268 lines
11 KiB
Plaintext
268 lines
11 KiB
Plaintext
---
|
|
title: Migrate provider interfaces from backend.run to primitives
|
|
description: Migrate to the primitives interface in external providers
|
|
|
|
---
|
|
|
|
# Migrate third-party provider interfaces from `backend.run` to primitives
|
|
|
|
## Why should third-party providers implement primitives?
|
|
|
|
The Qiskit SDK is built to support third parties in creating external providers of quantum resources.
|
|
The evolution of [user access patterns for QPUs](/guides/primitives#qpu-access-patterns)
|
|
led to the Qiskit primitives (`Sampler` and `Estimator`) superseding the `backend.run` interface.
|
|
To ensure Qiskit users can seamlessly transition between providers, all third-party providers should
|
|
implement native support of the primitives for performant access to their hardware or simulators.
|
|
|
|
This guide is for you if the following applies:
|
|
|
|
- You are in charge of a third-party provider.
|
|
- Your interface is still based on `backend.run`.
|
|
- You are looking for guidance to implement your own native `Sampler` and `Estimator` primitives.
|
|
|
|
After you migrate your interface to primitives, your users with primitives-based code can seamlessly transition between providers.
|
|
|
|
|
|
## Exposing native `Sampler` and `Estimator` implementations
|
|
|
|
Qiskit defines base interfaces ([BaseEstimatorV2](/api/qiskit/qiskit.primitives.BaseEstimatorV2)
|
|
and [BaseSamplerV2](/api/qiskit/qiskit.primitives.BaseSamplerV2)) that set the standards for input and output handling
|
|
in the primitives. Native primitive implementations can be developed to wrap any service provider hardware access function
|
|
(for example, `execute_workload(QPU)` or `resource.access()`) or local simulator,
|
|
as long as the final inputs and outputs conform to the established standards set by the base interfaces.
|
|
|
|
The `Estimator` interface exposes a tool to calculate expectation
|
|
values of observables with respect to quantum states, while the `Sampler` interface outputs the counts or probability distributions
|
|
obtained by sampling a quantum state in a QPU. These base interfaces also provide standard methods for execution,
|
|
querying job status, and returning the job results. See the `qiskit.primitives` [API documentation](/api/qiskit/primitives)
|
|
for more information.
|
|
|
|
The primitive unified bloc (PUB) data model defines the primitive input format, as described in
|
|
[Overview of PUBs](https://qiskit.github.io/documentation/pr-2496/guides/primitive-input-output#pubs).
|
|
While different types of data can be accepted in a PUB, both `SamplerPub` and `EstimatorPub` have a `coerce()`
|
|
method that can be used to convert them into the respective model. The following code snippets provide an
|
|
example for each of the primitives.
|
|
|
|
The [PrimitiveResult](https://qiskit.github.io/documentation/pr-2496/api/qiskit/qiskit.primitives.PrimitiveResult)
|
|
defines the output of a primitive job. It is comprised of additional data models such as
|
|
[PubResult](https://qiskit.github.io/documentation/pr-2496/api/qiskit/qiskit.primitives.PubResult) and
|
|
[DataBin](https://qiskit.github.io/documentation/pr-2496/api/qiskit/qiskit.primitives.DataBin).
|
|
See [Overview of primitive results](/guides/primitive-input-output#overview-of-primitive-results)
|
|
for more information.
|
|
|
|
## Example of a third-party `Sampler` implementation
|
|
|
|
An example of a custom `Sampler` implementation for a third-party provider might look like:
|
|
|
|
``` python
|
|
from qiskit.primitives import (
|
|
BaseSamplerV2
|
|
BitArray,
|
|
DataBin,
|
|
PrimitiveResult,
|
|
SamplerPubResult,
|
|
SamplerPubLike,
|
|
PrimitiveJob
|
|
)
|
|
from qiskit.primitives.containers.sampler_pub import SamplerPub
|
|
|
|
class CustomSampler(BaseSamplerV2):
|
|
"""
|
|
Custom Sampler implementation for a third-party `backend`.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
*,
|
|
backend: BackendV2, # object representing QPU (hardware resource)
|
|
options: dict # options can be a dict or a subclass of the qiskit Options class
|
|
):
|
|
self._hw_resource = backend
|
|
self._options = options
|
|
self._default_shots = 1024
|
|
|
|
@property
|
|
def backend(self) -> BackendV2:
|
|
""" Return the Sampler's backend (hardware resource)"""
|
|
return self._hw_resource
|
|
|
|
def run(
|
|
self, pubs: Iterable[SamplerPubLike], *, shots: int | None = None
|
|
) -> BasePrimitiveJob[PrimitiveResult[SamplerPubResult]]:
|
|
"""
|
|
Execution method. Steps to implement:
