbt25fdu3fnnXfeyYkTJ9LZ2TnsPosXL86GDRvy4YcfZurUqfn666+TJB0dHXnw4EHmzp2bqVOnJknee++9XLhwIXfu3ElLS0vef//9bNu2LTNmzHjjrw0AoJ7MWQAAtWHOAmqtMuhCvQAAAAAAAFBqvukHAAAAAAAAJaf0AwAAAAAAgJJT+gEAAAAAAEDJKf0AAAAAAACg5JR+AAAAAAAAUHJKPwAAAAAAACg5pR8AAAAAAACUnNIPAAAAAAAASk7pBwAAAAAAACWn9AMAAAAAAICSU/oBAAAAAABAySn9AAAAAAAAoOT+A35rBrbGiRJuAAAAAElFTkSuQmCC",
|
||
"text/plain": [
|
||
"<Figure size 1800x500 with 3 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"methods = results_df[\"Method\"].unique()\n",
|
||
"\n",
|
||
"fig, axs = plt.subplots(1, 3, figsize=(18, 5))\n",
|
||
"\n",
|
||
"# Pivot the DataFrame and reorder columns to ensure AI is first\n",
|
||
"pivot_depth = results_df.pivot(\n",
|
||
" index=\"Pattern\", columns=\"Method\", values=\"Depth\"\n",
|
||
")[[\"AI\", \"ACG\", \"Depth-LNN-KMS\", \"Basic\"]]\n",
|
||
"pivot_gates = results_df.pivot(\n",
|
||
" index=\"Pattern\", columns=\"Method\", values=\"Gates(2q)\"\n",
|
||
")[[\"AI\", \"ACG\", \"Depth-LNN-KMS\", \"Basic\"]]\n",
|
||
"pivot_time = results_df.pivot(\n",
|
||
" index=\"Pattern\", columns=\"Method\", values=\"Time (s)\"\n",
|
||
")[[\"AI\", \"ACG\", \"Depth-LNN-KMS\", \"Basic\"]]\n",
|
||
"\n",
|
||
"pivot_depth.plot(kind=\"bar\", ax=axs[0], legend=False)\n",
|
||
"axs[0].set_title(\"Circuit Depth Comparison\")\n",
|
||
"axs[0].set_ylabel(\"Depth\")\n",
|
||
"axs[0].set_xlabel(\"Pattern\")\n",
|
||
"axs[0].tick_params(axis=\"x\", rotation=45)\n",
|
||
"pivot_gates.plot(kind=\"bar\", ax=axs[1], legend=False)\n",
|
||
"axs[1].set_title(\"2Q Gate Count Comparison\")\n",
|
||
"axs[1].set_ylabel(\"Number of 2Q Gates\")\n",
|
||
"axs[1].set_xlabel(\"Pattern\")\n",
|
||
"axs[1].tick_params(axis=\"x\", rotation=45)\n",
|
||
"pivot_time.plot(\n",
|
||
" kind=\"bar\", ax=axs[2], legend=True, title=\"Legend\"\n",
|
||
") # Show legend on the last plot\n",
|
||
"axs[2].set_title(\"Time Comparison\")\n",
|
||
"axs[2].set_ylabel(\"Time (seconds)\")\n",
|
||
"axs[2].set_xlabel(\"Pattern\")\n",
|
||
"axs[2].tick_params(axis=\"x\", rotation=45)\n",
|
||
"fig.suptitle(\n",
|
||
" \"Benchmarking AI Synthesis Methods vs Non-AI Synthesis Methods For Random Permutations Circuits\",\n",
|
||
" fontsize=16,\n",
|
||
" y=1,\n",
|
||
")\n",
|
||
"\n",
|
||
"plt.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "c6f34546-0b99-4a8f-8294-e6cdc327e2f5",
|
||
"metadata": {},
|
||
"source": [
|
||
"This graph highlights the individual results for each circuit (`qc_1` to `qc_5`) across different synthesis methods:\n",
|
||
"\n",
|
||
"1. **Circuit Depth**:\n",
|
||
" The AI transpiler often achieves **comparable or better depth optimizations** than other methods, highlighting its ability to optimize depth efficiently for these permutation circuits.\n",
|
||
"\n",
|
||
"2. **2Q Gate Count**:\n",
|
||
" The AI transpiler also shows a substantial reduction in the number of two-qubit gates compared to other methods, indicating more efficient resource usage and improved circuit quality.\n",
|
||
"\n",
|
||
"3. **Transpilation Time**:\n",
|
||
" All methods, including the AI transpiler, run quickly at this scale. However, the AI method achieves its optimizations without introducing additional runtime overhead, making it highly practical.\n",
|
||
"\n",
|
||
"While these results underscore the AI transpiler’s effectiveness for permutation circuits, it is important to note its **limitations**. The AI synthesis method is currently only available for certain coupling maps, which may restrict its broader applicability. This constraint should be considered when evaluating its usage in different scenarios.\n",
|
||
"\n",
|
||
"Overall, the AI transpiler **demonstrates promising improvements** in depth and gate count optimization for these specific circuits while maintaining comparable transpilation times."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "099bab43-5ede-4a9d-869a-158c049089f1",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 3: Execute using Qiskit primitives\n",
