627 lines
152 KiB
Plaintext
627 lines
152 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c52e7bba-1230-4974-8e86-2dbe8f6f219b",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Debug Qiskit Runtime jobs\n",
|
|
"{/* cspell:ignore ZIIIII, IZIIII,IIZIII, IIIZII, IIIIZI, IIIIIZ, rdiff */}\n",
|
|
"\n",
|
|
"Before submitting a resource-intensive Qiskit Runtime workload to execute on hardware, you can use the the Qiskit Runtime [`Neat` (Noisy Estimator Analyzer Tool)](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.debug_tools.Neat#neat) class to verify that your Estimator workload is set up correctly, is likely to return accurate results, uses the most appropriate options for the specified problem, and more.\n",
|
|
"\n",
|
|
"`Neat` Cliffordizes the input circuits for efficient simulation, while retaining its structure and depth. Clifford circuits suffer similar levels of noise and are a good proxy for studying the original circuit of interest.\n",
|
|
"\n",
|
|
"\n",
|
|
"The following examples illustrate situations where `Neat` can be a useful resource."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0dc5bf2a-e536-4141-a77c-0ee407cbd9b2",
|
|
"metadata": {},
|
|
"source": [
|
|
"First, import the relevant packages and [authenticate to the Qiskit Runtime service.](/guides/setup-channel)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "d653e186-7ec3-4f1b-b0e9-b322055dd6c8",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Prepare the environment"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "2f28c824-3158-43e6-ab3c-fd96c31859f0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import random\n",
|
|
"\n",
|
|
"from qiskit.circuit import QuantumCircuit\n",
|
|
"from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n",
|
|
"from qiskit.quantum_info import SparsePauliOp\n",
|
|
"\n",
|
|
"from qiskit_ibm_runtime import QiskitRuntimeService, EstimatorV2 as Estimator\n",
|
|
"from qiskit_ibm_runtime.debug_tools import Neat\n",
|
|
"\n",
|
|
"from qiskit_aer.noise import NoiseModel, depolarizing_error"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "a45a6d9e-de39-4586-8395-a7f580f0e0dc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Choose the least busy backend\n",
|
|
"service = QiskitRuntimeService()\n",
|
|
"backend = service.least_busy(operational=True, simulator=False)\n",
|
|
"\n",
|
|
"# Generate a preset pass manager\n",
|
|
"# This will be used to convert the abstract circuit to an equivalent Instruction Set Architecture (ISA) circuit.\n",
|
|
"pm = generate_preset_pass_manager(backend=backend, optimization_level=0)\n",
|
|
"\n",
|
|
"# Set the random seed\n",
|
|
"random.seed(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "67572a70-da01-40fe-b299-b5599561164a",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Initialize a target circuit\n",
|
|
"\n",
|
|
"Consider a six-qubit circuit that has the following properties:\n",
|
|
"\n",
|
|
"* Alternates between random `RZ` rotations and layers of `CNOT` gates.\n",
|
|
"* Has a mirror structure, that is, it applies a unitary `U` followed by its inverse."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "df19af55-897d-4b1f-baf8-fac2641ae87d",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3UAAAGwCAYAAAAOtEwOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9W0lEQVR4nOzdd3gUVdvA4d9uNr03SKgh1IQuRUFQECxUFUVQQLGgIggqgmIBKyryigKCoGIXEMSGYEFEEVDpIAQCgQAhCSEhvW/5/shHJJKyu9nd2dl97uvyel922pk9zznZZ+bMGY3JZDIhhBBCCCGEEEKVtEoXQAghhBBCCCGE9SSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggVk6ROCCGEEEIIIVRMkjohhBBCCCGEUDFJ6oQQQgghhBBCxSSpE0IIIYQQQggV0yldAFE9kwlKDEqXwnw+HqDRKF0K16G2+gfbx4B8B0K4LzW2/wts1Q/IdyDcnbQBy0hS56RKDNB3vdKlMN+WweAr0WQzaqt/sH0MyHcghPtSY/u/wFb9gHwHwt1JG7CMDL8UQgghhBBCCBWTpE4IIYQQQgghVEySOiGEEEIIIYRQMUnqhBBCCCGEEELFJKkTQgghhBBCCBWTpE4IIYQQQgghVEwmnHUh+Qc2k/hM/yqfaX388W7UhvB+42gw9GE0HlLlrszdY8Ddz18IIf2Au5+/EO7aBlzvjAShV91OcLfBYDJRnp1O1uaPSVn+GCUpCTSftEzp4gkHcPcYcPfzF0JIP+Du5y+Eu7UBSepckF/sZYT3G1v578jBD3HwoXZk/vwejca+jGdwpIKlE47g7jHg7ucvhJB+wN3PXwh3awPyTJ0b8PDxx7/tFWAyUZqepHRxhALcPQbc/fyFENIPuPv5C+HqbUCSOjdxIXh1AWEKl0Qoxd1jwN3PXwgh/YC7n78QrtwGZPilCzKWFqHPy8RkMqHPTufcD+9QfHwPfq174tO4jdLFEw7g7jHg7ucvhJB+wN3PXwh3awNukdRlZmYyd+5c1q5dS0pKCpGRkYwYMYI5c+YwZcoUli9fzsKFC5k8ebLSRbWJtBWzSVsxu8pnIb1G0OyBtxUqkXA0d48Bdz9/IYT0A+5+/kK4Wxtw+aRu7969DBo0iPT0dPz9/YmPjyc1NZUFCxaQlJTE+fPnAejSpYuyBbWhiOvvJ7T3SEyGcopPHiB97WuUZaag8fSpXCf/4BaOvTDokm1N+jJMRgPdvjI4ssh2VVSsZ+UPx/l8fRLpmUV4eGhp1TSI+0a04form6DVapQuos25ewy4+/mLSx08ls3iVQn8deAcRSV6ggM8ub53Eybc0pbGDf2VLp7d5eaX8cm6Y6z+6QSZOSV4eWqJaxHCgyPb0bdbFBqN9IMXc4V+wN3PX1xqxz/nWPJFAvuOnKe41EBokBc39mvOPTe3ISLUp+4dqIy7tQGXTuoyMzMZNmwY6enpTJs2jdmzZxMYGAjA3LlzeeKJJ9DpdGg0Gjp16qRwaW3HO7o1QV0GAhDcbRABcX04MrMPp5Y8SOz0lQAEtu9L11UFVbYry0rl8LTuRA5xjTuWAMvWHOaJ+TvIyS+r8vn+xPOs/SWZlk0D+eilq7mya0OFSmgf7h4D7n7+4l8ZWcWMe/o3ftp25pJlf+4/x0vv7uXuG1uz6KneeHt5KFBC+zKZTLz6/n5efncvhcX6Ksv2Hj7Pig3H6dg6lM9f7UeH1q71jIm79wPufv7iXydS8rnjyV/5c/+5S5Zt25vBrMW7mXJHPK9M7Y6Hh+tMt+FubcB1aq4aU6ZMISUlhcmTJzNv3rzKhA5gxowZdO7cGb1eT0xMDEFBQQqW1L4C4noT1m8c2X+soiBhW7XrGMtLOf7qCALi+xA98ikHl9A+XnlvHw+8sPWShO5iSafzGTBhPb/8merAkjmeu8bABe5+/u7qbFYxve/8rtqE7gKDwcR7axMZ9vBPlJWr54qsOUwmE4+89idPLdh5SUJ3sQNHs7nyrnXsPpTpwNI5nrv3A+5+/u7q2Kk8eo37rtqE7oLSMgOvf3iAcU/9htFocmDpHMvV24DLJnUJCQmsWrWKiIgIXnnllWrX6datGwCdO3eu8vmJEycYPnw4gYGBhIaGcuedd5KVlWX3MttT9KhnQetB6uezql1+avGDGMtLiJn6oWMLZic/bk3hqQU7zVq3tMzIiMc2kp5ZZOdSKcvdYuC/3P383dGo6ZtIOp1v1ro/b0/lifk77Fwix/r422Ms+PyQWevmFZQz9OGfKSwqt3OplOXu/YC7n7+7MRiMDHv4J85mFZu1/ooNx5n34QE7l0pZrtwGXDapW7FiBUajkTFjxhAQEFDtOr6+vkDVpC4/P5/+/fuTkpLCihUrWLZsGVu2bGHo0KEYjUaHlN0efKJbEdZ3NPn7fyH/4JYqyzK+W0DuznW0nPk1Wm8/hUpoW//72LJOKa+gnPfWHrFTaZyDu8XAf7n7+bubHf+c47ed6RZt8+6XR8it5c6+mphMJuZ9ZFk/mHauiJU/HLdTiZyDu/cD7n7+7mb9lhQOn8i1aJu3Pj9Iebl6f+/WxZXbgMsmdZs2bQKgf//+Na6TkpICVE3qli1bxpkzZ/j6668ZOnQoI0eO5PPPP+fPP//k22+/tW+h7Sxq5NOg1Va5OpG//1dSPn6C2Bmr8W4Yo1zhbCgxOZeft1s+nHLp6iPo9a7bkYH7xEBN3P383cniVQkWb1NYrOfj747aoTSO98fus/xzLNvi7d5emYDJ5LrDr0D6AXc/f3fy9krz7tRfLDWjiG9+PWmH0jgPV20DGpOL9t5NmzYlJSWFPXv2VDuzpV6vJzo6mszMTJKSkoiNjQX+TQJ//fXXKuu3bNmSfv368f7771tclu7du5OebtkVY42XLw3ftO+Pi9KzyRx+vAfRo2fToJ4Pg559pDWmMvNu79tboVcXcgJutmrbhjlvojNa/kPI1hxR/+DcMaC2NgDO1Q7cXXrwFAwe4RZv51v6D2GFq+1QIsfK9+lLnt9Aq7aNPv8SWpQdhumoPhCctx9Q49+BC6QvdA6poU9j0nhZvJ1/yXZCin6wQ4ks445tICoqip07zXt86L9cdvbLwsJCAIqLq/9CV61aRWZmJoGBgbRo0aLy80OHDjFy5MhL1m/fvj2HDll+xQMgPT2dM2dqflC/OlpvP+w5H6OxtIikV24iuOdwmwRwamoqxlIneSYtvC1UP+K2TmfP5UKJZXVlD/auf3D+GFBbGwAnawfuLlAHVkxmWVxqtLi/dkoNS8HK0UNpZ8+DPs+25bGQI/pAcO5+QI1/By6QvtAZaCDM8oQOoLBIT6ET9IPSBizjskldVFQU2dnZ7N69m169elVZlpaWxvTp0wHo1KlTlffzZGdnExIScsn+wsLCOHLEumeuoqKiLN5G4+Vr1bHMlb3tS4pP7KPkTCLZf6y6ZHn7RYfwimxm9v4aNWrkNFflCr18yLFy24aRweic4NlJe9c/OH8MqK0NgHO1A3eXri3Hmrksfb01hDVubPPyOFq+jxfWpmXRDcPQElj3inbkiD4QnLsfUOPfgQukL3QOqaZSTBpvi7fz99MR4gT9oDu2AWtyhgtcdvjllClTWLhwIU2bNmXjxo20adMGgB07djBu3DiOHz9OeXk5kyZNYtGiRZXbeXl5MWPGDF566aUq+xs/fjzbt2+3OrGzVLEe+q53yKFsYstg8HWSSwTJZ/KJHfwFlkZ2i8aBHPt+pFO8jFxt9Q+2jwH5DkR9PPjiVpauPmzxdstmXcmEW9vZoUSO9feBc1w+xvLnwK/oFMn2T4fboUSWUWP7v8BW/YB8B6K+bpzyM99uPmXxdt8tvJahV1ueyNiatAHLuOxEKTNmzCA8PJzTp0/Tvn17OnbsSOvWrenZsyexsbFcc801wKWvMwgNDSUnJ+eS/Z0/f56wMNd6MaurimkcyJC+TS3ebuJt7ZwioRNC1N/E2yxPzIICPLljcEs7lMbxenSIoFt8hMXbPTQqzg6lEUIowZr23LxRAIP6NLFDaYS9uWxS16RJE7Zs2cKQIUPw8fEhOTmZsLAwli5dyvfff09iYiJwaVIXFxdX7bNzhw4dIi5O/tipxePjO6KxID+LCPXh7pva2K9AQgiH6tw2nBuutOyHyeTR8fj7edqpRI6l0WiYcXdHi7aJaRTAyOta1L2iEEIVru3VmK7tLJsw6vG7OuLh4bLpgUtz6VqLi4tj3bp15Ofnk5+fz19//cX9999PYWEhycnJaLVaOnToUGWboUOH8scff1S+7gDgr7/+IikpiWHDhjn6FISVru4ezaKZvepeEQjw0/HtgoFEhPrYuVRCCEf6/LV+dGwdata6IwbE8MKky+xcIse67fpYnn2gi1nrRob6sH7x9fh4y5g5IVyFVqvh2wXX0ryRebPHPTCyHZNGyw0MtXLppK4mBw8exGQy0bp1a/z8qk4Pdv/99xMdHc2NN97IunXrWLNmDbfffjs9e/bkxhtvVKjEwhoPjY5n5dz+NG5Q8xRwXduFs+XDofTq7Ih51oQQjhQa5M3vHwzhtutb1Di02tfHg8fv6siq1/u75NXpFyZ1Y/HTvWu9aNX3sob8+dkw4mJDHFcwIYRDNIny589Ph9U6ciE40Is5U7qz5JneVSYPFOrilpfkDhw4AFw69BIgKCiITZs2MXXqVEaPHo1Op2Po0KHMnz8frdb1/uC7ulE3xHLLwBi+++0Un32fxHe/naKs3Iifjwe/vDuYyztFSgcmhAsLCfJm1evXcCqtgGVrDjPvwwOUlhvx9tLy2iM9uGt4a0KCLJ8dTk0mjorjnpvbsObnE6z+6QQb/kihrNyIv6+ObZ8Mo1MbeV5cCFcWFeHHhiXXk5icy9I1h3l7xaHKfnDhk724Y3BLlxl67s4kqatGy5YtWbdunSOLZLGS1KMkv3kX+vxMPPyCiZn6Ib7N2ldZJ//AZo6+MAifxm0rP2v32na03r5kbvyAjHVvVX5elplCYPuraDlzLYbiAo6/eguFSbvAqKfL5zkOOiv70Om03DwghpsHxNBk4ArOZBQRGuTNFZ0bKF20ejEnBgCKkw9w6t2H0eecBaDR2JcJ7TWi1vgoOLydU+9MBMCkLycgvg9NJyxA6+k8P37NOX+T0ciZj2aQu/sHTAY9AXFX0uzBJWg9K97dk772dbJ+/QiMRnwat6X5lA/QBYRQnHyAE2+Oq9yPoTAHQ1EeXT4779BzFLbTLDqAlx7uzoffHOVMRhERIT5MHduh7g1dhLeXB2OGtGLMkFaV/WBIoJckdEK4kTYxwfzv8ctZ9cPxyn7QFWb7FRUkqVOpU4sfIOL6+4kYMJ7srWtIfms8cf/bccl6Po3bEv/m3ks+jxh4NxED767898GHOxB29RgANDpPGt7yBLqAMBKf6WevUxD1ZE4MGEuLODbnRlo88jEB8X0wGQzoC/5NTGqKD78WnYmbtwONzhOT0cjxV2/h3PrFNLzxUXufltnMOf/Mje9TlLSbuDd2o9F5curt+8n47i2iRkwnb+/PZP3yAe1e/wsPv0DSvniJ1E+fptmDb+Mb07HK93Jq6WQsmnlHCKEIcy925e7+gdRPn8GkL0Pr7Uezh5bi16Jzncv1eVkkzhpQuZ6xtIjS9ON0/jgDXaDyCbK5528sLyVl+TTy9vyIxssHv5jOtHjs08rlBybEoNF5o/WueE9Y1C0zCes7CoDE2dehz04HrRYP30CaTliAX2xXx5ygEGYwtx3UFOd1tfNTy6aQu+NbyjJOEjd/D36xXRx1arVyy6Ru06ZNShehXspzMig8tpPWz/8EQEjvWzi1bDIlacfwiW5l8f4Kj/yFPjeDkJ4V7ybSenoT1OkaSs8m27LYwobMjYHzv32Of9srCIjvA4DGwwPP4Mg696/1/vc5RJO+DGNZsVMlNeaef/GJfQR2Hlh5Zy6o2yDSVjxH1IjpFJ3YR0B8Hzz8Kl6yHNxtMEee7kezB9+ucixjWQnnf/uMNi/96qCzE0JYy5yLPfqCbE68MYa2c37Ht1l78g9u4cQbY2i/8J86l+uCwqtc8En/ah4FB39zioQOzL/ge+ajJ0Gjof2SRDQaDeXZ6ZesEzt9VbU/VmOnf4EuIASA7O1fkfzWeOLf2mfrUxHCaua2A6g+zutq56FX3krUiBkcmdnHXqdgFXlITIXKMk/jGRqNxqMiJ9doNHhFNqPs3KUvmCxNS+LQo5eRMK0HGesXV7u/zI3vE9ZvHBqdjKdWC3NjoPj0IbQ6b469OJRDj3ThxPw7Kc89V7m8tvgoPZvMoamd2TcuAg+/YCIHPWT/EzOTuefv17IbuX9/i6EoD5O+nOw/vqA0IxkA/5bdyNu3kfLsdEwmE1m/fYaxOB99ftUhljnb1+IdFes0V+KEENW7cLEnvN9YoOJiT1nmaUrSjlVZrzQtCV1geOWV+8D2fSk7d4qipN1mLb9Y1sb3iRh4rz1Py2zmnr+hpJDMje/TeOzLlc+Ue4ZGmX2cCwkdgKEo16ku+AlhbjuwxH/beWD7q/CKcL53+bnlnTp34dfyMjotT8HDP5iyzBSOvTAYXVAEYX1uq1zHUFLI+S0raTf3TwVLKuzFZNCTt28j7V7/E8+wRqR+8hSnlkyk5ZNr6owP74YxxL+1D0NxASfmjyVn+1rCrhqt8BlZJnzAeMrOneTIU1ej9fIlqPNA8vZW3N0L7NSfhjc9zrEXh4LWg9ArbgaoTBQvyNz4PuFO8qNNCFGz2i72XHwH36dRa/T5WRQkbCMgrjc5f32LsTif0oxk/FpeVufyCwoStqEvyCa4x1CHn2t1zD3/0vQkdIFhpK2eQ/6+jWi9fYke/RxBnQdU2V/ym3diwoR/6540vvPVKqM8Tsy/k/wDFaMXWs9a74CzE8I85raDC2qLc3C+dl4bSepUyCuiKeXZaZgMejQeOkwmE2XnTuEV2azKeh5+QRdt04TQq26n4NCWKkld9tbV+DZrj2+zeIeVX9SfuTHgFdmMwI798QpvDEBYv7Ecfe56wLz4APDwDSCsz2jO//6Z0yR15p6/RqOh0e3P0ej25wA4//vKKuPqGwx+iAaDK+5AFhz5E8/wJlW+l9KzJyg88iexT3xp/5MSQtTq8IxelKQerXZZ/Pw9Zu/Hwz+YljPWcOaTmRhLCvBv2wufpvFotDqzll+QufF9wvvfecmFIHux1flj0FOWcRLfpvE0uetVio7vIXHWtbRfdBDPkIrX+7Sd8ztekc0w6cs589kzJL91V5XkrcWjHwOQtekjUj5+QhI74TA2awfUHefg+HZeH85fQnEJz5AG+LW8jKzNnxIxYDw5277EK7zJJVcgys+noQtpiEarxVCUT+6OdURcW/WOgzMNHRHmMzcGwvrcxtGN72MoysPDL4jcnevxjamYDKC2+ChJO4Z3ZHM0Ok+M5WXk/PkVvs07Ofw8a2Lu+RvLSjCWFaMLCEWfl0n62ldpdMeLlcvLz6fhGRaNsbSI1M9nETViRpXtMzcuJ+SKm6sMNxJCKKPd3O21Ltd4ept1sQcq7tS37dQfqJg0ZP9dUfhcdHGzruWG4gKy//iixud07MFW5+8V2Qy02srJ0fxiu+LdsAXFyQfw7NLw33X4/4nThj3CPxPbVHvM8Gvu4uSSB9HnZaELCq/vKQpRJ1v2A3XFuRLtvD4kqVOp5hOXkrxgPOlr5uDhG0TMlA8ASF54HyE9hxNy+XCyt3/JuQ1LKoLaoCf0ypGED/h3xsuSlCMUHd9Lq2cvvcJ2aEonyvPOYSjKY/89TQjs2J8Wj37isPMTdTMnBrwimxF161McfqI3Go0Wz/DGNH9oGUCt8ZG/fxNJ6xag0XpgMugJ7DSA6FHPKnau1THn/A1FuSQ+3Q80WjAZaTB0KiE9h1XuI/G568BoxKQvI6zfOCKHTK5cZjIayfrlQ1o88rGjT00IYQVzL/bAvxd0ANJWvUhgp2uqrFfX8uw/VuHbojM+TZxnOnhzz18XFEFgpwHk7fmR4O6DKT17gtKzJ/BpGgdUPJZh0pdXXsw6v2VF5eyW+oIcjKVFeIU3AiDnz6/RBYbj4SQTxQhhbjuoLc4vcMZ2XhuNyWQyKV0IcaliPfRV0WiGLYPBVwWXCC68n6lxAz9SNt6udHFqpLb6B9vHgHwHwh7U0gfYkxq+A2vbf0nKEZIXjEefn1V5scc3piNQ9YLPyUUTyD+0BQx6/Nv1oumEhVXuyNe1/PCM3kRcN6HKq4EusFU/YM13YO75l6YfJ3nhvejzM9FotESPmkVo71sAKE0/TtKrt4DRgAkT3g1jaXrfW3g3jKE04yTH547EWFaMRqNFFxRJk7vnXTKRlPSFzk0NfQDYtx/wbd6hxji/oKZ2fnLxA+Tu/J7y7PSKixq+gXRYWnUiFiXagCR1TkptP2jV0oG7ekemJEnq1NMO3Jla+gB7UsN3oMb2f4GSSZ2zkL7QuamhDwBpA5aSVxoIIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFi8hirk/LxqHjIUi18PJQugWtRW/2D7WNAvgMh3Jca2/8FtuoH5DsQ7k7agGUkqXNSGo3MHOXOpP7lOxDCnUn7l+9ACGkDlpHhl0IIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSK6ZQugKieyQQlBqVLYT4fD9BolC6F61Bb/YPEgK1JDAh3osZ4N5e0C+upMS6kvm1DjXV/MSXiQJI6J1VigL7rlS6F+bYMBl+JJptRW/2DxICtSQwId6LGeDeXtAvrqTEupL5tQ411fzEl4kCGXwohhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1Am3UF5uJOl0HuV6IwB6gxGTyaRwqYQQjpSVU1LZB5TrjRQUlStcIscqLTNw9GRu5XdgkH5QCLdzNqu4Sj9YXKJXuETCVmR+HuGSTCYT2/ZmsGJDEjsPZrIv8Twlpf/OjXs2q4Twvp9yWVwEvTo3YPyNrWnZNEjBEgshbC03v4xPvz/Gpr/S2HnoHKfSCiuXZZwvIajXx7SNCaZ7+wgG92nKLdfG4OXpoWCJbctoNPHLX6ms+fkEOw9mcuBoduWPOYD0rBIa9vucbvERXNm1AeOHt6FJlL+CJRZC2Nq588V89O0xft+Vzs5DmaSdK6pclnG+hMBeHxMfG0L39hHc1L85Q65qioeH3PNRI41JLtM5pWK9uqZydZYpfA0GIx98fZSFKw6xP/G8Rdte37sxj4/vyMArGtupdOZTW/2D88SAq5AYsF7S6TzmfrCfT9clUWTBVegGYT7cN6It0+7qSFiwtx1LaF+lZQaWrEpg8RcJHD2ZZ/Z2Hh4abuzXnOnjO3JF5wZ2LOGl1Bjv5nKWdqFGaowLZ6nv/YnnmfvBflb/dIKycmPdG/y/plH+PHBrOx4Z2x5/P087lrB2aqz7iykRB04QdsJW8g9sJvGZ/lU+0/r4492oDeH9xtFg6MNoPFy3yo+cyOHuWVvYvi/Dqu1/3HaGH7edYfyNrZk//XJCgtT3o87dY0C4dwwYjSYWfn6QmQt2UmzFW2szzpcw5719LP86kaXPXsnw/s3tUEr72nUok/HP/M4/x7It3tZgMLH2l2S+2pTM1DHtefnh7vg5w69TC7lzGxAV3DkGysoNzHl3Hy+/txe93vL7NqfTC3lm0S6Wf53I8hf6cnX3aDuU0r7ctf5d74wEoVfdTnC3wWAyUZ6dTtbmj0lZ/hglKQk0n7RM6eLZxfKvEpk0Z1uVIZbW+vCbo/y0/Qxr3xjA5Z0ce7XaVtwxBkRV7hYDWTkljHj0F37flV7vfaVnFnPj1I3cc3Mb3nnmSjw9nX8okslkYu4H+3l64S4MhvoNwDGZ4M1PD7Lu99N8u+Ba4mJDbFNIB3O3NiAu5W4xcCqtgBun/szew5aNVKrO8ZR8+t2znhl3d+SVqT3QajU2KKFjuVv9O/9fKmExv9jLCO83lvD+44gaMZ12c//EM7wJmT+/R3nuOaWLZ3NvfvIP987eYpOE7oLUjCIGTNjA7zvTbLZPR3K3GBCXcqcYyMgq5uq7v7dJQnex5V8lcstjv1BWbru+xR5MJhMz39rJk2/urHdCd7Fjp/K46u7v2Xcky2b7dCR3agOieu4UA8dT8uhz1zqbJHQXm/vBASY8/wdGo/qe1nKn+gdJ6tyCh48//m2vAJOJ0vQkpYtjUx98ncijr/9ll30XFusZ+vDP7EnItMv+HcmVY0CYx1VjoKConOsn/sDBpBy77P+7305x59O/OfUska++v5/Xlu+3y74zs0u47oEfOJ5i/rN5zspV24Awn6vGQEZWMQMn/MDp9MK6V7bC8q8SmTbPPr+1HMlV6/8CSercxIXg1QWEKVwS2zl6MpdJc7ZZtM2OFcM5/fNodqwYbtb6+YXljJn5GyWl6p/y1xVjQFjGFWPgifk7LLoybWkfALDqhxMs/yrRmuLZ3Z/7Mnhm0S6LtrH0O8g4X8JdT/+uyiv1/+WKbUBYxtViwGQy8cCLWzlxJt/sbazpB9/89CDf/37KmiI6FVer/4u5RVKXmZnJjBkzaNWqFT4+PjRt2pSpU6dSWFjIvffei0ajYdGiRUoX02aMpUXo8zIpzz1HcfIBTr0zieLje/Br3ROfxm2ULp5NGAxG7p61xeLJEKIi/GjS0J+oCD+zt0k4nsNzS/ZYWkRFuUMMiNq5Qwxs+iuVxasSLNrGmj4A4LF5f3E6vcCibeytpFTP3bMsT7as+Q7+2HOWhZ8ftLSIinKHNiBq5w4xsHLDcb7edNKibaztB+9/YSvZeaUWbaMkd6j/i7n8RCl79+5l0KBBpKen4+/vT3x8PKmpqSxYsICkpCTOn6+4wtulSxdlC2pDaStmk7ZidpXPQnqNoNkDbytUItv7ZN0xtu4567Djvf7hAe65qQ1tYoIddsz6cIcYsNSptAJ+3JpCTn4Zfr46usdH0LNjJBqN+h7+Noerx4DRaOKhly27U18feQXlTH/jb1bOvcZhx6zL/E8OcvhErsOON3PBTsYMaUVEqI/Djlkfrt4GrJGYnMuvO9LIKygjwM+TPl0b0rGN692xuMDVY6C4RM+U1/502PFSM4p44Z09zJ9xhcOOWR+uXv//5dJJXWZmJsOGDSM9PZ1p06Yxe/ZsAgMDAZg7dy5PPPEEOp0OjUZDp06dFC6t7URcfz+hvUdiMpRTfPIA6WtfoywzBY3nv3+I8w9u4dgLgy7Z1qQvw2Q00O0r550YwGQysfDzQw49ptFo4p3VCbwxXR0dmavHgCX+3JfBq8v38d1vpy+5o9G1XThTx7TnzuGtXC65c/UY+Hn7GY4kOy6hAfhyYzKpGYU0aqD8C7r1eiNLvrDsLmV9FZcYWP5VIjPuUcffS1dvA5b4efsZXv9wPz9vT71k2ZVdGzLtzg7cPCDG8QWzM1ePgVU/Hiczu8Shx1z+dSIvTe6m6DvszOXq9f9fLp3UTZkyhZSUFCZPnsy8efOqLJsxYwaff/45+/bto0WLFgQFBSlUStvzjm5NUJeBAAR3G0RAXB+OzOzDqSUPEjt9JQCB7fvSdVXVoURlWakcntadyCGTHV5mS+z4J5PdCY6fje2Dr4/y0mR1vLfJ1WPAXJ9/n8Rdz/yGvoYZAfcczmL8s7/zx550ls7qo8opm2vi6jFg6bBLW9DrTby3NpFZD3Z1+LH/6/stp+02KUJt3ll9mGl3dcDDw/mf3nD1NmCutz79h0fm1jzJxdY9Z9m65yxPT+jMi5O7udQFLlePASX6wbyCcj5fn8SEW9s5/NiWcvX6/y/n75WtlJCQwKpVq4iIiOCVV16pdp1u3boB0Llz58rPLiSBPXv2xNvb2yU6t4C43oT1G0f2H6soSKh+uJKxvJTjr44gIL4P0SOfcnAJLbPyB2VmLMrJL+On7SmKHLu+XC0GzPHz9jPcWUtCd7H31iYy860dDiiVclwpBgqKyln3+2lFjr3yh+OKHPe/Vm5QphwnzuSz4x91zgjsSm3AXJ99f6zWhO5iL7+7j7c+Vddzk5ZypRg4kaJcW3SWftBSrlT/1XHZpG7FihUYjUbGjBlDQEBAtev4+voCVZO6Y8eO8eWXXxIVFUWPHj0cUlZHiB71LGg9SP18VrXLTy1+EGN5CTFTP3Rswayw86ByPyiUPHZ9uVIM1MVkMjFj/t8WvbPrfx//Q4oCdz4cyVViYO/hLMVmYjx8Iof8wjJFjn2xnYeU64t2qfg1L67SBsxRXm5kxnzLLlbNWrzbKeLbnlwlBpTtA7Kc+jUvtXGV+q+OyyZ1mzZtAqB///41rpOSUnHX5eKk7qqrriItLY1vv/2WgQMH2reQDuQT3YqwvqPJ3/8L+Qe3VFmW8d0Ccneuo+XMr9F6WzYTkqMZjSb22PjFmpbYdUidL+EF14kBc/y5P8PiF7AaDCbe/fKInUrkHFwlBnYp+GPGZMLmL/e1VG5+GcdOKffeOCW///pylTZgju9+O0VqRpFF2+QXlvPZ9673/q6LuUoMKNkOc/PLSDpt/isUnImr1H91XDapO3myYnrX5s2bV7tcr9ezdetWoGpSp9W67FdC1MinQautcnUif/+vpHz8BLEzVuPdMEa5wpkpNaOIgqJyxY7v6IkZbM0VYsAcK6wcmrZCoaG9juQKMaB0O1T6+Ikn3fv868sV2oA5rB0iZ23/qSauEANKt8MjyTmKHr8+XKH+q6MxqfX+aR3CwsLIzs5m27Zt9OrV65Lln332GWPHjiUwMJDc3Nxqn5177rnneP755+t9i7l79+6kp6dbtI3Gy5eGbx6t13HrUno2mcOP9yB69Gwa1PNh0LOPtMZUVmyjktVMrw3jbMjUGpfvWDG81veuREX4ovPQojcYSc+subzpmUX0uP3bSz7XGvOJzplXzRa25Yj6B3XGgDnO+99KsXdHi7fTGEtolFP9M7iOJjFQs2z/myjyrn6yElv1AVBzPxBcuJ6AUvOeU7KHUl1zMoPuqXZZXecP9e8HPfVpNMh7x7JC18FR8V4dW7aB6ijVN54LvJsyzxiLt9MZztEw1zne3Sv9YM0yA8ZS6tW62mWO6AfD8lfhW26/mcgd2SfYow+wNg6ioqLYuXOnVcd0/mn8rBQVFUV2dja7d+++JKlLS0tj+vTpAHTq1Mnuk6Gkp6dz5swZi7bRevvR0E7lgYoXMia9chPBPYfbJIBTU1Mxllo2zMMqXmUQUvPiCy/UrIvOQ2vWev9lNOgtrktr2Lv+QcUxYI4mheBt+WYmY7lD6tccEgO1aFxQY/3auw8AyM3JJve8gnHi5ws1TNhs7vmD9d9BeVmpzduJI+K9OrZuA9VRrG9sUQRWzDqvt0P9Wkv6wVrElIBX9Ysc0Q+eP58FefaLE0f1CfbqA5Ro9y6b1A0cOJCEhARee+01rr32Wtq0qXhz/I4dOxg3bhyZmRVjkR3x0vGoqCiLt9F4+dqhJP/K3vYlxSf2UXImkew/Vl2yvP2iQ3hFNjN7f40aNXLIlSmDxo/a7nmmZ9begCy5Ql0dnVZPw8aNzSlqvdi7/kG9MWCOPO9irBnt72XKJtIB9WsOiYGa5fh5UNOUNrbqA2rbV2iwD36+ysVJuUcgGTUsq+v8of79oJen0ebtxBHxXh1bt4HqKNU35ugKa2wntfHxyCNc+sFKztoPnveCmo7iiH4wPNQfn0D7xYmj+gR79QHWxoE1OcMFLjv8MiUlhS5dupCVlYVOp6Ndu3aUlJRw7NgxBg0ahNFo5Mcff2TZsmVMmDCh2n3YavilNYr10He9ww9rtS2DwVGvb2s0YAVp56y7+nH659E0aehPytlCml670uLtR93QgpVzr7Hq2JZQW/2DY2OgLqfTC4i54QuLZ0hc/kJf7r6pjZ1KZRmJgZp9+E0idz+7pe4Vq1HfPgBg35qb6dQmzKptbaGs3EDgFR9TVm60avv6fgePjG3P/BlXWHXsmqgx3s2lVN+4+1Am3UZ/Y/F2GxZfzw19mtihRJZTY1w4qr5feW8fTy2wbpieLfrBjM13EBlmv8RLjXV/MSXavcvOCtKkSRO2bNnCkCFD8PHxITk5mbCwMJYuXcr3339PYmIiUHWSFKEO3eMjFDx2pGLHFuZrGhXA8H6WXVkLDfJi1PWxdiqRsKVuccr1AT7eHsTHhih2fAAvTw9Fk8puCvbBwnyXxUdweUfL/mbFNgnkut7OcZdO1K5bfLhix24W7W/XhE5Yx2WTOoC4uDjWrVtHfn4++fn5/PXXX9x///0UFhaSnJyMVqulQ4cOShdTWKhX5wZueWxhmYVP9qJxA/OmJNZqNXz88tX4OcutRlGruNgQggNreJjEznp2iESnU/5Pp5J90RWdpB9Ui+Uv9CU4wLy24uPtwWev9EOrte88A8I2urePRKdTpq7kt5BzUv4vkwIOHjyIyWSidevW+Pld+qNvzZo1rFmzhkOHDlX5t7Wz0QjbunNYKzw8HN+RtY0JpncX6cjUokmUP5uXD6FVsxpmlPh/Pt4erPnfNQy9un7PzQjH0em03DWslSLHvvdm5xiee49Cw4Sv7h5VZ5sSziO+ZSib3htEVETtd1VCAr3YsPh6rpAf66oRFuzNzdfEKHLse29uq8hxRe3cMqk7cOAAUPPQy5EjRzJy5EhWr15d5d+LFjnHFL/urnFDf27qX/37B+3poVFxdp8pVdhWq2ZB7Ft9M+8/35fL4qoOVdFqNcx+sCvH1o3k5gExyhRQWG3iqDiHHzMs2Jvbrm/h8ONWp0u7cEUuMj2kwPcu6uey+AgOf3MrC2f2Iu4/Q4c9tBrmPtqDo+tG0q9HtDIFFFZToj22bh7EgMsbOfy4om6S1FXDZDJV+9+HH37owFLWriT1KIdn9OafiW1ImNaD4lMHa1zXZDKR+Mw17L0jpPKz4uQDHJl5Ff881I6DD3cgecE9GEv/naUn69dPODS1Mwcf7kDiswMoO3fKnqdjsWl3OXbYbESoD3cqdGfAXObEROnZZI483Y89twdz6JEulywvTj7Akaf7cXBSHAcnxZG9fa0DSm5ffr467rm5DTtX3kj6r3fQIMwHgKhwH5576DIaWzmdsxLMbfeZP7/PPw+25sADLTm5aAImfXmV5dX1CRdLfms8u27UoC/IqfxMX5DNif+N4Z+JbTg4uT0pHz1pq9OySrsWIQxz8N3Vh2+Px8fbeYboTh9v+bsY66Nl00DF7gyI+gkO9GLy7fEc/GoEZzaOruwHG4b7MP3uTkSE+ihcQmGNq7tH0aODY59xnXZnRxmi66QkqVOpU4sfIOL6++mwJJGoEU+Q/Nb4GtfN+HY+3lEtq3ym8fKh6QOL6LD4MPFv7sNYUkj62tcAKEk5TMqH02k9+wfaL/yH8AF3c3LJRHuejsV6dW7Iw3fEO+x4i5/uTUiQFS8+cyBzYsLDL4jGY14idtrnlywzlhZxbM6NNB7zEu3fTiB+wT8ExPd1QMkdQ6PR0DDcF8//fx5KjXddzanj0rMnSP3sWdq+soUO7xyjPOcs535cVmWd6vqEC7K3r0XjcenLrU4uuAff2K50WJJI+0UHaTj8EVucUr0sfro3QQFWvIjLCh1ahTLzPuf6m3HTNTHcem2Mw463/Pm+eHo6188Gcy90mH1BZOMH7LpRQ86fX5u1zFheyqmlk/nnwdYcnNKRE2+MtcVp2Y1Go6FRA39V94OWMLfeTy2bwoEJMey6UUPR8b2XLHfWetZoNLz/XN/K+rS3fj2imXCL8w+9tOTGB9TQtstKODbnJv6Z2IZDUzuTOOtaStKOAZC7+wcSHuvOoSmdODz9CopO7LPn6ZjNuXpnB9m0aRMmk4khQ4YoXRSrlOdkUHhsJ+H9KjqVkN63UJZ5ujLYLlZ86iA5f35N1C1Vr6r7NGqNX0wnADQeHvi17kFZRnLFNif/wTemE55hFUMxgrsNJm/3BvR5WXY8K8u9MqU7sU0CLdomPbOIlLOFZr3L6YKR17Vg5HXOMeSqJubGhC4wjID4Pmi9L707df63z/FvewUB8X2AirjwDJbZPp2FuXWcvXUNwT2H4xkahUajIfKGBzm/ZUXl8pr6hIpjnCV99Rya3PNGlc9L0o5ReGwnDW98rPIzz1Dr36VjK02i/Jk/3bKp9a3pAzw8NHzwYl+8vTwsLaLdvf1Ub4vvsljzHUy5I56rujvf8DxzL3Cad0Ekmcyf3sW/7aUxVdOyMx89CRoN7Zck0n7BAZrcPc8WpyVsxNz4CL3yVtq+8gdeDap/tMOZ67ljmzBmP9jVom2s6QP8fHS8/3wfVdyls+TGR23tPvK6+2m/+Ajxb+0j5PIbObnovopRK2+MIeaRj4hfsJ/G41/nxBtj7Hg25nPLpE7tyjJP4xkajcajYhiQRqPBK7LZJUMkTfpyTi6aQLOHloK25h8jhpJCMn9+j+CeNwLg26IzRUm7KTlT8dqH85s/BZOJsnMn7XRG1vH38+TrNwcSGmT+LHg9bv+WpteupMft35q1fpd2YSybdaW1RXQYc2OiNsWnD6HVeXPsxaEceqQLJ+bfSXnuOXsVWVjI3DouyzxV5YeJV4OYynXq6hNOLppA4/Fz8fCrerGk5NQhvCKacOqdiSQ81o3E2ddRdHyPrU/RKnff1Nqi50os7QMA3nnmSrq3d84LHA3CfVn7xgB8vM1POC39Dq7pGc1rj/awtoh2Y+6FDnPWMxmNnFx0H03vX4jGs+qojJqWGUoKydz4Po3Hvlx5x8sZLnaICpZcAA9sfxVeEdW/m08N9fzkvZ0sumtvaR/g4aFhxWv9iG3i/JMkWVLvtbV7rZcPwd0HV9a5f5srKMtIpjQtCV1gOL7N2gMQ2L4vZedOUZS0285nVjdJ6lxY6srnCek1At+mNf/gMZaXceL1UQR1uY7QXjcDFXfxmk98h+Q37yThse7o87Pw8A8BD+d5luSCjm3C+GnpDYSH2H5oZNd24fz0zg1OP+zSVkwGPXn7NtLsoaXEzd+DV3hjTjnZsFtRP7X1CZk/vYdXZDOCOl1zyTKTUU/h0b8J6zOauDd20XD4oxx7ceglz+opQaPRsHBmL+6/1T5Dgt5+qhf3Oflwo77dovhu4bX4+di+j+7fI5pvFlzrVM8SXmD+hY661zv7zRsExF2Jf6tulxynpmWl6UnoAsNIWz2HhMe6c2RmX/L2/WLr0xRWssXFTlBHPXt4aPn0lX6MsMOkX546LSte689wBSaos4Yl9V5bu/+vjHVvEdLzRnwatUafn0VBwjYAcv76FmNxPqX/P9pNSc7XS4s6eUU0pTw7DZNBj8ZDh8lkouzcKbwiq04aUHDwN8rOneLc+kWYDHoMRXkcmBBDu3k78AyOxKQv58Tro/AMjabphLeqbBt65a2EXnkrAOXZ6aSvfQ2faOecKKR7+0i2fjSUMTN/Y9ehTJvsc/QNsbzz7JWKvQvLUubGRK37iGxGYMf+eIVXvHg2rN9Yjj53vb2KLCxkbh17RTSjND2p8t9lGcmV69TWJ+Qf+JX8g7+Tu3Nd5baHpnai1dPf4BXRDM+wxgR26g9AcLdBmPRllJ476RT9glar4Z1nr6R1s2CeWbSL0jJDvfcZEerDsllXqmZm1IFXNOa3DwYzduZvHEnOtck+J97WjjemX65YQnd4Ri9KUo9Wuyx+vu3uFBef/Iec7V/Sds7vFi3DoKcs4yS+TeNpcterFB3fQ+Ksa2m/6CCeIQ1tVj5RPUfFh1rq2dvLg1Wv92fW27t57YP9GI2meu+zaZQ/H710Ff17Os9sl7aq91rb9n+krZ5Dadoxmr/4C1pvP1rOWMOZT2ZiLCnAv20vfJrGo9Eqn1IpXwJhMc+QBvi1vIyszZ8SMWA8Odu+xCu8ySU/rtq+sqXy/5eeTSbh0S50fDcZqLgrc3zeaDwCw2g2adklD0uXn0/DMywak8FAykdPEDl4Elpv817krIS2LULY/skw5n6wn+ff2UO53mjVfhqE+bDkmSsZMTDGtgW0M3NjojZhfW7j6Mb3MRTl4eEXRO7O9fjGONfEEO7M3DoO7X0LR57sQ/ntz6ELaci5H94hrO9ooPY+ocW0z6rsZ9eNGuLf2o8uIASTyYSHXxBFyfvxi+lEYeLfmEwmvCKa2vekLaDRaHh8fEcG923C3c9u4e9/rB86fOu1Mbz9VG8ahNf+bi9n0719JHu+uIlZb+/mfx8fwGTlb7rmjQJY/nxfrlF42vJ2c7fXulzj6W3mhY7aL4gUHNpCaUYy/0xsDVRcyDx5+n7Ks9MAalwWeuVI0GoJu7rieRq/2K54N2xBcfIBPLs4z499V2Wr+KiLV2Qz1dSzTqdlztTu3HRNc8Y/+zsJx3Os3teEW9oyb1pPgsx8eb2j2Krea2v3kYP+HaWU/tU8cravpfULGyt/Bwd26k/b/7/IaSwvZf9dUfg0c9zkfTWRpE6lmk9cSvKC8aSvmYOHbxAxUz4AIHnhfYT0HE7I5cNr3f78llXkbF+Lb0wnEh6teMA2oN2VNHvw7f/fzz2UZZzEqC8luNsQGo+bY98TsgFPTy1P39+FO4e3YtmaI7z75RHOZhXXvSHQvmUID42KY+zQVk7XgZnLnJgwlhbxz8Q2mMpLMRTlsv+eJoT3G0fjO1/BK7IZUbc+xeEneqPRaPEMb0zzh5bVcVThSObUsXdULNF3PM/hJyueBQ3s0I/I6x+o13E1Gg0xUz+qeD1CWTEaT29aPvklWk/nG5oc3zKUbZ8M5YetKSxelcCGP1LMSm68vTwYdX0LJt4Wp+oXMPv66Hh9Wk/uv7Ut76w+zPKvEsnJLzNr254dInloVBy3Xd8CXzsM5bQ1cy901LVe5KCJVX7EHXm6Hw2HPULIFTdVLq9pWWCnAeTt+ZHg7oMpPXuC0rMn8KnlkQfhOLa42AmgC4pQXT337BjJ3tU38fWmkyxelcBvO9PN2i7Az5OxQ1oycVQcndqE2bmU9mFuvdfV7qFieGb2lhW0fmEjuoCQys8v3PgASFv1IoGdrnGKUSsak8naa3nCnor10He90qUw35bB4OtkvwHKyg1s3pHGzoOZ7DqURcKJHIpK9HhoNQT6e9K5TRjd4iO4olMDenSIcKqpndVW/+CcMVCdJgNXcCajiMYN/EjZeLvSxamRxIBtJJ/J57ed6ew8lMnuhEwyzpdQVm7Ax0tH0yh/usWH0719JP17RLvku7qKivVs+juVXYcq+sHEk7kUl+rReWgJDfKmS9uKfvDKrg0V/RFnbbyXpBwhecH4ime///9Ch29Mxfv7Lr7YUdt6/1Xdj7ualpWmHyd54b3o8zPRaLREj5pFaO9bqmzjjO3CXfpBc+Pj5OIHyN35PeXZ6egCw/HwDaTD0n8n1jCnni9wxvo+ciKHLbvPsvNQJnsSssjKLaFcb8THS0dsk0C6xYfTLT6CAZc3cpoL2/Wpe3Pr/WL/bdtlmSkcuLcpXlGxePhWTB6m0XkTN+8vTi6aQP6hLWDQ49+uF00nLKyS9IEycSBJnZNS2w86Z+zE1Ext9Q/qiQF3+TGjBLXEgHA+aox3czlju5B+0H6csb7VSI11fzEl4kBmvxRCCCGEEEIIFZOkTgghhBBCCCFUTJI6IYQQQgghhFAxSeqEEEIIIYQQQsUkqRNCCCGEEEIIFZP5eZyUj0fFzDlq4eOhdAlci9rqHyQGbE1iQLgTNca7uaRdWE+NcSH1bRtqrPuLKREHktQ5KY1GpsR1Z1L/QmJAuBOJd1EdiQv3JXVvORl+KYQQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqplO6AKJ6JhOUGJQuhfl8PECjUboUrkNt9Q8SA7YmMSDcnbQB96bG+r9A4sA2JAYsI0mdkyoxQN/1SpfCfFsGg69Ek82orf5BYsDWJAaEu5M24N7UWP8XSBzYhsSAZWT4pRBCCCGEEEKomCR1QgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomMzNI4RwWSWlev7cf45dhzLZeTCTU+kFZJwvBiAzp4RZb++iW3wEvTs3IDLMV+HSCiGE7RUUlbN9X0ZlP5h6rqiyH8zKKeXFpXsq+8GQIG+FSyuEsJYkdUIIl3MiJZ93Vifw/leJZOWUVrtOaZmRF5fuBcBTp+WWgTFMGh3HlV0bopEXDAkhVO5QUjZLvjjMR98eJb+wvNp1SsoMzHp7NwC+Ph7cMaglD42K47L4CEcWVQhhA5LUuZD8A5tJfKZ/lc+0Pv54N2pDeL9xNBj6MBoPqXJX5u4xUFSs5+mFO3nrs4OYTOZvV643svKH46z84Tj9e0Tz/vN9adEk0H4FtSN3jwEh3L0NZOeV8ujcv/jo26MWbVdcYuD9rxJ5/6tEbh7QnMVP9yYqws9OpbQvd48Bd+eu9e96ZyQIvep2grsNBpOJ8ux0sjZ/TMryxyhJSaD5pGVKF084gDvGwLa9Z7nrmd85diqvXvv5dUcaHW9Zy+uP9eTB29qp9q6dO8aAEBdzxzawYctp7nv+D1Iziuq1n69+OclvO9NZ/HRvRt0Qa6PSOZ47xoD4l7vVvyR1Lsgv9jLC+42t/Hfk4Ic4+FA7Mn9+j0ZjX8YzOFLB0glHcLcY+HpTMqOm/0pZudEm+yss1vPQy9tIPJnLG9MvV2Vi524xIMR/uVsbeO/LI9z/wh8WjVKozfncUkbP+JUTZ/J58t7Ottmpg7lbDIiq3K3+ZfZLN+Dh449/2yvAZKI0PUnp4ggFuHIMfP/7KUY+vslmCd3F3vz0INPm/YXJVr+SFOTKMSCEOVy5DXz4TSITnrddQnexmW/t5PUP9tt+xwpw5RgQdXP1+pekzk1cCF5dQJjCJRFKccUYSDqdx22P/4peb7+ka/4nB/n422N2278juWIMCGEJV2wDOw+e477n/rDrMWbM38GPW1PsegxHccUYEOZz5fqX4ZcuyFhahD4vE5PJhD47nXM/vEPx8T34te6JT+M2ShdPOIA7xIDRaOKeWVsoKtFbtN2OFcOJivAjPbOIHrd/a9Y2U+f+ycArGtG4ob81RVWEO8SAELVxhzZQWmZg/DO/YzBYdmHLmn7wvuf+4J+1IwgO9LKmqIpwhxgQNXO3+neLpC4zM5O5c+eydu1aUlJSiIyMZMSIEcyZM4cpU6awfPlyFi5cyOTJk5Uuqk2krZhN2orZVT4L6TWCZg+8rVCJnIPBYCSvsBwPrYZAf09VPidlLneIgaWrD/P7rnSLt4uK8KOJhclZbn4ZE1/axrcLr7X4eEpxhxiwRnGJnqISPUH+Xnh6ut9gFYPBSG5BOV6eWvx9ddIPqtzL7+7lYFKOxdtZ0w+mnC1kxvy/WTqrj8XHU4o7xIClTCYTxSUGikv1BAd4odO5bj/obvXv8knd3r17GTRoEOnp6fj7+xMfH09qaioLFiwgKSmJ8+fPA9ClSxdlC2pDEdffT2jvkZgM5RSfPED62tcoy0xB4+lTuU7+wS0ce2HQJdua9GWYjAa6fWVwZJHtasc/51i8KoGVPxynpLTivCJDfbhvRFsevK0dzaIDFC6h7bl6DBgMRuY6+BmP7347xaGkbOJbhjr0uNZy9RiwREFROZ+uO8biVQkcOJpd+fk1PaN5aFQcw/s1d+kEz2Qy8fuudBavSmDtL8mVw5WbRvnzwK3tuO+WtjQM91W4lLbn6m2gsKicBZ8fcugxP/j6KC9M6qaaeHH1GLDE+dxSPvwmkSVfHK6cJVqjgSF9mzJpdDzX9W6MVutaF3ncrf5dOqnLzMxk2LBhpKenM23aNGbPnk1gYMW7p+bOncsTTzyBTldxpbJTp04Kl9Z2vKNbE9RlIADB3QYRENeHIzP7cGrJg8ROXwlAYPu+dF1VUGW7sqxUDk/rTuQQ17hjWVpm4L7ntvDpuksfhj2XXcIr7+/jtQ/288bjPZk6toMCJbQfV4+BH7amkJxaUPeKNrbki8MsnNnL4ce1hqvHgLm27zvL8CkbycwuuWTZpr/T2PR3Gu1bhrB+8fUueYEnv7CMUdN/ZcMflz4PdTq9kGcW7eKFpXv44IWruGNISwVKaD+u3gZWbDhObn6ZQ49Zrjfy/tojPDWhi0OPay1XjwFzrd9ymlHTN1FQVPVxBZMJ1v1+mnW/n6Z3lwZ889a1RIT61LAX9XG3+nfdS5PAlClTSElJYfLkycybN68yoQOYMWMGnTt3Rq/XExMTQ1BQkIIlta+AuN6E9RtH9h+rKEjYVu06xvJSjr86goD4PkSPfMrBJbQ9g8HI7U/8Wm1CdzGj0cQjc//ifx8dcFDJlOFqMfDul0cUOe7H3x2ltEw9V+0u5moxYI6/D5xjwH0bqk3oLnYwKYer7v6etHP1e7eXsykp1TNk0k/VJnQXKys3MmbmZj5d5xoTAtXE1drAe2uV6QeV6n9twdViwBwbtpxm+JSfL0no/mvb3gyuuW+9wy8UOJKr17/LJnUJCQmsWrWKiIgIXnnllWrX6datGwCdO//7/pU1a9Zwyy230Lx5c/z8/GjXrh1PP/00BQWOvytgS9GjngWtB6mfz6p2+anFD2IsLyFm6oeOLZidvPvlEb765aTZ6z/+v7/55+h5O5ZIea4SAyaTiT/2nFXk2HkF5fxzLLvuFZ2Uq8SAOQwGI7dN30RxqXlJ+MnUAh58caudS+VYr7y3ny27zW8r987e4nKJ7X+5ShsoLtGz81CmIsdOTi0gNaNQkWPbgqvEgDkKisq5/cnNZk+kc+BoNk+8ucPOpVKWK9e/yyZ1K1aswGg0MmbMGAICqh9S4+tbMSb84qRu3rx5eHh4MGfOHDZs2MDEiRNZsmQJN9xwA0aj7d+D5Sg+0a0I6zua/P2/kH9wS5VlGd8tIHfnOlrO/Bqtt59CJbQdk8nE2ysTLN5uyReH7VAa5+EqMXAqrYCsnFLFjr9LoR9StuAqMWCO738/zUkLh+iu+/00J1Pz7VQixyorN7DsS8v6tLJyo2J3fxzFVdrA/sTzFs94aUu7DmUpduz6cpUYMMdn3ydZfOft03XHXPpunSvXv8smdZs2bQKgf//+Na6TklIxJOXipO67777jiy++YMyYMVx99dVMnTqVRYsWsXXrVv74w77vgbG3qJFPg1Zb5epE/v5fSfn4CWJnrMa7YYxyhbOh7fsyrLqb8vF3RyksKrdDiZyHK8TA3iPK3lHdk6DeHzPgGjFgjqVrLL9IYzSaeG9toh1K43jfbT5FemaxxdstXX0Yo1G5ZMERXKEN7DmsbD+k9PHryxViwBxLV1veDxYW6/nse9ceiu2q9a8xmUwu2Xs3bdqUlJQU9uzZU+3Mlnq9nujoaDIzM0lKSiI2NrbGfSUmJtK2bVs+//xzbr/9dovL0r17d9LTLZt6XePlS8M3j1p8LEuUnk3m8OM9iB49mwb1fBj07COtMZVZ/gPCHgq9u5HjP9yqbRvkLMDTqPwfK0fUP6gzBgq9OpMTMKLaZRfevVSbqAhfdB5a9AZjrT96a3p/k2/pAcIK11hWaCtIDNRPevAjGDwsn6nUp+wQ4QWr7FAix8rzuZp8v2us2jY6ew5ak3J3wy+QNlCzfJ8+5PlV/4oVR/SD/iXbCSn6wbJCW8hR9Q+2jQFwjr7QBKSGPgsay+dE9C/5i5Ci9bYvlIXU2AdcYG0MREVFsXPnTquO6bKzXxYWVoz3Li6u/gtdtWoVmZmZBAYG0qJFi1r39euvvwIQFxdnVVnS09M5c+aMRdtovf1oaNXRzGMsLSLplZsI7jncJgGcmpqKsdRJnsUIbwNWviM649x5KLGsruzB3vUPKo6B0BZQwySFlrx7Seehtfg9TQDFJaUWt2drSAzUU6AGPCzfrKSk3CH1a3cNi8HK0UNpaefAoPwwVGkDtYgsqLF+HdEPFhYUUZhm33biiPoH28cAOEtfqIFQ6wbkFRaVUegE/aAa+4ALlIgBl03qoqKiyM7OZvfu3fTqVXUK8rS0NKZPnw5Ap06dan356pkzZ3j22We54YYbrH6XXVRUlMXbaLzs+w6Y7G1fUnxiHyVnEsn+49Kr0u0XHcIrspnZ+2vUqJHiV6UuKPLywuLBlyYTaDRERQTgYWpsj2JZxN71D+qNgSKvgBrrNz2z7g7UkivU1fH18SSssf1jRGKgfs5qSql9rrfq+XkbCXVA/dpbgbcHudZsaDLSKCoUDcrPCC1toGb5Pn7k1bDMEf1ggL83wXZuJ46of7B9DIDz9IVppmKMGsuT9gBf7F6/5lBjH3CBtTFgTc5wgcsOv5wyZQoLFy6kadOmbNy4kTZt2gCwY8cOxo0bx/HjxykvL2fSpEksWrSo2n0UFBTQr18/0tPT2bFjB9HR0Q4rf7Ee+ip/59tsWwaDr5NcIsjJK6XxwJUUlVj2k65X5wZs+2SYnUplGbXVPzguBv7an8EVY7+zevvTP4+mSUN/Us4W0vTalRZv//xDlzHrwa5WH99cEgP18/yS3Ty3ZI/F23238FqGXm35H3Bnk3wmn9jBX2DpX/ibBzRn7fyB9imUhaQN1OybX09y09SNVm9f335w2awrmXBrO6uPbw411v8FztIXPvjiVqueq9u58ka6xUfYoUSWkRiwjMtOlDJjxgzCw8M5ffo07du3p2PHjrRu3ZqePXsSGxvLNddUPGtw8SQpFysuLmbYsGGcOHGCn376yaEJnaifkCBvxljxEt2HRlk3vFY4Vqc2YXh41Hx33d66xYcrdmxhvgm3tEVnYZw0bxTAoD5N7FQix4ppHMiQvk0t3k76QXXoFqfsD25n+MEv6mZNe+7ZIVLqV6VcNqlr0qQJW7ZsYciQIfj4+JCcnExYWBhLly7l+++/JzGxYoaz6pK68vJybr31Vnbu3MmGDRuIj493dPFFPc24uxMhgV5mr9+1XTi3XhtjvwIJm/H10dGhleUTYNiK/LFTh0YN/Jk6pr1F27z8cDc8PFznz+LsiV3x8Tb/wcKBVzRiwOWN7FgiYSuNG/rRMNwxwxP/y8tTS4fWyvXBwnyd2oRxx2DzL3JrtRpenHyZHUsk7Ml1/npVIy4ujnXr1pGfn09+fj5//fUX999/P4WFhSQnJ6PVaunQoUOVbS682+6XX37hm2++oWfPngqVXtRHq2ZBfLfwWoID6k7s4luG8P3b1+Hj7QRjJYRZlErA+3RtWOescsJ5vPZoD8YONe8HzeuP9WTMkFZ2LpFjdW8fyRevX2NWYndFp0jW/G9Arc+YC+eh0WgU6wdv7N8cL08rZiESinj/+T7ccGXdIxA8PDQsf74v1/V2jdEK7silk7qaHDx4EJPJROvWrfHzq/oDbdKkSaxevZpHH30UPz8//vzzz8r/zp07p1CJhTX6XBbF9k+HMfK6FtUOwwoO9GLKHfFs/Wgo0ZHyQ11N7hvRFp3O8T8+ZWiaunh4aPnopatZOLMXLZsGVrvO5R0j+fqtgTw+vqODS+cYw/o14/cPhjDkqqZUl69Fhvrw1H2d2fTeYIItGN0glDfxNmX6I+kH1cXHW8e3C67l5Ye70bhB9b91rukZzc9Lb+CuG1s7uHTCltzy1sSBAweA6odebtiwAYBXX32VV199tcqyDz74gPHjx9u9fMJ24mJD+GLeNaRmFLL6pxM8s2gXBUV6QgK9SPl5NP5+nkoXUVghKsKPWwe2YOUPxx12zIbhvowYGOOw4wnb0Go1TL49nodGxfHz9jOMfHwT+YXlBPl7sun9wW4xnLZHh0jWLbqOEyn5rP0lmeeW7KagSE9okBenfx6Nt5fcdVGj9q1C6dcjms070hx2zPiWIVzd3frZ+YQyPD21PDWhCzPu7sS6309x59O/V/aDf342nLjYEKWLKGxAkrr/SE5OdnBprFOSepTkN+9Cn5+Jh18wMVM/xLdZ1edH8g9s5ugLg/Bp3Lbys3avbUfr7Uvmxg/IWPdW5edlmSkEtr+KljPXApD+5WtkbfoIjacXWk8fmk5YgH8b9Q5FbdTAn6ljO/D6hwcoKNLj76tTfUJX3xjI27+JMx8/ibG4ADQagrsPofGdr6LRajEUF3D81VsoTNoFRj1dPs9x7MmZ4bVHe/D9ltPkF5Y75HhvzrjcqX/8mhMPJqORlA8eJ2/3D2g8dHgEhtN88rv4RFcMOyw7d4pTSydRciYRjdaDyEETaTD0YSVOx+a0Wg3XX9mEIH9P8gvLCfT3dIuE7mItmgQy7a6OzP/kHwqK9Pj56Jw6pkXd3pxxOd1v/wa93jETmb/9VG8ZoqtiOp2Wm66JIch/e2U/KAmd65CkTqVOLX6AiOvvJ2LAeLK3riH5rfHE/W/HJev5NG5L/Jt7L/k8YuDdRAy8u/LfBx/uQNjVYwAoOr6XcxsWE7/wIB6+AWRt/pRTyyYTN+9vu52PsFx9Y0AXEErs4yvxjorFWFZC4qyBZP36MREDxqPRedLwlifQBYSR+Ew/+5+MFZpFBzBvWk8eeGGr3Y81YkAMo26Itftx6sOceMj9+1sKErYS/9Y+NDpP0r54idRPniJ2xheYTCaSXrmZqFueJPTKkQCU55xV4lSEsBlzLnYA5O5cz5nPngGTEZNBT9TN0wm/5i4AjOWlpCyfRt6eH9F4+eAX05kWj33q6FOpVue24Tx7f1dmL95t92NNGh1Hvx7OPxO4uXV+YEIMGp03Wu+KCWeibplJWN9RABjLSjg+bzQlpw+h9fJFF9yAZhOXVF4AO7VsCrk7vqUs4yRx8/fgF9vFYecn6lbfGNDnZZE4a0DlesbSIkrTj9P54wx0gWG19hdKcsukbtOmTUoXoV7KczIoPLaT1s//BEBI71s4tWwyJWnHKjscSxQe+Qt9bgYhPYdXfKDRYNKXYywtxMM3AENhDl7h8uCsM7FFDPjF/vuuNa2XD34tulCWkVzxb09vgjpdQ+nZZFsX3aYm3NKWH7eeYe0vyWZvc+Fluua8oBcqprlf8oxzX502Ox40Gkz6UoxlJWg9dBiK8vD8/7adv+8XNDrvyoQOwDOkoUPPQwhbM+dih8lk4sT8sbR5eTN+MZ0oPZvMwUntCLliBB5+gZz56EnQaGi/JBGNRkN5drpCZ1O9mfd2ZuOfZ9iy2/yLMJb2gx1bh/LqIz2sKp+jmXvBEyB2+qoaE7LI6+4nqNsgNBoNGd8v4uSi+2j78mYAQq+8lagRMzgys4+dzkLUR31jQBcUXuViePpX8yg4+Bu6wLA6+wslueVEKWpXlnkaz9BoNB4VOblGo8Ershll505dsm5pWhKHHr2MhGk9yFi/uNr9ZW58n7B+49DoKoYj+rXoTIPhj3JgQgv239OEs9/Op+n9C+13QsJito6B8ux0sretIbj7ULuW29Y0Gg2fvXo11/VubPY2PW7/lqbXrqTH7d/WuW6jBn5sXDaIBgpNHW4uc+MhuMcwAjv0Y//4KPaPjyZ//y80uuMFAEpOH0IXHMnx10dz6JGuJM25mdJ0xz2zKIStXbjYEd5vLFBxsaMs8zQlaccuXVmjwVCYA4ChOA9dYDgaT28MJYVkbnyfxmNfrryw4xnqXM+UeXpq+W7hdXRvb/5wYkv6wbYxwfy09AYCVPDIgkV1Xgutlw/B3QdX1rl/mysqL3oCBLa/Cq8IudjtjGwVAxfL2vg+EQPv/feDGvoLpbnlnTp34dfyMjotT8HDP5iyzBSOvTAYXVAEYX1uq1zHUFLI+S0raTf3z8rPSs+eIOfPtXR45xhe4Y3I+H4Rx18fRbtX/1DiNEQ9mBUDRXkce2kYUSNm4N+6u4Kltc6Fmb3ueuY3Vv1wwmb7bdcimPVvX0+LJspeebOlomM7KT75Dx2Xn8HDL4gzHz/JqSUP0uKxTzEZ9eTv30S71//Et1l7zm14h+NzbyPujZ1KF1sIq9R2sePiO9gajYbYx1eR9MoIPHz80Rdk0/LJtWg9vSg6cxhdYBhpq+eQv28jWm9fokc/R1DnATUdVhHBgV788u4gbp32Cz9vT7XZfnt2iOS7hdc6/YWtC8yt8wuS37wTEyb8W/ek8Z2v4hkcWe1+M9a9RUjPG+1admEbto6BgoRt6AuyCe4xtHJ/NfUXSpOkToW8IppSnp2GyaBH46HDZDJRdu4UXpHNqqzn4Rd00TZNCL3qdgoObanygz5762p8m7XHt9m/L1jP3vYlvs074hVe8RLa8AF3c3rZwxjLy5wiaIXtYsBQlM/R524g5PIbaXjjYw49B1vy9vJgxWv9GX51cx5+dTvnc0ut3pdWq2HanR14/qHL8PVRRxdpbjxk/foxgZ2uQRcQAkD4NXdxdPZ1/7+PZvjFdq187iCs/zhOLX0Ik7688i6+EM7k8IxelKQerXZZ/Pw9Zu/HZNCTtvolWs5cS2D7qyg8uoNjLw+n/YIDYNBTlnES36bxNLnrVYqO7yFx1rW0X3TQ6YYnBwV48cOSG1jyRQJPzN9BYbHe6n15eWp5buJlTB/fEZ3OeQZ12arOAdrO+R2vyGaY9OWc+ewZkt+6i9az1l+yXtrqOZSmHaP5i79YVWZhW46OgcyN7xPe/87KJLG2/kIXpOzkW+r4xSKq8AxpgF/Ly8ja/CkRA8aTs+1LvMKbXHIFovx8GrqQhhWzGRblk7tjHRHX3ltlnUtuKQPeUbFk/fIBhuICPHwDyN2xDu9GbSShcyK2iAFDcQFHn7+BoMtuIPq2Z5Q4DZvSaDTcMaQl11wezUvL9vLxd8csmhlTo4GhVzXj6QmdubxTAzuW1PbMjQfvqFhyd66n4U2Po/X0InfHOnybdQAgqNsgUj6aQVnWGbzCG5O3az0+TeIkoRNOq93c7bUu13h6m3Wxo+j4XsrPpxLY/ioA/Fv3wCu8CUXH91Q8e6zVVk4k5hfbFe+GLShOPoBnF+dK6qDiotSk0fEM6tOEl5btZcWG45SUGszeXqfTcOvAFjxzfxfatwq1Y0mtY6s6Byo/0+g8aTjsEf6Z2OaSddK/mkfO9rW0fmEjWm95n60zcGQMGIoLyP7jiyrP49XWXwR1uba+p1cvktSpVPOJS0leMJ70NXPw8A0iZsoHACQvvI+QnsMJuXw42du/5NyGJRVBbdATeuVIwgf8O+NlScoRio7vpdWzVa9KhFxxM0VHd5AwrTtaT2+03v60mPa5Q89P1K2+MZDx3VsUHv0bY2khOX9WvMoitPdIom97GoBDUzpRnncOQ1Ee++9pQmDH/rR49BNlTtYCURF+LHqqN69M7c6n65JY9/spdh3K4mxW8SXr+vvq6NIunH7do7hvRFtiGqt3qKU58RA5eBIlpxNIeKQzGg9PdKFRNJ/4DgAePv40n/gOx14cAiYTHn7BxD6+UslTEqJezL3Y4RXZlPLzaRSfTsC3aRwlaccoTU/Cp3FbdEERBHYaQN6eHwnuPpjSsycoPXsCn6bO/QLu2CZBLH/hKuZNu5wPv0nkh60p7DqUVe0ohqAATy6Li2Dg5Y24d0QboiLUm7yYW+eGkkJM+vLKUQvnt6yoMnkYwNlv3iB7ywpav7Cxcj3h/GwZA9l/rMK3RWd8mrSr/Ky2/kJpGpPJ5JiXmwiLFOuh76WjAJzWlsHgq4JLBE0GruBMRhGNG/iRsvF2pYtTI7XVPzh3DJhMJlIzijiZVkBJqQEvTy0RoT60bhaEh4fzDC26mMSAfailD7AntXwHtmgDJSlHSF4wHn1+VuXFDt+YjkDVCx7nf19B2po5aDRaTCYj0bfMJOzqOwAoTT9O8sJ70ednotFoiR41i9Det1R7PGduAyaTiZOpBZzJKKK0rKIfjIrwI7ZJIFqt883ua239m1Pnvs07kPTqLWA0YMKEd8NYmt73Ft4NY4CKd/ceuLcpXlGxePhWXOzT6LyJm/cXACcXP0Duzu8pz05HFxiOh28gHZb+OxGHM8cBuH4fYIsYADg8ozcR102o8gowoNb+4gIlYkCSOielth90zt6BXeDqHZmS1BIDaiExYB9q6QPsSS3fgbQB96bG+r/A2eNA+gD7UyIGnPMStRBCCCGEEEIIs0hSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWJO/Bine/PxqHjIUi18PJQugWtRW/2DxICtSQwIdydtwL2psf4vkDiwDYkBy0hS56Q0GueeOUnYl9S/kBgQ7k7agHuT+hcSA5aR4ZdCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiklSJ4QQQgghhBAqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWKS1AkhhBBCCCGEiumULoConskEJQalS2E+Hw/QaJQuhetQW/2DxICtSQwId6bG+L9A2oFtSAwIiQHLSFLnpEoM0He90qUw35bB4CvRZDNqq3+QGLA1iQHhztQY/xdIO7ANiQEhMWAZGX4phBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKyWOcwuUVFevZl5jFkeRcCorKKz4r0XMg8TxxsSHodHJtQwhXZjKZOJ1eyO6ETAqL9QAUFuv5cWsK3eIjiAj1UbiE9pdfWMaehCyOnc6v0g8ePpFDm+bBaLUyVZ8QrsxkMnE8JZ89CVkUFlf0AYXFejb9lcplceGEBHkrXEJRX5LUCZeUkVXM+18lsmJDEoeO52AwmKosz84ro9OtX+Hr40GP9pHcc1Mbbru+Bb4+0iSEcAUmk4nNO9J4Z/VhNv2dRmZ2SZXlOfll3DDxRwCaRfszpG9TJt4WR8c2YUoU1y5OpxewbM0R1vx8giPJuZiqdoNk55URd+OXBPh50qtzJBNuacdN/Zvj6SkXuoRwBQaDkR+2prB09RG27E4nJ7+syvKc/DIGTNgAQMumgdzUvzkP3hZHq2ZBShRX1JPGZPpvNy+cQbHe8mlc8w9sJvGZ/lU+0/r4492oDeH9xtFg6MNoPOyTtDjL9L1p54p48s0drPzhOGXlRou2DQv2ZvLoeGbe1wkfb2VPxpr6B4kBVyIxYB2TycTqn04we/FuDp/ItXj7vpc15LVHe9Crc0M7lM4xjqfkMf1/O/j615MYjZb9iY+O9GPanR2YOqa9oqMYrI1/ULYNgHO0A1cgMWA9k8nEe18eYc57+0hOLbB4++t7N2betJ50aK3sRS41/h28QIkYkG7HBYVedTvB3QaDyUR5djpZmz8mZfljlKQk0HzSMqWLZxcmk4nP1yfx8Cvbyc4rq3uDapzPLeWFpXtYs/EEH7xwFT07Rtq4lI7jjjEgqnLHGDibVcxDL21j7S/JVu9jy+6z9Lnrex4b14EXJl2mqrv3RqOJxasSeGL+DopK9FbtI+1cEY//72+++PEEH750FXGxIbYtpAO5YxsQVbljDCSfyefe2VvY9Hea1fv4cdsZNv39DbMf7MoT93RS7WMq7lb/6qwlUSu/2MsI7zeW8P7jiBoxnXZz/8QzvAmZP79Hee45pYtnc3q9kXtmbWHszN+sTugudigph17jvuOdLxJsUDpluFsMiEu5WwzsOpRJxxFr65XQXWA0mpj30QEuH/MtaeeK6l84Bygu0XPT1I08/Mp2qxO6i/39zzm63vY1a346YYPSKcPd2oC4lLvFwMY/z9Dp1q/qldBdUK438syiXVxz33py8kptUDrHc7f6l6TODXj4+OPf9gowmShNT1K6ODZlMBgZM3MzH35z1Kb7NRpNTHxpG299+o9N96sUV44BYR5XjoEd/5yj/73rOfef5+bq68DRbPqOX+f0iV1JqZ6hk3/iu99O2XS/pWUGRs34lRXrXSNeXLkNCPO4cgz8uDWFIZN+Ir+w3Kb73bL7LAMmbCA3v/4XzZXmyvUPktS5jQvBqwtwnUkAAB59/S+++NF+V5IfmfsXX/x43G77dyRXjQFhPleMgeQz+dww8Ueb/5C5IOl0Ptc/+APFNrj7ZQ8mk4lxT/1mkyvz1TEaTdz5zG/8+neqXfbvaK7YBoRlXDEG9h7O4uZHN1o8l4C5didkcdMjGzEY7LN/R3LF+r9APQ8LCLMZS4vQ52ViMpnQZ6dz7od3KD6+B7/WPfFp3Ebp4tnMz9vPsPDzQxZts2PFcKIi/EjPLKLH7d+atc2DL26l72VRREf6WVNMRbhLDIiauUMMGI0m7p29hfO55g8NsqYPOHA0m2cX7WLe45dbW1S7+XTdMdb8nGzRNpZ+B3q9ibtnbeHAlzcT6O9lZUkdzx3agKidO8RAWbmBu575neISg9nbWNMPbt6RxpufHmTaXR2tLarDuUP9X8wtkrrMzEzmzp3L2rVrSUlJITIykhEjRjBnzhymTJnC8uXLWbhwIZMnT1a6qDaRtmI2aStmV/kspNcImj3wtkIlsr28gjLue26LxdtFRfjRpKG/Rdtk55Xx4Itb+fqtgWg06niXkzvEgKidO8TA0v9/XYElrOkDAN745B9GDIyhdxfnmRUz7VwRU1790+LtrPkOTqYWMP2NHbzz7JUWH08p7tAGRO3cIQZeWraX/YnnLdrG2n7wmUW7GHpVU9q2CLF4WyW4Q/1fzOWTur179zJo0CDS09Px9/cnPj6e1NRUFixYQFJSEufPVzSELl26KFtQG4q4/n5Ce4/EZCin+OQB0te+RllmChrPf1+wm39wC8deGHTJtiZ9GSajgW5fmX/FRwkLPz/EqbRChx3v282n2LIrnau6RzvsmPXhDjFgibJyA2s3JvP9ltPk5pfj5+tBt7gI7r6pjcu+eNrVY6C4RM8zi3Y57HgmE8yYv4M/PhrqsGPW5eV3917y3il7Wrr6MI+Oba+aH3Su3gYsVVSsZ9WPx9n4Zyr5heX4++roc1lDxg1tRVCAeu7AWsLVYyAjq5jXlu932PFKSg08s2gXq/83wGHHrA9Xr///cumkLjMzk2HDhpGens60adOYPXs2gYGBAMydO5cnnngCnU6HRqOhU6dOCpfWdryjWxPUZSAAwd0GERDXhyMz+3BqyYPETl8JQGD7vnRdVfXdJWVZqRye1p3IIc59x1KvN7J0zWGHH3fJF4dVk9S5egyYy2QyseCzg7zy/n7OZhVXWbbqhxM8+/Zuxg5pyZtPXEGAn6dCpbQPV4+BVT8et2jYpS1s3XOW/Ynn6eQELyjPLyzj4++OOfy476w+zPwZVzj8uNZw9TZgLoPByItL97Lg84OXzBC98ofjPPnmDibc0pZXH+mBl6eHQqW0D1ePgfe/SrTbc3Q1+frXk6RmFNKogeV3+hzN1ev/v1x6opQpU6aQkpLC5MmTmTdvXmVCBzBjxgw6d+6MXq8nJiaGoKAgBUtqXwFxvQnrN47sP1ZRkLCt2nWM5aUcf3UEAfF9iB75lINLaJnvt5zmdLrj7tJd8OXGZNIznXsWvJq4WgyYw2QyMfW1P3lk7l+XJHQXlJYZeP+rRPrds94lZvaqjavFwOJVyrxyRKnj/tdn3yfZbXKY2nzwzVEKixx/XFtwtTZgDoPByB1Pbub5d/bU+MqfgiI98z85yJBJP1Fapp67EtZwpRgwGIy8s9rx/ZFeb+LdL484/Li24Er1Xx2XTeoSEhJYtWoVERERvPLKK9Wu061bNwA6d+5c+dmWLVsYOHAg0dHReHt706RJE0aNGkVCgnP8IbdW9KhnQetB6uezql1+avGDGMtLiJn6oWMLZoV1Np6221zleiM/bz+jyLFtwZViwBxvr0wweyKdXYcyuePJX+1cIuW5SgxkZBWz459MRY79/e+nFTnuf61TqBy5+WVs25ehyLFtwVXagLlmvb3b7BmiN/6ZyqSXq/+h60pcJQb+OZbt0MdQLvb9FufoB63hKvVfHZdN6lasWIHRaGTMmDEEBARUu46vry9QNanLzs6mY8eOLFiwgJ9++onXXnuNgwcP0qtXL1JSUhxSdnvwiW5FWN/R5O//hfyDVScYyfhuAbk719Fy5tdovZ1/hsddh7Lc8tj15UoxUJfyciOvvL/Pom3Wb0lhT4IyiYKjuEoM7DqkXD2lnC0ko4Y7v46k5Heg5LHry1XagDnyCsp467ODFm3z4bdHSVFgJIwjuUoMKPl7ZH9iNuUOHvZpK65S/9Vx2aRu06ZNAPTv37/GdS4kaRcndcOHD2f+/PmMHDmSq6++mjFjxrB27Vpyc3P58ssv7VtoO4sa+TRotVWuTuTv/5WUj58gdsZqvBvGKFc4M5WWGfjnWLZix1fzjxlwjRgwx7ebT5KaYflQ2SVfOP5ZTUdzhRjYnaDsxRWl+4HUjELSM5VLLJU+//pyhTZgjk/WHaOw2LL3KxoM6h1aZwlXiIHdCl6ELC0zcDBJud9i9eUK9V8dl50o5eTJkwA0b9682uV6vZ6tW7cCVZO66oSHhwOg0zn31xXYsR/dvjHVuNy3aVyVWXxKzyZz/PXbaDL+dQI79nNACesvPbOIcr1yV4dOpRfUvZKC3CEGzPHDVuvuqm/4Q7134y9whxhQuh2eUvhOhlJDri5Q4plmS7hDGzCHtf3Zhq2neX7SZTYujWO5Qwwo3Q+cSiugS7twRctQE3eo/+poTCZTzWetYmFhYWRnZ7Nt2zZ69ep1yfLPPvuMsWPHEhgYSG5u7iXvHzMYDBiNRk6ePMnMmTP5448/2L9/P5GRkRaXpXv37qSnp1u0jcbLl4ZvHrX4WOYylhZx+Ine+LXsRszD79d7f2cfaY2pzP5Xjsu14WSETKlx+YUXatYkKsIXnYcWvcFY65Xuml7IqTUWEJ3zumWFtoK96x/UGwPmOO8/kmLvDhZvpzGV0ih7jh1KZDmJgZpl+99EkXfXapfZqg+AmvuB4MINBJRa/n44WynVNScz6J5ql9V1/lD/ftBTn0aDvHcsK7SFHBH/YPs2AM7TF54LvIcyz+ovbNfGw5BJVO5CO5TIMhIDtcsMHEepZ6tqlzmiHwwt+AK/MsuG91pKjX8HL7A2BqKioti5c6dVx3TuW0/1EBUVRXZ2Nrt3774kqUtLS2P69OkAdOrUqdoXSl999dWVd/JatWrFpk2brEroANLT0zlzxrIJNrTeftjzFbfZ276k+MQ+Ss4kkv3HqkuWt190CK/IZmbvLzU1FWOpA2aG9CyFkJoXm/tCTZ2H1qoXbxr1ZRbXpTXsXf+g4hgwR5Nc8LZ8M5O+2CH1aw6JgVo0zq+xfu3dBwDk5mSRe17BOPHzgRombLbkpcLWfgflZSV2byeOiH+wfRsAJ+oLY/LBije1GMoKnaIflBioQ/PCGuvXEf1gdlYG2Xnq7wfsUf+gTD/gskndwIEDSUhI4LXXXuPaa6+lTZs2AOzYsYNx48aRmVkxFrmml46///775OTkcOLECV5//XWuu+46tm7dSrNmlldsVFSUxdtovHwt3sYS4f3HEd5/nM3216hRI4dcmTTiRVoty+t65YAlV6ir46ktoUHjxuYUtV7sXf+g3hgwR4FXNrlWbOdjSifcAfVrDomBmuX6Qk0DMG3VB9S2r7AgT3x9lYsTvdaPszUsM+e1K/XtB7115UTYuZ04Iv7B9m0AnKcvzNNlkm/Fdn6aDEKdoB+UGKhdtreRmlq7I/rBiFAfvAPV3w/Yo/7B+hiwJme4wGWHX6akpNClSxeysrLQ6XS0a9eOkpISjh07xqBBgzAajfz4448sW7aMCRMm1LqvnJwcYmJiGDt2LIsWLXJI+Yv10He9Qw5lE1sGg6+DLhG0HbaGxJPW/GSH0z+PpklDf1LOFtL02pUWb3/fiDa8+1xfq45tCbXVPzg2BuqSV1BG44ErKCiybJKADYuv54Y+TexUKstIDNRszU8nGPn4Jqu2rW8fAHB8/W20aBJY94p2YjSaCO3zCXkF1r0vrr7fwTP3d+HFyd2sOra51Bj/FzhLX3g6vYCYG77AaLTsZ97e1TfRua3yz0pJDNRu4ecHmfKqdcPA69sHaLUacreNI8DPilvBFpAYsIzLzn7ZpEkTtmzZwpAhQ/Dx8SE5OZmwsDCWLl3K999/T2JiIlD3JCkAISEhtGrVimPHjtm72MIM3eKV+2PTLT5CsWML8wUFeHHvzW0t2iYuNoTreit/dVrUTcl2GBrkRUzj6l+T4yharYbL4pT7DpTsg4X5mkYFcOu1MRZt069HtFMkdKJuSvaD7VoE2z2hE5Zz2aQOIC4ujnXr1pGfn09+fj5//fUX999/P4WFhSQnJ6PVaunQoe7JFDIyMjhy5AgtW7Z0QKlFXfr3iFbs2P0UPLawzKuPdOeqbuYNY4gI9eHrNwei1V76fK1wPjGNA4hppExi1b9Ho2qfw3Z8OZTpizx1Wq7s4ognnYQtLH32Sjq2DjVr3eaNAvj81X72LZCwma7twgkO9FLk2Er+DhM1c+mkriYHDx7EZDLRunVr/Pyqzg40duxYnnvuOb7++ms2b97Mu+++S79+/dDpdDz66KMKlVhc7PbBLQn0d/wVon49omnXIsThxxXW8fHWsWHx9Yy6oUWt67VvGcLWj4bSJibYQSUT9aXRaHhgZDtFjv3gbcoc97/uvbkNHh6OTy5vGRhDZJhjnnUS9RcS5M3m5UO4vo5RCL06N2Dbx0OJjlTfC5fdla+PjruGVT/7pb09cKtz9IOiKrdM6g4cOABUP/TyiiuuYP369dx9990MGjSI119/nb59+7J3715atVKm8YiqAvw8uWt4a4cf96FRcQ4/pqgfP18dK+dew+FvbuGRse1p3TyICzfjfLw92LhsEAfWjpCEToXuvbkNXp6O/RPWunkQAy5v5NBj1qRxQ39u6m/5dPX1NWm09INqExbszQ/v3MCeL27i/lvbEtsksLIf9PX2YPsnw9j68VAaNbBuFkShHCV+l/S9rCEd24Q5/Liibk7wKK/j1ZbUTZ48mcmTJzu6SBYrST1K8pt3oc/PxMMvmJipH+LbrH2VdfL2b+LMx09iLC4AjYbg7kNofOeraLQVP4Rydqwj5YPHwWjAt3lHYqZ+iIdfxTzZZedOcWrpJErOJKLRehA5aCINhj7s8POsybQ7O/DB14kUFls2EYa1OrUJU+QHVG3MiYGCw9s59c5EAEz6cgLi+9B0wgK0nt51xkf6l6+RtekjNJ5eaD19aDphAf5tejr8PG2hbYsQ5s+4gvkzrqDJwBWcySgiPNibAVc4xw90a5kTAwDFyQc49e7D6HMq5kxsNPZlQnuNACDz5/dJ//JVTCYjQR2vodmDi9HoPGuNHWcQGebL5NvjeePjfxx2zFkPdHWqIbpPT+jM17+exGBwzHxn1/SM5squMvRSrbq0C2fprD4Alf1gWLA3V3RuoHDJhLXatgjh9kGxrNhw3GHHnPVg9e8IFcqTpE6lTi1+gIjr7ydiwHiyt64h+a3xxP1vR5V1dAGhxD6+Eu+oWIxlJSTOGkjWrx8TMWA8huICTi68l7ZzfsOnSTtOLZ1M2qoXaXL365hMJpJeuZmoW54k9MqRAJTn1DSBtjJiGgcy99EeTJqz3e7H0uk0fPhiXzwdfFegLubEgF+LzsTN24FG54nJaOT4q7dwbv1iGt74aK3xUXR8L+c2LCZ+4UE8fAPI2vwpp5ZNJm7e3wqdraiOOTFgLC3i2JwbafHIxwTE98FkMKAvOA9A6dkTpH72LHHzd6MLaUjSyzdy7sdlNBgyqdbYcRYvTurGd7+d4ujJPLsfa9jVzRgzxLmeq+4aF8HMezvz0rK9dj9WgJ8n7z/f1ymeJ6yNuRc6jOWlpCyfRt6eH9F4+eAX05kWj31q1n4SZ1+HPjsdtFo8fANpOmEBfrHyQ9dZmBsDtdWjsayE4/NGU3L6EFovX3TBDWg2cQk+0RUjtnJ3rufMZ8+AyYjJoCfq5umEX3OXQ8/zggVP9uKXv1LJOF9i92Pdf2tbBl7h/BOKmRMDddVxbfuoq/9QinP9SnWQTZs2YTKZGDJkiNJFsUp5TgaFx3YS3m8sACG9b6Es8zQlaVVn5/SL7Yp3VCwAWi8f/Fp0oSwjGYC83Rvwi+2KT5OKcdGRgx7i/JYVAOTv+wWNzrsyoQPwDHG+q7MP3hbHQAvvtKRnFpFyttCsdzld8PR9Xeiq4Exz1TE3BrTefmh0Fc8fmvRlGMuK4f9/lNUWH2g0mPTlGEsLATAU5uAV7hxT/YsK5sbA+d8+x7/tFQTEV1yh13h44BkcCUD21jUE9xyOZ2gUGo2GyBserOwHaosdZ+Hnq+ODF66y6Nkya/qAsGBvls660ikTmmcf6ELntpYNhbLmO5g3rScxjZV7jYO5Llzo6LAkkagRT5D81vhq1zvz0ZOg0dB+SSLtFxygyd3zzN5P7PQviF+wn/g399Jg+GM1HkMow9wYqKseI6+7n/aLjxD/1j5CLr+Rk4vuA8BkMnFi/lhipn5I/Jt7afXMOk4ufgBDkTVvBay/iFAf3nn2Sou2saYPiGkUwOuPqWO0jrkxUFMd17WPuvoPpbhlUqd2ZZmn8QyNRuNRcaNVo9HgFdmMsnOnatymPDud7G1rCO4+tGIf507h1eDf4YTeDWMoz07DZNBTcvoQuuBIjr8+mkOPdCVpzs2Upjvu1r65tFoNX8y7hk4WjO3ucfu3NL12JT1u/9as9ccNbeWUQw0siYHSs8kcmtqZfeMi8PALJnLQQ5es89/48GvRmQbDH+XAhBbsv6cJZ7+dT9P7F9r3pIRFzI2B4tOH0Oq8OfbiUA490oUT8++kPPfc/++jaj/g1SCmyvbmxI7SruzakOXPm//uSEv7AH9fHevfvs5pJ5Dw8vTg+0XXWTQbqKXfwbQ7O3D/rZa9IkQJ5l7oMJQUkrnxfRqPfbkyUfcMjTJ7P7qAkH/3VZTrdBc73Jm5MQC116PWy4fg7oMr48O/zRX/XvQE0GgwFOZUbFuchy4wHI2CQ9NvHhDD3Ed7mL2+pX1AZKgPPyy5nqAAZWbbtITZF71rqePa9lFX/6EkSercgKEoj2MvDSNqxAz8W3evc32TUU/+/k1Ej3qW+Df3ENT1eo7Pvc0BJbVcaJA3v7w7yC7va7n7ptYsf6GvUz1DYw3vhjHEv7WPTh+mY9SXkrN9bZXl1cVH6dkT5Py5lg7vHKPT8hQaDn+U46+PUqL4op5MBj15+zbS7KGlxM3fg1d4Y04tmWjWtnXFjrO4c3hrPnrJsjt25ggJ9OLnZTdweSfnfuaocUN/Ni8fTOvmQTbf9xP3dOL1aT2d8i7lf5l7oaM0PQldYBhpq+eQ8Fh3jszsS96+Xyzaz4n5d7L/nqakfvYsLR75xAFnJ8xh6UVvc+sxY91bhPS8sXKfsY+vIumVERy4rzlHnuxDzNSP0Hoqm/BMv7uTXe6kNWrgx+blg2mrktm/rbnxAVXruLZ91NV/KMktn6lTO6+IppV31TQeOkwmU8Wdt8hml6xrKMrn6HM3EHL5jTS88bF/9xHZjLy9P1f+u/RscmUAe0U0wy+2a+XY4bD+4zi19CFM+vLK4VjOJCLUh9+WD+bJt3ayaMWheu/P31fH3Ed78OBtcU6b0FkSAxd4+AYQ1mc053//jLCrRgM1x0f2ti/xbd4Rr/CK4a3hA+7m9LKHMZaXKf6HS1QwNwa8IpsR2LE/XuEVz0GE9RvL0eeu//99NKM0Paly3bKM5GpjqLrYcTZ3Dm9NbJNA7p61hWOn6v+MXd/LGvLBi1fRsqntEyV7aN4okD8/Hc7U17bz6bqkujeoQ1iwN4tm9uL2wc7zHOHhGb0oST1a7bL4+XvM35FBT1nGSXybxtPkrlcpOr6HxFnX0n7RQbMfNWjx6McAZG36iJSPn6D1rPXmH19YzWYx8P/Mqce01XMoTTtG8xcrfribDHrSVr9Ey5lrCWx/FYVHd3Ds5eG0X3AAXZCyj2o8Pr4j8S1DmPD8H6RmmD+0siZDr2rK0llXOtXMqLaOAbi0jmtlg/7DXiSpUyHPkAb4tbyMrM2fEjFgPDnbvsQrvEnlw50XGIoLOPr8DQRddgPRtz1TZVlQ1xsqZrdMOYxPk3ac27CYsL4VP9aCug0i5aMZlGWdwSu8MXm71uPTJM4pE7oL/P08WTizF7cMjOHBF7dyJDnXqv1c17sx7zxzJS2aOPezI+bGQEnaMbwjm6PReWIsLyPnz6/wbd4JqD0+vKNiyfrlAwzFBXj4BpC7Yx3ejdpIQudEzI2BsD63cXTj+xiK8vDwCyJ353p8YyomiQrtfQtHnuxD+e3PoQtpyLkf3qnsB2qLHWfV57Io9q2+mWcW7eTtlQmUlRst3kdwoBcvPHQZk2+Pd9qLOjUJC/bmkzn9uPXaFjz8ynZOpxdatZ9br41h4cxeREU415DTdnNrnxhL4+lt9oUOtFrCrh4D/P/zxQ1bUJx8AM8uDS26aBZ+zV2cXPIg+rwsdEHhtjtZUS1bxcB/1VSP6V/NI2f7Wlq/sBGtd0V7KDq+l/LzqQS2vwoA/9Y98ApvQtHxPQR1ubaeZ1h/g/s25Z+1I5g27y8++vYYRqPls+NGhvrwv8d7MnZoK6e7S2/rGKiujmvrA3T+IbX2H0qSpE6lmk9cSvKC8aSvmYOHbxAxUz4AIHnhfYT0HE7I5cPJ+O4tCo/+jbG0kJw/K4ZNhfYeSfRtT+PhF0jzSe9xbM5NYNDj07wDLaZ+BICHjz/NJ77DsReHgMmEh18wsY+vVOpULdKvRzSHvr6FjX+eYfGqBL777XSdHVqAnyfjhrZk4m1xqnr3ijkxkL9/E0nrFqDRemAy6AnsNIDoUc8C1BofIVfcTNHRHSRM647W0xuttz8tpn2u2LmK6pkTA16RzYi69SkOP9EbjUaLZ3hjmj+0DKhI3qPveJ7DT1Y8ZB/YoR+R1z8AUGvsODM/Xx1vTL+CJ+/pzPKvE3ln9WFOphbUuV3XduE8NCqO2wfF4u/nvBewzHFj/+YM6duUdb+fYvGqBH7enlrnNqFBXtxzUxsevC2OVs3UcXfyv8y90KELiiCw0wDy9vxIcPfBlJ49QenZE/g0jatzP/qCHIylRZWjGHL+/BpdYDgeger52+HKzI0Bc+rx7DdvkL1lBa1f2Fjl+TuvyKaUn0+j+HQCvk3jKEk7Rml6Ej6Nnee509Agb5a/cBXPP3QZy9Yc4d0vj3A2q7jO7fp0bchDo+IYMTAGby8PB5TU9syNAai5juvaR239h5I0JpPJMS+4ERYp1kNfFY3m2DIYfJ3wEkF+YRl7D59n56FMDp/IoahEj4dWS6C/J53bhNEtPpz2rULx8nSuzktt9Q/OGwP/deH9TI0b+JGy8Xali1MjiQHbMJlMHE/JZ9ehTHYnZJFxvpiyciM+Xh40jfKnW3wE3eIjnHYiFFvIyStld0IWOw9mcvRULsWlBnQeWkKDvOjSNpxu8eG0axGCTuc8j9lbG/8lKUdIXjAefX5W5YUO35iOQNWLHaXpx0leeC/6/Ew0Gi3Ro2YR2vuWOvdTmnGS43NHYiwrRqPRoguKpMnd8/CL7VK5rTO2g/9SQz9ozxjwbdG51nosy0zhwL1N8YqKxcO3YuSORudN3Ly/ADj/+wrS1sxBo9FiMhmJvmUmYVffUVkGZ4sBo9FE4slcdh3KZE9CFlm5pZTrK/rB2CaBlf1gRKiP0kWtwp4x4NfyslrruLZ91NV/gDIxIEmdk1LbDzpn68DUTm31D+qJATX8mAGJAeHe1Bj/F6ihHaihH5QYEBIDlnGey3JCCCGEEEIIISwmSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComc/M4KR+Piplz1MLHud4IoHpqq3+QGLA1iQHhztQY/xdIO7ANiQEhMWAZSeqclEYj0+G6M6l/ITEg3JnEv5AYEBIDlpHhl0IIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0QQgghhBBCqJgkdUIIIYQQQgihYjqlCyCqZzJBiUHpUpjPxwM0GqVL4TrUVv8gMWBrEgPCnakx/i+QdmA7aowDqX/bUWP9X6BEHEhS56RKDNB3vdKlMN+WweAr0WQzaqt/kBiwNYkB4c7UGP8XSDuwHTXGgdS/7aix/i9QIg5k+KUQQgghhBBCqJgkdUIIIYQQQgihYpLUCSGEEEIIIYSKSVInhBBCCCGEEComSZ0Qwm0YDEaMJhMApv//XyGEcCd6/b/9oBDCdcj8PEIIl7X3cBbf/XaKXYcy2XkwkzMZRZXL0jKL6X/verrFhdOvRzSD+jTBw0OucwkhXIfJZGL7vgx+2JpS2Q9mnC+pXJ56rojrHthAt/gIBl7emGsuj0Yj8/ELoUqS1AkhXIpeb2TlD8dZvCqB7fsyalzPZILNO9LYvCON/338D82i/Xng1nY8MLId4SE+DiyxEELYVkmpno++PcbiVQnsTzxf43omE/y8PZWft6fy6vv7adM8mIm3tePeEW0I9PdyYImFEPUlSZ0LyT+wmcRn+lf5TOvjj3ejNoT3G0eDoQ+j8ZAqd2XuHgOHkrIZ/+zv7Pgn0+JtT6UV8vTCXbz56UGWPNObW65tYYcS2p+7x4AQ7t4G/j5wjvHP/k7C8RyLt008mcujr//Fm58d5P3n+jLgika2L6ADuHsMuDt3rX/XOyNB6FW3E9xtMJhMlGenk7X5Y1KWP0ZJSgLNJy1TunjCAdwxBt769B9mzN9BWbmxXvs5l13CrdM2cfugWN57ri9+Kn2LrDvGgBAXc7c2YDSamL14N3Pe24fRWL9n5k6mFjDw/g1MGh3H/OlX4OmpzqHp7hYDoip3q391/loRtfKLvYzwfmMr/x05+CEOPtSOzJ/fo9HYl/EMjlSwdMIR3CkGTCYTTy3Yyavv77fpfldsOM7p9ELWL75OlcOQ3CkGhKiOO7UBo9HEfc9t4YOvj9p0v2+vTOB0eiGr/3cNXp4eNt23I7hTDIhLuVv9q/PSi7CIh48//m2vAJOJ0vQkpYsjFODKMfDi0r02T+gu+GPPWYZP2UhJqd4u+3ckV44BIczhqm3AZDIxec42myd0F3y7+RRjntxc77t/zsBVY0CYx9XrX5I6N3EheHUBYQqXRCjFFWNg01+pzF68267H2LwjjeeW7LHrMRzFFWNACEu4YhtYueE4S744bNdjrPk5mYWfH7TrMRzFFWNAmM+V61+GX7ogY2kR+rxMTCYT+ux0zv3wDsXH9+DXuic+jdsoXTzhAO4QAwVF5dw7e4vF2+1YMZyoCD/SM4vocfu3Zm3z+ocHuPma5lzeqYHFx1OKO8SAELVxhzaQnlnE5Fe2W7ydNf3gzAU7Gdy3Ka2bB1t8PKW4QwyImrlb/bt8UpeZmcncuXNZu3YtKSkpREZGMmLECObMmcOUKVNYvnw5CxcuZPLkyUoX1WbSVswmbcXsKp+F9BpBswfeVqhEyjMaTew8mEl6ZhEeHhpaNg2iXYsQpYtlN+4QA88v2UNyaoHF20VF+NGkob9F2xiNJiY8/wf71tysmnc4uUMMWCojq5i9R7IoKtETHOBFzw6R+Pt5Kl0sh9Hrjfx14ByZOSV46bS0axFCiyaBShfLbtyhDTz+v785n1tq8XbW9IPFJQYmzdnGT0sHWXw8pbhDDFgqJb2Qg0nZFJfqCQ3y5opODfD2Ut/zkuZwt/p36aRu7969DBo0iPT0dPz9/YmPjyc1NZUFCxaQlJTE+fMV727p0qWLsgW1sYjr7ye090hMhnKKTx4gfe1rlGWmoPH8991b+Qe3cOyFSztmk74Mk9FAt68Mjiyy3eQVlPHul0d4Z/Vhjp3Kq7KsT9eGPDQqjlE3xKLVquOHurlcPQYKi8p5d+0Rhx7zwNFsfv07jWsuV8cU364eA5b4a38GCz4/xOqfTlCu/3d21OBAL+4a1oopY9rTsmmQgiW0r8zsEpZ8kcCyNUdIOVtYZdl1vRszaVQcw/o1U80FC3O5ehtIO1fEqh+PO/SYP29P5VBSNvEtQx16XGu5egxYYtNfqSxccYhvN5+q8nxkZKgP941oy6TRcTS2MNF3du5W/y6b1GVmZjJs2DDS09OZNm0as2fPJjCw4ork3LlzeeKJJ9DpdGg0Gjp16qRwaW3LO7o1QV0GAhDcbRABcX04MrMPp5Y8SOz0lQAEtu9L11VV73KUZaVyeFp3Ioe4xl3L0+kFDJr4IweTcqpd/sees/yx5yxfbkzm01euxsfbdZqDq8fA5+uTyM0vc/hxF69KUE1S5+oxYK6Fnx9k6mt/Yqpmjofc/DIWfH6I5V8n8uUbA7iudxPHF9DOEo7ncMPEHziVVljt8p+2neGnbWd4cGQ7Fj3VCw8P13nU3tXbwHtrj6DXO37ykiVfHGbhzF4OP641XD0GzGEymZj19m5eWra32uXnskt45f19vLf2COsWXUfPjq4zI6S71b/r9N7/MWXKFFJSUpg8eTLz5s2rTOgAZsyYQefOndHr9cTExBAU5LpXaAEC4noT1m8c2X+soiBhW7XrGMtLOf7qCALi+xA98ikHl9D2svNKuf7BmhO6i325MZnxz/7uEjN71cTVYuCTdccUOe7Xv54kr8DxyaQtuFoMmOODrxOZ8mr1Cd3FCor03Dh1I3/uy3BMwRwkJb2Qa+/fUGNCd7F3Vh9m2ry/HVAq5bhaG1CqH/x03THV/r10tRgwx6vv768xobvYuewSbpj4A4dP5Ni9TEpx9fp3yaQuISGBVatWERERwSuvvFLtOt26dQOgc+fONe5n0KBBaDQannvuOXsU06GiRz0LWg9SP59V7fJTix/EWF5CzNQPHVswO3nj439IOJ5j9vqrfjjBL3+l2q9ATsBVYsBgMLLrUJZCxzax57Ayx7YFV4kBcxQUlTP1tT/NXr+k1MDDr1o+4YQze27Jbs5kFJm9/lufHeRA4nk7lkh5rtIGsvNKOXoyr+4V7SAnv+ySxxnUxFViwBxnzhby7Nu7zF4/O6+MGW/ssGOJlOfK9e+SSd2KFSswGo2MGTOGgICAatfx9fUFak7qvvjiC/bu3WuvIjqcT3QrwvqOJn//L+QfrDpjYMZ3C8jduY6WM79G6+2nUAltp6zcwLtfWv681eJVCXYojfNwlRg4fCKXohLl3hu382CmYseuL1eJAXN89n0S+YXlFm2z82AmO/45Z6cSOVZ2Ximfb7D8PUxLvpB+UA1tYNchZfsh6QfV4d0vj2AwWHZXdd3vpziZmm+nEinPlevfJZO6TZs2AdC/f/8a10lJSQGqT+ry8vJ45JFHmDdvnn0KqJCokU+DVlvl6kT+/l9J+fgJYmesxrthjHKFs6Gftp3hbFaxxdt9u/mUVbOIqYkrxMDBpGy3Pn59uUIMmOPDbxKt2u6jb+3zAmdHW/PTCYpLLH/A/5N1SRgMxrpXVDFXaAMHj0k/WB+uEAPm+NCK/sxkgk/Xud6LuS/mqvWvMZnqetpAfZo2bUpKSgp79uypdmZLvV5PdHQ0mZmZJCUlERsbW2X5ww8/zIEDB9i8eTMajYbZs2fXawhm9+7dSU9Pt2gbjZcvDd+074+L0rPJHH68B9GjZ9Ogng+Dnn2kNaYyyxMpeyjw7kGu/1Crtm2Q+zaeBuWfq3FE/YM6Y6DQqys5ATdVu+zCu5dqExXhi85Di95gJD2z5vLW9P4m39J/CCtcbVGZrSExUD9pIY9h1Fr+Pi2fssOEF6ywQ4kcK8+3P/m+/azaNir7VTxMytajo+IfbNsGwDHtIN/nKvL8BlS7zBH9oH/Jn4QUbbCs0FaQftB6JiA1dBZoLH9dgV/JTkKLvrN9oSykxvq/wNo4iIqKYufOnVYd03Wm+7tIYWHFQ+HFxdV/matWrSIzM5PAwEBatGhRZdnOnTt599132bXL/DHIdUlPT+fMmTMWbaP19qOhzUpwKWNpEUmv3ERwz+E2CeDU1FSMpeY/u2FXYa3Byll5M86ehVLln62zd/2DimMgNAaqH1Vt0buXdB5ai9/TBBX9iqXt2RoSA/UUYAAvyzcrcVD92l2DfPC1btP0tDQw1D25ij05Iv7B9m0AHNQOInOhhrzNEf1gYUE+hWnSD1bHqfpBK988UVRYQFGq8v2gGuv/AiXiwCWTuqioKLKzs9m9eze9elWddjctLY3p06cD0KlTpyrv5TEYDDzwwANMnjyZ9u3b27Q8ltJ4WfnX2EzZ276k+MQ+Ss4kkv3HqkuWt190CK/IZmbvr1GjRk5xZQqgxBOsmsrCZCQ60g+tqbGti2Qxe9c/qDcGij39qGkqh/TMujtQS65QV8fP14PQxvaPEYmB+jmnKaCMMIu38/cuI8QB9Wtvhd5GcqzYTmMqIToqFA0hNi6RheVwQPyD7dsAOKYdFHj7kFvDMkf0gwH+3gRLP1gtZ+oH0415GDwsz+yCfA0EOkE/qMb6v8DaOLAmZ7jAJYdfTpkyhYULF9K0aVM2btxImzZtANixYwfjxo3j+PHjlJeXM2nSJBYtWlS53VtvvcXrr7/O4cOHKydYscXwS2sU66Hveocesl62DAZfJ7lEUF5upNn1K2v9Q1WdEQNi+HJ+9cNZHE1t9Q+Oi4FDSdm0v3mt1duf/nk0TRr6k3K2kKbXrrR4+/893pPH7uxo9fHNJTFQP++uOcz9L2y1eLudK2+kW3yEHUrkWDl5pTQeuNLiSYUmjY5j0VO97VQq86kx/i9wRDv45c9UBt5v/fDH+vaDn7/aj9sHt7T6+OZSYxw4Uz/4wjt7mL14t0XbaLUaTmy4jWbRNQyJcSA11v8FSsSBS06UMmPGDMLDwzl9+jTt27enY8eOtG7dmp49exIbG8s111wDVJ0kJTMzk2effZZZs2ah1+vJyckhJycHgJKSEnJycjAaXfvhcVfh6anl/lvaWbzdQ6Pi7FAaYWttY4LxV/Avpiv84HcHdwxuSVCAp0Xb9OwQ6TL1GxLkzZghlv/onnib9INqcFl8uKLHd5V24uruG9EGnYem7hUvMuzqpk6R0AnLuWRS16RJE7Zs2cKQIUPw8fEhOTmZsLAwli5dyvfff09iYsWsaBcndSkpKeTn5/PAAw8QGhpa+R/Aa6+9RmhoKKdOnVLkfITlHruzAx1amT/kYMyQllxzebQdSyRsxcNDq9gPCp1OQ9d2yv6YEubx9/Nk0cxeda/4//x8dCx6yvz11eC5iV1pGmX+81LT7uxAewv6TaGc0CBv2jS3fCIg2xzbi1bNghQ5trBMowb+zJnS3ez1w0O8mftoTzuWSNiTk9wgtr24uDjWrVt3yecFBQUkJyej1Wrp0KFD5eetWrXi119/vWT9/v37c9dddzF+/Ph6jXMVjhUc6MWP71zPoId+Yn8dL9MdfUMs7z/ft8rzlcK53TmsFb/vsmxGWVu4+ZoYggKsmH1DKGLcsNYUFuuZNGc7RmPNTxoEBXjy1fyB9OgQ6cDS2V+jBv5sXDaIGyb+yIkztb936uE74pn7mPyYU5M7h7XimUW2m9TNXOOGtkKrlb+XavH4+I4UlxrqHIbZMNyX79++jjYxylwsEPXnskldTQ4ePIjJZKJNmzb4+f07dVRAQAD9+vWrdpuYmJgalwnn1aiBP1s/HsoHXyeyeFUCh09Ufay8f49oHhoVx4iBMfIHSmVuH9SSx//3Nzn5ZQ49rgzRVZ8Hb4ujR4dIFn5+iJU/HKe07N93t4UFe3PPTW2YNDqOmMaBCpbSftrEBLNz5Y28++VhlnxxmJOpBVWWD72qKZNGx3P9lY3lwpbK3DuiDc+/s4dyvWMfDZko/aCqaDQaZj3YlX7do1i0MoGvfklGf9ELyaMj/bj/lrY8eFu7Ol+FIZybSw6/rM2BAweA6l86LlxPgJ8nD9/RnkNf38KulTcSHuwNQMMwHza9P5hbr2shCZ0K+fnqeGCk5c9N1kfntmFc3V3u1qtRt/gIPnzpKs5sHE1ESEUfEBHiTcrPo3l9Wk+XTeguCAv25ol7OpP0/Uj++mz4v/1guA/fLbqOG/o0kYROhaIi/Lh9UGzdK9rQDVc2oV2LEIceU9jGVd2j+WLeNZz66aJ+MNSbkz+M4rmHLpOEzgW43Z06S5M6Z50ctCT1KMlv3oU+PxMPv2Bipn6Ib7Oqr2EwGY2kfPA4ebt/QOOhwyMwnOaT38UnuhWG4gKOv3oLhUm7wKiny+c5lduVnj3B8dduxWQ0YDLo8WkSR/NJy9AFqPdZC41Gw2X/1959h0dRrQ8c/8629EIKJCGBEAyQAAHpKiBNBFRULGBD8AqCKIIFRb2gqKCIShEQ9aLiVUQFFcv1KiI/EFHpxYQaAgQSQirpyZbfH7lEIim7yWZ3J/t+nofngZ12zs45L/OenZkTH4KnR8UknDpd0xvPsKZNnN+3kdOrnsJcXACKQkCP62g59mUUjYbSsykcmNQWr9Z/vdmx7ZNr8Qhv/Dec1cc/J3blsx+Ok5xa+21l9qDVKi55i64157zg4DZOvjUZAIuxHN/4vkRNWIxG71FrjChO2c/JFVMoz8tA0erwie1FqweWovFwzKvmG0NwoCcehooY4GHQ4uXpXv8FarUaenUO/SsOapteHHQ3rz7ai+9+SSUzp6TRj+XjpWPpM03ruVN3FB7q/Vcc1GvR6yUONBXu9T8aTeeXupPLHiDk2omEDB5HztbPSVk0jrjXtldZJ++P9RQkbSV+0V4UnZ60T1/kzIdPEzPjUxSdnha3PInON4jDzw6osp0+KIL2836pvHg79c4jpK1+jqgJixxVPVEP1rQJnW8zYh7/BI+wGMxlJRyeNYSsn1cRMngcAFovP+IX7nF84evBx1vPyjn9GHCfbe87vjDvkjVzOV3w1H0JLvm2N2vOuXebLsQt2I6i02Mxm0l++RbOfbeMFjdOrz1GGDyJeuBNvKMTsJhMHH/tTtLXvULEHc85p7JCWMGagQ6Aw7OHYsxJB40GrZcfURMW4x1zeeXyvB3fcfqjZ8FixmIyEnbzEwQPuhdzWQnJC8ZQcioRjcELXUBzWk1ejmf4ZY6sZqXmwV4se+ZKbn98o03b1ScOvjK9JzGR6ntBijVtoq7zun9CNIrOo/K6KOyWmQT1G+3wugjrWBsHaurnACffnkre9vWUZZwg7o3deMd0rdyurvjhLG6X1G3caFvgc0XluRkUHt1B7PM/ABB45S2cfPshStKOVv2PRVGwGEsxl5Wg0eowFZ1HHxwJgEbvgX/CIErPplyyf43eo/LvFpMJU0khWi95va0rs7ZNXBx0NAZPvNt0pSwjxdHFtZure4Qzd2oPnl68w+ptet6x3qZjDOkTwT8fcH6w/jtrz7nG469baizGMsxlxXDhF8daYoRnRGzldopWi3dsT0pOHnBAzYSoP2sGOgBinvgUnW8gADnbviBl0TjiF+0FKu7QOf7G3bR7aRPe0QmUnk3hzykdCOwzCkWnJ3ToRPy7D0dRFDK+fZMTb95P+5c2ObCWVd02tA0P3xnPko8Trd7G1jg4ZliMaqe7sLZN1HVeY55YU+XCXrgua855bf1c6+1Hs6tuJWzUDA7N7HvJ/muLH84kv7mqUFnmKfTNwlG0FTm5oigYQltRdq7qlAsBPW/Ar9MA9o0LY9+4cPL3/UTEnXOsOoa5vIzEaV3Ze08IpWlHiLjjebvXQ9iPtW3iYuU56eT8+jkBPa6v/MxUUkjSYz1JnN6NM5/MwWIy1bi9q3jqHwk8O7Fro+z76h5hfLFwSOWtKq7ElnNeejaFxEe6sPeeELTeAYQOfxCwPkaYSgrJ/PFdAnrd2LiVEqIBLgx0BA+4G6gY6CjLPEVJ2tFL1r1wQQZgKsr7a6DjAkXBVJhbsbz4PDq/YBS9BxqDJwE9RlTeiu3Tro9LDIwtnNGHCbe0b5R9jxoczaqXrlbl8+fWtglXPa/CdrbEgZr6OYBfx/4YQiKrPUad8cNJ3O6XOndSdHQHxScO0HnlabTe/pxe9RQnl0+izaP/rnNbjd5A/MI9mMvLOPXOw5z77wrCRs1wQKmFI5iKznP0xRsIGzUDn9iKOWz0QeEkrDyNPrA5xvxskl8dzdmvXnP5864oCi881J2wEC8ef+0PSkrtk4jec/1lrJh1VZN47sqjRTTxi/ZiKi7g+Bt3k7ttHUH9x1gVI8zlZRx/dTT+XYfS7IqbnVgLIWpX20BHdbdHHn9jLPn7K6Yyip31123ciqIQ8/gajs0bhdbTB2NBDm2fWodGf+l0JhnfLCLQBQY7NBqFFbOuIrKFD3NW7MZkss/7AB65qyMLHuul2ufQbW0TF1R3XlMWjsWCBZ/YXrQc+zL6gKY1BUpTYe05t6WfV6em+OFM6r9acUOGkCjKc9KwmIwoWh0Wi4WycycxhLaqsl7Wz6vwSxhUOaIQPOhejsweatOxNHoDwYPHc2LpBJe/uHdn1rYJAFNRPkeeG0Zg7xtpceOjlZ9r9B5oApsDoPMLImTIfWRv/hhUct6njIlnSO8Ixs/awra9GfXeT1iIFyv+eRUjB7a2Y+nsz5ZzfoHWy5egvmPI3vwRQf3H1BkjLMZyjr86Gn2zcHmmVjjdwRlXUHLmSLXL4t/YbfP+2kxfBUDWxg9IXfVk5YWZxWQk7bMXaTtzHX4d+1N4ZDtHXxpJx8X70fn/9Wxt2mdzKU07SusXfqpHbezvwqvrr+sfxbhnN3PgaE699xUT6cfKOf24uke4HUtof/ZuE1D9eW0/dzOG0FZYjOWc/uhZUhbd6zIX8u7GXufc2n5ek5rihzNJUqdC+sDmeLftRtamfxMyeBy5v67FEBx5yaiTR1gMeTu+o8VNj6PRG8jb/g1erTrVsNe/lGacQB8QisbDG4vZTM7Wz/BundBY1RF2YG2bMBUXcOT5Yfh3G0b47c9WWVaem4HOtxmKTo+5vJScbevwbuN6z5LVpn2bQLa8fx2f/5jCsjVJNk1Q3qalH5Nv78D9t7Snmb9H3Rs4mbXnvCTtKB6hrf93XsvI/e0LvP7Xn2uLERaTkeQFY9D6BdFqytsu9+ZP4X46zN9W63JF72HzQAdUDGacWD4J4/ksdP7BFCXvoTz7DH4d+wPgE9sTQ3AkRcm78e96DQDpXywgd9s6YudsqPLcqivoHh/Cjk9u5OPvjrH0kyR2JmZavW1820CmjI7j3pGx+HjrG7GU9mHvNlHTeb2wvqLT0+KGaRyY3M5+lRA2sdc5t6afW+Pv8cOZJKlTqdaTV5CyeBzpn89F6+VP9NT3AEhZcj+BvUYS2HskoSOmUHIqiaRpXVC0enTNwmg9+a3KfSROTaD8/DlMRefZd18kfp0H0mb6hxSn7OPYv58BwGIx4x3TjagJi51ST2E9a9pExteLKDzyB+bSQnJ/WwdAsytvI/z2ZyhI+oUzH89C0WixmIz4JQwi7PZnnFmletFqNYweFsPoYTEcOJLNN5tPsTMxk52JWZxIK8BsrrgtKaSZJ93igukWF8yAHuFcc0VL1T0zYs05z9+3kWPfLL7ovA4mfPQ/AWqNEdlb1pC7bR1e0QkkTa9I7n07XEWrSUudU1kh6mDtQIexIBdzaRGG4AgAcn/7Ep1fMFq/IAAMoVGUZ6dRfCoJr6g4StKOUpp+DM+WFc+snf3qdXK2rCZ2zoYqz9a4Eg+DlvE3tWP8Te3YfuAc329NrYyDpzMKuTBbU1iIF93igukeH8KQ3hH06x7WpAZwrG0TUPN5NZUUYjGWV36WvWW1S7zpUFTP2nNeVz+vSV3xw5kUi6tOxObmio3Qz/m/5FptywjwUsEQQeSQ1ZzOKKJlc29SN9zh7OLUSG3nH9TRBiwWC0ajBZ1OcfkLF2kDjUMtMaAxqeE7qG/7L0k9RMricRjzsyoHOryiK+bevDDY4dWmC8nzb8NcVoyiaND5hxI5fkGVNxtmb15N2udzURQNFouZ8FtmEnT1nZRlprL/H1EYwmLQelVMWq/oPIhb8Hvltq7eD9wtDlrTJrzbdqvxvJamJ3Ps5VvAbMKCBY8WMUTdvwiPFtHVHs/Vzz+oIwZA48aBwN4ja+znACeWPUDejm8pz0mvSNq8/Oi04iilGSfqjB/gnHbg4s1OCCHsR1EU9HrXvogRQtSfZ2T7Gm/Pin743cq/xy34o9b9BPW/g6D+l17sGkIi6f6VusfC3S0OWtsmajqvHmExxC+s3/N5wjmsPec19XOA1g+uqPZzj+at64wfzqLO1xkJIYQQQgghhAAkqRNCCCGEEEIIVZOkTgghhBBCCCFUTJI6IYQQQgghhFAxeVGKi/LUVrw5Ry08tc4uQdOitvMP0gbsTdqAcGdqbP8XSD+wHzW2Azn/9qPG83+BM9qBJHUuSlFc/5W4ovHI+RfSBoQ7k/YvQNqBu5Pzbxu5/VIIIYQQQgghVEySOiGEEEIIIYRQMUnqhBBCCCGEEELFJKkTQgghhBBCCBWTpE4IIYQQQgghVEySOiGEEEIIIYRQMUnqhBBCCCGEEELFJKkTQgghhBBCCBWTpE4IIYQQQgghVEySOiGEEEIIIYRQMUnqhBBCCCGEEELFJKkTQgghhBBCCBWTpE4IIYQQQgghVEySOiGEEEIIIYRQMUnqhBBCCCGEEELFJKkTQgghhBBCCBWTpE4IIYQQQgghVEzn7AKI6lksUGJydims56kFRXF2KZoOtZ1/sH8bkO9ACPelxv5/gT3igJrrDxILRcNJH7CdJHUuqsQE/b5zdimst2UEeElrshu1nX+wfxuQ70AI96XG/n+BPeKAmusPEgtFw0kfsJ3cfimEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKibvJhJNWs75UnYlZrEzMZNDJ/LIzisFIDe/jGWfJNI9PoSEdkF4eUpXEKIpMpstHD6Rx87ETHYlZVXGgOzzpTy7ZAfd40PoHh9CVJgPShN9B/u57GJ2/i8OHj11vkocfOfzg3SPD6FTbDMMeq2TSyqEaAxGo5mk5Fx2JmWy+6I4mHO+lOeX76qMg+Gh3k4uqWgIuZIVTY7JZOb7raks/SSJ77emYrFcuk5hsZEpc7cB4OWp5c7hbXlwdBzd4kMcXFohRGNIO1fEO2sP8fbnBzmdUXTJ8uISEy+9s7fy350ua8aDo+O4+/q2+PkYHFnURlFWbuLLjSdYtiaJ/9uRXu06hcVGJs7ZCoC/r557R8Yy+fY44mICHVhSIURjOZ6az4rPD/KvLw6TmVNyyfKiEhPPLd9d+e9enUJ5cHQct1/bRga7VUixWKq75BXOVmy0fX6O/P2bOPzswCqfaTx98IhoR/CAe2h+/cMo2sbppK4yJ82G304z6YWtHDuVX6/tB/YM5+3Zfbmslb+dS2ab+px/aFptQG19AFynH7izgqJyZi7awVufJWE02v7fm5+PntmTLmfa3R3RatX5hMLaH48z9ZXfOFNNMmuNGwe2YtkzVxLR3MfOJbNefWMgNI04oOb6g8RCZ8vKLWH6/N/597dHqx3YrktwoAfzp/di/E2xTruDQfqA7aTLNUHN+t9BQPcRYLFQnpNO1qZVpK58lJLUJFpPedvZxWsU+YVlPPH6dlZ8drBB+/l5exoJt65j3tQePHxnRzQadd6O5Y5t4GLuXn93tWl7GvfN2sLx0/Ub1AHILyzn8df+YO2GFN6b04/2bQLtV8BGlplTwpS5v/Lpf483aD9f/XyS/9uRzqIn+3DPDZep9rZUd48D7l5/d/XVzyd4YM5WzmYV13sfWbml/GP2Fj774TjvzO5LZJjzBngawt36gDqHIUWtvGO6ETzgboIH3kPYqCfoMP839MGRZP74LuV555xdPLvLyCqm//hvG5zQXVBcYmLa/N+599n/o7zcbJd9Opq7tYG/c/f6u6N/rTvE4An/aVBCd7FtezPoddd6tuys/tZFV3M8NZ/ed61vcEJ3QW5+Gfc+u5nHFvyOWm/ocfc44O71dzcWi4V57+7lpkc2NCihu9j3W1PpccdX7D+cbZf9OZq79QFJ6tyA1tMHn/Z9wGKhNP2Ys4tjV1m5JQy6/zv2HLR/wPn3N8cY+8z/YTKpM7G7WFNuA9Zw9/o3dSu/OMz9z/2C2Wzf5ON8QTnDJv+XX/ectet+7e1kWgFX3/ctyan2SWgv9saHfzJ9vnoTu4u5exxw9/o3dfPe3cvTi3fYfb9ns4oZeP93JB7Lsfu+Ha2p9wFJ6tzEhcar8w1ycknsx2y2cNtjG/nzWG6jHeOT75OrPESsZk2xDdjC3evfVG3ekcaE539ptP0XlRi5/qEfOH22sNGO0RClZSauf+gHTqU3XvkWffQny9ckNdr+Hcnd44C717+p+vyH4zyzZGej7T8rt5ThD/6XvPyyRjuGozTlPiDP1DVB5tIijOczsVgsGHPSOff9WxQn78Y7theeLds5u3h2s2xNEj9vT7Npm+2rRxIW4k16ZhE971hv1Tbz/rWXGwe2okfH0PoU0yncpQ3UxN3r7y4Ki8oZP2uLTb/Q1ScG5Jwv44EXtvL1kmtc7vmyOW/tZv8R20bQ6/MdPPH6dob1jSQm0rkvkbKFu8cBd6+/u8jIKmbyS7/atE19YsDJtEIef+133nmuX32K6RTu1gfcIqnLzMxk/vz5rFu3jtTUVEJDQxk1ahRz585l6tSprFy5kiVLlvDQQw85u6h2kbZ6NmmrZ1f5LPCKUbR6YKmTSmR/x1PzefKN7TZvFxbiTWQL2x74NZksjP/nFnauuVE18zi5QxuojbvX3108s2Snzbcc1icGAHy7+RQffn2UsSNjbd62sexMzOSV9/bZvF19voOiEiP/mP0LG98d7nKJbU3cPQ64e/3dxcMvb6t2uoLa1DcOvrvuMLcNbcPQKyNt3tYZ3K0PNPmkbs+ePQwfPpz09HR8fHyIj4/nzJkzLF68mGPHjpGdXfEsVteuXZ1bUDsKuXYiza68DYupnOIT+0lf9wplmakoes/KdfL/3MLROcMv2dZiLMNiNtH9C5Mji2yzBR/sp6jE6LDjHTiawxc/nWD0sBiHHbMh3KEN1Mbd6+8OMrKKWebgWwLnrNjN3ddf5jJvxX3pnT2YTI571m3T9jS27Eynf49whx2zIdw9Drh7/d1BUnKu3V6OZK05K/aoJqlztz7QpJO6zMxMbrjhBtLT03nssceYPXs2fn5+AMyfP58nn3wSnU6HoigkJCQ4ubT24xEei3/XIQAEdB+Ob1xfDs3sy8nlk4h54hMA/Dr24/I1BVW2K8s6w8HHehB6nWv/YplfWMaqr486/LjL1iSpJqlr6m2gLu5ef3fwry8OU2507EuMjp3K58dtp7n2Kudf0KSmF/LVzycdftxlnyapJqlz9zjg7vV3B8s/dfyzrlt3n2Xf4WwS2rn+M2nu1gea9ItSpk6dSmpqKg899BALFiyoTOgAZsyYQZcuXTAajURHR+Pvr57nBGzlG3clQQPuIeeXNRQkVX/ftbm8lOSXR+Eb35fw2552cAlts/o/yRQUlTv8uJt3ppOUnOvw49pDU2sDtnL3+jc1FouFFZ/bZwoTW71lp6lTGupfXxyy+9s+rbF2QwoZdnpduqO5exxw9/o3NcUlRj5Yf8Qpx37LCcmkPTT1PtBkk7qkpCTWrFlDSEgI8+bNq3ad7t27A9ClS5fKzzZt2oSiKJf8UfvtmeGj/wkaLWc+nlXt8pPLJmEuLyH6kfcdW7B6+PkP216OYk+bbHwxiytpSm2gPty9/k3J8dP5nDhTUPeKjeD/dqS5xOv9bX1JlL0YjRa2uvgUD7Vx9zjg7vVvSnYlZXG+wPED3ACbdqhj/s7qNOU+0GSTutWrV2M2m7nrrrvw9fWtdh0vLy+galJ3wdKlS9m2bVvlnw8//LBRy9vYPMMvI6jfGPL3/UT+n1uqLMv4ejF5O76h7cwv0Xh4O6mE1tuZlOm8Yyc679gN1ZTaQH24e/2bkp2JWU47ds75MrtNcF5fZrOFXUnO+w4kDqqXu9e/KXFmPzx4PNcpd0zZQ1PuA002qdu4cSMAAwcOrHGd1NRUoPqkLj4+nj59+lT+6dy5c+MU1IHCbnsGNJoqoxP5+34mddWTxMz4DI8W0c4rnJXOF5Rx5MR5px3fmQmlPTSFNtAQ7l7/pmK3ExMacG5SCXDs1HnyC513QeXMhNIe3D0OuHv9m4rdB53XDy0W2OPE4zdUU+0DisUV7iNpBFFRUaSmprJ79+5qb500Go2Eh4eTmZnJsWPHiImpeAHGpk2bGDhwID///DMDBgywS1l69OhBerptP1UrBi9aLGzce6VLz6Zw8PGehI+ZTfMGPgx6dloslrLGf87CqAnkbOD0GpdfmHulJmEhXui0GowmM+mZNZe3prlbtKY8wvJet63Q9eCI8w+u3QbU1gfAcf3A3eV4j6TIs3u1y+wVA6DmOBBQ+A2+pbZPqWIvpbooMv3vr3ZZXfWHhsdBvTGV5uffsa3QNnJUDATXjANqrj9ILHSETN87KTW0r3aZI+JgUP5qvMob7xljd+0DYWFh7Nixo17HbLJvvywsLASguLj6L3TNmjVkZmbi5+dHmzZtLlk+evRoMjMzCQ4OZuTIkbz88suEhITUqyzp6emcPn3apm00Ht60qNfRrGMuLeLYvJsI6DXSLg34zJkzmEuL7FCyOhiMEFjzYmvnXtFpNfWao8VkVmw+l/XR2OcfXL8NqK0PgAP7gbuLLAHP6hc1dgwAyMvLJy+r8eNAjXx8oIZ3e9ky/1R9v4PycnOjx0FHxEBw3Tig5vqDxEKHiC4HQ/WLHBEHs3PyIK/x4oD0Ads12aQuLCyMnJwcdu3axRVXXFFlWVpaGk888QQACQkJVSZSDQgI4IknnqB///74+vqybds25s2bx2+//caOHTvw9KzhSqKOsthKMXjZvI0tcn5dS/HxvZScPkzOL2suWd7xzUQMoa2s3l9ERISDfqkLoLZH9NMza+9AtoxQV0erMRPWsqU1RW2Qxj7/4PptQG19ABzXD9xdjpcHNfV0e8WA2vYVGOCLj2fjx4GalGmbca6GZXXVHxoeB/V6heaNHAcdEQPBdeOAmusPEgsdIctDR01TjjsiDgY188fLt/HigLv2gfrkDBc02dsvp06dypIlS4iKimLDhg20a9cOgO3bt3PPPfeQnJxMeXk5U6ZM4c0336x1X19//TUjR45k5cqVjB8/3hHFp9gI/b5zyKHsYssI8HLAEEFpmQm/PqvqPT/VqR/HENnCh9SzhURd84nN2/fr1oLN719fr2PbQm3nH+zfBuQ7EDV56e09PPvmznpt29AYAPCfZdcyrK/z5qo7k1FIyyH1Kzs0/Du4bWgbPl0wqN7Ht4Ya+/8F9ogDaq4/SCx0hIfm/srST+o3tYA94uCez26iS/vgem1rDekDtmuyL0qZMWMGwcHBnDp1io4dO9K5c2diY2Pp1asXMTExDBpU8R9SdS9J+bvrr78eHx+fet/jKuzHw6Clc2wzpx2/e3z9bsEVQtiPs/th9/jGu5CxRkRzH8JDnfdmNmfXXwjh3DjoYdASH+O8azFRvSab1EVGRrJlyxauu+46PD09SUlJISgoiBUrVvDtt99y+PBhwLqk7oKLb9MUzuPMQObsi0khhHOTiqgwH0KDHHNbUG26xznvO5A4KITzObMfdmkXhF7fZFMI1WrSZyQuLo5vvvmG/Px88vPz+f3335k4cSKFhYWkpKSg0Wjo1KlTnftZv349hYWF9OrVywGlFnW54Wrb7222B71Ow9ArnPccjRCiQmiQF707hzrl2Nf3j3LKcf/uhgHOiYPN/A1c2cURry8QQtSmY9tAoiOqn4e5sV1/tWvEQVFVk07qavLnn39isViIjY3F27vqLSx33303s2bN4ssvv2TDhg288MIL3H333XTt2pUxY8Y4qcTiYiP6RdIqvH5va2qIW6+Jpnmw80fohRDw4Og4tzru3905oi1+PnqHH3f8Te3wloelhHA6rVbDpNs7OPy4Op3ChFuqn0pBOJdbJnX79+8Hqr/1smPHjnzxxReMHTuW4cOHs3LlSiZMmMCmTZswGGp4d6xwKK1WwwO3Oj6QTb7dNS7mhBBw+7VtCA70cOgx+17egk6xQQ49Zk18vfXcOzLW4ceddJvjY68Qonr33dQOg4Nvg7x5UHSdc2EK53DL4bbakrqZM2cyc+ZMRxfJZiVnjpCy8F6M+ZlovQOIfuR9vFp1rLKOxWwm9b3HOb/rexStDq1fMK0fegfP8MsoTtnPyRVTKM/LQNHq8IntRasHlqLxqPpL1JmPZ5O2Zg5xb+zGO6arA2tYu4fvjOfttYc4cabAIce7eXBr+nZzrVuOrG0Dpz+YQd6u77GYjPjGXUWrScvR6A2Unk3hwKS2eLXuXLl+2yfX4hHeltKzx0l+5VYsZhMWkxHPyDhaT3kbna/rPBhtTf3P79vI6VVPYS4uAEUhoMd1tBz7Moqm4j/B9LWvkLXxAxS9AY3ek6gJi/FpV/U2a1ftA+7O00PH3Kk9eGDOVoccT6NRWPCYa92C/8yELnz83TGy80odcrwHR8cR2zrAIccSQtQtNMiLp+/vwnPLdzvkeF6eWl56uLtDjiVsJ7/UqdTJZQ8Qcu1EOi0/TNioJ0lZNO6SdfL+WE9B0lbiF+0lfvE+/LsM5syHTwOgGDyJeuBNOi07SPzCvZhLCklf90qV7QsP/0Hh0e0Ymrd2RJVs4udjYOXz/RxyrKAAD5Y/e5XLvSjHmjaQueFfFB3bRdzru+i4NAlF0ZDx9aLK5VovP+IX7qn84xHeFgB9UATt5/1C/MI9dFxyAENQBGmrn3NQzaxjTf11vs2IefwTOi5NJO71nRQc/JWsn1cBUJS8h3P/WUaHBX8Qv3APodc9xMm3q0486sp9QMCEW9ozpE+EQ471+L2d6J3Q3CHHslZYiDdLnrqi7hXtIDrCl1em93TIsRqi5MwRDs64kgOT25H0WE+KT/55yTrmshKOzr2JA5PbkfhIFw7PuoaStKOVy/N2fEfi9G4kTuvKnw93ImvjB5fsI3PDe+y8USH3ty8bszo2s6b+AHm7vifp0R4kTk3g4BN9KDq+t8ry/ROiOTC5PYnTupI4rSvZW/6av+vw7KEkTk0gcVpXDs3sR1GyYxIKUb2n7+9K1w6OuYNg7sM9VDGwY3U/qKGv1xUjLnC1OOCWSd3GjRuxWCxcd911zi5KvZTnZlB4dAfBA+4GIPDKWyjLPHVpg1MULMZSzGUlWCwWTEXn0QdXzK3kGRGLd3RCxWpaLd6xPSnLSKnc1FxaxMm3H6L15BUOqVN9DOodwfR7Ota94kXSM4tIPVto1QS9F6z451W0cLFn6axtA8XH9+LXZQgavQFFUfDvPpzsTR/WuX+N3qPyV1uLyYSppBBcKKm1tv7eMZfjERYDgMbgiXebrn+1c0XBYizHXFoIgKkwF0PwX3OPqaEPuDtFUXj3ub6ENPO0epv6xICuHYJ4/sFu9Slio7tjRAxjhsXYtI2t34Fep+H9F/vj6+34Z/hsZc1gD0Do0Il0XHaI+EV7Cex9IyfevB8Ai8XC8TfuJvqR94lfuIfLnv2GE8sewFSUX7lt6dkUMn94B5/2fRxRJZtYU39jQQ7HX7+L6GkfEL94Hy3Hvcrx1++6ZL2YJ9ZUDvgF9Rt90eefEr94H/EL99B85KM1fsfCMfR6DR+8eDU+NjzrWp84OLh3BFPvsu2ay1ms6Qd19fWaYsQFrhgH3DKpU7uyzFPom4WjaCs6sKIoGEJbUXbuZJX1AnregF+nAewbF8a+ceHk7/uJiDvnXLI/U0khmT++S0CvGys/S31/BqHDJmMIde03HL36aC/uHNHW6vV73rGeqGs+oecd661a/82nr+DWoW3qW7xGY20b8G7bnbw/1mMqOo/FWE7OL59SelHybiopJOmxniRO78aZT+ZgMZkql5nLy0ic1pW994RQmnaEiDued0jdrGFt/S9WnpNOzq+fE9CjYvJ47zZdaD5yOvsntGHffZGcXf8GUROXVK6vlj7g7lpH+PHf5dcS4GfdM8+2xoB2rQP4fvkwPD1c82kFRVF4/8X+DL3S+jfz2vIdaLUKH708gKt7hDekmA5h7WCPxuBJQI8RlXdf+LTrU2VQE0XBVJgLgKn4PDq/YBR9xfObFrOZE2/eT9TEJZWfuQpr61+adgydX3Dl7ep+HftRdu4kRcd2WXUcnW9g5d9NRXkuNeDnrhLaBfHloiF4emitWt/WONirUyhfLByMRuP659rqHz6gxr5eV4xw1TggSV0TVnR0B8UnDtB55WkS3juDX8JgTi6fVGUdc3kZx18djX/XoTS74mYAzu/5kbJzJwgZMt4ZxbaJVqth1Uv9mXirfd/EpNUqvDO7L1PGxNt1v44WPHgc/t2Gcejpqzn09NV4RrSrTIT0QeEkrDxN3GvbaTdnAwWJWzj71WuV22r0BuIX7iHhg7N4Rnbg3H/V+4uVqeg8R1+8gbBRM/CJ7QFA6dnj5P62jk5vHSVhZSotRk4n+dWK0Wg19QEB3eJD2PSvEYSF2PcX9cs7BLP5/etc7pf6v/MwaPlq0RBuHmzf24Q9PbSsfX0wt7ngwFZ16jPYA5DxzSIC/zeoqSgKMY+v4di8Uey/vzWHnupL9CMfoNFXDBqc/ep1fOOuwucy13uuyNr6e0bEYszPoiDpVwByf1+PuTi/yoAfQMrCsfw5tTMpS/5Bed65KsuOvzGWffdFceajf9JmWt13f4jGN6RPS763YYDLWgN7hvPj28Pw81HHywKt7Qd19fWLXRwjwHXjgGsOPYpaGUKiKM9Jw2Iyomh1WCwWys6dxBBadd6irJ9X4ZcwqHJULXjQvRyZPbRyucVYzvFXR6NvFk7UhL+es8rft5GiY7vYPyEagLLMVI7OGUGrB1cQ2OuGRq+frbRaDStm9WVIn5Y8+NKvZOaUNGh/Ce2CeP+Fflwe57oT7FrbBhRFIeKO54i44zkAsjd/Ujk6q9F7oAmseEZI5xdEyJD7yN78MYyaUWUfGr2B4MHjObF0AmF/W+Ys1tYfwFSUz5HnhhHY+0Za3Pho5ec5v67Fq3VnDMEVz2QFDx7Pqbcfxlxepro+IKBrh2D2rx3Fw/O28cn3yQ3al1ar8OT4BGZNuhwPg3Uj387m6aFj7euDeWftIR5b8AcFReUN2t9Vl7fgvTn9XOr5mYMzrqDkzJFql8W/Ub/nutI+m0tp2lFav/ATABaTkbTPXqTtzHX4dexP4ZHtHH1pJB0X76c8J53cbWtpP3dzvevQEPaqv9YngLYzPuf0hzMxlxTg0/4KPKPiUTR/XRK2n7sZQ2grLMZyTn/0LCmL7iV21neVy9tMr3g2OWvjB6SuerLKMuE8V/cIZ//am5n4/Fa+35raoH15GLS8MKUbj47thFbrOr8B2asf1NbXdf5/Xf/9PUYUnzjg1DhQG0nqVEgf2Bzvtt3I2vRvQgaPI/fXtRiCI/EMv6zKeh5hMeTt+I4WNz2ORm8gb/s3eLWqmGzdYjKSvGAMWr8gWk15u8pLQFqOnUfLsfMq/71/QjRtZ37p8m/+u21oG67uHsbTi3fw0XfHKCk11b3RRZoHefLwnfHMGJ+AQe/aF3LWtgFzWQnmsmJ0vs0wns8kfd3LRNz5AlBxi4LOtxmKTo+5vJScbevwbnM5AKUZJ9AHhKLx8MZiNpOz9TO8Wyc4vJ41sbb+puICjjw/DP9uwwi//dkqyzzCYsj66T1MxQVovXzJ2/4NHhHt0OgNqu0D7i6kmSer5w/k9mvb8Nzy3ew7nG3zPgb1CueV6T3p0dE5k5s3hKIoTLy1A9de2ZKnFu7g8w3HMRotNu0jKsyHJ8Z15sHRcS51IQfQYf62Wpcreg+rB3sA0r9YQO62dcTO2YDGo+IV7UXJeyjPPoNfx/4A+MT2xBAcSVHybkrTjlKakcKByRVTSZTnpHPi1ETKc9IIHT7ZjjWtnj3r75cwkPYJAwEwl5ey794wPFv9dWfKhW0UnZ4WN0zjwOR21R4zeNC9nFg+CeP5LHT+wfWtmrCjqDBfvls2lA/WH+Gld/Zy9OR5m7ZXFLi+fyvmP9qTDm0CG6eQDWCvflBbX/fveg1QfYwoSNzi1DhQG0nqVKr15BWkLB5H+udz0Xr5Ez31PQBSltxPYK+RBPYeSeiIKZScSiJpWhcUrR5dszBaT34LgOwta8jdtg6v6ASSpldcyPt2uIpWk5Y6rU720DzYi3ef78f8R3vx3peHWf2fZPYdzqbcaK52fV9vPb07h/KPm9sxaki0akblwbo2YCrK4/AzA0DRgMVM8+sfqfylqSDpF858PAtFo8ViMuKXMIiw258BoDhlH8f+XfF3i8WMd0w3oiYsdko9a2JN/TO+XkThkT8wlxaS+9s6AJpdeRvhtz9DYJ+bKTqynaTHevzvxTA+tHnsY2dWSdjJzYOjuWlQa37dk8HyT5P4eXsaZzJqfiHAZa38GdE3ksmj41zyIsZWrSP8WD1/IK+f68276w7x2Q/HSUzOxWSqPsEL9DNw1eUtmHBLe67rF4VO51rJnLWsHeyBituncrasJnbOhirPiBlCoyjPTqP4VBJeUXGUpB2lNP0Yni3b49/1mioXbYeeGUCLG6YR2OcmB9SubrbUvzw7DX1QxXOSaWtewC9hUOV6ppJCLMbyyu8le8tqvGMqrhOMBbmYS4sq73DI/e1LdH7BaP1cY/5GUUFRFMbd2I6xN8Ty0+9nWPHZQTbvTOdcDXcyKQq0jw7g5kHRTLy1PdEt/RxcYvuxth/U1teh5hgROnyyy8YBxWKx2DaMJxyi2Aj9VHQ3w5YRYMOLlxyqtMzE/iPZHErJo6jYiEaj4O9rICG2GbGtA1zywV+1nX+wfxuQ70DYU9q5InYlZXIup4SycjMeei1RYT50iwsm0N91HnRvLEXFRvYezuLoyfMUl5rQaTUE+hno2iGINi39XG7Klvr2/5LUQ6QsHocxP6tysMcrumIuzgsDPt5tu7H/H1EYwmLQelVcvCo6D+IW/A5A9ubVpH0+F0XRYLGYCb9lJkFX33nJsWq6mLNHHGjM+gf2HsmJNyeQn7gFTEZ8OlxB1IQllReupenJHHv5FjCbsGDBo0UMUfcvwqNFNKUZJ0iefxvmsmIURYPOP5TI8QsuuYtBYqHrsVgsnEovZPfBLLLzSik3VsTBmEg/unYIcrln5hpyDWBtP6ipr5dlptYaIy7WmHHAVpLUuSi1XdBKALcvtZ1/kKQOpB8IYS9q7P8XODOpcxUSC0VDSR+wnTrvsRBCCCGEEEIIAUhSJ4QQQgghhBCqJkmdEEIIIYQQQqiYJHVCCCGEEEIIoWLyohQXZbFAiW3TrDmVp7bilbjCPtR2/sH+bUC+AyHclxr7/wX2iANqrj9ILBQNJ33AdpLUCSGEEEIIIYSKye2XQgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFiktQJIYQQQgghhIpJUieEEEIIIYQQKiZJnRBCCCGEEEKomCR1QgghhBBCCKFi/w9OI3boawHKtwAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 1123.61x535.111 with 1 Axes>"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"def generate_circuit(n_qubits, n_layers):\n",
|
|
" r\"\"\"\n",
|
|
" A function to generate a pseudo-random a circuit with ``n_qubits`` qubits and\n",
|
|
" ``2*n_layers`` entangling layers of the type used in this notebook.\n",
|
|
" \"\"\"\n",
|
|
" # An array of random angles\n",
|
|
" angles = [\n",
|
|
" [random.random() for q in range(n_qubits)] for s in range(n_layers)\n",
|
|
" ]\n",
|
|
"\n",
|
|
" qc = QuantumCircuit(n_qubits)\n",
|
|
" qubits = list(range(n_qubits))\n",
|
|
"\n",
|
|
" # do random circuit\n",
|
|
" for layer in range(n_layers):\n",
|
|
" # rotations\n",
|
|
" for q_idx, qubit in enumerate(qubits):\n",
|
|
" qc.rz(angles[layer][q_idx], qubit)\n",
|
|
"\n",
|
|
" # cx gates\n",
|
|
" control_qubits = (\n",
|
|
" qubits[::2] if layer % 2 == 0 else qubits[1 : n_qubits - 1 : 2]\n",
|
|
" )\n",
|
|
" for qubit in control_qubits:\n",
|
|
" qc.cx(qubit, qubit + 1)\n",
|
|
"\n",
|
|
" # undo random circuit\n",
|
|
" for layer in range(n_layers)[::-1]:\n",
|
|
" # cx gates\n",
|
|
" control_qubits = (\n",
|
|
" qubits[::2] if layer % 2 == 0 else qubits[1 : n_qubits - 1 : 2]\n",
|
|
" )\n",
|
|
" for qubit in control_qubits:\n",
|
|
" qc.cx(qubit, qubit + 1)\n",
|
|
"\n",
|
|
" # rotations\n",
|
|
" for q_idx, qubit in enumerate(qubits):\n",
|
|
" qc.rz(-angles[layer][q_idx], qubit)\n",
|
|
"\n",
|
|
" return qc\n",
|
|
"\n",
|
|
"\n",
|
|
"# Generate a random circuit\n",
|
|
"qc = generate_circuit(6, 3)\n",
|
|
"# Convert the abstract circuit to an equivalent ISA circuit.\n",
|
|
"isa_qc = pm.run(qc)\n",
|
|
"\n",
|
|
"qc.draw(\"mpl\", idle_wires=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0167329b-c6a6-4b2c-98fc-bf9aba9b7ee6",
|
|
"metadata": {},
|
|
"source": [
|
|
"Choose single-Pauli `Z` operators as observables and use them to initialize the primitive unified blocs (PUBs)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "830b1dcc-2669-46cc-bff8-01a96a05c6ab",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Observables: ['ZIIIII', 'IZIIII', 'IIZIII', 'IIIZII', 'IIIIZI', 'IIIIIZ']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Initialize the observables\n",
|
|
"obs = [\"ZIIIII\", \"IZIIII\", \"IIZIII\", \"IIIZII\", \"IIIIZI\", \"IIIIIZ\"]\n",
|
|
"print(f\"Observables: {obs}\")\n",
|
|
"\n",
|
|
"# Map the observables to the backend's layout\n",
|
|
"isa_obs = [SparsePauliOp(o).apply_layout(isa_qc.layout) for o in obs]\n",
|
|
"\n",
|
|
"# Initialize the PUBs, which consist of six-qubit circuits with `n_layers` 1, ..., 6\n",
|
|
"all_n_layers = [1, 2, 3, 4, 5, 6]\n",
|
|
"\n",
|
|
"pubs = [(pm.run(generate_circuit(6, n)), isa_obs) for n in all_n_layers]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2a49fc84-0c82-4cbb-a557-6e676e57c9fa",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Cliffordize the circuits\n",
|
|
"\n",
|
|
"The previously defined PUB circuits are not Clifford, which makes them difficult to simulate classically. However, you can use the `Neat` [`to_clifford`](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.debug_tools.Neat#to_clifford) method to map them to Clifford circuits for more efficient simulation. The [`to_clifford`](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.debug_tools.Neat#to_clifford) method is a wrapper around the [`ConvertISAToClifford`](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.transpiler.passes.ConvertISAToClifford) transpiler pass, which can also be used independently. In particular, it replaces non-Clifford single-qubit gates in the original circuit with Clifford single-qubit gates, but it does not mutate the two-qubit gates, number of qubits, or circuit depth.\n",
|
|
"\n",
|
|
"See [Efficient simulation of stabilizer circuits with Qiskit Aer primitives](/guides/simulate-stabilizer-circuits) for more information about Clifford circuit simulation."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7a86d99e-4431-4d62-8227-c49d17856369",
|
|
"metadata": {},
|
|
"source": [
|
|
"First, initialize `Neat`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "4b5bbd4c-bd7f-4679-9348-d41da74d26eb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# You could specify a custom `NoiseModel` here. If `None`, `Neat`\n",
|
|
"# pulls the noise model from the given backend\n",
|
|
"noise_model = None\n",
|
|
"\n",
|
|
"# Initialize `Neat`\n",
|
|
"analyzer = Neat(backend, noise_model)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "b740dcdf-660e-41e2-b5e6-e8cc288af38b",
|
|
"metadata": {},
|
|
"source": [
|
|
"Next, Cliffordize the PUBs."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "3ad78f41-a2f8-4381-826a-ae728e081ad6",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABroAAAN+CAYAAABKKtuNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADG3UlEQVR4nOzdeXxU1f3/8fdM9g0CJJCwhgCRgCwCIggoVKwCbsVaF0BprbYqS1srVqti7VdQxGqFarWKaFVKi+CCGxa0giiCgCBEAoEAIQkQSCB7Mpn5/cGPQEhCFm5mMve8no8HjweZuffm8zn3c885N2cWh8fj8QgAAAAAAAAAAADwM05fBwAAAAAAAAAAAAA0BgtdAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAv8RCFwAAAAAAAAAAAPwSC10AAAAAAAAAAADwSyx0AQAAAAAAAAAAwC+x0AUAAAAAAAAAAAC/xEIXAAAAAAAAAAAA/BILXQAAAAAAAAAAAPBLTbbQNXLkSP3mN79p8n2a6zEAAAAAAAAAAADQtBq10JWdna3p06ere/fuCg0NVbt27TRs2DC98MILKioqsjpGS02ePFkOh0MOh0PBwcHq3r27HnvsMblcLl+HBgAAAAAAAAAAgAYIbOgOu3fv1rBhwxQdHa1Zs2apT58+CgkJ0datW/XSSy+pQ4cOuuaaa5oiVstceeWVevXVV1VaWqoPP/xQ99xzj4KCgvTAAw/4OjQAAAAAAAAAAADUU4Pf0XX33XcrMDBQGzZs0M9+9jMlJycrMTFR1157rT744ANdffXVNe5XWlqqadOmqW3btgoNDdXw4cO1fv36atu5XC5NmTJFLVu2VExMjB5++GF5PB5J0scff6zhw4crOjpabdq00VVXXaW0tLSGpqCQkBDFxcWpS5cuuuuuuzR69Gi99957VbZxu92aMWOGWrdurbi4OD366KOVz9UnjiVLlqhPnz4KCwtTmzZtNHr0aBUWFlYee/bs2eratavCwsLUr18/LVmypMF5JCcnV7477cx/8+fPb/DxAAAAAAAAAAAA/EmDFrqOHDmiFStW6J577lFERESN2zgcjhofnzFjht5++2299tpr2rhxo7p3764rrrhCR48erbLda6+9psDAQH3zzTf661//qr/85S96+eWXJUmFhYX63e9+pw0bNmjlypVyOp36yU9+Irfb3ZA0qgkLC1NZWVm1OCIiIrRu3TrNmTNHjz32mD799NN6xZGVlaWbb75Zv/jFL5SSkqLPP/9c48ePr1ywmz17tl5//XX9/e9/17Zt2/Tb3/5WEydO1P/+97/K379w4cJa2/Kkt99+W5K0cuVKZWVlKT09XU6nU//5z390xx13nFObAAAAAAAAAAAANHcN+ujCXbt2yePx6LzzzqvyeExMjEpKSiRJ99xzj5588skqzxcWFuqFF17QwoULNWbMGEnSP/7xD3366ad65ZVXdN9991Vu26lTJz3zzDNyOBw677zztHXrVj3zzDO64447dP3111c57oIFCxQbG6vt27fr/PPPb0gqkiSPx6OVK1fqk08+0dSpU6s817dvX82cOVOS1KNHD82fP18rV67U5ZdfXmccWVlZcrlcGj9+vLp06SJJ6tOnj6QT72ybNWuW/vvf/2ro0KGSpMTERK1Zs0YvvviiLr30UklSy5Ytq7XzmQ4ePKjAwEANGzZMISEh+vbbb+V2uzVixAiFhIQ0uD0AAAAAAAAAAAD8SYM/urAm33zzjTZv3qzevXurtLS02vNpaWkqLy/XsGHDKh8LCgrS4MGDlZKSUmXbIUOGVHkn09ChQ7Vz505VVFRo586duvnmm5WYmKgWLVooISFBkrRv374Gxbt8+XJFRkYqNDRUY8aM0Y033ljlowmlEwtdp4uPj9ehQ4ckqc44+vXrp8suu0x9+vTRDTfcoH/84x/Kzc2VdGKxsKioSJdffrkiIyMr/73++utVPv7wJz/5iX744Yez5rF161YlJSVVLmp99913atu2rdq1a9eg9gAAAAAAAAAAAPBHDXpHV/fu3eVwOLRjx44qjycmJko68RGATenqq69Wly5d9I9//EPt27eX2+3W+eefX+1jB+syatQovfDCCwoODlb79u0VGFi9GYKCgqr87HA4Kj+asK44AgIC9Omnn2rt2rVasWKF5s2bpz/+8Y9at26dCgoKJEkffPCBOnToUOV3NPRdWFu2bKl8p5h0YqHr9J8BAAAAAAAAAADsrEHv6GrTpo0uv/xyzZ8/X4WFhfXer1u3bgoODtaXX35Z+Vh5ebnWr1+vXr16Vdl23bp1VX7++uuv1aNHD+Xl5WnHjh166KGHdNlllyk5ObnyXVINFRERoe7du6tz5841LnKdzZEjR+oVh8Ph0LBhw/SnP/1JmzZtUnBwsJYtW6ZevXopJCRE+/btU/fu3av869SpU4Ni2bJlS5V3nn333XfV3okGAAAAAAAAAABgVw3+6MLnn39eLpdLgwYN0uLFi5WSkqIdO3bojTfe0A8//KCAgIBq+0REROiuu+7Sfffdp48//ljbt2/XHXfcoaKiIt1+++1Vtt23b59+97vfaceOHVq0aJHmzZun6dOnq1WrVmrTpo1eeukl7dq1S6tWrdLvfve7xmfeSPWJY926dZo1a5Y2bNigffv2aenSpTp8+LCSk5MVFRWl3//+9/rtb3+r1157TWlpadq4caPmzZun1157rfIYy5YtU8+ePWuNw+12a9u2bVUWttLS0io/RhEAAAAAAAAAAMDuGvZ2Jp14d9amTZs0a9YsPfDAA8rIyFBISIh69eql3//+97r77rtr3O+JJ56Q2+3WpEmTlJ+fr0GDBumTTz5Rq1atqmx36623qri4WIMHD1ZAQICmT5+uO++8Uw6HQ//61780bdo0nX/++TrvvPP03HPPaeTIkY1KvLGcTmedcbRo0UJffPGFnn32WR0/flxdunTR008/rTFjxkiS/vznPys2NlazZ8/W7t27FR0drQEDBujBBx+sPMaxY8eqfUTk6dLS0lRUVFRloatPnz6aOXOmBg4cWOX70AAAAAAAAAAAAOzI4fF4PL4OAgAAAAAAAAAAAGioBn90IQAAAAAAAAAAANAcsNAFAAAAAAAAAAAAv8RCFwAAAAAAAAAAAPwSC10AAAAAAAAAAADwSyx0AQAAAAAAAAAAwC+x0AUAAAAAAAAAAAC/xEIXAAAAAAAAAAAA/BILXQAAAAAAAAAAAPBLLHQBAAAAAAAAAADAL7HQBQAAAAAAAAAAAL/EQhcAAAAAAAAAAAD8EgtdAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAv8RCFwAAAAAAAAAAAPwSC10AAAAAAAAAAADwSyx0AQAAAAAAAAAAwC+x0AUAAAAAAAAAAAC/xEIXAAAAAAAAAAAA/BILXQAAAAAAAAAAAPBLLHQBAAAAAAAAAADAL7HQBQAAAAAAAAAAAL/EQhcAAAAAAAAAAAD8EgtdAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAv8RCFwAAAAAAAAAAAPxSoK8DQM08HqmkwtdR1F9ogORwWHc8f8tfsr4NAJjL4/HIVVzq6zAaJTAsRA4LOkOPx6OiYpcFEXlPeFigJbmf5G9jIeMgYB3GgRP8bSwwfRyQGAsAAADgGyx0NVMlFdKID30dRf2tHiuFWVhN/pa/ZH0bADCXq7hUb3ab6OswGmVC2hsKCg895+MUFbsUOeR1CyLynoKvb1VEeJBlx/O3sZBxELAO48AJ/jYWmD4OSIwFAAAA8A0+uhAAAAAAAAAAAAB+iYUuAAAAAAAAAAAA+CUWugAAAAAAAAAAAOCXWOgCAAAAAAAAAACAX2KhCwAAAAAAAAAAAH6JhS4AAAAAAAAAAAD4JRa6AAAAAAAAAAAA4JcCfR0ArJO/9XOlPjSqymPO0AiFtE9Sm5GT1PaqqXIE2PeUm54/AACMhQBgNsYBAAAAmIgZrg21uuRmtRw4VvJ4VJ6brSOfv66MBb9TSUaKutzzkq/Da3Km5w8AAGMhAJiNcQAAAAAmYaHLhsITB6jNyImVP8eOvVvb7u6pnE9fVvuJjyuoZawPo2t6pucPAABjIQCYjXEAAAAAJuE7ugwQEBqhiPOGSB6PSrPTfB2O15mePwAAjIUAYDbGAQAAANgZC12GOHkzExjZ2seR+Ibp+QMAwFgIAGZjHAAAAIBd8dGFNuQuLZLreI48Ho9cudk6/PHfVbx7k8J7DFZohyRfh9fkTM8fAADGQgAwG+MAAAAATGLEQldOTo7mzJmjpUuXKiMjQ7GxsRo/frxmzZqladOmacGCBZo3b56mTJni61AtkbVoprIWzazyWPTQ8er8q7/5KCLvMj1/AAAYCwHAbIwDAAAAMIntF7o2b96sMWPGKDs7WxEREerVq5cyMzP13HPPKS0tTUePHpUk9e/f37eBWijmijvV6uIb5KkoV/Hercpe+qTKcjLkCAqt3CZ/22rtemxMtX09rjJ53BUauKzCmyFbyvT8ARjA4VCvO8bpvEmXK7JjrEqOHNee99dq85zFchWX+jq6ZufxaQP14C/76xePfKFX39lZ7fnPXhmrof3aauBN72rbrlwfRGg9xkLAAIwF9cY4wDgAAAAAe7P1QldOTo6uvvpqZWdn695779XMmTMVFRUlSZozZ47uv/9+BQYGyuFwqG/fvj6O1joh8T3Uov9oSVLLgWMUmTxcOx4Yrn0v/FqJ9/1LkhTVe4QuWFxQZb+yI5n64d5Bih3n3+9sMz1/APY3+LHJ6vXLcdr74Tp9//f3Fd2jg3rdPlZtzu+qT372mOTx+DrEZuXR5zfp6ks76y+/v0grvjqgAweLKp/7zcTeGnlhvP7w7Hrb/HFTYiwETMBYUH+MA4wDAAAAsDenrwNoStOmTVNGRoamTJmiuXPnVi5ySdKMGTPUr18/uVwuJSQkqEWLFj6MtGlFJl+s1iMnKXfNYhWkrK1xG3d5qXY/MV6RvYYr/oYHvRxh0zI9fwD2Ep3UUcm/GKP0D77WZ7c/pZ1v/lfrH31N3zz6muKH91HX64b5OsRmp9zl1m0PfaGIsCC98uiIyseTElrq8amD9PWWQ3pq4VYfRtj0GAsBe2EsaBjGAcYBAAAA2JttF7pSUlK0ePFixcTEaPbs2TVuM3DgQElSv379qjy+Z88eXXPNNYqKilKrVq1066236siRI00ec1OKv/FhyRmgzLceqfH5fc//Wu7yEiVMX+jdwLzE9PwB2EfXnwyXw+nU9n98UOXxnW/+V+VFJep2/SU+iqx525RyRLNf+U5XDOuoO64/T06nQ68/fokcDum2h76Q223/dz4wFgL2wVjQcIwDjAMAAACwL9sudC1atEhut1sTJkxQZGRkjduEhYVJqrrQlZ+fr1GjRikjI0OLFi3SSy+9pNWrV+uqq66S2+32SuxNITS+u1qPuEn5W1Yqf9vqKs8dev85HduwXN0eeEfOkHAfRdi0TM8fgH3E9O8ud0WFcjZV/Y6RitJyHf0+XTH9u/kosubvzy9t0uYfjmjuvYM174GhuqhPW/1x3rdKTT/m69C8grEQsA/GgsZhHGAcAAAAgD3ZdqFr1apVkqRRo0bVuk1GRoakqgtdL730kg4cOKB33nlHV111lW644Qa99dZb+vrrr/Xee+81bdBNLO6GP0pOZ5VX8OVv+UwZr9+vxBn/UUi7BN8F5wWm5w/AHsLbtVLp0Xy5y1zVnivKPqrQNi3lDLL1V3A2msvl0W0PfaHQkADdfWOyVm/M1rNvfO/rsLyKsRCwB8aCxmEcYBwAAABA8+LxeFRYWKjCwkJ5zuF7hm1797N3715JUpcuXWp83uVy6csvv5RUdaFr+fLlGj58uDp37lz52NChQ5WYmKj3339f1113XYNjGTRokLKzsxu0jyM4TO2e3Vn3hqeJ6jNSA9+tvRjCOiVr4LKKyp9LD6Zr91M/U8fJTymqz8gG/a4zJSX1kKes+JyOcTp/y1+yvg0AmCvI49RMDa7xuYCwEFWUldf4XEXpiccDw4JVVl79j5/ekNQjSeWOc38HtFtBUuuHLIioqmMFZSotq1BwUIA+XL1f5zCHqqZHUpKcqvncNIa/jYWMg4B1zjYOSM17LLBqHJCaZixgHOCeCAAAAM2H2+1WVlaWJKl///7atGlTo45j24WuwsJCSVJxcc2T7MWLFysnJ0dRUVHq2rVr5ePbt2/XDTfcUG373r17a/v27Y2KJTs7WwcOHGjQPs6QcLVr1G+rH3dpkdJmX6eWg69R23FTzvl4mZmZcpcWWRDZCf6Wv2R9GwAwV7AjQLV1ghXFpQqKaFnjcwEhQZIkV3FZU4VWp8ysTJV5KuresC6OYKn1uR/mTK8+NkLBQQHanparh+7sr39/ske7M/ItOXZWZqbksa7t/W0sZBwErHO2cUBq3mOBZeOA1CRjAePAKdwTAQAAoDk5ePBgo/e17UJXXFyccnNztXHjRg0dOrTKc1lZWbrvvvskSX379pXD4ah8Ljc3V9HR0dWO17p1a+3YsaPRsTSUIzisUb+rvnLXvq3iPd+p5ECqctcsrvZ87/nbFRzbuYY9a9a+fXvL39HVlKzOX7K+DQCYK8jjlGp5MXzRwVy1TOooZ3BgtY+sCo9rrZIjx+T20bu5JKl9fHvL3tGVZUE8p5t6Sy+NGtxeDz63Qe9+tlcbF1+nBY+N0MhffGjJ8ePbt7f8lfxNqbnPBQCTnW0ckJr3WGDVOCBZPxYwDlTFPREAAAB87fR3dLVr1/iXedl2oWv06NFKSUnRk08+qcsvv1xJSUmSpPXr12vSpEnKycmRdOLtcE1tw4YNDd6n2CWNsOZ+q0ZtRk1Sm1GTLDteaupOhVlYTf6Wv2R9GwAwV3lRid7sNrHG53I271KHkf0Vc0EPHVqXUvl4QEiQWp+foINfp9S4n7ek7kxVUHjoOR+nsKhckUNetyCiE7p3bqHZ0wfpm62H9eSCLXK7PXr0hY2aPf1CTb2ll+a91bh3bZ9uZ2qqIsKDLIj2BH8bCxkHAeucbRyQmvdYYNU4IFk7FjAOVMc9EQAAAHytsLBQkZGRkqQ1a9Y0+jhOqwJqbmbMmKE2bdpo//796t27t/r06aMePXpo8ODBSkxM1I9+9CNJVb+fS5JatWqlvLy8asc7evSoWrdugs9QAgCgAfa8u1Yet1u97hhX5fEeE0YrKDxUu5d+4aPImi+HQ1r450sU4HTotof+J7f7xHeXzHl1q9Z/f1izpw9SYscoH0cJAPXHWNAwjAMAAACAvdl2oatjx45avXq1xo0bp9DQUKWnp6t169Z68cUX9cEHHyg1NVVS9YWu5OTkGr+La/v27UpOTvZK7AAA1Cbvh3364dWPlTBuiEa9cp963HKZBs28VYMfvU3Za7dp99LGv/rFru69rY+GXdBOjzy/UT/sOVb5uNvt0eSHv1BggFMLHhvhwwgBoGEYCxqGcQAAAACwN1t/qEBycrKWL19e7fGCggKlp6fL6XTq/PPPr/LcVVddpQcffFAZGRnq2LGjJGndunVKS0vTU0895ZW4AQA4m28eWaiC/YeVNHG0Ol42QCVHjytlwUfaNGex5PH4OrxmpWfXlvrzPQP01XeH9PRr31d7fntanuUfXQUA3sBYUD+MAwAAAID92Xqhqzbbtm2Tx+NRUlKSwsPDqzx35513at68ebr22mv1pz/9SSUlJZoxY4YGDx6sa6+91kcRAwBwisft1rYX39e2F9/3dSjN3g97jinswtfOus0Tr2zRE69s8VJEAGANxoL6YRwAAAAA7M+2H114Nlu3bpVU/WMLJalFixZatWqV4uPjddNNN+mXv/ylLr74Yi1fvlxOp5HNBQAAAAAAAAAA0CwZ+Y6usy10SVK3bt1q/MhDf1eSuVPpz94mV36OAsJbKmH6QoV17u3rsAAAAAAAXsA9IQAAAOyIhS6D7Hv+V4q54k7FXDZZuV8uUfpfJyv56fW+DqtZyP1yiY5t+ECuwlyV7N8uZ3CYAlu2Vee7XlBofHdfhwcAQJNjLAQA++OeEAAAAHZk5GfxrVq1Sh6PR+PGjfN1KF5TnndIhbs2qM3IiZKk6IuvV1nOfpVk7fJxZM1D3tfLFD3kOsX++E71fn6Hev31O0VfdK32zv+lr0MDAMArGAsBwN64JwQAAIBdGfmOLhOV5exXUKt4OQJOnHKHw6Hg2M4qO7zP9q/SdhXkafu08+UuK1ZwTCd5yktVmr1brUdOUsLUl+Vxlavghy+VMH2hHIFBlftFJA3RwXfm+jByAACswVgIADD5nhAAAAD2xkIXbC8wMlqtL7lFAWFRir/xYR3b+Imyl8xSwtSXJUn5Wz9TRM+Lq/xhT5IOLf+rogdf64uQAQCwFGMhAAAAAACwKxa6DBEc00nluVnyVLjkCAiUx+NR2eF9Co7t7OvQztkPM4aqJHNnjc/1emaTgmM7qWjPZrW9apokqSjtW4UnXlC5Td66d9RqyE+q7Jf1n1kqzdqlLn9e2XSBAwBgEcZCAEBd7HxPCAAAALOx0GWIoOi2Cu82QEc+f0Mxl01W3tq3Fdymoy0+oqLnnK/q3KZ4z+bKP+gVpX2r6MHXSJI8Ho+ObfpEHW6bU7lt9rK5yvtqqXo89l85Q8KbJmgAACzEWAgAqIud7wkBAABgNqevA4D3dLnrReV88qK+vytJ2W8/oYRpr/o6JK8oO3JAkkPBbTpIkorTtyisSx9JUlHqNwrrmKyAsEhJ0sF3/6Lc1YvU47FPFRgZ7aOIAQCwFmMhAEAy954QAAAA9sY7ugwS2vG8er3i226Kdm+q8vFMARHROvTh80qY+rJyv16m6IuukySV5WQoY8G9Co5LVOpDoyRJjsAQJc9d54uwAQCwDGMhAEAy954QAAAA9sZCF2wv+sKrFH3hVZU/Jz+9vvL/x9a/r3b/95kkKTimowa+6/F6fAAANDXGQgAAAAAAYFcsdMFovedv83UIAAD4FGMhAAAAAADwZ3xHFwAAAAAAAAAAAPwSC10AAAAAAAAAAADwSyx0AQAAAAAAAAAAwC/xHV3NVGiAtHqsr6Oov9AA64/nT/lL1rcBAJgsPCxQBV/f6uswGiQ8zNpplb+NhYyDAKzmb2OB6eOAxFgAAAAA32Chq5lyOCSL75P8iun5A4DpHA6HIsKDfB2GTzEWAjCd6WMB4wAAAABQP3x0IQAAAAAAAAAAAPwSrw8DAMCm4ob21pVL/1Tr825XhV7vdKMXIwIAeBtjAQAAAAC7Y6ELAACb2710tTJWbaz2uMft8UE0AABfYCwAAAAAYFcsdAEAYHNHtu7R7rdXN9nxA8ND5SoqabLjAwDOHWMBAAAAALtioQsAAEiSuoy7SMm/GKvWvRPkDA5U4YEcHfj8O2147HW5y12VH3+1Zvp8BYaHqufPr1BUlzhtnbdMm5/+t6/DBwBYgLEAAAAAgL9hoQsAAJsLDAtWSOuoao+7y1wqLyiWJF3wh5vVb/r1yt2xX9teWq7iQ7mK6hKnLuMu0uan/qWyclflfr3uGKeQVlFKffO/Kj6cp8LMI17LBQDQOIwFAAAAAOyKhS4AAGzughk36YIZN1V7fP+n32rlrbMV07+7+k2/Xllrtuq/E2eporS8cptvH3+j2n4RHWK0bMR0lRw53qRxAwCsw1gAAAAAwK5Y6AIAwOZ2/HOF0t//qtrjJ/84mXj9CEnSt7PeqvKHzdqkLfkff9gEAD/DWAAAAADArljoAgDA5o7vzlbW6q21Pt+ia7w8brdyt6fX63jH0rIsigwA4C2MBQAAAADsyunrAAAAgO95PB55PJ56bVtRXNrE0QAAfIGxAAAAAIA/YqELAADDHd+dKWdAgFr3SvB1KAAAH2EsAAAAAOCvWOgCAMBwu5eukSQNeOAWOYP4VGMAMBFjAQAAAAB/xR0MAAA216ZPVyVeP6LG5/Z9tF45m3dp67xl6jP1J7p6xRzteW+tig/lKapzW3UZN0QfjP2Dyo4XeTlqAICVGAsAAAAA2BULXQAA2Fzi+BFKHF/zHzffHjpF+enZ+nbWmzq6PV09fz5Gfe6+VnI6VJR5RAdWbZSruMzLEQMArMZYAAAAAMCuHJ76ftswAADwivKiEr3ZbaKvw2iUCWlvKCg81NdhAIBfYxwAAAAAYILCwkJFRkZKkgoKChQREdGo4/AdXQAAAAAAAAAAAPBLLHQBAAAAAAAAAADAL/EdXc2UxyOVVPg6ivoLDZAcDuuO52/5S9a2gen5S5LH45GruNS6A3pBYFiIHBY1guk1YHr+oAYk/2sDxgHGAdOvAYmxwGr+VgOcfwAAAMA3WOhqpkoqpBEf+jqK+ls9VgqzsJr8LX/J2jYwPX9JchWX+t13U1j5nRSm14Dp+YMakPyvDRgHGAdMvwYkxgKr+VsNcP4BAAAA3+CjCwEAAAAAAAAAAOCXWOgCAAAAAAAAAACAX2KhCwAAAAAAAAAAAH6JhS4AAAAAAAAAAAD4JRa6AAAAAAAAAAAA4JdY6AIAAAAAAAAAAIBfYqELAAAAAAAAAAAAfomFLgAAAAAAAAAAAPilQF8HAOvkb/1cqQ+NqvKYMzRCIe2T1GbkJLW9aqocAfY95abnL9EGoAZMzx/UgOn5gxowPX9QAwAAAICJmOHbUKtLblbLgWMlj0fludk68vnryljwO5VkpKjLPS/5OrwmZ3r+Em0AasD0/EENmJ4/qAHT8wc1AAAAAJiEhS4bCk8coDYjJ1b+HDv2bm27u6dyPn1Z7Sc+rqCWsT6MrumZnr9EG5xpctYSy461MP6nlh2rKZleA6bnD2rA9PzPxDhgXg2Ynj+oAQAAAMAkLHQZICA0QhHnDVHe2iUqzU4z7qbO9Pwls9sgokOMvpm5UNtfWu7rUHzK5BqQyB/UgMn5Mw6cYHINSOQPagAAAACwM6evA4B3lGanSZICI1v7OBLfMD1/ydw26HT5IO1fscHXYTQLptbASabnD2rA1PwZB04xtQZOMj1/UAMAAACAXRmx0JWTk6MZM2aoe/fuCg0NVadOnTR9+nQVFhbq9ttvl8Ph0Pz5830dpmXcpUVyHc9R+bHDKk7fqn1/v0fFuzcpvMdghXZI8nV4Tc70/CXa4HQtEuOUn57t6zC8zvQaMD1/UAOm5386xgEza8D0/EENAAAAACax/UcXbt68WWPGjFF2drYiIiLUq1cvZWZm6rnnnlNaWpqOHj0qSerfv79vA7VQ1qKZylo0s8pj0UPHq/Ov/uajiLzL9Pwl2uCkwPBQlReU+DoMnzC9Buyef5+pP1GbPolq0zdRUV3aqWD/IS0ZfLevw2pW7F4DdTE9/5MYB8ytAbvnzzhQN7vXAAAAAIBTbL3QlZOTo6uvvlrZ2dm69957NXPmTEVFRUmS5syZo/vvv1+BgYFyOBzq27evj6O1TswVd6rVxTfIU1Gu4r1blb30SZXlZMgRFFq5Tf621dr12Jhq+3pcZfK4KzRwWYU3Q7aU6flLtMFJ7S/tqwP/+87XYfiE6TVg9/wHPjhBJUfzdXTrbgW3CPd1OM2S3WugLqbnfxLjgLk1YPf8GQfqZvcaAAAAAHCKrRe6pk2bpoyMDE2ZMkVz586t8tyMGTP01ltv6bvvvlPXrl3VokULH0VpvZD4HmrRf7QkqeXAMYpMHq4dDwzXvhd+rcT7/iVJiuo9QhcsLqiyX9mRTP1w7yDFjpvi9ZitZHr+Em1wUtsLe+rb/3ujymMDHrhFfaeN15rfPq9d/1pVbZ8r3/6TYgcm6f0rZihvx35vhWo502vA7vkvuehuFew7JEm69rO/KCgitI49zGP3GqiL6fmfxDhgbg3YPX/GgbrZvQYAAAAAnGLb7+hKSUnR4sWLFRMTo9mzZ9e4zcCBAyVJ/fr1q3zs5MLY4MGDFRISIofD4ZV4m1Jk8sVqPXKSctcsVkHK2hq3cZeXavcT4xXZa7jib3jQyxE2LdPzlwxtA4dDckget7vKw5vn/lu5KXs1+NHbFB5f9YvIe915leIu7q3Ncxf79R83a2JkDZzGbvmf/OMm6s9uNdBQRubPOFCFkTVwGrvlzzjQcHarAQAAAACn2Haha9GiRXK73ZowYYIiIyNr3CYsLExS1YWuXbt26e2331ZcXJwuvPBCr8TqDfE3Piw5A5T51iM1Pr/v+V/LXV6ihOkLvRuYl5iev2ReG8Re0F05m3ZVe9xd7tLq6fMVGB6iYX859V0WLbq114A/3KzD36bq++ff82aoXmNaDZzJ9PxBDZiWP+NAdabVwJlMzx/UAAAAAGBXtl3oWrXqxEfRjBo1qtZtMjIyJFVd6LrkkkuUlZWl9957T6NHj27aIL0oNL67Wo+4SflbVip/2+oqzx16/zkd27Bc3R54R84Qe37Gv+n5S/Zug3ZDkuUIqNqddRh1gQ58trnG7Y9u3aMt85apw8j+Spo4Wg6nUyOemypJWj19frVX/9uFnWugPkzPH9SAnfNnHKgfO9dAfZieP6gBAAAAwK5s+x1de/fulSR16dKlxuddLpe+/PJLSVUXupxO69f+Bg0apOzs7Abt4wgOU7tnd1oaR9wNf9TR1YuU+dYjOu/xzyRJ+Vs+U8br96vHIx8ppF1Co4+dlNRDnrJiiyL1v/wla9ugKfKX/KsGgjxOzdTgOrdLuOZiDXv6Lq287Qllr912av8W4SrPL6p1v++eWaLOPx6kQY/cqta9ExQ7oIe+eXShjqdlNjrmpB5JKndY88dR02vA9PzrW//NkVXXgek1IPnfWMg4wDhg+jUgWdcGjAMn+FsNWH0NAAAAAHbnPu2FpsOHD9emTZsadRzbLnQVFhZKkoqLa77RWLx4sXJychQVFaWuXbs2aSzZ2dk6cOBAg/ZxhoSrXQN/T1SfkRr4rqfW58M6JWvgsorKn0sPpmv3Uz9Tx8lPKarPyAb+tqoyMzPlLq39j0kN5W/5S9a2QWPyl+xVA8GOANWnEdLfW6sWXePU6YoLK//AGdEhRoUZh8+6n8dVodXT5+uqj55Qz8lX6uC6FG1/6YNzijkzK1Nlnoq6N6wH02vA9PzrW//NkVXXgek1IPnfWMg4wDhg+jUgWdcGjAMn+FsNWH0NAAAAACY5ePBgo/e17UJXXFyccnNztXHjRg0dOrTKc1lZWbrvvvskSX379pXD4WjyWBrKERzWBJGc4i4tUtrs69Ry8DVqO27KOR+vffv2lr+CtylZnb9kbRs0df5S86+BII9TqueLgfd+9I0uW3i/1s9cKEnqdPkg7V+xoc79yo8XyV3mUkBwkDJWbpQ8tf9RpD7ax7e39BXMTa0514Dp+Tek/psbq64D02tA8r+xkHGAccD0a0Cyrg0YB07wtxqw+hoAAAAA7M7tdisrK0uS1K5d41/tZ9uFrtGjRyslJUVPPvmkLr/8ciUlJUmS1q9fr0mTJiknJ0eS1L9//yaPZcOGuv/QcqZilzTiwyYI5v/LXfu2ivd8p5IDqcpds7ja873nb1dwbOd6Hy81dafCLKwmf8tfsrYNmjp/qfnXQHlRid7sNrFe2x5LzZA8UnRSR+WlZiiqa5zyF9b9CoBhz94jZ1Cg8lL3q+9vrlf6e2uVv7fxrxxI3ZmqoPDQRu9/OtNrwPT8G1L/zY1V14HpNSD531jIOMA4YPo1IFnXBowDJ/hbDVh9DQAAAAB2V1hYqMjISEnSmjVrGn0c207DZ8yYobfeekv79+9X79691bNnT5WUlGjXrl0aM2aMEhIS9Mknn1T5fi6TtBk1SW1GTfJ1GD5jev6S/dpg/6cb1OmKC1WQkaPygrpfSZt8+1jFDztf385+S/s//kZXr3hKw565Wx+Pn+mFaJsHu9VAQ5meP6gBu+XPONBwdquBhjI9f1ADAAAAgF3YdqGrY8eOWr16te677z7973//U3p6unr16qUXX3xRd9xxh7p16yZJxi50AXazf8UGDXjgFh1Ly1TmF1vOum1U1zgNePAWHd60U9/Pf0cet1ubn/63Bj44Qcm3j1XKK038EnrgHCX+9BJFdoyVJIW2aSFnUKD6/uZ6SVJBxmHtXvKFL8MDfIJxACZhHAAAAACAU2y70CVJycnJWr58ebXHCwoKlJ6eLqfTqfPPP98HkQGw2sF1KWqRGK8uYwZrzfS/1b6hw6Hhz06R0+nUmunz5XGf+A6J7//2rrqMvUgDHrxFGf/99pw+ugpoakk3X6a4i3tXeWzA/TdLkrLXbuMPnDAS4wBMwjgAAAAAAKfYeqGrNtu2bZPH41FSUpLCw8OrPb9kyRJJ0vbt26v8nJCQoEGDBnkvUAD15qlw68Dn3534v7v2L0Dv/eur1W5wT2348z91bOeBU/u73Vozfb6RH10F//Px9dQncCbGAZiEcQAAAAAATjFyoWvr1q2Sav/YwhtuuKHGn2+77TYtXLiwSWMD0Hj7PvpG8nhqfb5ljw4aMOMmHdqwQ9v+/n615/NSM/joKgDwY4wDAAAAAACYh4WuGnjO8gcSf1aSuVPpz94mV36OAsJbKmH6QoV17l33joCf2Lv8q7M+f2znAf2z6y1n3WbrvGXaOm+ZlWEBALyEcQBAXbgnAgAAAOyHhS6D7Hv+V4q54k7FXDZZuV8uUfpfJyv56fW+Dsvrcr9couNbVqrT7c9o99ybVLJ/u5zBYQps2Vad73pBofHdfR1ikzI9f1ADpucPakCiDUzH+acNTMY9EQAAAGA/Tl8H4AurVq2Sx+PRuHHjfB2K15TnHVLhrg1qM3KiJCn64utVlrNfJVm7fByZ9+V9vUzRF10nSYr98Z3q/fwO9frrd4q+6Frtnf9L3wbnBabnD2rA9PxBDUi0gek4/7SBqbgnAgAAAOzJyHd0magsZ7+CWsXLEXDilDscDgXHdlbZ4X22e8WqqyBP26edL3dZsYJjOslTXqrS7N1qPXKSutz1ggp++FIJ0xfKERikloPGVu4XkTREB9+Z68PIrWF6/qAGTM8f1IBEG5iO808boGYm3RMBAAAAJmGhC7YTGBmt1pfcooCwKMXf+LCObfxE2UtmKWHqyzq+aYUiel4sR2BQtf0OLf+rogdf64OIrWV6/qAGTM8f1IBEG5iO808bAAAAAIBJjPzoQhMFx3RSeW6WPBUuSZLH41HZ4X0Kju3s48iaRtGezQpLvODE/9O+Vfj//3/eunfUashPqm2f9Z9ZKs3apQ63zvZqnE3F9PxBDZieP6gBiTYwHeefNkB1pt0TAQAAAKZgocsQQdFtFd5tgI58/oYkKW/t2wpu09G2H9FRvGdz5R8zTv5hw+Px6NimT9RiwJgq22Yvm6u8r5aq+yMfyRkS7otwLWd6/qAGTM8f1IBEG5iO808boDrT7okAAAAAU7DQZZAud72onE9e1Pd3JSn77SeUMO1VX4fUJMqOHJDkUHCbDpKk4vQtCuvSR0Wp3yisY7ICwiIrtz347l+Uu3qRejz2qQIjo30TsMVMzx/UgOn5gxqQaAPTcf5pA9TOlHsiAAAAwCR8R5dBQjuep55zvvJ1GE2uaPemylfvSlJARLQOffi8AlvEKPqi6yofL8vJUMaCexUcl6jUh0ZJkhyBIUqeu87bIVvK9PxBDZieP6gBiTYwHeefNkDtTLknAgAAAEzCQhdsJ/rCqxR94VWVPyc/vV6StG1Kb7X7v88qHw+O6aiB73q8Hl9TMz1/UAOm5w9qQKINTMf5pw0AAAAAwCQsdMEYvedv83UIPmV6/qAGTM8f1IBEG5iO808bAAAAAIAd8R1dAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAv+TweDx8+3Iz5PFIJRW+jqL+QgMkh8O64/lb/pK1bWB6/pLk8XjkKi617oBeEBgWIodFjWB6DZC//9X/SVZdB6bXgOR/bcA4wDhg+jUgWdcG/lj/J5l8HVh9DQAAAAB2V1hYqMjISElSQUGBIiIiGnUcFroAAAAAAAAAAADgVVYtdPHRhQAAAAAAAAAAAPBLLHQBAAAAAAAAAADAL7HQBQAAAAAAAAAAAL/EQhcAAAAAAAAAAAD8EgtdAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAv8RCFwAAAAAAAAAAAPwSC10AAAAAAAAAAADwSyx0AQAAAAAAAAAAwC+x0AUAAAAAAAAAAAC/xEIXAAAAAAAAAAAA/BILXQAAAAAAAAAAAPBLLHQBAAAAAAAAAADAL7HQBQAAAAAAAAAAAL/EQhcAAAAAAAAAAAD8EgtdAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvBfo6ANTM45FKKnwdRf2FBkgOh3XH87f8JWvbwPT8Jcnj8chVXGrdAb0gMCxEDosagRoAYDJ/HANOsmosYBzwzzpgLmB9DRQVu6w7YBMLDwu07PxL1IDp+Uv0g9QAYC5/7P9Oxz2BNcfyxzqwchyUqIGGYKGrmSqpkEZ86Oso6m/1WCnMwmryt/wla9vA9PwlyVVcqje7TbTugF4wIe0NBYWHWnIsagCAyfxxDDjJqrGAccA/64C5gLU1UFTsUuSQ1607YBMr+PpWRYQHWXY802vA9Pwl+kFqADCXP/Z/p+OewJpj+WMdWDkOStRAQ/DRhQAAAAAAAAAAAPBLLHQBAAAAAAAAAADAL7HQBQAAAAAAAAAAAL/EQhcAAAAAAAAAAAD8EgtdAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAvxTo6wBgnfytnyv1oVFVHnOGRiikfZLajJyktldNlSPAvqfc9Pwl2gDUAACYjnEA1IDZOP+0AagBAGajD4SpNWC/jKBWl9yslgPHSh6PynOzdeTz15Wx4HcqyUhRl3te8nV4Tc70/CXaANQAAJiOcQDUgNk4/7QBqAEAZqMPhGk1wEKXDYUnDlCbkRMrf44de7e23d1TOZ++rPYTH1dQy1gfRtf0TM9fog3ONDlriWXHWhj/U8uO1ZSoAQAwG+NAVcwFqAHTcP5pgzPRD1IDAMxCH1idaWOhaTXAQpcBAkIjFHHeEOWtXaLS7DTbFXFdTM9fMrsNIjrE6JuZC7X9peW+DsWnTK4BAIDZ4wBzgRNMrgFw/iWz24B+8ASTawAATO8DGQvtXwNOXwcA7yjNTpMkBUa29nEkvmF6/pK5bdDp8kHav2KDr8NoFkytAQDACaaOA8wFTjG1BnAC59/cNqAfPMXUGgAAyew+kLHwBDvXAO/osiF3aZFcx3Pk8Xjkys3W4Y//ruLdmxTeY7BCOyT5OrwmZ3r+Em1wuhaJcfphYbavw/A6agAAzMY4cApzAWrARJx/2uB09IPUAADz0AdWZeJYaFoNGLHQlZOTozlz5mjp0qXKyMhQbGysxo8fr1mzZmnatGlasGCB5s2bpylTpvg6VEtkLZqprEUzqzwWPXS8Ov/qbz6KyLtMz1+iDU4KDA9VeUGJr8PwCWoAgJ31mfoTtemTqDZ9ExXVpZ0K9h/SksF3+zqsZoVx4ATmAtSAJD0+baAe/GV//eKRL/TqOzurPf/ZK2M1tF9bDbzpXW3bleuDCK3H+acNTqIfpAYAu+Ke4OzoA08xdSw0rQZsv9C1efNmjRkzRtnZ2YqIiFCvXr2UmZmp5557TmlpaTp69KgkqX///r4N1EIxV9ypVhffIE9FuYr3blX20idVlpMhR1Bo5Tb521Zr12Njqu3rcZXJ467QwGUV3gzZUqbnL9EGJ7W/tK8O/O87X4fhE9QAADsb+OAElRzN19GtuxXcItzX4TRLjAMnMBegBiTp0ec36epLO+svv79IK746oAMHiyqf+83E3hp5Ybz+8Ox62yxySZx/iTY4iX6QGgDsinuCs6MPPMXUsdC0GrD1QldOTo6uvvpqZWdn695779XMmTMVFRUlSZozZ47uv/9+BQYGyuFwqG/fvj6O1joh8T3Uov9oSVLLgWMUmTxcOx4Yrn0v/FqJ9/1LkhTVe4QuWFxQZb+yI5n64d5Bih3n3+9sMz1/iTY4qe2FPfXt/71R5bEBD9yivtPGa81vn9euf62qts+Vb/9JsQOT9P4VM5S3Y7+3QrUcNQDAzpZcdLcK9h2SJF372V8UFBFaxx7mYRw4gbkANSBJ5S63bnvoC6174xq98ugIXXnXJ5KkpISWenzqIH295ZCeWrjVx1Fai/NPG5xEP0gNAHbFPcHZ0QeeYupYaFoNOH0dQFOaNm2aMjIyNGXKFM2dO7dykUuSZsyYoX79+snlcikhIUEtWrTwYaRNKzL5YrUeOUm5axarIGVtjdu4y0u1+4nxiuw1XPE3POjlCJuW6flLhraBwyE5JI/bXeXhzXP/rdyUvRr86G0Kj6/6xYu97rxKcRf31ua5i/12EKuNkTUAwLZO3tCi/owcB5gLVGFkDZxmU8oRzX7lO10xrKPuuP48OZ0Ovf74JXI4pNse+kJut8fXITYp08+/ZGgb0A9WYWQNADbGPUHDGNsHMhZWsnsN2HahKyUlRYsXL1ZMTIxmz55d4zYDBw6UJPXr16/ysSVLluj6669Xly5dFB4erp49e+qPf/yjCgoKajyGv4i/8WHJGaDMtx6p8fl9z/9a7vISJUxf6N3AvMT0/CXz2iD2gu7K2bSr2uPucpdWT5+vwPAQDfvLqc9ubtGtvQb84WYd/jZV3z//njdD9RrTagAAUJVp4wBzgepMq4Ez/fmlTdr8wxHNvXew5j0wVBf1aas/zvtWqenHfB2aV5h+/iXz2oB+sDrTagAATmdiH8hYWJWda8C2C12LFi2S2+3WhAkTFBkZWeM2YWFhkqoudM2dO1cBAQGaNWuWPvroI91111164YUXdOWVV8p9xsqvPwmN767WI25S/paVyt+2uspzh95/Tsc2LFe3B96RM8Sen2lrev6Svdug3ZBkOQKqdmcdRl2gA59trnH7o1v3aMu8Zeowsr+SJo6Ww+nUiOemSpJWT59f7VUedmHnGgAA1M3O4wBzgfqxcw3Uh8vl0W0PfaHQkADdfWOyVm/M1rNvfO/rsLzG9PMv2bsN6Afrx841AAB1sXsfyFhYNzvXgG0XulatOvHZmqNGjap1m4yMDElVF7ref/99/fvf/9aECRN06aWXavr06Zo/f76+/PJLrVmzpmmDbmJxN/xRcjqrrNjmb/lMGa/fr8QZ/1FIuwTfBecFpucv2bMNEq65WKP/+aDaXZRc5fGgFuEqzy+qZS/pu2eW6Oj3ezTokVt10eO/UOyAHtr45CIdT8ts6pB9yo41AACoPzuOA8wFGsaONdAQxwrKVFp24ku1P1y9Xx57f2JhNaaff8mebUA/2DB2rAEAqC+79oGMhfVn1xpweDz2nNp36tRJGRkZ2rRpk/r371/teZfLpfj4eOXk5CgtLU2JiYm1His1NVXnnXee3nrrLd18880NjmXQoEHKzs5u0D6O4DC1e3Zng39XQ5QeTNcPv79Q8TfNVNtz/HK5g7/pIU9ZsUWR+V/+krVt4I38peZdA0Eep2a6B9dr277TxyukdQutn7lQkhTRIUZdxl6k7f/44Kz7terVRVd99IQCgoN0cF2KPvrJIzqXv3b8yfmNyh3WvNqDGgBgsoaMASe/eHrJ4Lvr3tgLrBoLGAeYC1ADkltBymr9kGXHk6RVL4/Rxf3bKW3/cXVpH6m+1y/T7ox8S44df/T/5FS5JceSuCfiGqAfpAYAczWk/5O4JzgXzXku0NA6aA5joZXjoGRGDbjdbmVlZUmS+vfvr02bNjXq9wY2ai8/UFhYKEkqLq65URcvXqycnBxFRUWpa9euZz3WZ599JklKTk4+63a1yc7O1oEDBxq0jzMkXO0a9dvqx11apLTZ16nl4GssKeDMzEy5S2tfHW8of8tfsrYNmjp/qfnXQLAjQPVthL0ffaPLFt5fOZB1unyQ9q/YUOd+5ceL5C5zKSA4SBkrN57TDZ0kZWZlqsxTcU7HOIkaAGCyhowBzY1VYwHjAHMBakCSI1hqXfdm9TX1ll4aNbi9Hnxug979bK82Lr5OCx4boZG/+NCS42dlZkqeMkuOJXFPxDVAP0gNAOby5/sByX/uCZr7XKChddAcxkIrx0HJvBo4ePBgo3+vbRe64uLilJubq40bN2ro0KFVnsvKytJ9990nSerbt68cDketxzlw4IAefvhhXXnllTW+M6y+sTSUIzisUb+rvnLXvq3iPd+p5ECqctcsrvZ87/nbFRzbud7Ha9++veXv6GpKVucvWdsGTZ2/1PxrIMjjlOr5AohjqRmSR4pO6qi81AxFdY1T/sK6O8Zhz94jZ1Cg8lL3q+9vrlf6e2uVv7fxHWr7+PaWvnqxqTX3GgBgroaMAc2NVWMB4wBzAWrg/7+jy6Jjde/cQrOnD9I3Ww/ryQVb5HZ79OgLGzV7+oWaeksvzXtr+zn/jvj27S1/R1dT4p6o+V8D9IPUAGAqf74fkPznnqC5zwUaWgfNYSy0chyUzKiB09/R1a5d45f1bLvQNXr0aKWkpOjJJ5/U5ZdfrqSkJEnS+vXrNWnSJOXk5EjSWRevCgoKdO211yo4OFgLFixodCwbNtS9cnymYpc0wpoXFtaozahJajNqkmXHS03dqTALq8nf8pesbYOmzl9q/jVQXlSiN7tNrPf2+z/doE5XXKiCjByVF9TdmSbfPlbxw87Xt7Pf0v6Pv9HVK57SsGfu1sfjZzY65tSdqQoKD230/qejBgCYrKFjQHNi1VjAOMBcgBqQCovKFTnk9XM+jsMhLfzzJQpwOnTbQ/+T233iVbpzXt2q8ZclaPb0Qfrgi/3n/BGGO1NTFREedM7xnsQ9EdcA/SA1AJjKn+8HJP+5J2juc4HG1IGvx0Irx0HJjBooLCxUZGSkJGnNmjWN/r3ORu/ZzM2YMUNt2rTR/v371bt3b/Xp00c9evTQ4MGDlZiYqB/96EeSpH79+tW4f3Fxsa6++mrt2bNHK1asUHx8vDfDB9BA+1dsUKcfD1L7kf2U+cWWs24b1TVOAx68RYc37dT3899RXmqGNj/9b8UN7a3k28d6KWIAQGMl/vQS9f3N9er7m+sV2qaFgqLCK39O/Oklvg4PPsJcALW597Y+GnZBOz3y/Eb9sOdY5eNut0eTH/5CgQFOLXhshA8jBKxBPwjAJNwToCaMheay7UJXx44dtXr1ao0bN06hoaFKT09X69at9eKLL+qDDz5QamqqpJoXusrLy/XTn/5UGzZs0EcffaRevXp5O3wADXRwXYpaJMary5jBOrx+R+0bOhwa/uwUOZ1OrZk+Xx73ibcTf/+3d5WzeZcGPHiLorr48QdBA4ABkm6+TAPuv1kD7r9ZYbHRComOrPw56ebLfB0efIS5AGrSs2tL/fmeAfrqu0N6+rXvqz2/PS1Pj76wUZcOitfUW7jvg3+jHwRgEu4JUBPGQnPZ+g3VycnJWr58ebXHCwoKlJ6eLqfTqfPPP7/Kc263WxMmTNDKlSv14YcfavDgwd4KF8A58FS4deDz70783137Z+H2/vXVaje4pzb8+Z86tvPAqf3dbq2ZPt+Sj+sAADStj6+nj0Z1zAVQkx/2HFPYha+ddZsnXtmiJ145+yt+AX9APwjAJNwToCaMheay7Tu6zmbbtm3yeDzq0aOHwsPDqzx3zz336D//+Y9++9vfKjw8XF9//XXlv8OHD/soYgD1se+jb7Tv4/W1Pt+yRwcNmHGTDm3YoW1/f7/a87xFGQAA/8ZcAIDp6AcBAKZjLDSTrd/RVZutW7dKqvljCz/66CNJ0hNPPKEnnniiynOvvvqqJk+e3OTxAWicvcu/Ouvzx3Ye0D+73nLWbbbOW6at85ZZGRYAAPAS5gIATEc/CAAwHWOhmVjoOkN6erqXo/GeksydSn/2NrnycxQQ3lIJ0xcqrHNvX4fVLOR+uUTHNnwgV2GuSvZvlzM4TIEt26rzXS8oNL67r8OzVO6XS3R8y0p1uv0Z7Z57k+3zRf2YdA0AgOmYC4AaQE1Mmg9yDaAmJl0DAMBYCLvVAAtdBtn3/K8Uc8WdirlssnK/XKL0v05W8tO1v43TJHlfL1Or4T+TIyBILQaOkcPh0KEP5mvv/F/qvMc/93V4lsr7eplaj7pVkhT74zttny/qx6RrAABMx1wA1ABqYtJ8kGsANTHpGgAAxkLYrQaMXOhatWqVr0PwuvK8QyrctUE9/rRCkhR98fXa99IUlWTt8rvV2YZyFeRp+7Tz5S4rVnBMJ3nKS1WavVutR05SwtSX5XGVq+CHL5UwfaEcgUGV+0UkDdHBd+b6MPLGOVu+Xe56oUquLQed+pxZf80XdTPtGgAA0zEXADWAM5k2H+QawJlMuwYAgLEQptWAkQtdJirL2a+gVvFyBJw45Q6HQ8GxnVV2eJ/tF7oCI6PV+pJbFBAWpfgbH9axjZ8oe8ksJUx9WZKUv/UzRfS8uMpkVpIOLf+rogdf64uQz8nZ8j2+aUWNuUr+my/qZto1AACmYy4AagBnMm0+yDWAM5l2DQAAYyFMqwEWuuD3fpgxVCWZO2t8rtczmxQc20lFezar7VXTJElFad8qPPGCym3y1r2jVkN+UmW/rP/MUmnWLnX588qmC7wJ1ZZvTblK/p+v6bgGAABnYi4AasAszAer4xowC9cAAFTHWAiTaoCFLkMEx3RSeW6WPBUuOQIC5fF4VHZ4n4JjO/s6tHPWc85XdW5TvGdz5YVclPatogdfI0nyeDw6tukTdbhtTuW22cvmKu+rperx2H/lDAlvmqCbWE351pSrZI98Tcc1AAA4E3MBUANmYT5YHdeAWbgGAKA6xkKYVANOXwcA7wiKbqvwbgN05PM3JEl5a99WcJuOtv/YQkkqO3JAkkPBbTpIkorTtyisSx9JUlHqNwrrmKyAsEhJ0sF3/6Lc1YvU47FPFRgZ7aOIz01t+Z6Zq2SPfFE3064BADAdcwFQAziTafNBrgGcybRrAAAYC2FaDfCOLoN0uetFpT83WdlLZikgrIUSpr3q65C8omj3piofSRAQEa1DHz6vhKkvK/frZYq+6DpJUllOhjIW3KvguESlPjRKkuQIDFHy3HW+CLvRass3sEVMZa6SffJF3Uy7BgDAdMwFQA3gTKbNB7kGcCbTrgEAYCyEaTXAQpdBQjueV6+389tN9IVXKfrCqyp/Tn56feX/j61/X+3+7zNJUnBMRw181+P1+KxWW77bpvSuzFWyT76om2nXAACYjrkAqAGcybT5INcAzmTaNQAAjIUwrQZY6ILRes/f5usQvMakXFF/1AUAmIM+H9QAamJSXZiUK+qPugBgEvo82LUG+I4uAAAAAAAAAAAA+CUWugAAAAAAAAAAAOCXWOgCAAAAAAAAAACAX3J4PB7//6YxG/J4pJIKX0dRf6EBksNh3fH8LX/J2jYwPX9J8ng8chWXWndALwgMC5HDokagBgCYrLyoRG92m+jrMBplQtobCgoPPefjMA4wF6AGTtRAUbHLugM2sfCwQMvOv0QNmJ6/RD9IDQDm8uf7AYl7AuvmAmaPg5IZNVBYWKjIyEhJUkFBgSIiIhr1ewMbtReanMMhhRl8dsjf7PwlyeFwWDIp8FfUAACYjXGAuQA1cKIGIsKDfB2Gz5heA6bnL9EPUgMATGd6P2j6OChRAw3BRxcCAAAAAAAAAADAL7EeCAAAAFuKG9pbVy79U63Pu10Ver3TjV6MCAAAAIA3cU8AmIGFLgAAANja7qWrlbFqY7XHPW6+qhYAAAAwAfcEgL2x0AUAAABbO7J1j3a/vbrJjh8YHipXUUmTHR8AAADAueGeALA3FroAAAAASV3GXaTkX4xV694JcgYHqvBAjg58/p02PPa63OWuyo89WTN9vgLDQ9Xz51coqkucts5bps1P/9vX4QMAAAA4R9wTAP6JhS4AAADYWmBYsEJaR1V73F3mUnlBsSTpgj/crH7Tr1fujv3a9tJyFR/KVVSXOHUZd5E2P/UvlZW7Kvfrdcc4hbSKUuqb/1Xx4TwVZh7xWi4AAAAAGo57AsDeWOgCAACArV0w4yZdMOOmao/v//Rbrbx1tmL6d1e/6dcra81W/XfiLFWUlldu8+3jb1TbL6JDjJaNmK6SI8ebNG4AAAAA1uCeALA3FroAAABgazv+uULp739V7fGTN6WJ14+QJH07660qN7S1SVvyP25oAQAAAD/CPQFgbyx0AQAAwNaO785W1uqttT7fomu8PG63cren1+t4x9KyLIoMAAAAgDdwTwDYm9PXAQAAAAC+5vF45PF46rVtRXFpE0cDAAAAwNu4JwD8FwtdAAAAMNrx3ZlyBgSoda8EX4cCAAAAwAe4JwD8GwtdAAAAMNrupWskSQMeuEXOID7ZGwAAADAN9wSAf+OqBQAAgK216dO18sulz7Tvo/XK2bxLW+ctU5+pP9HVK+Zoz3trVXwoT1Gd26rLuCH6YOwfVHa8yMtRAwAAALAK9wSAvbHQBQAAAFtLHD9CieNrvql9e+gU5adn69tZb+ro9nT1/PkY9bn7WsnpUFHmER1YtVGu4jIvRwwAAADAStwTAPbm8NT3G/YAAAAALygvKtGb3Sb6OoxGmZD2hoLCQ30dBgAAAOC3/Pl+QOKeAGiIwsJCRUZGSpIKCgoUERHRqOPwHV0AAAAAAAAAAADwSyx0AQAAAAAAAAAAwC+x0AUAAAAAAAAAAAC/FOjrAFAzj0cqqfB1FPUXGiA5HNYdz9/yl6xtA9PzlySPxyNXcal1B/SCwLAQOSxqBNNrwPT8JdrA9D5A8r8asPoaMJ2/nX+JuYDEXMD0sdD0/CXmAqbPBSTuCcifuQBzAe4JrGR6DZjeB0jUQEOw0NVMlVRIIz70dRT1t3qsFGZhNflb/pK1bWB6/pLkKi71uy8etfLLRk2vAdPzl2gD0/sAyf9qwOprwHT+dv4l5gIScwHTx0LT85eYC5g+F5C4JyB/5gLMBbgnsJLpNWB6HyBRAw3BRxcCAAAAAAAAAADAL7HQBQAAAAAAAAAAAL/EQhcAAAAAAAAAAAD8EgtdAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAv8RCFwAAAAAAAAAAAPxSoK8DgHXyt36u1IdGVXnMGRqhkPZJajNyktpeNVWOAPuectPzl2gDUAPkb3b+oAZADYAaIH+z8wc1INEGpucPasB0nH+YWgP2ywhqdcnNajlwrOTxqDw3W0c+f10ZC36nkowUdbnnJV+H1+RMz1+iDUANkL/Z+YMaADUAaoD8zc4f1IBEG5ieP6gB03H+YVoNsNBlQ+GJA9Rm5MTKn2PH3q1td/dUzqcvq/3ExxXUMtaH0TU90/OXaANQA+Rvdv6gBkANgBogf7PzBzUg0Qam5w9qwHScf5hWAyx0GSAgNEIR5w1R3tolKs1Os10R18X0/CXaYHLWEsuOtTD+p5Ydy5tMrwHyNzt/iX6AGoDpNWB6HyBRA+Rvdv4S/QA1QBuYnr/pfYBEDZiO808/YPcaYKHLEKXZaZKkwMjWPo7EN0zPXzK3DSI6xOibmQu1/aXlvg7F50ytgZPI39z86QdOMLkGcIKpNUAfcIqpNXAS+ZubP/3ACSbXwEmmt4Gp+dMHnGJqDeAEk88//cAJdq4BFrpsyF1aJNfxHHk8Hrlys3X447+rePcmhfcYrNAOSb4Or8mZnr9EG5yu0+WDtH/FBl+H4XWm1wD5m53/mUzsB6gBUAOnmNgHSNQA+Zud/5lM7AeoAdrA9PxPZ2IfIFEDpuP8V2ViP2BaDRix0JWTk6M5c+Zo6dKlysjIUGxsrMaPH69Zs2Zp2rRpWrBggebNm6cpU6b4OlRLZC2aqaxFM6s8Fj10vDr/6m8+isi7TM9fog1O1yIxTj8szPZ1GF5neg2Qv9n5n8nEfoAaADVwiol9gEQNkL/Z+Z/JxH6AGqANTM//dCb2ARI1YDrOf1Um9gOm1YDtF7o2b96sMWPGKDs7WxEREerVq5cyMzP13HPPKS0tTUePHpUk9e/f37eBWijmijvV6uIb5KkoV/Hercpe+qTKcjLkCAqt3CZ/22rtemxMtX09rjJ53BUauKzCmyFbyvT8JdrgpMDwUJUXlPg6DJ8wvQbI3+z8T2dqP2D7GnA41OuOcTpv0uWK7BirkiPHtef9tdo8Z7FcxaW+jq5ZsH0N1JOpfYBEDZC/2fmfztR+gBqgDUzP/yRT+wDJgBrgnuCsbH/+G8DUfsC0GrD1QldOTo6uvvpqZWdn695779XMmTMVFRUlSZozZ47uv/9+BQYGyuFwqG/fvj6O1joh8T3Uov9oSVLLgWMUmTxcOx4Yrn0v/FqJ9/1LkhTVe4QuWFxQZb+yI5n64d5Bih3n3+9sMz1/iTY4qf2lfXXgf9/5OgyfML0GyN/s/E9naj9g9xoY/Nhk9frlOO39cJ2+//v7iu7RQb1uH6s253fVJz97TPJ4fB2iz9m9BurL1D5AogbI3+z8T2dqP0AN0Aam53+SqX2AZP8a4J7g7Ox+/hvC1H7AtBpw+jqApjRt2jRlZGRoypQpmjt3buUilyTNmDFD/fr1k8vlUkJCglq0aOHDSJtWZPLFaj1yknLXLFZBytoat3GXl2r3E+MV2Wu44m940MsRNi3T85fMbYO2F/bU4fU7qjw24IFbNDlribrf9KMa97ny7T9pUvoiRZ/XyRsheo2pNXAS+ZubP/3ACXaqgeikjkr+xRilf/C1Prv9Ke18879a/+hr+ubR1xQ/vI+6XjfM1yE2S3aqgYagDzjF1Bo4ifzNzZ9+4ASTa+Ak09vA1PzpA06xUw1wT9Bwdjr/DUU/cILda8C2C10pKSlavHixYmJiNHv27Bq3GThwoCSpX79+lY+tXr1ao0ePVnx8vEJCQtSxY0fdeOONSklJ8UrcTSX+xoclZ4Ay33qkxuf3Pf9ructLlDB9oXcD8xLT85cMbAOHQ3JIHre7ysOb5/5buSl7NfjR2xQe37rKc73uvEpxF/fW5rmLlbdjvzej9QrjauAM5G9g/vQDVdilBrr+ZLgcTqe2/+ODKo/vfPO/Ki8qUbfrL/FRZM2fXWqg3ugDqjGuBs5A/gbmTz9QhZE1cAbT28C4/OkDqrFLDXBP0Dh2Of8NQj9QhZ1rwLYLXYsWLZLb7daECRMUGRlZ4zZhYWGSqi505ebmqk+fPnruuee0YsUKPfnkk9q2bZuGDh2qjIwMr8TeFELju6v1iJuUv2Wl8retrvLcofef07ENy9XtgXfkDAn3UYRNy/T8JfPaIPaC7srZtKva4+5yl1ZPn6/A8BAN+8vdlY+36NZeA/5wsw5/m6rvn3/Pm6F6jWk1cCbyNy9/+oGq7FIDMf27y11RoZxNO6s8XlFarqPfpyumfzcfRdb82aUG6os+oDrTauBM5G9e/vQDVZlYA2cyvQ1My58+oDq71AD3BI1jl/PfEPQDVdm5Bmy70LVq1SpJ0qhRo2rd5uTC1ekLXddcc42eeeYZ3XDDDbr00ks1YcIELV26VMeOHdPbb7/dtEE3sbgb/ig5nVVWbPO3fKaM1+9X4oz/KKRdgu+C8wLT85fs2wbthiTLEVC1O+sw6gId+Gxzjdsf3bpHW+YtU4eR/ZU0cbQcTqdGPDdVkrR6+vxqr/KwE7vWQH2Rv33zpx+oHzvUQHi7Vio9mi93mavac0XZRxXapqWcQbb+GtpzYocaqAl9QP3ZtQbqi/ztmz/9QP3YuQbqy/Q2sGv+9AH1Z4ca4J6g8exw/mtDP1A/dq0B217xe/fulSR16dKlxuddLpe+/PJLSVUXumrSpk0bSVJgYOOaa9CgQcrOzm7QPo7gMLV7dmfdG54mqs9IDXy39i9aDOuUrIHLKip/Lj2Yrt1P/UwdJz+lqD4jG/S7zpSU1EOesuJzOsbp/C1/ydo2aEz+kr1qIMjj1EwNrnO7hGsu1rCn79LK255Q9tptp/ZvEa7y/KJa9/vumSXq/ONBGvTIrWrdO0GxA3rom0cX6nhaZqNjTuqRpHKHNYOg6TVgev4S/WB9+wCp+fQDVvYBkv/VgLfOf0BYiCrKymt8rqL0xOOBYcEqK69+0+sNVtUB/SBzAWrA7H5Q8r/8JeYCps8FJO4JyJ+5AHMBa2qgrnPPPUHt7DQOMBcwowbcpy0oDh8+XJs2bWrU77XtQldhYaEkqbi45kZdvHixcnJyFBUVpa5du1Z7vqKiQm63W3v37tUDDzyguLg4/exnP2tULNnZ2Tpw4ECD9nGGhKtdo35b/bhLi5Q2+zq1HHyN2o6bcs7Hy8zMlLu09k6jofwtf8naNmjq/KXmXwPBjgDVpxHS31urFl3j1OmKCysHsogOMSrMOHzW/TyuCq2ePl9XffSEek6+UgfXpWj7Sx+cdZ+6ZGZlqsxTUfeG9WB6DZiev0Q/WN8+QGo+/YCVfYDkfzXgrfNfUVyqoIiWNT4XEBIkSXIVl1kSR2NYVQf0g8wFqAGz+0HJ//KXmAuYPheQuCcgf+YCzAWsqYG6zj33BNZo7uMAcwHzauDgwYON/r22XeiKi4tTbm6uNm7cqKFDh1Z5LisrS/fdd58kqW/fvnI4HNX2v/TSSyvf8dW9e3etWrVKsbGxjY6loRzBYY36XfWVu/ZtFe/5TiUHUpW7ZnG153vP367g2M71Pl779u0tf/ViU7I6f8naNmjq/KXmXwNBHqdUzxdA7P3oG1228H6tn7lQktTp8kHav2JDnfuVHy+Su8ylgOAgZazcKHlqf7VDfbSPb2/pK7eaWnOuAdPzl+gHG9IHSM2jH7CyD5D8rwa8df6LDuaqZVJHOYMDq31USXhca5UcOSa3j165KVlXB/SDzAWoAbP7Qcn/8peYC5g+F5C4JyB/5gLMBaypgbrOPfcE1mju4wBzATNqwO12KysrS5LUrl3jl/Vsu9A1evRopaSk6Mknn9Tll1+upKQkSdL69es1adIk5eTkSJL69+9f4/6vvPKK8vLytGfPHj311FP68Y9/rC+//FKdOzfsxErShg11X1BnKnZJIz5s8G711mbUJLUZNcmy46Wm7lSYhdXkb/lL1rZBU+cvNf8aKC8q0ZvdJtZr22OpGZJHik7qqLzUDEV1jVP+wrpfATDs2XvkDApUXup+9f3N9Up/b63y9zb+lQOpO1MVFB7a6P1PZ3oNmJ6/RD/YkD5Aah79gJV9gOR/NeCt85+zeZc6jOyvmAt66NC6lMrHA0KC1Pr8BB38OqXG/bzFqjqgH2QuQA2Y3Q9K/pe/xFzA9LmAxD0B+TMXYC5gTQ3Ude65J7BGcx8HmAuYUQOFhYWKjIyUJK1Zs6bRv9dZ9yb+acaMGWrTpo3279+v3r17q0+fPurRo4cGDx6sxMRE/ehHP5JU+/dznXfeebrooot00003aeXKlcrPz9ecOXO8mQKABtj/6QZ1uuJCBYaHqryg7lcNJN8+VvHDztfmv/xHn9/xtJwBARr2zN1eiBRAU6EfMMOed9fK43ar1x3jqjzeY8JoBYWHavfSL3wUGXyNPgAA/QBgNvoAc3BPgNrQD5jLtgtdHTt21OrVqzVu3DiFhoYqPT1drVu31osvvqgPPvhAqampkmpf6DpddHS0unfvrl27djV12AAaaf+KDer040FqP7KfMr/YctZto7rGacCDt+jwpp36fv47ykvN0Oan/624ob2VfPtYL0UMwGr0A2bI+2Gffnj1YyWMG6JRr9ynHrdcpkEzb9XgR29T9tpt2r208a8Ag3+jDwBAPwCYjT7AHNwToDb0A+ay7UKXJCUnJ2v58uXKz89Xfn6+1q1bpzvvvFOFhYVKT0+X0+nU+eefX+dxDh06pB07dqhbt25eiBpAYxxcl6IWifHqMmawDq/fUfuGDoeGPztFTqdTa6bPl8d94nNzv//bu8rZvEsDHrxFUV2a+uteATQF+gFzfPPIQq1/9DVFJ3XUkFm/VNdrhyllwUf676TZ5/y9CvBf9AEA6AcAs9EHmIV7AtSEfsBctl7oqs22bdvk8XjUo0cPhYeHV3lu4sSJevTRR/XOO+/o888/1z/+8Q+NHDlSgYGB+u1vf+ujiAHUxVPh1oHPvzvxf3ftX/rY+9dXq93gntr01GId23ng1P5ut9ZMn89blAE/Rj9gDo/brW0vvq9lI6brnwk36z8DfqX1j74mV1GJr0ODD9EHAKAfAMxGH2AW7glQE/oBcxm50LV161ZJNX9s4ZAhQ/Thhx/q5z//ucaMGaOnnnpKI0aM0ObNm9W9e3dvhwqgAfZ99I32fby+1udb9uigATNu0qENO7Tt7+9Xe563KAP+j34AMBt9AAD6AcBs9AEA6AfMFOjrAHzhbAtdU6ZM0ZQpU7wdkleUZO5U+rO3yZWfo4DwlkqYvlBhnXv7OizAMnuXf3XW54/tPKB/dr3lrNtsnbdMW+ctszIsAF5EPwCYjT4AAP0AYDb6AAD0A2Ziocsg+57/lWKuuFMxl01W7pdLlP7XyUp+uvbVbbvK/XKJjm9ZqU63P6Pdc29Syf7tcgaHKbBlW3W+6wWFxtv7nXum5w9qwPT8a5P75RId2/CBXIW5tIkBuA7MxvmH6TVgev4SbQBqwPT8a8M9gTm4BkANwG41YORHF65atUoej0fjxo3zdSheU553SIW7NqjNyImSpOiLr1dZzn6VZO3ycWTel/f1MkVfdJ0kKfbHd6r38zvU66/fKfqia7V3/i99G5wXmJ4/qAHT869N3tfLFD3kOtrEEFwHZuP8w/QaMD1/iTYANWB6/rXhnsAcXAOgBmC3GjDyHV0mKsvZr6BW8XIEnDjlDodDwbGdVXZ4n9+tztbFVZCn7dPOl7usWMExneQpL1Vp9m61HjlJXe56QQU/fKmE6QvlCAxSy0GnPmc1ImmIDr4z14eRW8P0/EENmJ5/Tc7WJglTX5bHVV6lXU6yc5vYHdeB2Tj/ML0GTM9fog1ADZief024JzAL1wCoAZhWAyx0wXYCI6PV+pJbFBAWpfgbH9axjZ8oe8ksJUx9Wcc3rVBEz4urTNpOOrT8r4oefK0PIraW6fmDGjA9/5qcrU0kKX/rZzW2i53bxO64DszG+YfpNWB6/hJtAGrA9Pxrwj2BWbgGQA3AtBow8qMLTRQc00nluVnyVLgkSR6PR2WH9yk4trOPI2saRXs2KyzxghP/T/tW4f///3nr3lGrIT+ptn3Wf2apNGuXOtw626txNhXT8wc1YFr+P8wYqs0TY2r8V3Z4v6Ta20SquV38vU1g3nWAqjj/ML0GTM9fog1ADZiWP/cEOJNp1wCqowZgUg2w0GWIoOi2Cu82QEc+f0OSlLf2bQW36Wi7jy08qXjP5soL9+RF7PF4dGzTJ2oxYEyVbbOXzVXeV0vV/ZGP5AwJ90W4ljM9f1ADpuXfc85X6v9GTo3/gmM7Saq5TSTV2C52aBOYdx2gKs4/TK8B0/OXaANQA6blzz0BzmTaNYDqqAGYVAMsdBmky10vKueTF/X9XUnKfvsJJUx71dchNYmyIwckORTcpoMkqTh9i8K69FFR6jcK65isgLDIym0PvvsX5a5epB6PfarAyGjfBGwx0/MHNWB6/jWprU0kVWsXU9rE7rgOzMb5h+k1YHr+Em0AasD0/GvCPYFZuAZADcC0GuA7ugwS2vE89Zzzla/DaHJFuzdVeft9QES0Dn34vAJbxCj6ousqHy/LyVDGgnsVHJeo1IdGSZIcgSFKnrvO2yFbyvT8QQ2Ynn9NamuThKkvK/frZZXtYlKb2B3Xgdk4/zC9BkzPX6INQA2Ynn9NuCcwC9cAqAGYVgMOj8fj8XUQqK7YJY340NdR1N/qsVKYhcumTZH/tim9lfR/nykouq21B/7/rGwD0/OXpPKiEr3ZbaJ1B/SCCWlvKCg81JJjmV4DpucveW8csLJdrGwD0/sAyf+uA9PP/0lW1YG/nX+JuYDEXKC5j4Wm5y/5VxuY3gdI1AD5e+/vQla1C3MB5gJW1YA/nvvTcU9gzbH8sQ6YCzS8BgoLCxUZeeLdZQUFBYqIiGjU7+UdXTBG7/nbfB2CT5meP6gB0/OvDe1iFs632Tj/ML0GTM9fog1ADZief21oF3NwrkENwK41wHd0AQAAAAAAAAAAwC+x0AUAAAAAAAAAAAC/xEIXAAAAAAAAAAAA/JLD4/F4fB0EqvN4pJIKX0dRf6EBksNh3fH8LX/J2jYwPX9J8ng8chWXWndALwgMC5HDokYwvQZMz1+iDUzvAyT/qwHTz/9JVtWBv51/ibmAxFzA9LHQ9PwlxgLT5wIS9wTkz1yAuYA1NeCP5/503BNYcyx/rAPmAg2vgcLCQkVGRkqSCgoKFBER0ajfy0IXAAAAAAAAAAAAvMqqhS4+uhAAAAAAAAAAAAB+iYUuAAAAAAAAAAAA+CUWugAAAAAAAAAAAOCXWOgCAAAAAAAAAACAX2KhCwAAAAAAAAAAAH6JhS4AAAAAAAAAAAD4JRa6AAAAAAAAAAAA4JdY6AIAAAAAAAAAAIBfYqELAAAAAAAAAAAAfomFLgAAAAAAAAAAAPglFroAAAAAAAAAAADgl1joAgAAAAAAAAAAgF9ioQsAAAAAAAAAAAB+iYUuAAAAAAAAAAAA+CUWugAAAAAAAAAAAOCXWOgCAAAAAAAAAACAX2KhCwAAAAAAAAAAAH4p0NcBoGYej1RS4eso6i80QHI4rDuev+UvWdsGpucvSR6PR67iUusO6AWBYSFyWNQI1AAAk/njGHCSVWMB44B/1gFzAetroKjYZd0Bm1h4WKBl51+iBkzPX6IfpAYAc/lj/3c67gmsOZY/1oGV46BEDTQEC13NVEmFNOJDX0dRf6vHSmEWVpO/5S9Z2wam5y9JruJSvdltonUH9IIJaW8oKDzUkmNRAwBM5o9jwElWjQWMA/5ZB8wFrK2BomKXIoe8bt0Bm1jB17cqIjzIsuOZXgOm5y/RD1IDgLn8sf87HfcE1hzLH+vAynFQogYago8uBAAAAAAAAAAAgF9ioQsAAAAAAAAAAAB+iYUuAAAAAAAAAAAA+CUWugAAAAAAAAAAAOCXWOgCAAAAAAAAAACAX2KhCwAAAAAAAAAAAH6JhS4AAAAAAAAAAAD4JRa6AAAAAAAAAAAA4JcCfR0ArJO/9XOlPjSqymPO0AiFtE9Sm5GT1PaqqXIE2PeUm56/RBuAGgAA0zEOgBowG+efNgA1AMBs9IEwtQbslxHU6pKb1XLgWMnjUXluto58/royFvxOJRkp6nLPS74Or8mZnr9EG4AaAADTMQ6AGjAb5582ADUAwGz0gTCtBljosqHwxAFqM3Ji5c+xY+/Wtrt7KufTl9V+4uMKahnrw+ianun5S7TBmSZnLbHsWAvjf2rZsZoSNQAAZmMcqIq5ADVgGs4/bXAm+kFqAIBZ6AOrM20sNK0GWOgyQEBohCLOG6K8tUtUmp1muyKui+n5S2a3QUSHGH0zc6G2v7Tc16H4lMk1AAAwexxgLnCCyTUAzr9kdhvQD55gcg0AgOl9IGOh/WvA6esA4B2l2WmSpMDI1j6OxDdMz18ytw06XT5I+1ds8HUYzYKpNQAAOMHUcYC5wCmm1gBO4Pyb2wb0g6eYWgMAIJndBzIWnmDnGuAdXTbkLi2S63iOPB6PXLnZOvzx31W8e5PCewxWaIckX4fX5EzPX6INTtciMU4/LMz2dRheRw0AgNkYB05hLkANmIjzTxucjn6QGgBgHvrAqkwcC02rAdsvdOXk5GjOnDlaunSpMjIyFBsbq/Hjx2vWrFmaNm2aFixYoHnz5mnKlCm+DtUyWYtmKmvRzCqPRQ8dr86/+puPIvIu0/OXaIOTAsNDVV5Q4uswfIIaAGBnfab+RG36JKpN30RFdWmngv2HtGTw3b4Oq1lhHDiBuQA1IEmPTxuoB3/ZX7945Au9+s7Oas9/9spYDe3XVgNvelfbduX6IELrcf5pg5PoB6kBwK64Jzg7+sBTTB0LTasBWy90bd68WWPGjFF2drYiIiLUq1cvZWZm6rnnnlNaWpqOHj0qSerfv79vA7VYzBV3qtXFN8hTUa7ivVuVvfRJleVkyBEUWrlN/rbV2vXYmGr7elxl8rgrNHBZhTdDtpTp+Uu0wUntL+2rA//7ztdh+AQ1AMDOBj44QSVH83V0624Ftwj3dTjNEuPACcwFqAFJevT5Tbr60s76y+8v0oqvDujAwaLK534zsbdGXhivPzy73jaLXBLnX6INTqIfpAYAu+Ke4OzoA08xdSw0rQZsu9CVk5Ojq6++WtnZ2br33ns1c+ZMRUVFSZLmzJmj+++/X4GBgXI4HOrbt6+Po7VWSHwPteg/WpLUcuAYRSYP144HhmvfC79W4n3/kiRF9R6hCxYXVNmv7Eimfrh3kGLH+fe720zPX6INTmp7YU99+39vVHlswAO3qO+08Vrz2+e161+rqu1z5dt/UuzAJL1/xQzl7djvrVAtRw0AsLMlF92tgn2HJEnXfvYXBUWE1rGHeRgHTmAuQA1IUrnLrdse+kLr3rhGrzw6Qlfe9YkkKSmhpR6fOkhfbzmkpxZu9XGU1uL80wYn0Q9SA4BdcU9wdvSBp5g6FppWA05fB9BUpk2bpoyMDE2ZMkVz586tXOSSpBkzZqhfv35yuVxKSEhQixYtfBhp04tMvlitR05S7prFKkhZW+M27vJS7X5ivCJ7DVf8DQ96OcKmZXr+kqFt4HBIDsnjdld5ePPcfys3Za8GP3qbwuOrfvFirzuvUtzFvbV57mK/HcRqY2QNALCtkze0qD8jxwHmAlUYWQOn2ZRyRLNf+U5XDOuoO64/T06nQ68/fokcDum2h76Q2+3xdYhNyvTzLxnaBvSDVRhZA4CNcU/QMMb2gYyFlexeA7Zc6EpJSdHixYsVExOj2bNn17jNwIEDJUn9+vWr9ThjxoyRw+HQo48+2hRhelX8jQ9LzgBlvvVIjc/ve/7XcpeXKGH6Qu8G5iWm5y+Z1waxF3RXzqZd1R53l7u0evp8BYaHaNhfTn12c4tu7TXgDzfr8Lep+v7597wZqteYVgMAgKpMGweYC1RnWg2c6c8vbdLmH45o7r2DNe+BobqoT1v9cd63Sk0/5uvQvML08y+Z1wb0g9WZVgMAcDoT+0DGwqrsXAO2XOhatGiR3G63JkyYoMjIyBq3CQsLk1T7Qte///1vbd68ualC9LrQ+O5qPeIm5W9Zqfxtq6s8d+j953Rsw3J1e+AdOUPs+Zm2pucv2bsN2g1JliOganfWYdQFOvDZ5hq3P7p1j7bMW6YOI/sraeJoOZxOjXhuqiRp9fT51V7lYRd2rgEAQN3sPA4wF6gfO9dAfbhcHt320BcKDQnQ3Tcma/XGbD37xve+DstrTD//kr3bgH6wfuxcAwBQF7v3gYyFdbNzDdjyO7pWrTrxuZqjRo2qdZuMjAxJNS90HT9+XL/5zW80d+5cTZw48ZzjGTRokLKzsxu0jyM4TO2e3XnOv/t0cTf8UUdXL1LmW4/ovMc/kyTlb/lMGa/frx6PfKSQdgmNPnZSUg95yootitT/8pesbYOmyF/yrxoI8jg1U4Pr3C7hmos17Om7tPK2J5S9dtup/VuEqzy/qNb9vntmiTr/eJAGPXKrWvdOUOyAHvrm0YU6npbZ6JiTeiSp3GHNIEgNADBZfceA5siqsYBxgLkANSC5FSS1fsiy40nSsYIylZZVKDgoQB+u3i+PhZ9Y2CMpSU6VW3Y87om4BugHqQHAVP58PyA173sCf5oLNKQOmstYaOU4KJlRA+7TFhSHDx+uTZs2Ner32nKha+/evZKkLl261Pi8y+XSl19+Kanmha4//vGPSkpK0oQJEyxZ6MrOztaBAwcatI8zJFztGvh7ovqM1MB3a79TC+uUrIHLKip/Lj2Yrt1P/UwdJz+lqD4jG/jbqsrMzJS7tPZOo6H8LX/J2jZoTP6SvWog2BGg+jRC+ntr1aJrnDpdcWHlQBbRIUaFGYfPup/HVaHV0+frqo+eUM/JV+rguhRtf+mDc4o5MytTZZ6KujesB2oAgMnqOwY0R1aNBYwDzAWoAUmOYKl13Zs1xKuPjVBwUIC2p+XqoTv769+f7NHujHxLjp2VmSl5yiw5lsQ9EdcA/SA1AJjLn+8HJN/eE9hpLtCQOmguY6GV46BkXg0cPHiw0b/XlgtdhYWFkqTi4ppXDhcvXqycnBxFRUWpa9euVZ7bsGGD/vGPf+jbb7+1LJ64uLgG7+MIDrPs99fEXVqktNnXqeXga9R23JRzPl779u0tf0dXU7I6f8naNmjq/KXmXwNBHqdUzxdA7P3oG1228H6tn7lQktTp8kHav2JDnfuVHy+Su8ylgOAgZazcqHN9SW/7+PaWvnqxqTX3GgBgroaMAc2NVWMB4wBzAWrgxDu6siw7mjT1ll4aNbi9Hnxug979bK82Lr5OCx4boZG/+NCS48e3b2/5O7qaEvdEzf8aoB+kBgBT+fP9gOQ/9wTNfS7Q0DpoDmOhleOgZEYNuN1uZWWdmPW3a9f4FW5bLnTFxcUpNzdXGzdu1NChQ6s8l5WVpfvuu0+S1LdvXzkcjsrnKioq9Ktf/UpTpkxR7969LYtnw4a6L6gzFbukEdbcb9Uod+3bKt7znUoOpCp3zeJqz/eev13BsZ3rfbzU1J0Ks7Ca/C1/ydo2aOr8peZfA+VFJXqzW/3eUXksNUPySNFJHZWXmqGornHKX1j3KwCGPXuPnEGBykvdr76/uV7p761V/t7Gv3IgdWeqgsJDG73/6agBACZryBjQ3Fg1FjAOMBegBqTConJFDnndkmN179xCs6cP0jdbD+vJBVvkdnv06AsbNXv6hZp6Sy/Ne2v7Of+OnampiggPsiDaE7gn4hqgH6QGAFP58/2A5D/3BM19LtDQOmgOY6GV46BkRg0UFhYqMjJSkrRmzZoG/a7T2XL4HT16tFJSUvTkk0/q8ssvV1JSkiRp/fr1mjRpknJyciRJ/fv3r7Lf/PnzdfDgQT366KNejtj72oyapDajJvk6DJ8xPX/Jfm2w/9MN6nTFhSrIyFF5Qd2vGki+fazih52vb2e/pf0ff6OrVzylYc/crY/Hz/RCtM2D3WoAANAwdhsHmAs0nN1qoDYOh7Twz5cowOnQbQ/9T273iVfpznl1q8ZflqDZ0wfpgy/2W/YRhv7ClPN/NnZrA/rBhrNbDQBAQ9ixD2QsbBg71YDT1wE0hRkzZqhNmzbav3+/evfurT59+qhHjx4aPHiwEhMT9aMf/UhS1e/nysnJ0cMPP6xHHnlELpdLeXl5ysvLkySVlJQoLy+vyhejAWhe9q/YoE4/HqT2I/sp84stZ902qmucBjx4iw5v2qnv57+jvNQMbX7634ob2lvJt4/1UsQAgMZK/Okl6vub69X3N9crtE0LBUWFV/6c+NNLfB0efIS5AGpz7219NOyCdnrk+Y36Yc+xysfdbo8mP/yFAgOcWvDYCB9GCFiDfhCASbgnQE0YC81ly4Wujh07avXq1Ro3bpxCQ0OVnp6u1q1b68UXX9QHH3yg1NRUSVUXujIyMpSfn69f/epXatWqVeU/SXryySfVqlUr7du3zyf5AKjbwXUpapEYry5jBuvw+h21b+hwaPizU+R0OrVm+nx5/v8C9vd/e1c5m3dpwIO3KKqLH3/jKQAYIOnmyzTg/ps14P6bFRYbrZDoyMqfk26+zNfhwUeYC6AmPbu21J/vGaCvvjukp1/7vtrz29Py9OgLG3XpoHhNvaWXDyIErEM/CMAk3BOgJoyF5rLlRxdKUnJyspYvX17t8YKCAqWnp8vpdOr888+vfLx79+767LPPqm0/atQo3XbbbZo8ebLi4uKaNGYAjeepcOvA59+d+P9Z3n3Z+9dXq93gntrw53/q2M4Dp/Z3u7Vm+nzj3qIMAP7o4+vpo1EdcwHU5Ic9xxR24Wtn3eaJV7boiVfO/opfwB/QDwIwCfcEqAljobls+Y6us9m2bZs8Ho969Oih8PDwyscjIyM1cuTIav8kKSEhQSNHjlRoqHVfJAfAevs++kb7Pl5f6/Mte3TQgBk36dCGHdr29/erPc9blAEA8G/MBQCYjn4QAGA6xkIz2fYdXbXZunWrpKofWwjAHvYu/+qszx/beUD/7HrLWbfZOm+Zts5bZmVYAADAS5gLADAd/SAAwHSMhWZioasOHo+nKcPxqpLMnUp/9ja58nMUEN5SCdMXKqxzb1+H1SzkfrlExzZ8IFdhrkr2b5czOEyBLduq810vKDS+u6/Ds1Tul0t0fMtKdbr9Ge2ee5Pt80X9mHQNAIDpmAuAGkBNTJoPcg2gJiZdAwDAWAi71QALXQbZ9/yvFHPFnYq5bLJyv1yi9L9OVvLTtb+N0yR5Xy9Tq+E/kyMgSC0GjpHD4dChD+Zr7/xf6rzHP/d1eJbK+3qZWo+6VZIU++M7bZ8v6sekawAATMdcANQAamLSfJBrADUx6RoAAMZC2K0GjFvoWrVqla9D8InyvEMq3LVBPf60QpIUffH12vfSFJVk7fK71dmGchXkafu08+UuK1ZwTCd5yktVmr1brUdOUsLUl+Vxlavghy+VMH2hHIFBlftFJA3RwXfm+jDyxjlbvl3ueqFKri0HnfqcWX/NF3Uz7RoAANMxFwA1gDOZNh/kGsCZTLsGAICxEKbVgHELXaYqy9mvoFbxcgScOOUOh0PBsZ1Vdnif7Re6AiOj1fqSWxQQFqX4Gx/WsY2fKHvJLCVMfVmSlL/1M0X0vLjKZFaSDi3/q6IHX+uLkM/J2fI9vmlFjblK/psv6mbaNQAApmMuAGoAZzJtPsg1gDOZdg0AAGMhTKsBFrrg936YMVQlmTtrfK7XM5sUHNtJRXs2q+1V0yRJRWnfKjzxgspt8ta9o1ZDflJlv6z/zFJp1i51+fPKpgu8CdWWb025Sv6fr+m4BgAAZ2IuAGrALMwHq+MaMAvXAABUx1gIk2qAhS5DBMd0UnluljwVLjkCAuXxeFR2eJ+CYzv7OrRz1nPOV3VuU7xnc+WFXJT2raIHXyNJ8ng8OrbpE3W4bU7lttnL5irvq6Xq8dh/5QwJb5qgm1hN+daUq2SPfE3HNQAAOBNzAVADZmE+WB3XgFm4BgCgOsZCmFQDTl8HAO8Iim6r8G4DdOTzNyRJeWvfVnCbjrb/2EJJKjtyQJJDwW06SJKK07corEsfSVJR6jcK65isgLBISdLBd/+i3NWL1OOxTxUYGe2jiM9Nbfmematkj3xRN9OuAQAwHXMBUAM4k2nzQa4BnMm0awAAGAthWg3wji6DdLnrRaU/N1nZS2YpIKyFEqa96uuQvKJo96YqH0kQEBGtQx8+r4SpLyv362WKvug6SVJZToYyFtyr4LhEpT40SpLkCAxR8tx1vgi70WrLN7BFTGWukn3yRd1MuwYAwHTMBUAN4EymzQe5BnAm064BAGAshGk1wEKXQUI7nlevt/PbTfSFVyn6wqsqf05+en3l/4+tf1/t/u8zSVJwTEcNfNfj9fisVlu+26b0rsxVsk++qJtp1wAAmI65AKgBnMm0+SDXAM5k2jUAAIyFMK0GWOiC0XrP3+brELzGpFxRf9QFAJiDPh/UAGpiUl2YlCvqj7oAYBL6PNi1BviOLgAAAAAAAAAAAPglFroAAAAAAAAAAADgl1joAgAAAAAAAAAAgF9yeDwe//+mMRvyeKSSCl9HUX+hAZLDYd3x/C1/ydo2MD1/SfJ4PHIVl1p3QC8IDAuRw6JGoAYAmKy8qERvdpvo6zAaZULaGwoKDz3n4zAOMBegBk7UQFGxy7oDNrHwsEDLzr9EDZiev0Q/SA0A5vLn+wGJewLr5gJmj4OSGTVQWFioyMhISVJBQYEiIiIa9XsDG7UXmpzDIYUZfHbI3+z8JcnhcFgyKfBX1AAAmI1xgLkANXCiBiLCg3wdhs+YXgOm5y/RD1IDAExnej9o+jgoUQMNwUcXAgAAAAAAAAAAwC+xHggAAABbihvaW1cu/VOtz7tdFXq9041ejAgAAACAN3FPAJiBhS4AAADY2u6lq5WxamO1xz1uvqoWAAAAMAH3BIC9sdAFAAAAWzuydY92v726yY4fGB4qV1FJkx0fAAAAwLnhngCwNxa6AAAAAEldxl2k5F+MVeveCXIGB6rwQI4OfP6dNjz2utzlrsqPPVkzfb4Cw0PV8+dXKKpLnLbOW6bNT//b1+EDAAAAOEfcEwD+iYUuAAAA2FpgWLBCWkdVe9xd5lJ5QbEk6YI/3Kx+069X7o792vbSchUfylVUlzh1GXeRNj/1L5WVuyr363XHOIW0ilLqm/9V8eE8FWYe8VouAAAAABqOewLA3ljoAgAAgK1dMOMmXTDjpmqP7//0W628dbZi+ndXv+nXK2vNVv134ixVlJZXbvPt429U2y+iQ4yWjZiukiPHmzRuAAAAANbgngCwNxa6AAAAYGs7/rlC6e9/Ve3xkzelidePkCR9O+utKje0tUlb8j9uaAEAAAA/wj0BYG8sdAEAAMDWju/OVtbqrbU+36JrvDxut3K3p9freMfSsiyKDAAAAIA3cE8A2JvT1wEAAAAAvubxeOTxeOq1bUVxaRNHAwAAAMDbuCcA/BcLXQAAADDa8d2ZcgYEqHWvBF+HAgAAAMAHuCcA/BsLXQAAADDa7qVrJEkDHrhFziA+2RsAAAAwDfcEgH/jqgUAAICttenTtfLLpc+076P1ytm8S1vnLVOfqT/R1SvmaM97a1V8KE9Rnduqy7gh+mDsH1R2vMjLUQMAAACwCvcEgL2x0AUAAABbSxw/Qonja76pfXvoFOWnZ+vbWW/q6PZ09fz5GPW5+1rJ6VBR5hEdWLVRruIyL0cMAAAAwErcEwD25vDU9xv2AAAAAC8oLyrRm90m+jqMRpmQ9oaCwkN9HQYAAADgt/z5fkDingBoiMLCQkVGRkqSCgoKFBER0ajj8B1dAAAAAAAAAAAA8EssdAEAAAAAAAAAAMAvsdAFAAAAAAAAAAAAvxTo6wBQM49HKqnwdRT1FxogORzWHc/f8pesbQPT85ckj8cjV3GpdQf0gsCwEDksagTTa8D0/CXawPQ+QPK/GrD6GjCdv51/ibmAxFzA9LHQ9Pwl5gKmzwUk7gnIn7kAcwHuCaxkeg2Y3gdI1EBDsNDVTJVUSCM+9HUU9bd6rBRmYTX5W/6StW1gev6S5Cou9bsvHrXyy0ZNrwHT85doA9P7AMn/asDqa8B0/nb+JeYCEnMB08dC0/OXmAuYPheQuCcgf+YCzAW4J7CS6TVgeh8gUQMNwUcXAgAAAAAAAAAAwC+x0AUAAAAAAAAAAAC/xEIXAAAAAAAAAAAA/BILXQAAAAAAAAAAAPBLLHQBAAAAAAAAAADAL7HQBQAAAAAAAAAAAL/EQhcAAAAAAAAAAAD8UqCvA4B18rd+rtSHRlV5zBkaoZD2SWozcpLaXjVVjgD7nnLT85doA1AD5G92/qAGQA2AGiB/s/MHNSDRBqbnD2rAdJx/mFoD9ssIanXJzWo5cKzk8ag8N1tHPn9dGQt+p5KMFHW55yVfh9fkTM9fog1ADZC/2fmDGgA1AGqA/M3OH9SARBuYnj+oAdNx/mFaDbDQZUPhiQPUZuTEyp9jx96tbXf3VM6nL6v9xMcV1DLWh9E1PdPzl2gDUAPkb3b+oAZADYAaIH+z8wc1INEGpucPasB0nH+YVgMsdBkgIDRCEecNUd7aJSrNTrNdEdfF9Pwl2mBy1hLLjrUw/qeWHcubTK8B8jc7f4l+gBqA6TVgeh8gUQPkb3b+Ev0ANUAbmJ6/6X2ARA2YjvNPP2D3GmChyxCl2WmSpMDI1j6OxDdMz18ytw0iOsTom5kLtf2l5b4OxedMrYGTyN/c/OkHTjC5BnCCqTVAH3CKqTVwEvmbmz/9wAkm18BJpreBqfnTB5xiag3gBJPPP/3ACXauARa6bMhdWiTX8Rx5PB65crN1+OO/q3j3JoX3GKzQDkm+Dq/JmZ6/RBucrtPlg7R/xQZfh+F1ptcA+Zud/5lM7AeoAVADp5jYB0jUAPmbnf+ZTOwHqAHawPT8T2diHyBRA6bj/FdlYj9gWg0YsdCVk5OjOXPmaOnSpcrIyFBsbKzGjx+vWbNmadq0aVqwYIHmzZunKVOm+DpUS2QtmqmsRTOrPBY9dLw6/+pvPorIu0zPX6INTtciMU4/LMz2dRheZ3oNkL/Z+Z/JxH7A9jXgcKjXHeN03qTLFdkxViVHjmvP+2u1ec5iuYpLfR1ds2D7GmgAE/sAiRogf7PzP5OJ/QA1QBuYnv/pTOwDJANqgHuCs7L9+W8gE/sB02rA9gtdmzdv1pgxY5Sdna2IiAj16tVLmZmZeu6555SWlqajR49Kkvr37+/bQC0Uc8WdanXxDfJUlKt471ZlL31SZTkZcgSFVm6Tv221dj02ptq+HleZPO4KDVxW4c2QLWV6/hJtcFJgeKjKC0p8HYZPmF4D5G92/qcztR+wew0Mfmyyev1ynPZ+uE7f//19RffooF63j1Wb87vqk589Jnk8vg7R5+xeA/Vlah8gUQPkb3b+pzO1H6AGaAPT8z/J1D5Asn8NcE9wdnY//w1haj9gWg3YeqErJydHV199tbKzs3Xvvfdq5syZioqKkiTNmTNH999/vwIDA+VwONS3b18fR2udkPgeatF/tCSp5cAxikwerh0PDNe+F36txPv+JUmK6j1CFywuqLJf2ZFM/XDvIMWO8+93tpmev0QbnNT+0r468L/vfB2GT5heA+Rvdv6nM7UfsHMNRCd1VPIvxij9g6/1+S/nVj6ev++Qhjx+u7peN0x7lq3xYYTNg51roCFM7QMkaoD8zc7/dKb2A9QAbWB6/ieZ2gdI9q4B7gnqZufz31Cm9gOm1YDT1wE0pWnTpikjI0NTpkzR3LlzKxe5JGnGjBnq16+fXC6XEhIS1KJFCx9G2rQiky9W65GTlLtmsQpS1ta4jbu8VLufGK/IXsMVf8ODXo6waZmev2RuG7S9sKcOr99R5bEBD9yiyVlL1P2mH9W4z5Vv/0mT0hcp+rxO3gjRa0ytgZPI39z86QdOsFMNdP3JcDmcTm3/xwdVHt/55n9VXlSibtdf4qPImjc71UBD0AecYmoNnET+5uZPP3CCyTVwkultYGr+9AGn2KkGuCdoODud/4aiHzjB7jVg24WulJQULV68WDExMZo9e3aN2wwcOFCS1K9fv8rHPv/8czkcjmr//P2jDeNvfFhyBijzrUdqfH7f87+Wu7xECdMXejcwLzE9f8nANnA4JIfkcburPLx57r+Vm7JXgx+9TeHxras81+vOqxR3cW9tnrtYeTv2ezNarzCuBs5A/gbmTz9QhV1qIKZ/d7krKpSzaWeVxytKy3X0+3TF9O/mo8iaP7vUQL3RB1RjXA2cgfwNzJ9+oAoja+AMpreBcfnTB1RjlxrgnqBx7HL+G4R+oAo714BtF7oWLVokt9utCRMmKDIyssZtwsLCJFVd6Drpb3/7m7766qvKf//85z+bNN6mFhrfXa1H3KT8LSuVv211lecOvf+cjm1Yrm4PvCNnSLiPImxapucvmdcGsRd0V86mXdUed5e7tHr6fAWGh2jYX+6ufLxFt/Ya8IebdfjbVH3//HveDNVrTKuBM5G/efnTD1RllxoIb9dKpUfz5S5zVXuuKPuoQtu0lDPI1p/O3Wh2qYH6og+ozrQaOBP5m5c//UBVJtbAmUxvA9Pypw+ozi41wD1B49jl/DcE/UBVdq4B2y50rVq1SpI0atSoWrfJyMiQVPNCV69evTRkyJDKf3369GmaQL0o7oY/Sk5nlRXb/C2fKeP1+5U44z8KaZfgu+C8wPT8Jfu2QbshyXIEVO3OOoy6QAc+21zj9ke37tGWecvUYWR/JU0cLYfTqRHPTZUkrZ4+v9qrPOzErjVQX+Rv3/zpB+rHDjUQEBaiirLyGp+rKD3xeGBYsDdD8it2qIGa0AfUn11roL7I37750w/Uj51roL5MbwO75k8fUH92qAHuCRrPDue/NvQD9WPXGrDt0vbevXslSV26dKnxeZfLpS+//FJSzQtdVho0aJCys7MbtI8jOEztnt1Z94anieozUgPf9dT6fFinZA1cVlH5c+nBdO1+6mfqOPkpRfUZ2aDfdaakpB7ylBWf0zFO52/5S9a2QWPyl+xVA0Eep2ZqcJ3bJVxzsYY9fZdW3vaEstduO7V/i3CV5xfVut93zyxR5x8P0qBHblXr3gmKHdBD3zy6UMfTMhsdc1KPJJU7rBkETa8B0/OX6Afr2wdIzacfsLIPkPyvBrx1/iuKSxUU0bLG5wJCgiRJruIyS+JoDKvqgH6QuQA1YHY/KPlf/hJzAdPnAhL3BOTPXIC5gDU1UNe5556gdnYaB5gLmFED7tMWFIcPH65NmzY16vfadqGrsLBQklRcXHOjLl68WDk5OYqKilLXrl2rPX/jjTcqJydHbdq00TXXXKMnnnhCMTExjYolOztbBw4caNA+zpBwtWvUb6sfd2mR0mZfp5aDr1HbcVPO+XiZmZlyl9beaTSUv+UvWdsGTZ2/1PxrINgRoPo0Qvp7a9Wia5w6XXFh5UAW0SFGhRmHz7qfx1Wh1dPn66qPnlDPyVfq4LoUbX/pg7PuU5fMrEyVeSrq3rAeTK8B0/OX6Afr2wdIzacfsLIPkPyvBrx1/osO5qplUkc5gwOrfVRJeFxrlRw5Jnd59Y8w8Rar6oB+kLkANWB2Pyj5X/4ScwHT5wIS9wTkz1yAuYA1NVDXueeewBrNfRxgLmBeDRw8eLDRv9e2C11xcXHKzc3Vxo0bNXTo0CrPZWVl6b777pMk9e3bVw6Ho/K5li1b6r777tMll1yiyMhIffXVV5o9e7a+/vprbdiwQaGhoY2KpaEcwWEN3qchcte+reI936nkQKpy1yyu9nzv+dsVHNu53sdr37695a9ebEpW5y9Z2wZNnb/U/GsgyOOU6vkCiL0ffaPLFt6v9TMXSpI6XT5I+1dsqHO/8uNFcpe5FBAcpIyVGyVP7a92qI/28e0tfeVWU2vONWB6/hL9YEP6AKl59ANW9gGS/9WAt85/zuZd6jCyv2Iu6KFD61IqHw8ICVLr8xN08OuUmnf0EqvqgH6QuQA1YHY/KPlf/hJzAdPnAhL3BOTPXIC5gDU1UNe5557AGs19HGAuYEYNeDweef5/m8fHxzfod53Otgtdo0ePVkpKip588kldfvnlSkpKkiStX79ekyZNUk5OjiSpf//+Vfa74IILdMEFF1T+PHLkSJ1//vm65pprtGjRIv385z9vcCwbNtR9QZ2p2CWN+LDBu9Vbm1GT1GbUJMuOl5q6U2EWVpO/5S9Z2wZNnb/U/GugvKhEb3abWK9tj6VmSB4pOqmj8lIzFNU1TvkL634FwLBn75EzKFB5qfvV9zfXK/29tcrf2/hXDqTuTFVQeMMXw2tieg2Ynr9EP9iQPkBqHv2AlX2A5H814K3zv+fdteo7bbx63TGuyk1tjwmjFRQe+v/au/cwqeoDT/jfai423YDIxTQOCBJAAblEDBFHHXDNZpDo5E3WiRMluuvkTmR2fcUxMZpJ3oR42R1jGDNmJ8Zxs2GZScZcMM4t6IYYk5FRI4MkINoKAtFWMNCC0HS9f2RlQ2gU2qLLU/X5PA/PY9e59Pec+tWhiq/nV3ni735YmRDdVKlx4DrovYAxUN/XwaR4x594L1Dv7wUSnwkcv/cC3gtUZgy81nPvM0FlvNH/HvBewBg4HA2vvUoxLVy4MEOGDMmGDRsyadKkTJ48OePGjcuMGTMyZsyYnH322UkO7fu53vnOd6a5ublbhRXQMzb808qMfMdb07upMXt2vPb/NTDhsnMz/HdPziP/7W9z3wf+axp69crv/vlHeyApcKS4DtSHbT9/Oj//2t9n9NzTMvurV2bc+/5dTr3u/Znx6Uuy5cer88Tf/ajaEakS1wDAdQDqm2tA/fCZgINxHahfNVt0jRgxIitWrMjcuXPT2NiY1tbWDB48OLfddlvuvvvurF27NsmhFV2v+M0pDoE3lg3/uDIj//2pOW7W1Gz64aOvuu6AE1pyyifel+ceXpd/W/ztbFu7MY/8179Jy8xJmXDZuT2UGKg014H68S/X3pEHP/3XGTR+RE77/B/nhD/43ay5/Z7887xFr3u6GYrLNQBwHYD65hpQX3wmoCuuA/WrZouuJJkwYUKWLVuW7du3Z/v27fnpT3+aD37wg2lvb09ra2saGhpy8sknv+Z+vvvd76a9vT0zZszogdRAd/zyp2sycMzwjJozI889+IuDr1gq5Yyb56ehoSE/WrA45c5fz5v7b3/xnbQ98nhO+cT7MmDUkf66V+BIcB2oH+XOzqy+7Xu568wF+R+j/yh/e8qH8uCn/zodL+2qdjSqyDUAcB2A+uYaUF98JqArrgP1q6aLroNZvXp1yuVyxo0bl6ampv2WXXzxxbn22mvz7W9/O//8z/+cz372s7n44oszbdq0XHjhhVVKDLyW8t7OPHPfz379350H/9LHSR8+L2+acVIevnFpXlz3zP/dvrMzP1qw2C3KUGCuA1DfXAMA1wGob64BgOtA/arLomvVqlVJup62cNKkSbnrrrvy/ve/P3PmzMntt9+eD3zgA7nvvvvSt2/fno4KHIan7/mXPP33Dx50+dHjfienLLwwz678RVb/5fcOWO4WZSg+1wGob64BgOsA1DfXAMB1oD71rnaAani1ouvqq6/O1Vdf3dOResSuTevSevMl6djell5NR2f0gjvS7/hJ1Y7V47be/8386tEfZORlf54nbrowuzY8loa+/dL76GNz/Ee+nMbhY6sd8Yiq5eN/atkDr7r8xXXP5H+c8L5XXWfVl+7Kqi/dVclYbzi1PAYORb0f/8Fsvf+beXHl3elo31roc+I6cGi8DupbLT//rgGHppbHwKGo9+NPavscuA4cmloeA4ei3o//YGrhM4FrwKHxGqCWx4DrwKGptTHgjq468vStH8rQd3wwJ395bVrefVVav3hptSNVxbaf3JVBb3tXkmTYv/9gJt36i0z84s8y6G1/kKcW/3F1w/WAej9+jIF6P/6D2faTuzLotHc5J3XC66C+ef6p9zFQ78efOAcYA/V+/AfjM0H98BrAGKDWxkBd3tG1fPnyakfocXu2PZv2x1dm3J/9Y5Jk0OnvydNfmZ9dmx8vXDv7Wjp2bMtjl5+czt0703foyJT3vJyXtzyRwbPmZdRHvpwdP78/oxfckVLvPjn61P97+2nz+NPyy2/fVMXklVHvx48xUO/H35VXOyejP/5XKXfs2e+8vKKWz0mt8zqob55/6n0M1PvxJ84BxkC9H39XfCaoL14DGAPU2xioy6KrHu1u25A+xwxPqdevn/JSqZS+w47P7ueerrmiq3f/QRl81vvSq9+ADH/vp/LiQ/+QLd/8fEZ//K/yq4f/Mc0nnb7fm7ZXPLvsixk04w+qkLiy6v34MQbq/fi78mrnJEm2r7q3y/NSy+ek1nkd1DfPP/U+Bur9+BPnAGOg3o+/Kz4T1BevAYwB6m0M1OXUhdS+l558JP3GvOXX/73+X9P0f/5720+/nWNO+38OWH/z334+L29+PL/z/kU9mvNIqffjxxiot+P/+cKZeeTioV3+2f3chiQHPydJ1+el6OeE+nsdsD/PP/U+Bur9+BPnAGOg3o7fZwJ+W729BjiQMUA9jQFFV53oO3Rk9mzdnPLejiRJuVzO7ueeTt9hx1c52ZGx88lH9r1wX3kRl8vlvPjwP2TgKXP2W3fLXTdl2wN/l7HX3pOGo5qqEbfi6v34MQbq7fhPuuGBTPt6W5d/+g4bmaTrc5Kky/NSC+eE+nsdsD/PP/U+Bur9+BPnAGOg3o7fZwJ+W729BjiQMUA9jQFFV53oM+jYNL35lDx/39eTJNt+/K30HTKi5qYtTJLdzz+TpJS+Q34nSbKz9dH0GzU5L639l/QbMSG9+vXft+4vv/PfsnXFkoz7zD+ld/9B1QlcYfV+/BgD9X78XTnYOUlywHmpl3NS67wO6pvnn3ofA/V+/IlzgDFQ78ffFZ8J6ovXAMYA9TYGfEdXHRn1kdvSesul2fLNz6dXv4EZffnXqh3piHjpiYf3u/2+V/OgPPv9W9N74NAMetu79j2+u21jNt5+Rfq2jMnaa2YnSUq9j8qEm37a05Erqt6PH2Og3o+/Kwc7J6M//lfZ+pO79p2Xejontc7roL55/qn3MVDvx584BxgD9X78XfGZoL54DWAMUG9joFQul8vVDsGBdnYkZ36/2ikO3Ypzk34VrE2PxPGvnj8p4/+/e9Nn0LGV3fH/UclzUO/HnyR7XtqV//nmiyu3wx5w0fqvp09TY0X2Ve9joN6PP+m5vwcqeV4qeQ7q/RqQFO91UO/P/ysqNQ6K9vwn3gsk3gu80f8urPfjT4p1Dur9GpAYA46/5/5dqFLnxXsB7wUqNQaK+Nz/Jp8JKrOvIo4D7wUq/3fBoXJHF3Vj0uLV1Y5QVfV+/BgD9X78B+O81BfPd33z/FPvY6Dejz9xDjAG6v34D8Z5qR+ea4wBanUM+I4uAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFVCqXy+Vqh+BA5XKya2+1Uxy6xl5JqVS5/RXt+JPKnoN6P/4kKZfL6dj5cuV22AN69zsqpQqdhHofA/V+/IlzUO/XgKR4Y6Den/9XVGocFO35T7wXSLwXqPe/C+v9+BN/F9T7e4HEZwLH772A9wKVGQNFfO5/k88EldlXEceB9wKV/7vgUCm6AAAAAAAAKCRTFwIAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIdVF0tbW1ZeHChRk7dmwaGxszcuTILFiwIO3t7bnssstSKpWyePHiascEAAAAAADgMPSudoAj7ZFHHsmcOXOyZcuWNDc3Z+LEidm0aVNuueWWrF+/Pi+88EKSZNq0adUNCgAAAAAAwGEplcvlcrVDHCltbW15y1veko0bN+aKK67IddddlwEDBiRJbrjhhlx11VXp3bt39u7dm23btmXgwIFVTgwAAAAAAMChqumi633ve1+WLFmS+fPn50tf+tIBy6dNm5af/exnOeGEE/LEE09UISEAAAAAAADdVbPf0bVmzZosXbo0Q4cOzaJFi7pcZ/r06UmSqVOn7vf4k08+mfPPPz8DBgzIMccck/e///15/vnnj3hmAAAAAAAADl3NFl1LlixJZ2dnLrroovTv37/Ldfr165dk/6Jr+/btmT17djZu3JglS5bkK1/5SlasWJF3vvOd6ezsPKwM5XI57e3taW9vTw3fOAcAAAAAAFAVvasd4EhZvnx5kmT27NkHXWfjxo1J9i+6vvKVr+SZZ57JD3/4wxx//PFJkhEjRuT000/Pd7/73bzrXe865AwvvfTSvpJt+PDhaWio2V4RAAAAAACgW1paWrJy5cpubVuzRddTTz2VJBk1alSXyzs6OnL//fcn2b/oWrZsWc4444x9JVeSzJw5M2PGjMn3vve9wyq6ftPmzZu7tR0AAAAAAABdq9miq729PUmyc+fOLpcvXbo0bW1tGTBgQE444YR9jz/22GO54IILDlh/0qRJeeyxx7qdxx1dAAAAAAAAB2ppaen2tjVbdLW0tGTr1q156KGHMnPmzP2Wbd68OVdeeWWSZMqUKSmVSvuWbd26NYMGDTpgf4MHD84vfvGLbudZt25dmpubu709AAAAAAAA+6vZW4zOOeecJMn111+ftWvX7nv8wQcfzOzZs9PW1pYkmTZtWjXiAQAAAAAA8DrVbNG1cOHCDBkyJBs2bMikSZMyefLkjBs3LjNmzMiYMWNy9tlnJ9n/+7mS5Jhjjsm2bdsO2N8LL7yQwYMH90R0AAAAAAAADkHNFl0jRozIihUrMnfu3DQ2Nqa1tTWDBw/ObbfdlrvvvnvfXV6/XXRNmDChy+/ieuyxxzJhwoQeyQ4AAAAAAMBrq9nv6Ep+XVotW7bsgMd37NiR1tbWNDQ05OSTT95v2Tvf+c584hOfyMaNGzNixIgkyU9/+tOsX78+N954Y4/kBgAAAAAA4LWVyuVyudohetpPf/rTnHbaaTnxxBPz85//fL9lv/rVrzJ58uQMHTo0f/Znf5Zdu3Zl4cKFGTZsWB544IE0NBz6TXDt7e3p379/kl+Xa83NzRU9DgAAAAAAgHpWs1MXvppVq1YlOXDawiQZOHBgli9fnuHDh+fCCy/MH//xH+f000/PsmXLDqvkAgAAAAAA4Miq6akLD+bViq4kefOb39zllIcAAAAAAAC8cdTlLUqvVXQBAAAAAADwxleX39HVU3xHFwAAAAAAwJFTl3d0AQAAAAAAUHyKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIVUF0VXW1tbFi5cmLFjx6axsTEjR47MggUL0t7enssuuyylUimLFy+udkwAAAAAAAAOQ+9qBzjSHnnkkcyZMydbtmxJc3NzJk6cmE2bNuWWW27J+vXr88ILLyRJpk2bVt2gAAAAAAAAHJaavqOrra0t5513XrZs2ZIrrrgimzdvzkMPPZQtW7bk+uuvz913350HH3wwpVIpU6ZMqXZcAAAAAAAADkNNF12XX355Nm7cmPnz5+emm27KgAED9i1buHBhpk6dmo6OjowePToDBw6sYlIAAAAAAAAOV80WXWvWrMnSpUszdOjQLFq0qMt1pk+fniSZOnXqvsdeKcZmzJiRo446KqVSqUfyAgAAAAAAcHhqtuhasmRJOjs7c9FFF6V///5drtOvX78k+xddjz/+eL71rW+lpaUlb33rW3skKwAAAAAAAIevZouu5cuXJ0lmz5590HU2btyYZP+i66yzzsrmzZvz3e9+N+ecc86RDQkAAAAAAEC39a52gCPlqaeeSpKMGjWqy+UdHR25//77k+xfdDU0HJnub9y4cUds3wAAAAAAAEXV0tKSlStXdmvbmi262tvbkyQ7d+7scvnSpUvT1taWAQMG5IQTTjjieTZv3nzEfwcAAAAAAEA9qdmiq6WlJVu3bs1DDz2UmTNn7rds8+bNufLKK5MkU6ZMSalUOuJ5hg8f7o4uAAAAAACA39LS0tLtbWu26DrnnHOyZs2aXH/99Xn729+e8ePHJ0kefPDBzJs3L21tbUmSadOm9UiedevWpbm5uUd+FwAAAAAAQD2o2VuMFi5cmCFDhmTDhg2ZNGlSJk+enHHjxmXGjBkZM2ZMzj777CT7fz8XAAAAAAAAxVGzRdeIESOyYsWKzJ07N42NjWltbc3gwYNz22235e67787atWuTKLoAAAAAAACKqmanLkySCRMmZNmyZQc8vmPHjrS2tqahoSEnn3xyFZIBAAAAAADwetV00XUwq1evTrlczvjx49PU1HTA8m9+85tJkscee2y/n0ePHp1TTz2154ICAAAAAABwUHVZdK1atSrJwactvOCCC7r8+ZJLLskdd9xxRLMBAAAAAABwaBRdXSiXyz0ZBwAAAAAAgG5oqHaAanitogsAAAAAAIA3vlLZ7UtHTHt7e/r3758k2bFjR5qbm6ucCAAAAAAAoHbU5R1dAAAAAAAAFJ+iCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKKTe1Q5A18rlcl7a2VHtGIesqV/vlEqliu2vXE527a3Y7npEY6+kgqcAAAAAAAB4DYquN6iXdnak/2l3VjvGIdvxk/enualPxfa3a29y5vcrtrseseLcpJ9XFAAAAAAA9BhTFwIAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQupd7QBQKdtX3Ze118ze77GGxuYcddz4DJk1L8e+8+Mp9TLkAQAAAACgVvhXf2rOMWf9UY6efm5SLmfP1i15/r47s/H2/5JdG9dk1Me+Uu14AAAAAABAhSi6qDlNY07JkFkX7/t52LkfzeqPnpS2f/qrHHfx59Ln6GFVTAcAAAAAAFSK7+ii5vVqbE7ziacl5XJe3rK+2nEAAAAAAIAKUXRRF14puHr3H1zlJAAAAAAAQKXURdHV1taWhQsXZuzYsWlsbMzIkSOzYMGCtLe357LLLkupVMrixYurHZMK6Xz5pXT8qi17XnwuO1tX5em//Fh2PvFwmsbNSOPvjK92PAAAAAAAoEJq/ju6HnnkkcyZMydbtmxJc3NzJk6cmE2bNuWWW27J+vXr88ILLyRJpk2bVt2gR8jnLp+eT/zxtPyna3+Yr3173QHL7/3quZk59dhMv/A7Wf341iokrLzNS67L5iXX7ffYoJnvzvEf+osqJQIAAAAAAI6Emi662tract5552XLli254oorct1112XAgAFJkhtuuCFXXXVVevfunVKplClTplQ57ZHx6Vsfznm/d3z+2//7tvzjA8/kmV++tG/Zn1w8KbPeOjx/evODNVNyJcnQd3wwx5x+Qcp792TnU6uy5e+uz+62jSn1ady3zvbVK/L4Z+YcsG25Y3fKnXsz/a69PRkZAAAAAADohpqeuvDyyy/Pxo0bM3/+/Nx00037Sq4kWbhwYaZOnZqOjo6MHj06AwcOrGLSI2dPR2cuueaHae7XJ1/99Jn7Hh8/+uh87uOn5iePPpsb71hVxYSVd9TwcRk47ZwcPX1OWt69MGM/+b289PiDefrLH963zoBJZ+YtS3fs92fSrWvTe8DQHPe+z1YxPQAAAAAAcKhqtuhas2ZNli5dmqFDh2bRokVdrjN9+vQkydSpU/c99s1vfjPvec97MmrUqDQ1NeWkk07KJz/5yezYsaNHch8JD695Pou++rO843dH5APvOTENDaXc+bmzUioll1zzw3R2lqsd8YjqP+H0DJ41L1t/tDQ71vy4y3U697ycJ77w7vSfeEaGX/CJHk4IAAAAAAB0R80WXUuWLElnZ2cuuuii9O/fv8t1+vXrl2T/ouumm25Kr1698vnPfz733HNPPvKRj+TLX/5yfv/3fz+dnZ09kv1I+OxXHs4jP38+N10xI1+6embeNvnYfPJL/5q1rS9WO1qPGP7eTyUNvbLpG9d2ufzpWz+czj27MnrBHT0bDAAAAAAA6Laa/Y6u5cuXJ0lmz5590HU2btyYZP+i63vf+16GDRu27+ff+73fy7Bhw3LRRRflRz/6Uc4666wjlPjI6ugo55JrfpgHl5yfj753QlY8tCU3f/3fqh2rxzQOH5vBZ16YF/73/8z21SsyYNL/ncbx2e/dkhdXLstJNz2YhqOaqpgSAAAAAAA4HDVbdD311FNJklGjRnW5vKOjI/fff3+S/Yuu3yy5XnHqqacmSZ555plu5xk3blwaGg79BrrO9EkGX9Pt39eVF3fszsu796Zvn175/ooNKVdwxsJx48enIXsqtr9S3355083rKra/JGm54JN5YcWSbPrGtTnxc/cmSbY/em823nlVxl17T4560+jXtf/x48elvHtnBZICAAAAAED9aGlpycqVK7u1bc0WXe3t7UmSnTu7Lh6WLl2atra2DBgwICeccMKr7uvee39dikyYMKHbeTZv3nx4G5T6JoO7/eu69LXPnJm+fXrlsfVbc80Hp+Vv/uHJPLFxe0X2vXnTpqS8uyL7SpKGo5rypsPcZsDkWZn+nYO3d/1GTsj0u/bu+/nlX7bmiRv/MCMuvTEDJs/qXtDfsGnTpnS+/NLr3g8AAAAAAHBoarboamlpydatW/PQQw9l5syZ+y3bvHlzrrzyyiTJlClTUiqVDrqfZ555Jp/61Kfy+7//+5k2bVq38wwfPvyw7+g6zGrsVX38fRMze8Zx+cQtK/Ode5/KQ0vflds/c2Zm/afvV2T/w487ruJ3dB1JnS+/lPWL3pWjZ5yfY+fOr8g+jzvuOHd0AQAAAADAYWppaen2tjVbdJ1zzjlZs2ZNrr/++rz97W/P+PHjkyQPPvhg5s2bl7a2tiR51fJqx44d+YM/+IP07ds3t99+++vKs27dujQ3Nx/y+u0v7Un/0+58Xb/zFWOPH5hFC07Nv6x6Ltff/mg6O8v59JcfyqIFb83H3zcxX/rGY6/7d6xbuzbNTX0qkPbXdnYkZ1amg+vS1h9/Kzuf/Fl2PbM2W3+09IDlkxY/lr7Djj+sfa5duy79avYVBQAAAAAAbzw1+8/yCxcuzDe+8Y1s2LAhkyZNykknnZRdu3bl8ccfz5w5czJ69Oj8wz/8w37fz/Wbdu7cmfPOOy9PPvlkVqxYkeHDh/fwEVRGqZTc8dmz0quhlEuu+d/p7Pz11H43fG1V3v3vRmfRglNz9w83VGwKw6IYMntehsyeV+0YAAAAAADA63Doc+kVzIgRI7JixYrMnTs3jY2NaW1tzeDBg3Pbbbfl7rvvztq1a5Oky6Jrz549+Q//4T9k5cqVueeeezJx4sSejl8xV1wyOb/7ljfl2lsfys+ffHHf452d5Vz6qR+md6+G3P6ZM6uYEAAAAAAAoHtq9o6uJJkwYUKWLVt2wOM7duxIa2trGhoacvLJJ++3rLOzMxdddFF+8IMf5Pvf/35mzJjRU3Er7qQTjs5nP3ZKHvjZs/mvf/1vByx/bP22ik9hCAAAAAAA0FNquug6mNWrV6dcLmf8+PFpamrab9nHPvax/O3f/m3+9E//NE1NTfnJT36yb9mb3/zmDBs2rKfjdtvPn3wx/d7616+6zhe++mi+8NVHeygRAAAAAABA5dTs1IWvZtWqVUm6nrbwnnvuSZJ84QtfyMyZM/f7c/fdd/doTgAAAAAAAA6uLu/oerWiq7W1tYfT0FN2bVqX1psvScf2tvRqOjqjF9yRfsdPqnYsAAAAAACgm9zRRd14+tYPZeg7PpiTv7w2Le++Kq1fvLTakQAAAAAAgNehLouu5cuXp1wuZ+7cudWOQg/Zs+3ZtD++MkNmXZwkGXT6e7K7bUN2bX68yskAAAAAAIDuqsuii/qzu21D+hwzPKVev56ts1Qqpe+w47P7uaernAwAAAAAAOguRRcAAAAAAACFpOiiLvQdOjJ7tm5OeW9HkqRcLmf3c0+n77Djq5wMAAAAAADoLkUXdaHPoGPT9OZT8vx9X0+SbPvxt9J3yIg0Dh9b5WQAAAAAAEB39a52AOgpoz5yW1pvuTRbvvn59Oo3MKMv/1q1IwEAAAAAAK+Doou60TjixJx0wwPVjgEAAAAAAFSIqQsBAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCKpXL5XK1Q9Sq9vb29O/fP0myY8eONDc3H/K25XI5L+3sOFLRKq6pX++USqWK7a9cTnbtrdjuekRjr6SCpwAAAAAAAHgNvasdgK6VSqU0N/WpdoyqKZWSfkYnAAAAAADwKkxdCAAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAopN7VDkDXyuVk195qpzh0jb2SUqnaKQAAAAAAgHqi6HqD2rU3OfP71U5x6Facm/QzmgAAAAAAgB5k6kIAAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQupd7QBUzvZV92XtNbP3e6yhsTlHHTc+Q2bNy7Hv/HhKvTzlAAAAAABAbdB61KBjzvqjHD393KRczp6tW/L8fXdm4+3/Jbs2rsmoj32l2vEAAAAAAAAqQtFVg5rGnJIhsy7e9/Owcz+a1R89KW3/9Fc57uLPpc/Rw6qYDgAAAAAAoDJ8R1cd6NXYnOYTT0vK5by8ZX214wAAAAAAAFSEoqtOvFJw9e4/uMpJAAAAAAAAKsPUhTWo8+WX0vGrtpTL5XRs3ZLn/v4vs/OJh9M0bkYaf2d8teMBAAAAAABURF3c0dXW1paFCxdm7NixaWxszMiRI7NgwYK0t7fnsssuS6lUyuLFi6sds2I2L7kuP5s3LI++/9g8tmBKnrvn1gya+e6M/eR3qh0NAAAAAACgYmr+jq5HHnkkc+bMyZYtW9Lc3JyJEydm06ZNueWWW7J+/fq88MILSZJp06ZVN2gFDX3HB3PM6RekvHdPdj61Klv+7vrsbtuYUp/GfetsX70ij39mzgHbljt2p9y5N9Pv2tuTkQEAAAAAAA5bTRddbW1tOe+887Jly5ZcccUVue666zJgwIAkyQ033JCrrroqvXv3TqlUypQpU6qctnKOGj4uA6edkyQ5evqc9J9wRn5x9Rl5+ssfzpgr/1eSZMCkM/OWpTv2227385vy8ytOzbC583s8MwAAAAAAwOGq6akLL7/88mzcuDHz58/PTTfdtK/kSpKFCxdm6tSp6ejoyOjRozNw4MAqJj2y+k84PYNnzcvWHy3NjjU/7nKdzj0v54kvvDv9J56R4Rd8oocTAgAAAAAAHL6aLbrWrFmTpUuXZujQoVm0aFGX60yfPj1JMnXq1H2PrVixIuecc06GDx+eo446KiNGjMh73/verFmzpkdyHynD3/uppKFXNn3j2i6XP33rh9O5Z1dGL7ijZ4MBAAAAAAB0U80WXUuWLElnZ2cuuuii9O/fv8t1+vXrl2T/omvr1q2ZPHlybrnllvzjP/5jrr/++qxevTozZ87Mxo0beyT7kdA4fGwGn3lhtj/6g2xfvWK/Zc9+75a8uHJZ3nz1t9NwVFOVEgIAAAAAAByemv2OruXLlydJZs+efdB1XimufrPoOv/883P++efvt95b3/rWnHjiifnWt76VBQsWHIG0PaPlgk/mhRVLsukb1+bEz92bJNn+6L3ZeOdVGXftPTnqTaOrGxAAAAAAAOAw1GzR9dRTTyVJRo0a1eXyjo6O3H///Un2L7q6MmTIkCRJ797dP13jxo1LQ8Oh30BX6tsvb7p53WH9jgGTZ2X6d8oHXd5v5IRMv2vvvp9f/mVrnrjxDzPi0hszYPKsw/pdv238+HEp7975uvYBAAAAAADUn5aWlqxcubJb29Zs0dXe3p4k2bmz6/Jl6dKlaWtry4ABA3LCCSccsHzv3r3p7OzMU089lauvvjotLS35wz/8w27n2bx582Gt33BUU97U7d/22jpffinrF70rR884P8fOnf+697dp06Z0vvxSBZIBAAAAAAAcmpotulpaWrJ169Y89NBDmTlz5n7LNm/enCuvvDJJMmXKlJRKpQO2/73f+719d3yNHTs2y5cvz7Bhw7qdZ/jw4Yd9R9eRtPXH38rOJ3+WXc+szdYfLT1g+aTFj6XvsOMPeX/HHXecO7oAAAAAAIDD1tLS0u1tS+Vy+eBz3RXY5Zdfni996UsZOXJk/vmf/znjx49Pkjz44IOZN29ennjiiezZsycf+9jHsnjx4gO2/8UvfpFt27blySefzI033phnn302999/f44//tDLn/b29vTv3z9JsmPHjjQ3Nx/ytjs7kjO/f8irV92Kc5N+NVubAgAAAAAAb0SHfotRwSxcuDBDhgzJhg0bMmnSpEyePDnjxo3LjBkzMmbMmJx99tlJDv79XCeeeGLe9ra35cILL8wPfvCDbN++PTfccENPHgIAAAAAAACvomaLrhEjRmTFihWZO3duGhsb09ramsGDB+e2227L3XffnbVr1yY5eNH1mwYNGpSxY8fm8ccfP9KxAQAAAAAAOEQ1PdnchAkTsmzZsgMe37FjR1pbW9PQ0JCTTz75Nffz7LPP5he/+EXe9ra3HYmYAAAAAAAAdENNF10Hs3r16pTL5YwfPz5NTU37Lbv44oszduzYTJs2LYMGDcq6devy53/+5+ndu3f+83/+z1VKDAAAAAAAwG+ry6Jr1apVSbqetvC0007LnXfemS9+8YvZtWtXRo4cmdmzZ+cTn/hERo0a1dNRAQAAAAAAOAhF12+ZP39+5s+f39OResSuTevSevMl6djell5NR2f0gjvS7/hJ1Y4FAAAAAADQLQ3VDlANr1Z01bKnb/1Qhr7jgzn5y2vT8u6r0vrFS6sdCQAAAAAAoNvqsuhavnx5yuVy5s6dW+0oPWbPtmfT/vjKDJl1cZJk0Onvye62Ddm1+fEqJwMAAAAAAOieuiy66tHutg3pc8zwlHr9erbKUqmUvsOOz+7nnq5yMgAAAAAAgO5RdAEAAAAAAFBIiq460XfoyOzZujnlvR1JknK5nN3PPZ2+w46vcjIAAAAAAIDuUXTViT6Djk3Tm0/J8/d9PUmy7cffSt8hI9I4fGyVkwEAAAAAAHRP72oHoOeM+shtab3l0mz55ufTq9/AjL78a9WOBAAAAAAA0G2KrjrSOOLEnHTDA9WOAQAAAAAAUBGmLgQAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAAqpd7UD0LXGXsmKc6ud4tA19qp2AgAAAAAAoN4out6gSqWkn2cHAAAAAADgoExdCAAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAh9a52ALpWLpfz0s6Oasc4ZE39eqdUKlVsf+VysmtvxXbXIxp7JRU8BQAAAAAAwGtQdL1BvbSzI/1Pu7PaMQ7Zjp+8P81NfSq2v117kzO/X7Hd9YgV5yb9vKIAAAAAAKDHmLoQAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJB6VzsAVMr2Vfdl7TWz93usobE5Rx03PkNmzcux7/x4Sr0MeQAAAAAAqBX+1Z+ac8xZf5Sjp5+blMvZs3VLnr/vzmy8/b9k18Y1GfWxr1Q7HgAAAAAAUCGKLmpO05hTMmTWxft+HnbuR7P6oyel7Z/+Ksdd/Ln0OXpYFdMBAAAAAACV4ju6qHm9GpvTfOJpSbmcl7esr3YcAAAAAACgQhRd1IVXCq7e/QdXOQkAAAAAAFAppi6k5nS+/FI6ftWWcrmcjq1b8tzf/2V2PvFwmsbNSOPvjK92PAAAAAAAoEJq/o6utra2LFy4MGPHjk1jY2NGjhyZBQsWpL29PZdddllKpVIWL15c7ZhU0OYl1+Vn84bl0fcfm8cWTMlz99yaQTPfnbGf/E61owEAAAAAABVU03d0PfLII5kzZ062bNmS5ubmTJw4MZs2bcott9yS9evX54UXXkiSTJs2rbpBj6DPXT49n/jjaflP1/4wX/v2ugOW3/vVczNz6rGZfuF3svrxrVVIWHlD3/HBHHP6BSnv3ZOdT63Klr+7PrvbNqbUp3HfOttXr8jjn5lzwLbljt0pd+7N9Lv29mRkAAAAAACgG2q26Gpra8t5552XLVu25Iorrsh1112XAQMGJEluuOGGXHXVVendu3dKpVKmTJlS5bRHzqdvfTjn/d7x+W//79vyjw88k2d++dK+ZX9y8aTMeuvw/OnND9ZMyZUkRw0fl4HTzkmSHD19TvpPOCO/uPqMPP3lD2fMlf8rSTJg0pl5y9Id+223+/lN+fkVp2bY3Pk9nhkAAAAAADh8NTt14eWXX56NGzdm/vz5uemmm/aVXEmycOHCTJ06NR0dHRk9enQGDhxYxaRH1p6OzlxyzQ/T3K9PvvrpM/c9Pn700fncx0/NTx59NjfesaqKCY+8/hNOz+BZ87L1R0uzY82Pu1ync8/LeeIL707/iWdk+AWf6OGEAAAAAABAd9Rk0bVmzZosXbo0Q4cOzaJFi7pcZ/r06UmSqVOnHnQ/c+bMSalUyqc//ekjEbPHPLzm+Sz66s/yjt8dkQ+858Q0NJRy