|
|
1. Define a default number of shots if none is given.
|
|
2. Validate pub format.
|
|
3. Instantiate an object that inherits from BasePrimitiveJob
|
|
containing pub and runtime information.
|
|
4. Send the job to the provider's execution service.
|
|
5. Return the data in some format.
|
|
"""
|
|
|
|
# 1. Define default shots.
|
|
if shots is None:
|
|
shots = self._default_shots
|
|
|
|
# 2. Validate SamplerPub format.
|
|
coerced_pubs = [SamplerPub.coerce(pub, shots) for pub in pubs]
|
|
|
|
# 3. Instantiate job object. See _run and _run_pub for more details.
|
|
job = PrimitiveJob(self._run, coerced_pubs)
|
|
|
|
# 4. Send the job to the provider's execution service.
|
|
job._submit()
|
|
|
|
# 5. Return the data.
|
|
return job
|
|
|
|
def _run(self, pubs: Iterable[SamplerPub]) -> PrimitiveResult[SamplerPubResult]:
|
|
"""
|
|
Iterate over input pubs and call _run_pub.
|
|
"""
|
|
results = [self._run_pub(pub) for pub in pubs]
|
|
# return results wrapped in PrimitiveResult
|
|
return PrimitiveResult(results, metadata={"version": 2})
|
|
|
|
def _run_pub(self, pub: SamplerPub) -> SamplerPubResult:
|
|
"""
|
|
This internal method handles the provider resource access.
|
|
"""
|
|
# pre-process the sampling inputs to fit the required format
|
|
circuit, qargs, meas_info = _preprocess_circuit(pub.circuit)
|
|
bound_circuits = pub.parameter_values.bind_all(circuit)
|
|
arrays = {
|
|
item.creg_name: np.zeros(
|
|
bound_circuits.shape + (pub.shots, item.num_bytes), dtype=np.uint8
|
|
)
|
|
for item in meas_info
|
|
}
|
|
|
|
# iterate over pub elements
|
|
for index, bound_circuit in enumerate(bound_circuits):
|
|
# ACCESS PROVIDER RESOURCE HERE
|
|
# This case shows an illustrative implementation
|
|
samples_array = self._hw_resource.sample(bound_circuit)
|
|
|
|
# post-process the sampling output to fit the required format
|
|
for item in meas_info:
|
|
ary = _samples_to_packed_array(samples_array, item.num_bits, item.qreg_indices)
|
|
arrays[item.creg_name][index] = ary
|
|
meas = {
|
|
item.creg_name: BitArray(arrays[item.creg_name], item.num_bits) for item in meas_info
|
|
}
|
|
# return results wrapped in SamplerPubResult
|
|
return SamplerPubResult(
|
|
DataBin(**meas, shape=pub.shape),
|
|
metadata={"shots": pub.shots, "circuit_metadata": pub.circuit.metadata},
|
|
)
|
|
```
|
|
|
|
This implementation is based on the [`StatevectorSampler` source code](/api/qiskit/qiskit.primitives.StatevectorSampler),
|
|
with some additions to represent the backend (hardware) resource access, as the `StatevectorSampler` class is designed for local statevector simulators.
|
|
|
|
## Example of a third-party `Estimator` implementation
|
|
|
|
An example of a custom `Estimator` implementation for a third-party provider might look like:
|
|
|
|
``` python
|
|
from .base import BaseEstimatorV2
|
|
from .containers import DataBin, EstimatorPubLike, PrimitiveResult, PubResult
|
|
from .containers.estimator_pub import EstimatorPub
|
|
from .primitive_job import PrimitiveJob
|
|
...
