312 lines
15 KiB
Plaintext
312 lines
15 KiB
Plaintext
---
|
||
title: QuadraticForm (latest version)
|
||
description: API reference for qiskit.circuit.library.QuadraticForm in the latest version of qiskit
|
||
in_page_toc_min_heading_level: 1
|
||
python_api_type: class
|
||
python_api_name: qiskit.circuit.library.QuadraticForm
|
||
---
|
||
|
||
# QuadraticForm
|
||
|
||
<Class id="qiskit.circuit.library.QuadraticForm" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/quadratic_form.py#L24-L198" signature="qiskit.circuit.library.QuadraticForm(num_result_qubits=None, quadratic=None, linear=None, offset=None, little_endian=True)" modifiers="class">
|
||
Bases: [`QuantumCircuit`](qiskit.circuit.QuantumCircuit "qiskit.circuit.quantumcircuit.QuantumCircuit")
|
||
|
||
Implements a quadratic form on binary variables encoded in qubit registers.
|
||
|
||
A quadratic form on binary variables is a quadratic function $Q$ acting on a binary variable of $n$ bits, $x = x_0 ... x_{n-1}$. For an integer matrix $A$, an integer vector $b$ and an integer $c$ the function can be written as
|
||
|
||
$$
|
||
Q(x) = x^T A x + x^T b + c
|
||
$$
|
||
|
||
If $A$, $b$ or $c$ contain scalar values, this circuit computes only an approximation of the quadratic form.
|
||
|
||
Provided with $m$ qubits to encode the value, this circuit computes $Q(x) \mod 2^m$ in \[two’s complement]\([https://stackoverflow.com/questions/1049722/what-is-2s-complement](https://stackoverflow.com/questions/1049722/what-is-2s-complement)) representation.
|
||
|
||
$$
|
||
|x\rangle_n |0\rangle_m \mapsto |x\rangle_n |(Q(x) + 2^m) \mod 2^m \rangle_m
|
||
$$
|
||
|
||
Since we use two’s complement e.g. the value of $Q(x) = 3$ requires 2 bits to represent the value and 1 bit for the sign: 3 = ‘011’ where the first 0 indicates a positive value. On the other hand, $Q(x) = -3$ would be -3 = ‘101’, where the first 1 indicates a negative value and 01 is the two’s complement of 3.
|
||
|
||
If the value of $Q(x)$ is too large to be represented with m qubits, the resulting bitstring is $(Q(x) + 2^m) \mod 2^m)$.
|
||
|
||
The implementation of this circuit is discussed in \[1], Fig. 6.
|
||
|
||
**References**
|
||
|
||
**\[1]: Gilliam et al., Grover Adaptive Search for Constrained Polynomial Binary Optimization.**
|
||
|
||
[arXiv:1912.04088](https://arxiv.org/pdf/1912.04088.pdf)
|
||
|
||
**Parameters**
|
||
|
||
* **num\_result\_qubits** ([*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)") *| None*) – The number of qubits to encode the result. Called $m$ in the class documentation.
|
||
* **quadratic** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v2.1)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.13)")*\[*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)") *|*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*]] | None*) – A matrix containing the quadratic coefficients, $A$.
|
||
* **linear** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v2.1)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)") *|*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression")*] | None*) – An array containing the linear coefficients, $b$.
|
||
* **offset** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)") *|*[*ParameterExpression*](qiskit.circuit.ParameterExpression "qiskit.circuit.parameterexpression.ParameterExpression") *| None*) – A constant offset, $c$.
|
||
* **little\_endian** ([*bool*](https://docs.python.org/3/library/functions.html#bool "(in Python v3.13)")) – Encode the result in little endianness.
|
||
|
||
**Raises**
|
||
|
||
* [**ValueError**](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.13)") – If `linear` and `quadratic` have mismatching sizes.
|
||
* [**ValueError**](https://docs.python.org/3/library/exceptions.html#ValueError "(in Python v3.13)") – If `num_result_qubits` is unspecified but cannot be determined because some values of the quadratic form are parameterized.
|
||
|
||
## Attributes
|
||
|
||
### ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.ancillas">
|
||
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### calibrations
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.calibrations">
|
||
Return calibration dictionary.
|
||
|
||
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
|
||
</Attribute>
|
||
|
||
### clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.clbits">
|
||
A list of `Clbit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### data
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.data">
|
||
The circuit data (instructions and context).
|
||
|
||
**Returns**
|
||
|
||
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
|
||
|
||
**Return type**
|
||
|
||
QuantumCircuitData
|
||
</Attribute>
|
||
|
||
### global\_phase
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.global_phase">
|
||
The global phase of the current circuit scope in radians.
|
||
</Attribute>
|
||
|
||
### instances
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.instances" attributeValue="160" />
|
||
|
||
### layout
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.layout">
|
||
Return any associated layout information about the circuit
|
||
|
||
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
|
||
|
||
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
|
||
</Attribute>
|
||
|
||
### metadata
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.metadata">
|
||
Arbitrary user-defined metadata for the circuit.
