282 lines
12 KiB
Plaintext
282 lines
12 KiB
Plaintext
---
|
||
title: CNOTUnitCircuit (latest version)
|
||
description: API reference for qiskit.synthesis.unitary.aqc.CNOTUnitCircuit in the latest version of qiskit
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.synthesis.unitary.aqc.CNOTUnitCircuit
|
||
---
|
||
|
||
# CNOTUnitCircuit
|
||
|
||
<Class id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/synthesis/unitary/aqc/cnot_unit_circuit.py#L24-L103" signature="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit(num_qubits, cnots, tol=0.0, name=None)" modifiers="class">
|
||
Bases: [`ApproximateCircuit`](qiskit.synthesis.unitary.aqc.ApproximateCircuit "qiskit.synthesis.unitary.aqc.approximate.ApproximateCircuit")
|
||
|
||
A class that represents an approximate circuit based on CNOT unit blocks.
|
||
|
||
**Parameters**
|
||
|
||
* **num\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")) – the number of qubits in this circuit.
|
||
* **cnots** (*np.ndarray*) – an array of dimensions `(2, L)` indicating where the CNOT units will be placed.
|
||
* **tol** (*Optional\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]*) – angle parameter less or equal this (small) value is considered equal zero and corresponding gate is not inserted into the output circuit (because it becomes identity one in this case).
|
||
* **name** (*Optional\[*[*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")*]*) – name of this circuit
|
||
|
||
**Raises**
|
||
|
||
[**ValueError**](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.13)") – if an unsupported parameter is passed.
|
||
|
||
## Attributes
|
||
|
||
### ancillas
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.ancillas">
|
||
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### calibrations
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.calibrations">
|
||
Return calibration dictionary.
|
||
|
||
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
|
||
</Attribute>
|
||
|
||
### clbits
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.clbits">
|
||
A list of `Clbit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.data">
|
||
The circuit data (instructions and context).
|
||
|
||
**Returns**
|
||
|
||
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
|
||
|
||
**Return type**
|
||
|
||
QuantumCircuitData
|
||
</Attribute>
|
||
|
||
### global\_phase
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.global_phase">
|
||
The global phase of the current circuit scope in radians.
|
||
</Attribute>
|
||
|
||
### instances
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.instances" attributeValue="160" />
|
||
|
||
### layout
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.layout">
|
||
Return any associated layout information about the circuit
|
||
|
||
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
|
||
|
||
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
|
||
</Attribute>
|
||
|
||
### metadata
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.metadata">
|
||
Arbitrary user-defined metadata for the circuit.
|
||
|
||
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
|
||
</Attribute>
|
||
|
||
### num\_ancillas
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_ancillas">
|
||
Return the number of ancilla qubits.
|
||
</Attribute>
|
||
|
||
### num\_captured\_vars
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_captured_vars">
|
||
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
|
||
|
||
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_input_vars "qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_input_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_clbits
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_clbits">
|
||
Return number of classical bits.
|
||
</Attribute>
|
||
|
||
### num\_declared\_vars
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_declared_vars">
|
||
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
|
||
|
||
This is the length of the `iter_declared_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### num\_input\_vars
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_input_vars">
|
||
The number of real-time classical variables in the circuit marked as circuit inputs.
|
||
|
||
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_captured_vars "qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_captured_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_parameters
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_parameters">
|
||
The number of parameter objects in the circuit.
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_qubits">
|
||
Return number of qubits.
|
||
</Attribute>
|
||
|
||
### num\_vars
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.num_vars">
|
||
The number of real-time classical variables in the circuit.
|
||
|
||
This is the length of the `iter_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### op\_start\_times
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.op_start_times">
|
||
Return a list of operation start times.
|
||
|
||
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
|
||
|
||
**Returns**
|
||
|
||
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
|
||
|
||
**Raises**
|
||
|
||
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") – When circuit is not scheduled.
|
||
</Attribute>
|
||
|
||
### parameters
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.parameters">
|
||
The parameters defined in the circuit.
|
||
|
||
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
|
||
|
||
**Examples**
|
||
|
||
The snippet below shows that insertion order of parameters does not matter.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.rx(b, 0)
|
||
>>> circuit.rz(elephant, 0)
|
||
>>> circuit.ry(a, 0)
|
||
>>> circuit.parameters # sorted alphabetically!
|
||
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
|
||
```
|
||
|
||
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.u(*angles, 0)
|
||
>>> circuit.draw()
|
||
┌─────────────────────────────┐
|
||
q: ┤ U(angle_1,angle_2,angle_10) ├
|
||
└─────────────────────────────┘
|
||
>>> circuit.parameters
|
||
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
|
||
```
|
||
|
||
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
|
||
>>> x = ParameterVector("x", 12)
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> for x_i in x:
|
||
... circuit.rx(x_i, 0)
|
||
>>> circuit.parameters
|
||
ParameterView([
|
||
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
|
||
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
|
||
..., ParameterVectorElement(x[11])
|
||
])
|
||
```
|
||
|
||
**Returns**
|
||
|
||
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
|
||
</Attribute>
|
||
|
||
### prefix
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.prefix" attributeValue="'circuit'" />
|
||
|
||
### qubits
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.qubits">
|
||
A list of `Qubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### thetas
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.thetas">
|
||
Returns a vector of rotation angles used by CNOT units in this circuit.
|
||
|
||
**Returns**
|
||
|
||
Parameters of the rotation gates in this circuit.
|
||
</Attribute>
|
||
|
||
### name
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.name" attributeTypeHint="str">
|
||
A human-readable name for the circuit.
|
||
</Attribute>
|
||
|
||
### qregs
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.qregs" attributeTypeHint="list[QuantumRegister]">
|
||
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### cregs
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.cregs" attributeTypeHint="list[ClassicalRegister]">
|
||
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### duration
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.duration" attributeTypeHint="int | float | None">
|
||
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.unit "qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.unit").
|
||
</Attribute>
|
||
|
||
### unit
|
||
|
||
<Attribute id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.unit">
|
||
The unit that [`duration`](#qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.duration "qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.duration") is specified in.
|
||
</Attribute>
|
||
|
||
## Methods
|
||
|
||
### build
|
||
|
||
<Function id="qiskit.synthesis.unitary.aqc.CNOTUnitCircuit.build" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/synthesis/unitary/aqc/cnot_unit_circuit.py#L68-L103" signature="build(thetas)">
|
||
**Constructs a Qiskit quantum circuit out of the parameters (angles) of this circuit. If a**
|
||
|
||
parameter value is less in absolute value than the specified tolerance then the corresponding rotation gate will be skipped in the circuit.
|
||
</Function>
|
||
</Class>
|
||
|