5+fOSqmUXHLND9PZWa52xCNu+Hs/lTT0yqZvXNvl8qdv/XA69+zK6AV39GwwAAAAAACg22qy6FqyZEk6Oztz0UUXpX///l2u069fvyQHL7r+5m/+Jo888siRitjjPvuVh/PIz5/PTVfMyJeunpm3TT42n/zSv2Zt64vVjtYjGoePzeAzL8z2R3+Q7atX7Lfs2e/dkhdXLsubr/52Go5qqlJCAAAAAADgcNVk0bV8+fIkyezZsw+6zsaNG5N0XXT96le/yp/8yZ/kpptuOjIBq6Cjo5xLrvlhGo/qlY++d0JWPLQlN3/936odq0e1XPDJpKFhv7u6tj96bzbeeVXGLPzbHPWm0dULBwAAAAAAHLbe1Q5wJDz11FNJklGjRnW5vKOjI/fff3+SrouuT37ykxk/fnwuuuiiXHzxxRXJNG7cuDQ0HHqv2Jk+yeBrKvK7X/Hijt15effe9O3TK99fsSHlCs5YOG78+DRkT8X2V+rbL2+6ed1hbTNg8qxM/87BD6rfyAmZftfefT+//MvWPHHjH2bEpTdmwORZ3Y26z/jx41LevfN17wcAAAAAAOpJS0tLVq5c2a1ta7Loam9vT5Ls3Nl16bB06dK0tbVlwIABOeGEE/ZbtnLlyvz3//7f86//+q8VzbR58+bD26DUNxlc0Qj52mfOTN8+vfLY+q255oPT8jf/8GSe2Li9IvvevGlTUt5dkX0lScNRTXlTxfZ2oM6XX8r6Re/K0TPOz7Fz51dkn5s2bUrnyy9VZF8AAAAAAMBrq8miq6WlJVu3bs1DDz2UmTNn7rds8+bNufLKK5MkU6ZMSalU2rds7969+dCHPpT58+dn0qRJFc00fPjww76j6zCrsVf18fdNzOwZx+UTt6zMd+59Kg8tfVdu/8yZmfWfvl+R/Q8/7riK39F1JG398bey88mfZdcza7P1R0sPWD5p8WPpO+z4w9rncccd544uAAAAAAA4TC0tLd3etiaLrnPOOSdr1qzJ9ddfn7e//e0ZP358kuTBBx/MvHnz0tbWliSZNm3aftstXrw4v/zlL/PpT3+64pnWrVuX5ubmQ16//aU96X/anRX53WOPH5hFC07Nv6x6Ltff/mg6O8v59JcfyqIFb83H3zcxX/rGY6/7d6xbuzbNTX0qkPbXdnYkZ1amg+vSkNnzMmT2vIruc+3adelXk68oAAAAAAB4Yzr0W4wKZOHChRkyZEg2bNiQSZMmZfLkyRk3blxmzJiRMWPG5Oyzz06y//dztbW15VOf+lSuvfbadHR0ZNu2bdm2bVuSZNeuXdm2bVs6OzurcTivS6mU3PHZs9KroZRLrvnf6ez89XdY3fC1VXnw357LogWnZsyIAVVOCQAAAAAAcPhqsugaMWJEVqxYkblz56axsTGtra0ZPHhwbrvtttx9991Zu3Ztkv2Lro0bN2b79u350Ic+lGOOOWbfnyS5/vrrc8wxx+Tpp5+uyvG8HldcMjm/+5Y35dpbH8rPn3xx3+OdneVc+qkfpnevhtz+mTOrmBAAAAAAAKB7anaitQkTJmTZsmUHPL5jx460tramoaEhJ5988r7Hx44dm3vvvfeA9WfPnp1LLrkkl1566euaI7IaTjrh6Hz2Y6fkgZ89m//61/92wPLH1m+r+BSGAAAAAAAAPaVmi66DWb16dcrlcsaPH5+mpqZ9j/fv3z+zZs3qcpvRo0cfdNkb2c+ffDH93vrXr7rOF776aL7w1Ud7KBEAAAAAAEDl1OTUha9m1apVSfafthAAAAAAAIDiqbs7ug636CqXy0cyDj1o16Z1ab35knRsb0uvpqMzesEd6Xf8pGrHAgAAAAAAuskdXdSNp2/9UIa+44M5+ctr0/Luq9L6xUurHQkAAAAAAHgd6q7oWr58ecrlcubOnVvtKPSgPdueTfvjKzNk1sVJkkGnvye72zZk1+bHq5wMAAAAAADorroruqhPu9s2pM8xw1Pq9evZOkulUvoOOz67n3u6yskAAAAAAIDuUnQBAAAAAABQSIou6kLfoSOzZ+vmlPd2JEnK5XJ2P/d0+g47vsrJAAAAAACA7lJ0URf6DDo2TW8+Jc/f9/UkybYffyt9h4xI4/CxVU4GAAAAAAB0V+9qB4CeMuojt6X1lkuz5ZufT69+AzP68q9VOxIAAAAAAPA6KLqoG40jTsxJNzxQ7RgAAAAAAECFmLoQAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAopFK5XC5XO0Stam9vT//+/ZMkO3bsSHNz8yFvWy6X89LOjiMVreKa+vVOqVSq2P7K5WTX3ortrkc09koqeAoAAAAAAIDX0LvaAehaqVRKc1OfaseomlIp6Wd0AgAAAAAAr8LUhQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUUu9qB6Br5XKya2+1Uxy6xl5JqVTtFAAAAAAAQD1RdL1B7dqbnPn9aqc4dCvOTfoZTQAAAAAAQA8ydSEAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKKTe1Q5A5WxfdV/WXjN7v8caGptz1HHjM2TWvBz7zo+n1MtTDgAAAAAA1AatRw065qw/ytHTz03K5ezZuiXP33dnNt7+X7Jr45qM+thXqh0PAAAAAACgIhRdNahpzCkZMuvifT8PO/ejWf3Rk9L2T3+V4y7+XPocPayK6QAAAAAAACrDd3TVgV6NzWk+8bSkXM7LW9ZXOw4AAAAAAEBFKLrqxCsFV+/+g6ucBAAAAAAAoDJMXViDOl9+KR2/aku5XE7H1i157u//MjufeDhN42ak8XfGVzseAAAAAABARdTFHV1tbW1ZuHBhxo4dm8bGxowcOTILFixIe3t7LrvsspRKpSxevLjaMStm85Lr8rN5w/Lo+4/NYwum5Ll7bs2gme/O2E9+p9rRAAAAAAAAKqbm7+h65JFHMmfOnGzZsiXNzc2ZOHFiNm3alFtuuSXr16/PCy+8kCSZNm1adYNW0NB3fDDHnH5Bynv3ZOdTq7Ll767P7raNKfVp3LfO9tUr8vhn5hywbbljd8qdezP9rr09GRkAAAAAAOCw1XTR1dbWlvPOOy9btmzJFVdckeuuuy4DBgxIktxwww256qqr0rt375RKpUyZMqXKaSvnqOHjMnDaOUmSo6fPSf8JZ+QXV5+Rp7/84Yy58n8lSQZMOjNvWbpjv+12P78pP7/i1AybO7/HMwMAAAAAAByump668PLLL8/GjRszf/783HTTTftKriRZuHBhpk6dmo6OjowePToDBw6sYtIjq/+E0zN41rxs/dHS7Fjz4y7X6dzzcp74wrvTf+IZGX7BJ3o4IQAAAAAAwOGr2aJrzZo1Wbp0aYYOHZpFixZ1uc706dOTJFOnTt332H333ZdSqXTAn6JPbTj8vZ9KGnpl0zeu7XL507d+OJ17dmX0gjt6NhgAAAAAAEA31ezUhUuWLElnZ2cuuuii9O/fv8t1+vXrl2T/ousVf/EXf5FTTjll38/Nzc1HJmgPaRw+NoPPvDAv/O//me2rV2TApDP3LXv2e7fkxZXLctJND6bhqKYqpgQAAAAAADh0NVt0LV++PEkye/bsg66zcePGJF0XXRMnTsxpp51WsTzjxo1LQ8Oh30BX6tsvb7p5XcV+f5K0XPDJvLBiSTZ949qc+Ll7kyTbH703G++8KuOuvSdHvWl0t/c9fvy4lHfvrFBSAAAAAACgXrS0tGTlypXd2rZmi66nnnoqSTJq1Kgul3d0dOT+++9P0nXRVWmbN28+rPUbjmrKmw7zdwyYPCvTv1M+6PJ+Iydk+l179/388i9b88SNf5gRl96YAZNnHeZv29+mTZvS+fJLr2sfAAAAAAAAh6Nmi6729vYkyc6dXd9ltHTp0rS1tWXAgAE54YQTDlj+3ve+N21tbRkyZEjOP//8fOELX8jQoUMPK0NTU1N27NiRM844I88++2xKpdIhb1vq2++wftfh6nz5paxf9K4cPeP8HDt3/uve33HHHeeOLgAAAAAA4LC1tLR0e9uaLbpaWlqydevWPPTQQ5k5c+Z+yzZv3pwrr7wySTJlypT9Cqijjz46V155Zc4666z0798/DzzwQBYtWpSf/OQnWblyZRobGw85Q6lUSnNzcx5++OHDzr+zIznz+4e92SHb+uNvZeeTP8uuZ9Zm64+WHrB80uLH0nfY8Ye8v7Vr16VfzY4mAAAAAADgjahmq4lzzjkna9asyfXXX5+3v/3tGT9+fJLkwQcfzLx589LW1pYkmTZt2n7bveUtb8lb3vKWfT/PmjUrJ598cs4///wsWbIk//E//sceO4YjacjseRkye161YwAAAAAAAHRbQ7UDHCkLFy7MkCFDsmHDhkyaNCmTJ0/OuHHjMmPGjIwZMyZnn312kkP7fq53vvOdaW5u7vYXoQEAAAAAAFB5NVt0jRgxIitWrMjcuXPT2NiY1tbWDB48OLfddlvuvvvurF27NsmhFV2vOJzv2AIAAAAAAODIqtmpC5NkwoQJWbZs2QGP79ixI62trWloaMjJJ5/8mvv57ne/m/b29syYMeNIxAQAAAAAAKAbarroOpjVq1enXC5n/PjxaWpq2m/ZxRdfnDFjxuSUU05J//7988ADD+SGG27ItGnTcuGFF1YpMQAAAAAAAL+tLouuVatWJel62sJJkyblG9/4Rm6++ebs3LkzI0aMyAc+8IFcd9116du3b09HBQAAAAAA4CAUXb/l6quvztVXX93TkXrErk3r0nrzJenY3pZeTUdn9II70u/4SdWOBQAAAAAA0C0N1Q5QDa9WdNWyp2/9UIa+44M5+ctr0/Luq9L6xUurHQkAAAAAAKDb6rLoWr58ecrlcubOnVvtKD1mz7Zn0/74ygyZdXGSZNDp78nutg3ZtfnxKicDAAAAAADonrosuurR7rYN6XPM8JR6/Xq2ylKplL7Djs/u556ucjIAAAAAAIDuUXQBAAAAAABQSIquOtF36Mjs2bo55b0dSZJyuZzdzz2dvsOOr3IyAAAAAACA7lF01Yk+g45N05tPyfP3fT1Jsu3H30rfISPSOHxslZMBAAAAAAB0T+9qB6DnjPrIbWm95dJs+ebn06vfwIy+/GvVjgQAAAAAANBtiq460jjixJx0wwPVjgEAAAAAAFARpi4EAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIpXK5XK52CA5ULie79lY7xaFr7JWUStVOAQAAAAAA1BNFFwAAAAAAAIVk6kIAAAAAAAAKSdEFAAAAAABAISm6AAAAAAAAKCRFFwAAAAAAAIWk6AIAAAAAAKCQFF0AAAAAAAAUkqILAAAAAACAQlJ0AQAAAAAAUEiKLgAAAAAAAApJ0QUAAAAAAEAhKboAAAAAAAAoJEUXAAAAAAAAhaToAgAAAAAAoJAUXQAAAAAAABSSogsAAAAAAIBCUnQBAAAAAABQSIouAAAAAAAACknRBQAAAAAAQCEpugAAAAAAACgkRRcAAAAAAACFpOgCAAAAAACgkBRdAAAAAAAAFJKiCwAAAAAAgEJSdAEAAAAAAFBIii4AAAAAAAAK6f8Hxgba2Uk+8EYAAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 2210.55x1120.39 with 1 Axes>"
|
|
]
|
|
},
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"clifford_pubs = analyzer.to_clifford(pubs)\n",
|
|
"\n",
|
|
"clifford_pubs[0].circuit.draw(\"mpl\", idle_wires=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "83c3ff81-9f18-43eb-ba6e-57c5ef3d118f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Application 1: Analyze the impact of noise on the circuit outputs\n",
|
|
"\n",
|
|
"This example shows how to use `Neat` to study the impact of different noise models on PUBs as a function of circuit depth by running simulations in both ideal ([`ideal_sim`](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.debug_tools.Neat#ideal_sim)) and noisy ([`noisy_sim`](/api/qiskit-ibm-runtime/qiskit_ibm_runtime.debug_tools.Neat#noisy_sim)) conditions. This can be useful to set up expectations on the quality of the experimental results before running a job on a QPU. To learn more about noise models, see [Exact and noisy simulation with Qiskit Aer primitives.](/guides/simulate-with-qiskit-aer#exact-and-noisy-simulation-with-qiskit-aer-primitives)\n",
|
|
"\n",
|
|
"The simulated results support mathematical operations, and can therefore be compared with each other (or with experimental results) to calculate figures of merit.\n",
|
|
"\n",
|
|
"Begin by performing ideal and noisy classical simulations."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "23859a99-2455-460e-98ea-17b36ea59c36",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Ideal results:\n",
|
|
" NeatResult([NeatPubResult(vals=array([1., 1., 1., 1., 1., 1.])), NeatPubResult(vals=array([1., 1., 1., 1., 1., 1.])), NeatPubResult(vals=array([1., 1., 1., 1., 1., 1.])), NeatPubResult(vals=array([1., 1., 1., 1., 1., 1.])), NeatPubResult(vals=array([1., 1., 1., 1., 1., 1.])), NeatPubResult(vals=array([1., 1., 1., 1., 1., 1.]))])\n",
|
|
"\n",
|
|
"Noisy results:\n",
|
|
" NeatResult([NeatPubResult(vals=array([0.96875 , 0.97265625, 0.94921875, 0.95117188, 0.97070312,\n",
|
|
" 0.97460938])), NeatPubResult(vals=array([0.93945312, 0.9453125 , 0.90429688, 0.94335938, 0.96484375,\n",
|
|
" 0.98046875])), NeatPubResult(vals=array([0.87890625, 0.875 , 0.82226562, 0.86523438, 0.95898438,\n",
|
|
" 0.94726562])), NeatPubResult(vals=array([0.80273438, 0.82226562, 0.79492188, 0.828125 , 0.89257812,\n",
|
|
" 0.9375 ])), NeatPubResult(vals=array([0.73242188, 0.74023438, 0.6953125 , 0.7578125 , 0.8828125 ,\n",
|
|
" 0.92382812])), NeatPubResult(vals=array([0.70898438, 0.72070312, 0.6953125 , 0.77539062, 0.88085938,\n",
|
|
" 0.90625 ]))])\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Perform a noiseless simulation\n",
|
|
"ideal_results = analyzer.ideal_sim(clifford_pubs)\n",
|
|
"print(f\"Ideal results:\\n {ideal_results}\\n\")\n",
|
|
"\n",
|
|
"# Perform a noisy simulation with the backend's noise model\n",
|
|
"noisy_results = analyzer.noisy_sim(clifford_pubs)\n",
|
|
"print(f\"Noisy results:\\n {noisy_results}\\n\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a000a77a-0285-4b72-a69f-8f144f2c2a80",
|
|
"metadata": {},
|
|
"source": [
|
|
"Next, apply mathematical operations to compute the absolute difference. The remainder of the guide uses the absolute difference as a figure of merit to compare ideal results with noisy or experimental results, but similar figures of merit can be set up.\n",
|
|
"\n",
|
|
"The absolute difference shows that the impact of noise grows with the circuits' sizes."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "cd61e437-bd2f-4349-a667-7edab51c4a6e",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Mean absolute difference between ideal and noisy results for circuits with 1 layers:\n",
|
|
" 3.55%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 2 layers:\n",
|
|
" 5.37%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 3 layers:\n",
|
|
" 10.87%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 4 layers:\n",
|
|
" 15.36%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 5 layers:\n",
|
|
" 21.13%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 6 layers:\n",
|
|
" 21.88%\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Figure of merit: Absolute difference\n",
|
|
"def rdiff(res1, re2):\n",
|
|
" r\"\"\"The absolute difference between `res1` and re2`.\n",
|
|
"\n",
|
|
" --> The closer to `0`, the better.\n",
|
|
" \"\"\"\n",
|
|
" d = abs(res1 - re2)\n",
|
|
" return np.round(d.vals * 100, 2)\n",
|
|
"\n",
|
|
"\n",
|
|
"for idx, (ideal_res, noisy_res) in enumerate(\n",
|
|
" zip(ideal_results, noisy_results)\n",
|
|
"):\n",
|
|
" vals = rdiff(ideal_res, noisy_res)\n",
|
|
"\n",
|
|
" # Print the mean absolute difference for the observables\n",
|
|
" mean_vals = np.round(np.mean(vals), 2)\n",
|
|
" print(\n",
|
|
" f\"Mean absolute difference between ideal and noisy results for circuits with {all_n_layers[idx]} layers:\\n {mean_vals}%\\n\"\n",
|
|
" )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7abcd001-9eac-4015-97a3-d6250ea4b667",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can follow these rough and simplified guidelines to improve circuits of this type:\n",
|
|
"\n",
|
|
"- If the mean absolute difference is greater than 90%, mitigation will likely not help.\n",
|
|
"- If the mean absolute difference is less than 90%, [Probabilistic Error Amplification (PEA)](/guides/error-mitigation-and-suppression-techniques#probabilistic-error-amplification-pea) will likely be able to improve the results.\n",
|
|
"- If the mean absolute difference is less than 80%, [ZNE with gate folding](/guides/error-mitigation-and-suppression-techniques#zero-noise-extrapolation-zne) will also likely be able to improve the results.\n",
|
|
"\n",
|
|
"Because all of the absolute differences above are less than 90%, applying PEA to the original circuit will hopefully improve the quality of its results."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "c64c936b-5b8f-4fd2-861d-8b1ded2a0ad4",
|
|
"metadata": {},
|
|
"source": [
|
|
"You can specify different noise models in the analyzer. The following example performs the same test but adds a custom noise model."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "0835c562-55c9-4dbe-879e-7271f8bed280",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Mean absolute difference between ideal and noisy results for circuits with 1 layers:\n",
|
|
" 4.43%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 2 layers:\n",
|
|
" 7.49%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 3 layers:\n",
|
|
" 13.15%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 4 layers:\n",
|
|
" 17.74%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 5 layers:\n",
|
|
" 23.3%\n",
|
|
"\n",
|
|
"Mean absolute difference between ideal and noisy results for circuits with 6 layers:\n",
|
|
" 29.43%\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Set up a noise model with strength 0.02 on every two-qubit gate\n",
|
|
"noise_model = NoiseModel()\n",
|
|
"for qubits in backend.coupling_map:\n",
|
|
" noise_model.add_quantum_error(\n",
|
|
" depolarizing_error(0.02, 2), [\"ecr\", \"cx\"], qubits\n",
|
|
" )\n",
|
|
"\n",
|
|
"# Update the analyzer's noise model\n",
|
|
"analyzer.noise_model = noise_model\n",
|
|
"\n",
|
|
"# Perform a noiseless simulation\n",
|
|
"ideal_results = analyzer.ideal_sim(clifford_pubs)\n",
|
|
"\n",
|
|
"# Perform a noisy simulation with the backend's noise model\n",
|
|
"noisy_results = analyzer.noisy_sim(clifford_pubs)\n",
|
|
"\n",
|
|
"# Compare the results\n",
|
|
"for idx, (ideal_res, noisy_res) in enumerate(\n",
|
|
" zip(ideal_results, noisy_results)\n",
|
|
"):\n",
|
|
" values = rdiff(ideal_res, noisy_res)\n",
|
|
"\n",
|
|
" # Print the mean absolute difference for the observables\n",
|
|
" mean_values = np.round(np.mean(values), 2)\n",
|
|
" print(\n",
|
|
" f\"Mean absolute difference between ideal and noisy results for circuits with {all_n_layers[idx]} layers:\\n {mean_values}%\\n\"\n",
|
|
" )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "f2408ca9-3e3c-4a2f-a99a-ce413d5d470f",
|
|
"metadata": {},
|
|
"source": [
|
|
"As shown, given a noise model, you can try to quantify the impact of noise on the (Cliffordized version of the) PUBs of interest before running them on a QPU."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ddd6da5f-4e84-4bf4-aaeb-0403f21275db",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Application 2: Benchmark different strategies\n",
|
|
"\n",
|
|
"This example uses `Neat` to help identify the best options for your PUBs. To do so, consider running an estimation problem with PEA, which cannot be simulated with `qiskit_aer`. You can use `Neat` to help determine which noise amplification factors will work best, then use those factors when running the original experiment on a QPU."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "358bb82a-4bc9-46c2-98a0-e745ffc6788f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Generate a circuit with six qubits and six layers\n",
|
|
"isa_qc = pm.run(generate_circuit(6, 3))\n",
|
|
"\n",
|
|
"# Use the same observables as previously\n",
|
|
"pubs = [(isa_qc, isa_obs)]\n",
|
|
"clifford_pubs = analyzer.to_clifford(pubs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "5774cb3f-c999-4242-a83a-7dcc0c57510b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"noise_factors = [\n",
|
|
" [1, 1.1],\n",
|
|
" [1, 1.1, 1.2],\n",
|
|
" [1, 1.5, 2],\n",
|
|
" [1, 1.5, 2, 2.5, 3],\n",
|
|
" [1, 4],\n",
|
|
"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "0b9900e6-84fe-4776-9bb5-08c6c729be29",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Run the PUBs on a QPU\n",
|
|
"estimator = Estimator(backend)\n",
|
|
"estimator.options.default_shots = 100000\n",
|
|
"estimator.options.twirling.enable_gates = True\n",
|
|
"estimator.options.twirling.enable_measure = True\n",
|
|
"estimator.options.twirling.shots_per_randomization = 100\n",
|
|
"estimator.options.resilience.measure_mitigation = True\n",
|
|
"estimator.options.resilience.zne_mitigation = True\n",
|
|
"estimator.options.resilience.zne.amplifier = \"pea\"\n",
|
|
"\n",
|
|
"jobs = []\n",
|
|
"for factors in noise_factors:\n",
|
|
" estimator.options.resilience.zne.noise_factors = factors\n",
|
|
" jobs.append(estimator.run(clifford_pubs))\n",
|
|
"\n",
|
|
"results = [job.result() for job in jobs]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "16c18377-059a-4751-9ab1-afee0ed5b089",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Perform a noiseless simulation\n",
|
|
"ideal_results = analyzer.ideal_sim(clifford_pubs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "7db531a1-c417-4d5b-bdc3-7a4ad3385fd4",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Mean absolute difference for factors [1, 1.1]:\n",
|
|
" 18.86%\n",
|
|
"\n",
|
|
"Mean absolute difference for factors [1, 1.1, 1.2]:\n",
|
|
" 22.92%\n",
|
|
"\n",
|
|
"Mean absolute difference for factors [1, 1.5, 2]:\n",
|
|
" 29.36%\n",
|
|
"\n",
|
|
"Mean absolute difference for factors [1, 1.5, 2, 2.5, 3]:\n",
|
|
" 22.38%\n",
|
|
"\n",
|
|
"Mean absolute difference for factors [1, 4]:\n",
|
|
" 29.36%\n",
|
|
"\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# Look at the mean absolute difference to quickly tell the best choice for your options\n",
|
|
"for factors, res in zip(noise_factors, results):\n",
|
|
" d = rdiff(ideal_results[0], res[0])\n",
|
|
" print(\n",
|
|
" f\"Mean absolute difference for factors {factors}:\\n {np.round(np.mean(d), 2)}%\\n\"\n",
|
|
" )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "0c37ef7b-df56-4f5f-9e11-10f209f105f9",
|
|
"metadata": {},
|
|
"source": [
|
|
"The result with the smallest difference suggests which options to choose."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2530a3e9-21a6-4841-9449-fe181c54aca4",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Next steps\n",
|
|
"\n",
|
|
"<Admonition type=\"tip\" title=\"Recommendations\">\n",
|
|
" - Learn about [Exact and noisy simulation with Qiskit Aer primitives.](https://docs.quantum.ibm.com/guides/simulate-with-qiskit-aer)\n",
|
|
" - Learn about [available Qiskit Runtime options.](/guides/runtime-options-overview)\n",
|
|
" - Learn about [Error mitigation and suppression techniques.](/guides/error-mitigation-and-suppression-techniques)\n",
|
|
" - Visit the [Transpile with pass managers](transpile-with-pass-managers) topic.\n",
|
|
" - Learn [how to transpile circuits](https://learning.quantum.ibm.com/tutorial/submit-transpiled-circuits) as part of Qiskit Patterns workflows using Qiskit Runtime.\n",
|
|
" - Review the [Debugging tools API documentation.](/api/qiskit-ibm-runtime/debug_tools)\n",
|
|
"</Admonition>"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"description": "Use the Qiskit Runtime Debugging tools module and `Neat` class to debug and analyze jobs.",
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3"
|
|
},
|
|
"title": "Debug Qiskit Runtime jobs"
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|