|
||
|
||
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
|
||
</Attribute>
|
||
|
||
### num\_ancillas
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_ancillas">
|
||
Return the number of ancilla qubits.
|
||
</Attribute>
|
||
|
||
### num\_captured\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_captured_vars">
|
||
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
|
||
|
||
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.QuadraticForm.num_input_vars "qiskit.circuit.library.QuadraticForm.num_input_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_clbits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_clbits">
|
||
Return number of classical bits.
|
||
</Attribute>
|
||
|
||
### num\_declared\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_declared_vars">
|
||
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
|
||
|
||
This is the length of the `iter_declared_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### num\_input\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_input_vars">
|
||
The number of real-time classical variables in the circuit marked as circuit inputs.
|
||
|
||
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.QuadraticForm.num_captured_vars "qiskit.circuit.library.QuadraticForm.num_captured_vars") must be zero.
|
||
</Attribute>
|
||
|
||
### num\_parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_parameters">
|
||
The number of parameter objects in the circuit.
|
||
</Attribute>
|
||
|
||
### num\_qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_qubits">
|
||
Return number of qubits.
|
||
</Attribute>
|
||
|
||
### num\_vars
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.num_vars">
|
||
The number of real-time classical variables in the circuit.
|
||
|
||
This is the length of the `iter_vars()` iterable.
|
||
</Attribute>
|
||
|
||
### op\_start\_times
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.op_start_times">
|
||
Return a list of operation start times.
|
||
|
||
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
|
||
|
||
**Returns**
|
||
|
||
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
|
||
|
||
**Raises**
|
||
|
||
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") – When circuit is not scheduled.
|
||
</Attribute>
|
||
|
||
### parameters
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.parameters">
|
||
The parameters defined in the circuit.
|
||
|
||
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
|
||
|
||
**Examples**
|
||
|
||
The snippet below shows that insertion order of parameters does not matter.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.rx(b, 0)
|
||
>>> circuit.rz(elephant, 0)
|
||
>>> circuit.ry(a, 0)
|
||
>>> circuit.parameters # sorted alphabetically!
|
||
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
|
||
```
|
||
|
||
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter
|
||
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> circuit.u(*angles, 0)
|
||
>>> circuit.draw()
|
||
┌─────────────────────────────┐
|
||
q: ┤ U(angle_1,angle_2,angle_10) ├
|
||
└─────────────────────────────┘
|
||
>>> circuit.parameters
|
||
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
|
||
```
|
||
|
||
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
|
||
|
||
```python
|
||
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
|
||
>>> x = ParameterVector("x", 12)
|
||
>>> circuit = QuantumCircuit(1)
|
||
>>> for x_i in x:
|
||
... circuit.rx(x_i, 0)
|
||
>>> circuit.parameters
|
||
ParameterView([
|
||
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
|
||
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
|
||
..., ParameterVectorElement(x[11])
|
||
])
|
||
```
|
||
|
||
**Returns**
|
||
|
||
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
|
||
</Attribute>
|
||
|
||
### prefix
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.prefix" attributeValue="'circuit'" />
|
||
|
||
### qubits
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.qubits">
|
||
A list of `Qubit`s in the order that they were added. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### name
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.name" attributeTypeHint="str">
|
||
A human-readable name for the circuit.
|
||
</Attribute>
|
||
|
||
### qregs
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.qregs" attributeTypeHint="list[QuantumRegister]">
|
||
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### cregs
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.cregs" attributeTypeHint="list[ClassicalRegister]">
|
||
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
|
||
</Attribute>
|
||
|
||
### duration
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.duration" attributeTypeHint="int | float | None">
|
||
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.QuadraticForm.unit "qiskit.circuit.library.QuadraticForm.unit").
|
||
</Attribute>
|
||
|
||
### unit
|
||
|
||
<Attribute id="qiskit.circuit.library.QuadraticForm.unit">
|
||
The unit that [`duration`](#qiskit.circuit.library.QuadraticForm.duration "qiskit.circuit.library.QuadraticForm.duration") is specified in.
|
||
</Attribute>
|
||
|
||
## Methods
|
||
|
||
### required\_result\_qubits
|
||
|
||
<Function id="qiskit.circuit.library.QuadraticForm.required_result_qubits" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/quadratic_form.py#L166-L198" signature="required_result_qubits(quadratic, linear, offset)" modifiers="static">
|
||
Get the number of required result qubits.
|
||
|
||
**Parameters**
|
||
|
||
* **quadratic** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v2.1)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.13)")*\[*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]]*) – A matrix containing the quadratic coefficients.
|
||
* **linear** ([*ndarray*](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray "(in NumPy v2.1)") *|*[*List*](https://docs.python.org/3/library/typing.html#typing.List "(in Python v3.13)")*\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]*) – An array containing the linear coefficients.
|
||
* **offset** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")) – A constant offset.
|
||
|
||
**Returns**
|
||
|
||
The number of qubits needed to represent the value of the quadratic form in twos complement.
|
||
|
||
**Return type**
|
||
|
||
[int](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")
|
||
</Function>
|
||
</Class>
|
||
|