|
||
"As this tutorial focuses on transpilation, no experiments will be executed on the quantum device. The goal is to leverage the optimizations from Step 2 to obtain a transpiled circuit with reduced depth and/or gate count."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "96381451-cffe-4517-8a45-8fd9720407c5",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 4: Post-process and return result in desired classical format\n",
|
||
"Since there is no execution for this notebook, there are no results to post-process."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "385a261f-9db9-46cf-9d50-d079de23e790",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Limitations of QTS\n",
|
||
"\n",
|
||
"While the **Qiskit AI-powered Transpiler Service (QTS)** can offer significant performance benefits for large and complex quantum circuits, there are several service-level constraints and AI pass–specific considerations to be aware of.\n",
|
||
"\n",
|
||
"- **Maximum 2Q Gates per Circuit**\n",
|
||
" Each circuit can include up to **1 million two-qubit gates** in any AI mode.\n",
|
||
"- **Transpilation Run Time**\n",
|
||
" Each transpilation process can run for up to **30 minutes**. If it exceeds this limit, the job will be canceled.\n",
|
||
"- **Retrieving Results**\n",
|
||
" You must retrieve the transpilation result within **20 minutes** after the process finishes. After that, the result is discarded.\n",
|
||
"- **Job Queue Time**\n",
|
||
" A set of circuits can remain in the internal queue for up to **120 minutes** while waiting to be transpiled. If the process doesn’t start within this window, the job is canceled.\n",
|
||
"- **Qubit Limit**\n",
|
||
" Currently, there is no strictly defined maximum number of qubits. However, the service has been tested successfully with circuits of **900+ qubits**.\n",
|
||
"\n",
|
||
"While QTS often delivers significant improvements in gate count and circuit depth, overall transpilation performance can vary based on circuit size, connectivity, and runtime constraints. Larger or more complex circuits may still incur additional transpilation time or require specialized configurations.\n",
|
||
"\n",
|
||
"For the latest and most detailed information about QTS constraints, please refer to the [QTS Limitations documentation](https://docs.quantum.ibm.com/guides/qiskit-transpiler-service#limits-of-the-qiskit-transpiler-service)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7e9a5978-c8c7-479d-9d49-9a6d5f99a6e0",
|
||
"metadata": {},
|
||
"source": [
|
||
"## References\n",
|
||
"\n",
|
||
"[1] IBM Quantum. \"Qiskit Performance and Scaling: A Closer Look.\" IBM Quantum Blog, https://www.ibm.com/quantum/blog/qiskit-performance."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "337b200e-fb7c-4dad-9e8a-4c96099287ba",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Tutorial survey\n",
|
||
"\n",
|
||
"Please take one minute to provide feedback on this tutorial. Your insights will help us improve our content offerings and user experience.\n",
|
||
"\n",
|
||
"[Link to survey](https://your.feedback.ibm.com/jfe/form/SV_0igXMtMCQfApgDI)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "58960bec-b596-468c-85bb-5b05135aa89f",
|
||
"metadata": {},
|
||
"source": [
|
||
"© IBM Corp. 2025"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"description": "In this notebook, we will explore the key benefits of Qiskit AI-powered transpiler service and how it compares to traditional methods.",
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3"
|
||
},
|
||
"platform": "cloud",
|
||
"title": "AI Transpiler Introduction"
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|