qiskit-documentation/docs/api/qiskit/qiskit.circuit.library.Piec...

411 lines
16 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: PiecewisePolynomialPauliRotations (latest version)
description: API reference for qiskit.circuit.library.PiecewisePolynomialPauliRotations in the latest version of qiskit
in_page_toc_min_heading_level: 1
python_api_type: class
python_api_name: qiskit.circuit.library.PiecewisePolynomialPauliRotations
---
# PiecewisePolynomialPauliRotations
<Class id="qiskit.circuit.library.PiecewisePolynomialPauliRotations" isDedicatedPage={true} github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/piecewise_polynomial_pauli_rotations.py#L27-L317" signature="qiskit.circuit.library.PiecewisePolynomialPauliRotations(num_state_qubits=None, breakpoints=None, coeffs=None, basis='Y', name='pw_poly')" modifiers="class">
Bases: [`FunctionalPauliRotations`](qiskit.circuit.library.FunctionalPauliRotations "qiskit.circuit.library.arithmetic.functional_pauli_rotations.FunctionalPauliRotations")
Piecewise-polynomially-controlled Pauli rotations.
This class implements a piecewise polynomial (not necessarily continuous) function, $f(x)$, on qubit amplitudes, which is defined through breakpoints and coefficients as follows. Suppose the breakpoints $(x_0, ..., x_J)$ are a subset of $[0, 2^n-1]$, where $n$ is the number of state qubits. Further on, denote the corresponding coefficients by $[a_{j,1},...,a_{j,d}]$, where $d$ is the highest degree among all polynomials.
Then $f(x)$ is defined as:
$$
f(x) = \begin{cases}
0, x < x_0 \\
\sum_{i=0}^{i=d}a_{j,i}/2 x^i, x_j \leq x < x_{j+1}
\end{cases}
$$
where if given the same number of breakpoints as polynomials, we implicitly assume $x_{J+1} = 2^n$.
<Admonition title="Note" type="note">
Note the $1/2$ factor in the coefficients of $f(x)$, this is consistent with Qiskits Pauli rotations.
</Admonition>
**Examples**
```python
>>> from qiskit import QuantumCircuit
>>> from qiskit.circuit.library.arithmetic.piecewise_polynomial_pauli_rotations import\
... PiecewisePolynomialPauliRotations
>>> qubits, breakpoints, coeffs = (2, [0, 2], [[0, -1.2],[-1, 1, 3]])
>>> poly_r = PiecewisePolynomialPauliRotations(num_state_qubits=qubits,
...breakpoints=breakpoints, coeffs=coeffs)
>>>
>>> qc = QuantumCircuit(poly_r.num_qubits)
>>> qc.h(list(range(qubits)));
>>> qc.append(poly_r.to_instruction(), list(range(qc.num_qubits)));
>>> qc.draw()
┌───┐┌──────────┐
q_0: ┤ H ├┤0 ├
├───┤│ │
q_1: ┤ H ├┤1 ├
└───┘│ │
q_2: ─────┤2 ├
│ pw_poly │
q_3: ─────┤3 ├
│ │
q_4: ─────┤4 ├
│ │
q_5: ─────┤5 ├
└──────────┘
```
**References**
**\[1]: Haener, T., Roetteler, M., & Svore, K. M. (2018).**
Optimizing Quantum Circuits for Arithmetic. [arXiv:1805.12445](http://arxiv.org/abs/1805.12445)
**\[2]: Carrera Vazquez, A., Hiptmair, R., & Woerner, S. (2022).**
Enhancing the Quantum Linear Systems Algorithm using Richardson Extrapolation. [ACM Transactions on Quantum Computing 3, 1, Article 2](https://doi.org/10.1145/3490631)
**Parameters**
* **num\_state\_qubits** (*Optional\[*[*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")*]*) The number of qubits representing the state.
* **breakpoints** (*Optional\[List\[*[*int*](https://docs.python.org/3/library/functions.html#int "(in Python v3.13)")*]]*) The breakpoints to define the piecewise-linear function. Defaults to `[0]`.
* **coeffs** (*Optional\[List\[List\[*[*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")*]]]*) The coefficients of the polynomials for different segments of the
* **x** (*piecewise-linear function. coeffs\[j]\[i] is the coefficient of the i-th power of*)
* **polynomial.** (*for the j-th*) Defaults to linear: `[[1]]`.
* **basis** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) The type of Pauli rotation (`'X'`, `'Y'`, `'Z'`).
* **name** ([*str*](https://docs.python.org/3/library/stdtypes.html#str "(in Python v3.13)")) The name of the circuit.