|
|
|
|
class CustomEstimator(BaseEstimatorV2):
|
|
|
|
"""
|
|
Custom Estimator implementation for a third-party `backend`.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
*,
|
|
backend: BackendV2, # object representing QPU (hardware) resource
|
|
options: dict # options can be a dict or a subclass of the qiskit Options class
|
|
):
|
|
self._hw_resource = backend
|
|
self._options = options
|
|
self._default_precision = 1024
|
|
|
|
@property
|
|
def backend(self) -> BackendV2:
|
|
""" Return the Estimator's backend (hardware) resource"""
|
|
return self._hw_resource
|
|
|
|
def run(
|
|
self, pubs: Iterable[EstimatorPubLike], *, precision: float | None = None
|
|
) -> PrimitiveJob[PrimitiveResult[PubResult]]:
|
|
"""
|
|
Execution method. Steps to implement:
|
|
1. Define a default precision if none is given.
|
|
2. Validate the PUB format.
|
|
3. Instantiate an object that inherits from BasePrimitiveJob
|
|
containing PUB and runtime information.
|
|
4. Send the job to the provider's execution service.
|
|
5. Return the data in some format.
|
|
"""
|
|
|
|
# 1. Define default precision
|
|
if precision is None:
|
|
precision = self._default_precision
|
|
|
|
# 2. Validate EstimatorPub format
|
|
coerced_pubs = [EstimatorPub.coerce(pub, precision) for pub in pubs]
|
|
|
|
# 3. Instantiate the job object. See _run and _run_pub for more details
|
|
job = PrimitiveJob(self._run, coerced_pubs)
|
|
|
|
# 4. Send the job to the provider's execution service
|
|
job._submit()
|
|
|
|
# 5. Return the data
|
|
return job
|
|
|
|
def _run(self, pubs: list[EstimatorPub]) -> PrimitiveResult[PubResult]:
|
|
"""
|
|
Iterate over input pubs and call _run_pub.
|
|
"""
|
|
return PrimitiveResult([self._run_pub(pub) for pub in pubs], metadata={"version": 2})
|
|
|
|
def _run_pub(self, pub: EstimatorPub) -> PubResult:
|
|
"""
|
|
This internal method handles the provider resource access.
|
|
"""
|
|
# pre-process the estimator inputs to fit the required format
|
|
rng = np.random.default_rng(self._seed)
|
|
circuit = pub.circuit
|
|
observables = pub.observables
|
|
parameter_values = pub.parameter_values
|
|
precision = pub.precision
|
|
bound_circuits = parameter_values.bind_all(circuit)
|
|
bc_circuits, bc_obs = np.broadcast_arrays(bound_circuits, observables)
|
|
evs = np.zeros_like(bc_circuits, dtype=np.float64)
|
|
stds = np.zeros_like(bc_circuits, dtype=np.float64)
|
|
|
|
# iterate over PUB elements
|
|
for index in np.ndindex(*bc_circuits.shape):
|
|
# further pre-processing of the inputs to fit the required format
|
|
bound_circuit = bc_circuits[index]
|
|
observable = bc_obs[index]
|
|
paulis, coeffs = zip(*observable.items())
|
|
obs = SparsePauliOp(paulis, coeffs)
|
|
|
|
# ACCESS PROVIDER RESOURCE HERE
|
|
# This case shows an illustrative implementation
|
|
samples_array = self._hw_resource.sample(bound_circuit, rng, precision)
|
|
|
|
# post-process the sampling output to extract expectation value
|
|
expectation_value = compute_expectation_value(samples_array, obs)
|
|
evs[index] = expectation_value
|
|
|
|
# return results wrapped in PubResult
|
|
data = DataBin(evs=evs, stds=stds, shape=evs.shape)
|
|
return PubResult(
|
|
data, metadata={"target_precision": precision, "circuit_metadata": pub.circuit.metadata}
|
|
)
|
|
```
|
|
|
|
Similar to the `Sampler` example, this implementation is based on the [`StatevectorEstimator` source code](/api/qiskit/qiskit.primitives.StatevectorEstimator),
|
|
with some additions to represent the backend (hardware) resource access, as the `StatevectorEstimator` class is designed for local statevector simulators.
|