## Attributes
### ancillas
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.ancillas">
A list of `AncillaQubit`s in the order that they were added. You should not mutate this.
</Attribute>
### basis
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.basis">
The kind of Pauli rotation to be used.
Set the basis to X, Y or Z for controlled-X, -Y, or -Z rotations respectively.
**Returns**
The kind of Pauli rotation used in controlled rotation.
</Attribute>
### breakpoints
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.breakpoints">
The breakpoints of the piecewise polynomial function.
The function is polynomial in the intervals `[point_i, point_{i+1}]` where the last point implicitly is `2**(num_state_qubits + 1)`.
**Returns**
The list of breakpoints.
</Attribute>
### calibrations
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.calibrations">
Return calibration dictionary.
The custom pulse definition of a given gate is of the form `{'gate_name': {(qubits, params): schedule}}`
</Attribute>
### clbits
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.clbits">
A list of `Clbit`s in the order that they were added. You should not mutate this.
</Attribute>
### coeffs
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.coeffs">
The coefficients of the polynomials.
**Returns**
The polynomial coefficients per interval as nested lists.
</Attribute>
### contains\_zero\_breakpoint
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.contains_zero_breakpoint">
Whether 0 is the first breakpoint.
**Returns**
True, if 0 is the first breakpoint, otherwise False.
</Attribute>
### data
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.data">
The circuit data (instructions and context).
**Returns**
a list-like object containing the [`CircuitInstruction`](qiskit.circuit.CircuitInstruction "qiskit.circuit.CircuitInstruction")s for each instruction.
**Return type**
QuantumCircuitData
</Attribute>
### global\_phase
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.global_phase">
The global phase of the current circuit scope in radians.
</Attribute>
### instances
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.instances" attributeValue="256" />
### layout
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.layout">
Return any associated layout information about the circuit
This attribute contains an optional [`TranspileLayout`](qiskit.transpiler.TranspileLayout "qiskit.transpiler.TranspileLayout") object. This is typically set on the output from [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") or [`PassManager.run()`](qiskit.transpiler.PassManager#run "qiskit.transpiler.PassManager.run") to retain information about the permutations caused on the input circuit by transpilation.
There are two types of permutations caused by the [`transpile()`](compiler#qiskit.compiler.transpile "qiskit.compiler.transpile") function, an initial layout which permutes the qubits based on the selected physical qubits on the [`Target`](qiskit.transpiler.Target "qiskit.transpiler.Target"), and a final layout which is an output permutation caused by [`SwapGate`](qiskit.circuit.library.SwapGate "qiskit.circuit.library.SwapGate")s inserted during routing.
</Attribute>
### mapped\_coeffs
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.mapped_coeffs">
The coefficients mapped to the internal representation, since we only compare x>=breakpoint.
**Returns**
The mapped coefficients.
</Attribute>
### metadata
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.metadata">
Arbitrary user-defined metadata for the circuit.
Qiskit will not examine the content of this mapping, but it will pass it through the transpiler and reattach it to the output, so you can track your own metadata.
</Attribute>
### num\_ancilla\_qubits
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_ancilla_qubits">
The minimum number of ancilla qubits in the circuit.
**Returns**
The minimal number of ancillas required.
</Attribute>
### num\_ancillas
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_ancillas">
Return the number of ancilla qubits.
</Attribute>
### num\_captured\_vars
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_captured_vars">
The number of real-time classical variables in the circuit marked as captured from an enclosing scope.
This is the length of the `iter_captured_vars()` iterable. If this is non-zero, [`num_input_vars`](#qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_input_vars "qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_input_vars") must be zero.
</Attribute>
### num\_clbits
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_clbits">
Return number of classical bits.
</Attribute>
### num\_declared\_vars
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_declared_vars">
The number of real-time classical variables in the circuit that are declared by this circuit scope, excluding inputs or captures.
This is the length of the `iter_declared_vars()` iterable.
</Attribute>
### num\_input\_vars
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_input_vars">
The number of real-time classical variables in the circuit marked as circuit inputs.
This is the length of the `iter_input_vars()` iterable. If this is non-zero, [`num_captured_vars`](#qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_captured_vars "qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_captured_vars") must be zero.
</Attribute>
### num\_parameters
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_parameters">
The number of parameter objects in the circuit.
</Attribute>
### num\_qubits
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_qubits">
Return number of qubits.
</Attribute>
### num\_state\_qubits
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_state_qubits">
The number of state qubits representing the state $|x\rangle$.
**Returns**
The number of state qubits.
</Attribute>
### num\_vars
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.num_vars">
The number of real-time classical variables in the circuit.
This is the length of the `iter_vars()` iterable.
</Attribute>
### op\_start\_times
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.op_start_times">
Return a list of operation start times.
This attribute is enabled once one of scheduling analysis passes runs on the quantum circuit.
**Returns**
List of integers representing instruction start times. The index corresponds to the index of instruction in `QuantumCircuit.data`.
**Raises**
[**AttributeError**](https://docs.python.org/3/library/exceptions.html#AttributeError "(in Python v3.13)") When circuit is not scheduled.
</Attribute>
### parameters
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.parameters">
The parameters defined in the circuit.
This attribute returns the [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit sorted alphabetically. Note that parameters instantiated with a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") are still sorted numerically.
**Examples**
The snippet below shows that insertion order of parameters does not matter.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> a, b, elephant = Parameter("a"), Parameter("b"), Parameter("elephant")
>>> circuit = QuantumCircuit(1)
>>> circuit.rx(b, 0)
>>> circuit.rz(elephant, 0)
>>> circuit.ry(a, 0)
>>> circuit.parameters # sorted alphabetically!
ParameterView([Parameter(a), Parameter(b), Parameter(elephant)])
```
Bear in mind that alphabetical sorting might be unintuitive when it comes to numbers. The literal “10” comes before “2” in strict alphabetical sorting.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter
>>> angles = [Parameter("angle_1"), Parameter("angle_2"), Parameter("angle_10")]
>>> circuit = QuantumCircuit(1)
>>> circuit.u(*angles, 0)
>>> circuit.draw()
┌─────────────────────────────┐
q: ┤ U(angle_1,angle_2,angle_10) ├
└─────────────────────────────┘
>>> circuit.parameters
ParameterView([Parameter(angle_1), Parameter(angle_10), Parameter(angle_2)])
```
To respect numerical sorting, a [`ParameterVector`](qiskit.circuit.ParameterVector "qiskit.circuit.ParameterVector") can be used.
```python
>>> from qiskit.circuit import QuantumCircuit, Parameter, ParameterVector
>>> x = ParameterVector("x", 12)
>>> circuit = QuantumCircuit(1)
>>> for x_i in x:
... circuit.rx(x_i, 0)
>>> circuit.parameters
ParameterView([
ParameterVectorElement(x[0]), ParameterVectorElement(x[1]),
ParameterVectorElement(x[2]), ParameterVectorElement(x[3]),
..., ParameterVectorElement(x[11])
])
```
**Returns**
The sorted [`Parameter`](qiskit.circuit.Parameter "qiskit.circuit.Parameter") objects in the circuit.
</Attribute>
### prefix
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.prefix" attributeValue="'circuit'" />
### qregs
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.qregs" attributeTypeHint="list[QuantumRegister]">
A list of the `QuantumRegister`s in this circuit. You should not mutate this.
</Attribute>
### qubits
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.qubits">
A list of `Qubit`s in the order that they were added. You should not mutate this.
</Attribute>
### name
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.name" attributeTypeHint="str">
A human-readable name for the circuit.
</Attribute>
### cregs
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.cregs" attributeTypeHint="list[ClassicalRegister]">
A list of the `ClassicalRegister`s in this circuit. You should not mutate this.
</Attribute>
### duration
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.duration" attributeTypeHint="int | float | None">
The total duration of the circuit, set by a scheduling transpiler pass. Its unit is specified by [`unit`](#qiskit.circuit.library.PiecewisePolynomialPauliRotations.unit "qiskit.circuit.library.PiecewisePolynomialPauliRotations.unit").
</Attribute>
### unit
<Attribute id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.unit">
The unit that [`duration`](#qiskit.circuit.library.PiecewisePolynomialPauliRotations.duration "qiskit.circuit.library.PiecewisePolynomialPauliRotations.duration") is specified in.
</Attribute>
## Methods
### evaluate
<Function id="qiskit.circuit.library.PiecewisePolynomialPauliRotations.evaluate" github="https://github.com/Qiskit/qiskit/tree/stable/1.2/qiskit/circuit/library/arithmetic/piecewise_polynomial_pauli_rotations.py#L210-L224" signature="evaluate(x)">
Classically evaluate the piecewise polynomial rotation.
**Parameters**
**x** ([*float*](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")) Value to be evaluated at.
**Returns**
Value of piecewise polynomial function at x.
**Return type**
[float](https://docs.python.org/3/library/functions.html#float "(in Python v3.13)")
</Function>
</Class>